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5 Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom, 6 Molecular and Population

Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 7 Department of Mathematics, University College London, London,

United Kingdom

Abstract

Breast cancer patients have an anomalously high rate of relapse many years–up to 25 years–after apparently curative surgery
removed the primary tumour. Disease progression during the intervening years between resection and relapse is poorly
understood. There is evidence that the disease persists as dangerous, tiny metastases that remain at a growth restricted, clinically
undetectable size until a transforming event restarts growth. This is the starting point for our study, where patients who have
metastases that are all tiny and growth-restricted are said to have cancer dormancy. Can long-term follow-up relapse data from
breast cancer patients be used to extract knowledge about the progression of the undetected disease? Here, we evaluate
whether this is the case by introducing and analysing four simple mathematical models of cancer dormancy. These models
extend the common assumption that a random transforming event, such as a mutation, can restart growth of a tiny, growth-
restricted metastasis; thereafter, cancer dormancy progresses to detectable metastasis. We find that physiopathological details,
such as the number of random transforming events that metastases must undergo to escape from growth restriction, cannot be
extracted from relapse data. This result is unsurprising. However, the same analysis suggested a natural question that does have a
surprising answer: why are interesting trends in long-term relapse data not more commonly observed? Further, our models
indicate that (a) therapies which induce growth restriction among metastases but do not prevent increases in metastases’
tumourigenicity may introduce a time post-surgery when more patients are prone to relapse; and (b), if a number of facts about
disease progression are first established, how relapse data might be usedto estimate clinically relevant variables, such as the likely
numbers of undetected growth-restricted metastases. This work is a necessary, early step in building a quantitative mechanistic
understanding of cancer dormancy.
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Introduction

In breast cancer it is relatively common when compared with

other cancers for patients to relapse from metastases appearing at

distant sites after exceptionally long periods of remission, up to 25

years [1]. The dynamics of disease progression during the

intervening years between resection and relapse is largely

unknown [2]. Evidence that the periods of remission are

inexplicable by continual growth of metastases [3–7] implies that

there is some period during which all metastases are not growing–

they are growth-restricted at sizes and locations that cannot be

detected by non-invasive clinical methods. In this study, such

patients are said to have breast cancer dormancy.

Growth restriction of tiny metastases could be due to their

inability to recruit extra blood vessels required for further growth

(cells are pre-angiogenic) [8–14], or to immune surveillance

[15,16], or to cell-cycle arrest of disseminated cells [17], perhaps

because the new microenvironment lacks the cues to reverse the

epithelial-mesenchymal transition [18,19]. Disseminated cancer

cells are thought to have been found in the blood of breast cancer

patients who show no other signs of relapse up to 22 years post-

resection [20], and these cells are thought to have a short life-span

[20], which would indicate that long-term dormancy in breast

cancer is maintained by micrometastases that contain proliferating

cells rather than by solitary quiescent cells.

Given the experimental constraints that prohibit the study of

dormancy in vivo, a few recent efforts have attempted to infer the

physiopathologicalmechanismsunderlyingdormancy fromtrends in

relapse statistics collected from large, long-term follow-up cohorts of

patients with previously resected cancers [21,22]. The approach is

analogous to that initiated by Armitage and Doll in the 1960 s, who

attempted to infer the number of rate-limiting events that occurred
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during carcinogenesis from age-onset data [23]. Following Armitage

and Doll, more recent work proved that definitive estimates of this

number are confounded by clonal expansions that occur aspart of the

carcinogenic process (see [24] andreferences therein) andas such, the

physiopathological information extractable from the age-incidence

data is limited. It seems pertinent to ask what information about the

progression of long-term metastatic disease can be confidently

inferred from relapse statistics.

