
Flexible sampling of discrete data correlations
without the marginal distributions

Alfredo Kalaitzis
Department of Statistical Science and CSML

University College London
a.kalaitzis@ucl.ac.uk

Ricardo Silva
Department of Statistical Science and CSML

University College London
ricardo@stats.ucl.ac.uk

Abstract

Learning the joint dependence of discrete variables is a fundamental problem in
machine learning, with many applications including prediction, clustering and
dimensionality reduction. More recently, the framework of copula modeling
has gained popularity due to its modular parameterization of joint distributions.
Among other properties, copulas provide a recipe for combining flexible models
for univariate marginal distributions with parametric families suitable for poten-
tially high dimensional dependence structures. More radically, the extended rank
likelihood approach of Hoff (2007) bypasses learning marginal models completely
when such information is ancillary to the learning task at hand as in, e.g., standard
dimensionality reduction problems or copula parameter estimation. The main idea
is to represent data by their observable rank statistics, ignoring any other informa-
tion from the marginals. Inference is typically done in a Bayesian framework with
Gaussian copulas, and it is complicated by the fact this implies sampling within
a space where the number of constraints increases quadratically with the number
of data points. The result is slow mixing when using off-the-shelf Gibbs sam-
pling. We present an efficient algorithm based on recent advances on constrained
Hamiltonian Markov chain Monte Carlo that is simple to implement and does not
require paying for a quadratic cost in sample size.

1 Contribution

There are many ways of constructing multivariate discrete distributions: from full contingency ta-
bles in the small dimensional case [1], to structured models given by sparsity constraints [11] and
(hierarchies of) latent variable models [6]. More recently, the idea of copula modeling [16] has
been combined with such standard building blocks. Our contribution is a novel algorithm for effi-
cient Markov chain Monte Carlo (MCMC) for the copula framework introduced by [7], extending
algorithmic ideas introduced by [17].

A copula is a continuous cumulative distribution function (CDF) with uniformly distributed uni-
variate marginals in the unit interval [0, 1]. It complements graphical models and other formalisms
that provide a modular parameterization of joint distributions. The core idea is simple and given
by the following observation: suppose we are given a (say) bivariate CDF F (y1, y2) with marginals
F1(y1) and F2(y2). This CDF can then be rewritten as F (F−11 (F1(y1)), F−12 (F2(y2))). The func-
tion C(·, ·) given by F (F−11 (·), F−12 (·)) is a copula. For discrete distributions, this decomposition
is not unique but still well-defined [16]. Copulas have found numerous applications in statistics
and machine learning since they provide a way of constructing flexible multivariate distributions by
mix-and-matching different copulas with different univariate marginals. For instance, one can com-
bine flexible univariate marginals Fi(·) with useful but more constrained high-dimensional copulas.
We will not further motivate the use of copula models, which has been discussed at length in recent

1

machine learning publications and conference workshops, and for which comprehensive textbooks
exist [e.g., 9]. For a recent discussion on the applications of copulas from a machine learning per-
spective, [4] provides an overview. [10] is an early reference in machine learning. The core idea
dates back at least to the 1950s [16].

In the discrete case, copulas can be difficult to apply: transforming a copula CDF into a probability
mass function (PMF) is computationally intractable in general. For the continuous case, a common
trick goes as follows: transform variables by defining ai ≡ F̂i(yi) for an estimate of Fi(·) and then
fit a copula density c(·, . . . , ·) to the resulting ai [e.g. 9]. It is not hard to check this breaks down
in the discrete case [7]. An alternative is to represent the CDF to PMF transformation for each data
point by a continuous integral on a bounded space. Sampling methods can then be used. This trick
has allowed many applications of the Gaussian copula to discrete domains. Readers familiar with
probit models will recognize the similarities to models where an underlying latent Gaussian field is
discretized into observable integers as in Gaussian process classifiers and ordinal regression [18].
Such models can be indirectly interpreted as special cases of the Gaussian copula.

In what follows, we describe in Section 2 the Gaussian copula and the general framework for con-
structing Bayesian estimators of Gaussian copulas by [7], the extended rank likelihood framework.
This framework entails computational issues which are discussed. A recent general approach for
MCMC in constrained Gaussian fields by [17] can in principle be directly applied to this problem
as a blackbox, but at a cost that scales quadratically in sample size and as such it is not practical
in general. Our key contribution is given in Section 4. An application experiment on the Bayesian
Gaussian copula factor model is performed in Section 5. Conclusions are discussed in the final
section.