Here, we address this question in the context of breast cancer

dormancy by introducing and analysing four simple probabilistic

models, each motivated by the clinical literature. These models

have in common one key assumption, that all patients who relapse

beyond a specified minimum time t years post-resection have

metastases that each underwent at least one period of growth

restriction as a micrometastasis until a random growth event, such

as a (epi)mutation among the proliferating cells, caused escape

from growth restriction. Otherwise the different models represent

different combinations of the following physiopathological events:

(1) Micrometastases may disappear–the spontaneous disappear-

ance of small cancers and metastases is known to happen (e.g. [25–

27]); it is often attributed to immune attack or random fluctuations

in the balance of cell proliferation and death. (2) Micrometastases

may disseminate cells that seed secondary micrometastases at

distant sites–this is plausible because the cell-initiators of micro-

metastases are likely to have high metastatic potential, and breast

cancer dormancy patients commonly have circulating tumour cells

in their blood [20]. (3) Micrometastases undergo two rate-limiting,

random growth events, rather than just one–there is evidence for

two significant periods of growth restriction, as solitary cells [17]

and as pre-angiogenic micrometastases [8], that may follow in

succession in breast cancer dormancy [28]. (4) The rate of escape

from growth restriction may change over time–for example, if over

generations selection operates on the cells of the micrometastases

to increase the cell proliferation rate.

Each model makes simplifying assumptions: the physiopatho-

logical events (1)–(4) are each represented by parameters that

coarse-grain many, largely unknown, distinct cellular events; each

model ignores fluctuations in cell number and intra-heterogeneity

within micrometastases; each model ignores the inter-heterogeni-

ety between micrometastases and their respective locations; after a

random growth event, micrometastases grow to a clinically

detectable size over a fixed growth time t that is common to all

micrometastases; micrometastases are assumed not to influence

one another’s progression. Lastly, the effect of treatments on

disease progression is not explicitly modelled, although it may be

possible to surmise how treatments will affect relapse rates from

their likely effect on the parameters representing (1) – (4) (see, for

example, the third section of the results). We return briefly to these

assumptions in the discussion.

Despite the simplifications, the models can account for the

different trends in relapse data. Their simplicity renders them

analytically tractable, and this permitted a full characterisation of

how the disease’s hidden dynamics translates into trends in relapse

data, and so led to a few surprising conclusions that are

summarised in the discussion. The characterisation would have

been considerably more difficult and perhaps impossible to

achieve with more complex models.

Materials and Methods

Models
Patients post-resection can be in one of four states: all metastases

in growth restriction as micrometastases (dormancy); one or more

growing metastases (growth); detectable metastases (relapse); or no

residual cancer (clearance). The following models, illustrated in

Figure 1, describe four different scenarios for how a patient, who

at the time of resection has no detectable or growing cancers,

progresses between these states. Their specifications as continuous-

time Markov processes are in File S1. In each model, the total

number of micrometastases in a patient at time t post-resection is

n(t) (or ni(t), i~A,B, . . . if there are different types A,B . . . of

micrometastases). Notation is summarised in Table 1.

Zeroth Model : micrometastases escape from growth

restriction in one rate-limiting step. Upon resection the

patient has n(0)~N growth-restricted micrometastases. If Nw0,

the patient has dormancy; otherwise N~0 and the patient is

cleared of cancer. Each micrometastasis undergoes a random

growth event at steady average rate k per year, so the total rate of

escape from growth restriction at time t is k|n(t); in the Zeroth

Model k|n(t)~k|N , i.e. the risk to the patient remains

constant until a growth event. If the growth event is a mutation,

k coarse-grains the likelihood of the mutation per cell prolifera-

tion, the cell proliferation rate, and the number of proliferating

cells in a micrometastasis. Following this event, it is only a matter

of time, denoted by a specified growth time t, until the

micrometastasis grows to a clinically detectable size and the

patient relapses. The Zeroth Model has 2 parameters N,k.

Models 1 to 3 generalize the Zeroth Model in three different

ways.

Model 1 : the cells of micrometastases can seed

secondary micrometastases and micrometastases can

disappear. In Model 1 [22], the N micrometastases present

upon resection are subject not only to growth events occurring at

rate k per year, in addition they may disappear at rate m per year,

or their disseminated cells may seed new, growth-restricted,

secondary micrometastases at rate l per year. In this way the

number of micrometastases n(t) may change with time t: the risk

to the patient increases as new micrometastases are seeded or

decreases as micrometastases disappear. The parameter l coarse-

grains many cellular events, including cell dissemination and

colonization in a new environment. The metastatic potential of

breast cancer cells depends on the micro-environment from which

they originate [29]; we assume that only some micro-environments

permit seeding of secondary micrometastases. Another parameter

pM accounts for the frequency with which micrometastases are

independently seeded in micro-environments that permit second-

ary metastasis; the number of micrometastases in such environ-

ments is denoted nM (t).

Model 1 has 5 parameters N,k,m,l,pM .

Model 2 : micrometastases must undergo two rate-

limiting steps to escape from growth restriction. In Model

2, micrometastases are of two types. Type one, of number

nV (0)~NV upon resection, must undergo one random growth

event to grow to a detectable size; the growth event occurs at

steady rate kV per micrometastasis per year. Type two, of number

nS(0)~NS upon resection, must undergo two random growth

events to grow to a detectable size. The first growth event occurs at

rate kS per micrometastasis per year, the second growth event

occurs at rate kV per micrometastasis per year; when such

micrometastases undergo a first growth event, the patient still has

dormancy, but the risk to the patient increases. Model 2 is

motivated by the following scenario [21]: growth-restricted

quiescent cell clumps (micrometastases in state S) suddenly

proliferate to grow to pre-angiogenic micrometastases (microme-

tastases in state V ); micrometastases seeded by the primary tumour

can be in either state S or state V . Micrometastases cannot

disappear, nor is there dynamic seeding of secondary microme-

tastases.

Disease Progression in Breast Cancer Dormancy
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Model 2 has 4 parameters NS,NV ,kS,kV .

Model 3 : micrometastases escape from growth

restriction at a rate that changes with time. In Model 3,

the rate of escape from growth restriction is no longer steady: it

varies with time in each micrometastasis as k(t) per year because,

for example, there is a gradual selection among the cells of each

micrometastasis which gradually increases the cell proliferation

rate and so the growth event rate. For data fitting, it is simplest to

assume that k(t) is linear k(t)~k0zk’0t. Here, all micrometas-

tases, of number n(0)~N upon resection, are of the same type,

and again micrometastases cannot disappear nor is there dynamic

seeding of secondary micrometastases.

Model 3 has 3 parameters N,k0,k’0.

Analysis
Relapse data are systematically summarized by Kaplan-Meier

recurrence-free interval curves (from hereon referred to as RFI

curves) which show the post-resection time evolution of the

fraction of patients who do not have recurrent breast cancer as it is

defined below in the section`Relapse data’. Throughout, ft½tzt�
denotes a RFI curve at tzt years post-resection normalized at

time t (the normalization time is indicated by the subscript,

ft½tzt�~f0½tzt�=f0½t�). Using RFI curves only after the micro-

metastases’ growth time t excludes from our analyses patients who

already had growing or detectable metastases upon resection. The

hazard rate h½tzt� is the rate of patient relapse among those who

have survived recurrence-free until that time, and so is related to

the RFI curve by h½tzt�~{f ’t½tzt�=ft½tzt�.
Expressions that relate the models’ variables to RFI

curves and hazard rates. For each model, the statistics

Figure 1. Models. The four models describe four different scenarios for how a patient, who at the time of resection has no detectable or growing
cancers, progresses between the states of dormancy, clearance, growth, and relapse.
doi:10.1371/journal.pone.0062320.g001

Table 1. Abbreviations and notation.

RFI (breast cancer) recurrence-free interval

EBCTCG Early Breast Cancer Trials Collaborative Group

ER +/2 estrogen receptor positive/negative

ft[t+t] RFI curve at time t+t post-resection, normalized at time t

h[t+t] Hazard rate at time t+t post-resection

Et[?], Vart[?] Average, variance at time t post-resection among patients without growing or detectable metastases

n(ni, i = A, B,…) Number of micrometastases (of type i = A, B,…)

doi:10.1371/journal.pone.0062320.t001

Disease Progression in Breast Cancer Dormancy
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ft½tzt� and h½tzt� are expressible in terms of the model’s

variables and parameters. Recall that n denotes the number of

micrometastases. The expressions below are derived in File S1.