2 Gaussian copulas and the extended rank likelihood

It is not hard to see that any multivariate Gaussian copula is fully defined by a correlation matrix C,
since marginal distributions have no free parameters. In practice, the following equivalent generative
model is used to define a sample U according to a Gaussian copula GC(C):

1. Sample Z from a zero mean Gaussian with covariance matrix C

2. For each Zj , set Uj = Φ(zj), where Φ(·) is the CDF of the standard Gaussian

It is clear that each Uj follows a uniform distribution in [0, 1]. To obtain a model for variables
{y1, y2, . . . , yp} with marginal distributions Fj(·) and copula GC(C), one can add the deterministic
step yj = F−1j (uj). Now, given n samples of observed data Y ≡ {y(1)1 , . . . , y

(1)
p , y

(2)
1 , . . . , y

(n)
p },

one is interested on inferring C via a Bayesian approach and the posterior distribution

p(C, θF |Y) ∝ pGC(Y | C, θF)π(C, θF)

where π(·) is a prior distribution, θF are marginal parameters for each Fj(·), which in general might
need to be marginalized since they will be unknown, and pGC(·) is the PMF of a (here discrete)
distribution with a Gaussian copula and marginals given by θF .

Let Z be the underlying latent Gaussians of the corresponding copula for dataset Y. Although Y is a
deterministic function of Z, this mapping is not invertible due to the discreteness of the distribution:
each marginal Fj(·) has jumps. Instead, the reverse mapping only enforces the constraints where
y
(i1)
j < y

(i2)
j implies z(i1)j < z

(i2)
j . Based on this observation, [7] considers the event Z ∈ D(y),

where D(y) is the set of values of Z in Rn×p obeying those constraints, that is

D(y) ≡
{

Z ∈ Rn×p : max
{
z
(k)
j s.t. y

(k)
j < y

(i)
j

}
< z

(i)
j < min

{
z
(k)
j s.t. y

(i)
j < y

(k)
j

}}
.

Since {Y = y} ⇒ Z(y) ∈ D(y), we have

pGC(Y | C, θF) = pGC(Z ∈ D(y),Y | C, θF)
= pN (Z ∈ D(y) | C)× pGC(Y| Z ∈ D(y),C, θF),

(1)

the first factor of the last line being that of a zero-mean a Gaussian density function marginalized
over D(y).

2

The extended rank likelihood is defined by the first factor of (1). With this likelihood, inference for
C is given simply by marginalizing

p(C,Z |Y) ∝ I(Z ∈ D(y)) pN (Z| C) π(C), (2)

the first factor of the right-hand side being the usual binary indicator function.

Strictly speaking, this is not a fully Bayesian method since partial information on the marginals is
ignored. Nevertheless, it is possible to show that under some mild conditions there is information in
the extended rank likelihood to consistently estimate C [13]. It has two important properties: first,
in many applications where marginal distributions are nuisance parameters, this sidesteps any major
assumptions about the shape of {Fi(·)} – applications include learning the degree of dependence
among variables (e.g., to understand relationships between social indicators as in [7] and [13]) and
copula-based dimensionality reduction (a generalization of correlation-based principal component
analysis, e.g., [5]); second, MCMC inference in the extended rank likelihood is conceptually simpler
than with the joint likelihood, since dropping marginal models will remove complicated entangle-
ments between C and θF . Therefore, even if θF is necessary (when, for instance, predicting missing
values of Y), an estimate of C can be computed separately and will not depend on the choice of
estimator for {Fi(·)}. The standard model with a full correlation matrix C can be further refined
to take into account structure implied by sparse inverse correlation matrices [2] or low rank decom-
positions via higher-order latent variable models [13], among others. We explore the latter case in
section 5.

An off-the-shelf algorithm for sampling from (2) is full Gibbs sampling: first, given Z, the (full or
structured) correlation matrix C can be sampled by standard methods. More to the point, sampling
Z is straightforward if for each variable j and data point i we sample Z(i)

j conditioned on all other
variables. The corresponding distribution is an univariate truncated Gaussian. This is the approach
used originally by Hoff. However, mixing can be severely compromised by the sampling of Z, and
that is where novel sampling methods can facilitate inference.

3 Exact HMC for truncated Gaussian distributions

Hoff’s algorithm modifies the positions of all Z(i)
j associated with a particular discrete value of Yj ,

conditioned on the remaining points. As the number of data points increases, the spread of the hard
boundaries on Z(i)

j , given by data points of Zj associated with other levels of Yj , increases. This

reduces the space in which variables Z(i)
j can move at a time.