Zeroth Model : h½tzt�~Et½kn�, h’½tzt�~{Vart½kn� ð1Þ

Model 1 : h½tzt�~Et½kn�, h’½tzt�~Et½k(lnM{mn)�

{Vart½kn�
ð2Þ

Model 2 : h½tzt�~Et½kV nV �,h’½tzt�~Et½kS kV nS�

{Vart½kV nV �
ð3Þ

Model 3 : h½tzt�~Et½k(t)n�, h’½tzt�~Et½k’(t)n�

{Vart½k(t)n�:
ð4Þ

The expectation Et½:� and the variance Vart½:� are over patients

without growing or detectable metastases at time t post-resection. (Note that

(1) – (4) relate hazard rates at time tzt post-resection to n at time t

post-resection.) Under the assumption that upon resection

parameters are independent, we have.

ZerothModel :
f ’’t ½t�~ (k2zs2

k)(N2zs2
N )

h’½t�~ {k2s2
N{s2

k(N2zs2
N )

"
ð5Þ

Model 1 :
f ’’t ½t�~ {k(p

M
l{m)Nz(k2zs2

k)(N2zs2
N )

h’½t�~ k(p
M

l{m{k
s2

N
N

)N{s2
k(N2zs2

N )

2
4 ð6Þ

Model 2 :
f ’’t ½t�~ {kS kV NSz(k2

V zs2
kV

)(N2
V zs2

NV
)

h’½t�~ kSkV NS {k2
V s2

NV
{s2

kV
(N2

Vzs2
NV

)

"
ð7Þ

Model 3 :
f ’’t ½t�~ {k’0 Nz(k2

0zs2
k0

)(N2zs2
N )

h’½t�~ k’0N{k2
0s2

N{s2
k0

(N2zs2
N )

"
ð8Þ

where here fN,k,m,l,pMg, fNS,NV ,kS,kVg, and fN,k0,k’0g each

represent the corresponding population averages among patients,

and fs2
N ,s2

kg, fs2
NV

,s2
kV
g, and fs2

N ,s2
k0
g each represent the

population variance of the parameter indicated by the subscript

(compare (1) – (4)). In data fitting and the presentation of results, it

is assumed that s2
k~s2

kV
~s2

k0
~0 (all patients have the same k or

kV ), and that the number of micrometastases upon resection is

Poisson-distributed with mean N (or with means Ni, i~A,B, . . ., if

micrometastases have different types). The latter assumption is

equivalent to the very reasonable assumption that the microme-

tastases extant upon resection were all seeded by a primary tumour

which seeds metastases as a time-varying Poisson process. The

former assumption is evaluated in the results and in the discussion.

Relapse Data
Models are fitted to relapse data from the following long-term

follow-up studies of relapse among breast cancer patients who did

not receive adjuvant therapy : 1) two data sets from the Early

Breast Cancer Trialists Collaborative Group (EBCTCG), a 15-

year follow-up from 6399 female patients [30]; 2) two data sets

from Chia et al., a 10-year follow-up from 1,187 lymph-node

negative, lymphovascular negative female patients [31]. The two

EBCTCG data sets are women aged less than 50 years at diagnosis

and women aged 50–69 years at diagnosis. The two Chia et al.

data sets are distinguished by the estrogen receptor positive (ER+)

or negative (ER2) status of the primary tumour. This indicates a

patient’s likely response to endocrine therapies such as tamoxifen.

The software GraphClick [32] was used to extract RFI curves

from these studies.

The models of dormancy are suitably applied to breast cancer

relapse data that specifies patients’ recurrence-free intervals (RFIs)

[33]. This term was introduced in 2007 [33] to describe patient

relapse data where relapses or `recurrences’ or `end points’ are

defined to be any one of the following: local/regional invasive

recurrence; distant recurrence; invasive ipsilateral breast tumour

recurrence (these are presumed to be a recurrence); death from

breast cancer before a recorded relapse. Among studies carried out

prior to 2007 (and possibly since 2007), there are often

discrepancies in the definitions of breast cancer relapses [33]. In

the Chia et al. study, relapses were defined as either the first local

(breast or chest wall), regional (ipsilateral axillary, infraclavicular,

internal mammary or supraclavicular), or distant recurrence, or

death from breast cancer before a recorded relapse, while new

contralateral breast cancers were not included. In the EBCTCG

study, relapses were defined as the first reappearance of breast

cancer at any site, and so new contralateral cancers were included

along with the other ‘end points’ specified in [33]. The EBCTCG

and Chia et al. data were used because they are from large patient

cohorts which ensured that RFI curves were sufficiently smooth for

trends in the data to be apparent. The analysis presented in this

article leads to methods for establishing results that are quick and

easy to repeat on new large cohort data sets as they become

available. In the future, as it becomes possible, the models are most

suitably applied to large cohort data sets for which it has been

unambiguously established that relapses are due to the original

tumours. However, applying this stricter definition to relapse data

should not alter the results or conclusions in this article.

Model Fitting
For each model and relapse data set, fitting was by a Monte

Carlo method: fitted parameter values are the points in parameter

space from a random sample of 106 which gave the minimum total

squared deviation between model and data. Points were sampled

from a uniform distribution over the following volumes: for the

Zeroth Model, fE½N�,kg*½0,10�|½0,0:3�; for Model 1,

fN,k,m,l,pMg*½0,10�|½0,0:1�|½0,3�|½0,3�|½0,1�; for Model

2, fNS,NV ,kS ,kVg*½0,10�|½0,10�|½0,3�|½0,0:3�; for Model 3,

fN,k0,k’0g*½0,10�|½0,0:3�|½0,0:2�. These volumes are sensible,

and our conclusions are independent of them. For each randomly

sampled point, the total squared deviation between the model’s

RFI curve (explicit functional forms of RFI curves are derived for

each model in File S1) and the data set was recorded. The growth

time t was specified as 3 years for EBCTCG data and 1.5 years for

Chia et al. data; these choices for t are sensible, see File S1), and

for these specific data sets they demonstrate our results optimally,

while our conclusions are independent of the choice.

Disease Progression in Breast Cancer Dormancy
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Results

Physiopathological Details about Disease Progression
cannot be Inferred by Fitting Models to Relapse Data

Figure 2 shows the Zeroth Model and Models 1–3 fitted to data

from EBCTCG (Panel A) and Chia et al. (Panel B). The graphs in

each panel show that each model gives a good fit to both data sets.

Hazard rates are inset in each graph; parameters and total squared

deviations are in Table 2. There is one notable difference among

the fitted models: for the ER+ Chia et al. data set, the hazard rate

has a maximum; Models 1–3 can reproduce this maximum but the

Zeroth Model cannot, as is explained in the next section.

Consequently, Models 1–3 give a better fit than the Zeroth Model

(they consistently have a smaller total squared deviation; other

discrepancies in the total squared deviations are due to the Monte

Carlo fitting method).

Maxima in Hazard Rates are Expected if the
Tumourigenicity of Micrometastases Increases with Time

According to Models 1–3, the hazard rate is increasing at time t
years post-resection whenever the following inequalities are

satisfied.

Model 1 :

p
M

l{mwk (the number of micrometastases increases)

Model 2 :

kS NS wkV NV (more micrometastases require just

1 growth event)

Model 3 :

k00
k0

wk0 (faster escape in each micrometastasis)

(h’½t�w0 in equations (6) – (8)). The Zeroth Model cannot account

for an increase in the hazard rate. The different inequalities get

different mechanistic interpretations for increasing hazard rates,

but these interpretations have a common base: the risk of escape

from growth restriction increases (by the mechanisms in paren-

theses) before any micrometastasis escapes from growth restric-

tion–we say that the tumourigenicity of micrometastases increases.

Some hazard rates from long-term follow-up breast cancer data

are still increasing at times exceeding 5 years post-resection [34–

36], but a literature survey indicates that presently long-term

hazard rates are mostly decreasing or flat (see e.g. Figure 2, and

File S1 for a description of how Models 1–3 can account for the

extant hazard rates with multiple maxima). Given that cancer cells

of micrometastases are thought to be actively dividing, increases in

micrometastases’ tumourigenicity by some mechanism seems

likely. The question then becomes, why are hazard rates from

long-term follow-up relapse data sets not more commonly

increasing? Expressions (2) – (4) indicate that such trends are

obscured by variances among disease course.

Dormancy-inducing Therapies may Introduce a Period
During which More Patients are Prone to Relapse

Models 1–3 produce RFI curves with a maximum in the relapse

rate–i.e. a period when more patients are prone to relapse–when

the following inequalities are satisfied

Model 1 : p
M

l{mwk(1zN)

Model 2 : kS
NS

NV

wkV (1zNV )

Model 3 :
k00
k0

wk0 (1zN)

(f ’’t ½t�v0 in equations (6) – (8); the relapse rate is {f ’t½tzt�), see

Figure 3. The Zeroth Model cannot produce RFI curves that have

a maximum in the relapse rate. These inequalities are more likely

to be satisfied as k or N (Model 1), kV or NV (Model 2), k0 or N
(Model 3) decrease. Therefore, each model indicates that therapies

administered upon resection which either (a) induce a period of

growth restriction of metastases or (b) eliminate micrometastases

that require just one random growth event to escape from growth

restriction, but which do not prevent cancer cell proliferation and

so prevent increases in micrometastases’ tumourgenicity, can

introduce a period during which there is an increased rate of

patient relapse. This does not imply that such therapies will

increase the total number of relapsing patients.

Estimating Long-term Averages and Standard Deviations
in the Number of Patients’ Micrometastases

It may often be valid to make the assumption that from 10 years

post-resection the tumourigenicity of micrometastases among

patients who have no growing or detectable metastases is no

longer changing: e.g. in Model 1, all patients with micrometastases

that can seed secondary micrometastases have already relapsed; in

Model 2, all micrometastases that must undergo two growth events

to escape from growth restriction have already undergone one

growth event; in Model 3, micrometastases’ cell proliferation rate

is no longer increasing. Then in equations (1) – (4) the first term on

the right is zero; Models 1–3 all collapse to the Zeroth Model, and

for a given k we have

Models 0{{3 : Et½n�&h½tzt�=k, Vart½n�&{h0½tzt�=k2

.where in Model 2 k represents kV . Clearly this approximation

can apply only from a time beyond which the hazard rate is non-

increasing.

The hazard rates from the EBCTCG and Chia et al. data sets

(insets, Figure 2) are extrapolated up to 20 years post-resection in

order to plot the average Et½n� and the standard deviation

SDt½n�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vart½n�

p
for different values of k, see Figure 4. The plots

show that from 10 years post-resection, for both data sets, the

averages have a value of one or less and the standard deviations

have a value of three or less whenever k§0:02 (k§0:02 is

equivalent to micrometastases escaping from growth restriction

within 50 years). This is a quick, approximate method for

corroborating our former study [22] which found that long-term

breast cancer dormancy can be maintained by small numbers of

micrometastases, provided that on average micrometastases escape

from growth restriction within a number of years that is less than a

human lifetime. Note that if, for a particular data set, a stricter

definition of breast cancer recurrence is adopted (as discussed in

the methods sectioǹ Relapse data’), then the corresponding hazard

Disease Progression in Breast Cancer Dormancy
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rate is expected to be reduced. We see from the approximation

above that this would strengthen our former conclusion that long-

term breast cancer dormancy can be maintained by small numbers

of micrometastases: the conditional clause becomes, micrometas-

tases escape from growth restriction within a number of years that

can exceed a human lifetime.

Discussion

Different simple mechanistic models of metastatic progression in

cancer dormancy can all account equally well for the different

trends in long-term follow-up relapse data. We recommend,

therefore, that trends in relapse data be not used as evidence of the

physiopathological mechanisms underlying metastatic progression.

If breast cancer dormancy is due to growth-restricted micro-

metastases that contain proliferating cells, then one might expect

the tumourigenicity of the micrometastases, and so the risk to the

patient, to increase with time before the micrometastasis escapes

from growth restriction, perhaps owing to an evolutionary

dynamics among cells of the micrometastasis. If this is the case,

then it is intuitive that the hazard rate should increase to a

maximum before decreasing and our models corroborate this

intuition. Yet hazard rates do not commonly increase–a brief

literature survey indicates that, with some exceptions, they are

usually flat or decreasing for the entire follow-up period. A more

thorough analysis of the models showed that the variability in

disease progression among patients tends to produce hazard rates

that decrease–and so this variability obscures interesting trends

that might otherwise be visible. In the future, as variability

decreases because patients are more accurately grouped according

to disease status (e.g. HER2 expression), we expect more

interesting trends in relapse data to appear. Even then, we would

forecast that from such data little can be gleaned about underlying

physio-pathological mechanisms. In summary, the models indicate

that one explanation for hazard rates which increase for many

years post-resection (the increase should continue for a time which

is longer than the time it takes for a micrometastasis to grow to a

clinically detectable size) is that micrometastases have increasing

tumourigenicities; non-increasing hazard rates do not imply that

there is no increase in tumourigenicity; no further information can

be deduced.

We draw the reader’s attention to one observation that is

potentially of clinical relevance: our models indicate that therapies

administered at around the time of surgery which either (a) induce

growth restriction among metastases or (b) reduce the number of

growth-restricted metastases, but which do not prevent cell

proliferation within metastases (and so prevent increases in their

tumourigenicity), may introduce a period during which patients

are prone to relapse. Again, this trend–a period during which

patients are prone to relapse–will only appear if the variability in

disease progression among patients of the cohort is sufficiently low.

New adjuvant anti-angiogenic therapies for various cancers

[37,38] that primarily block angiogenic proteins may cause

residual cancers to persist at a restricted size of approximately

1 mm in diameter, as has been seen in mouse models of

angiogenesis inhibition [8] (see review [37] and references therein).

Our study suggests that patients so treated should be monitored at

regular intervals for extended times.

This discussion relies on the validity of our key assumption, that

cancer dormancy is maintained by growth-restricted micrometas-

tases until a random event, occurring at a time that cannot be

precisely predicted, restarts growth to a clinically detectable

metastasis. The discussion is based on our analysis of four different

models of cancer dormancy. The models are distinguished by

different modes of disease progression during dormancy as is now

described. In Model 0, there is no disease progression, i.e. the risk

to each patient remains constant until a micrometastasis escapes

from growth restriction and so the patient no longer has

dormancy; in Model 1, disease progression occurs as micrometas-

tases are either newly seeded or eliminated; in Model 2, the chance

that micrometastases’ escape from growth restriction suddenly and

randomly increases owing, for example, to carcinogenic mutations;

while in Model 3, the chance that micrometastases’ escape from

growth restriction changes gradually and deterministically owing,

for example, to gradual changes in cell proliferation rates. Each of

Figure 2. Fitting models to relapse data. The Zeroth Model and Models 1–3 fitted to relapse data from two long-term follow-up studies: patients
are grouped by age in the study EBCTCG (Panel A), whereas patients are grouped by ER status in the study Chia et al. (Panel B). Black dots are data
points; solids curves are the models for the fitted parameters (Table 2). Hazard rates are inset.
doi:10.1371/journal.pone.0062320.g002

Table 2. Models fitted to relapse data.

Model Parameters Fitted parameters, Total squared deviation

EBCTCG, aged below 50 EBCTCG, aged 50–69

Zeroth {N,k} f0:55,0:12g, 2:3|10{5 f0:82,0:090g, 3:5|10{5

1 {N, k, m, l, pM} f4:1,0:016,0:10,0:19,0:017g, 2:5|10{5 f2:7,0:027,0:064,0:13,0:037g, 3:6|10{5

2 {Ns, NV, ks, kV} f1:2,0:32,0:015,0:22g, 2:1|10{5 f7:5,0:50,0:0026,0:15g, 2:3|10{5

3 fN,k0,k’0g f0:51,0:13,0:00041g, 3:5|10{5 f0:74,0:095,0:0026g, 5:0|10{5

Chia et al., ER+ Chia et al., ER2

Zeroth {N,k} f0:34,0:14g, 1:6|10{5 f0:22,0:29g, 2:7|10{5

1 {N, k, m, l, pM} f1:0,0:037,0:66,1:0,0:77g, 5:9|10{6 f1:2,0:053,0:24,0:024,0:023g, 2:8|10{5

2 {Ns, NV, ks, kV} f0:11,0:17,0:67,0:21g, 7:1|10{6 f0:001,0:22,0:0061,0:29g, 2:8|10{5

3 fN,k0,k’0g f0:24,0:15,0:046g, 5:8|10{6 f0:22,0:29,0:0024g, 2:8|10{5

Parameters fitted to EBCTCG relapse data and Chia et al. relapse data for the Zeroth Model and for Models 1–3. The growth time t is fixed at 3 years for EBCTCG data
and at 1:5 years for Chia et al. data.
doi:10.1371/journal.pone.0062320.t002
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the models, representing these different modes of disease

progression, support our conclusions above.

However, the models were designed to be very simple, and so

the inter- and intra-heterogeneity among the micrometastases of a

patient, owing to the genotypes or to the locations of microme-

tastases, were ignored. Further, how relapse rates are affected by

variability in the time it takes micrometastases to grow to a

detectable size was not investigated, because we opted to

concentrate on the dynamics of cancer dormancy which by

definition is before any micrometastases escape from growth

restriction. Nevertheless, we expect that even when this extra

variability is taken into account, then it would not alter the

conclusions above. (It is further work to determine how this extra

variability alters the estimates of the long-term averages and

Figure 3. Peaks in the relapse rate. RFI curves (top) and corresponding relapse rates (bottom) for Models 1–3 as parameters k (Model 1)/kV

(Model 2)/k0 (Model 3) are reduced. In each plot, k/kV /k0 decreases such that the ratio of the right-hand side to the left-hand side of the
corresponding inequality determining whether there is a peak in the relapse rate is 2 (long-dashed line), 1 (short-dashed line), 1/5 (dotted line) and 1/
25 (solid line).
doi:10.1371/journal.pone.0062320.g003

Figure 4. Estimates of means (top row) and standard deviations (bottom row) in patients’ numbers of micrometastases. This is up to
20 years post-resection for different values of k: k~0:20 (black), 0:05 (red), 0:02 (orange), 0:01 (green). The graphs use extrapolated hazard rates from
Models 0–3 (Figure 2) for the EBCTCG data set (panel A) and the Chia et al. data set (panel B). In each plot, graphs that have solid/dot-dashed/long-
dash/short-dash lines correspond to Zeroth Model/Model 1/Model 2/Model 3.
doi:10.1371/journal.pone.0062320.g004
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standard deviations in the number of patients’ micrometastases.

Inaccuracies in these estimates will also be produced by

inaccuracies in the relapse data–see the sectioǹ Relapse data’).

In order to improve our understanding of breast cancer

dormancy, it would be ideal to collect evidence that could be

used in conjunction with models like those presented in this article.

In the absence of methods for imaging and resecting microme-

tastases in patients, one possibility is to develop laboratory models,

probably mouse models, that permit micrometastases to be

observed over a long period and resected and genetically

sequenced at different stages of their progression. These laboratory

models might be used, for example, to validate our key

assumption, to establish whether micrometastases have increasing

tumourigenicity, and to improve estimates of the time it takes

micrometastases to grow to a detectable size. Genotyping and

quantitation of the circulating tumour cells in long-term post-

resection breast cancer patients (see e.g. [39]) might also provide a

means to determine the risk to a patient from cancer dormancy.
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