To improve the mixing, we aim to sample from the joint Gaussian distribution of all latent variables
Z

(i)
j , i = 1 . . . n , conditioned on other columns of the data, such that the constraints between them

are satisfied and thus the ordering in the observation level is conserved. Standard Gibbs approaches
for sampling from truncated Gaussians reduce the problem to sampling from univariate truncated
Gaussians. Even though each step is computationally simple, mixing can be slow when strong
correlations are induced by very tight truncation bounds.

In the following, we briefly describe the methodology recently introduced by [17] that deals with
the problem of sampling from log p(x) ∝ − 1

2x>Mx + r>x , where x, r ∈ Rn and M is positive
definite, with linear constraints of the form f>j x ≤ gj , where fj ∈ Rn, j = 1 . . .m, is the
normal vector to some linear boundary in the sample space.

Later in this section we shall describe how this framework can be applied to the Gaussian copula
extended rank likelihood model. More importantly, the observed rank statistics impose only linear
constraints of the form xi1 ≤ xi2 . We shall describe how this special structure can be exploited to
reduce the runtime complexity of the constrained sampler from O(n2) (in the number of observa-
tions) to O(n) in practice.

3.1 Hamiltonian Monte Carlo for the Gaussian distribution

Hamiltonian Monte Carlo (HMC) [15] is a MCMC method that extends the sampling space with
auxiliary variables so that (ideally) deterministic moves in the joint space brings the sampler to

3

potentially far places in the original variable space. Deterministic moves cannot in general be done,
but this is possible in the Gaussian case.

The form of the Hamiltonian for the general d-dimensional Gaussian case with mean µ and preci-
sion matrix M is:

H =
1

2
x>Mx− r>x +

1

2
s>M−1s , (3)

where M is also known in the present context as the mass matrix, r = Mµ and s is the
velocity. Both x and s are Gaussian distributed so this Hamiltonian can be seen (up to a constant)
as the negative log of the product of two independent Gaussian random variables. The physical
interpretation is that of a sum of potential and kinetic energy terms, where the total energy of the
system is conserved.

In a system where this Hamiltonian function is constant, we can exactly compute its evolution
through the pair of differential equations:

ẋ = ∇sH = M−1s , ṡ = −∇xH = −Mx + r . (4)

These are solved exactly by x(t) = µ+a sin(t) +b cos(t) , where a and b can be identified
at initial conditions (t = 0) :

a = ẋ(0) = M−1s , b = x(0)− µ . (5)

Therefore, the exact HMC algorithm can be summarised as follows:

• Initialise the allowed travel time T and some initial position x0 .

• Repeat for HMC samples k = 1 . . . N

1. Sample sk ∼ N (0,M)

2. Use sk and xk to update a and b and store the new position at the end of the
trajectory xk+1 = x(T) as an HMC sample.

It can be easily shown that the Markov chain of sampled positions has the desired equilibrium
distribution N

(
µ,M−1) [17].

3.2 Sampling with linear constraints

Sampling from multivariate Gaussians does not require any method as sophisticated as HMC, but
the plot thickens when the target distribution is truncated by linear constraints of the form Fx ≤ g .
Here, F ∈ Rm×n is a constraint matrix whose every row is the normal vector to a linear boundary
in the sample space. This is equivalent to sampling from a Gaussian that is confined in the (not
necessarily bounded) convex polyhedron {x : Fx ≤ g}. In general, to remain within the boundaries
of each wall, once a new velocity has been sampled one must compute all possible collision times
with the walls. The smallest of all collision times signifies the wall that the particle should bounce
from at that collision time. Figure 1 illustrates the concept with two simple examples on 2 and 3
dimensions.

The collision times can be computed analytically and their equations can be found in the supplemen-
tary material. We also point the reader to [17] for a more detailed discussion of this implementation.
Once the wall to be hit has been found, then position and velocity at impact time are computed and
the velocity is reflected about the boundary normal1. The constrained HMC sampler is summarized
follows:

• Initialise the allowed travel time T and some initial position x0 .

• Repeat for HMC samples k = 1 . . . N

1. Sample sk ∼ N (0,M)

2. Use sk and xk to update a and b .

1Also equivalent to transforming the velocity with a Householder reflection matrix about the bounding
hyperplane.

4

1
2
3
4

1
2
3
4

Figure 1: Left: Trajectories of the first 40 iterations of the exact HMC sampler on a 2D truncated
Gaussian. A reflection of the velocity can clearly be seen when the particle meets wall #2 . Here,
the constraint matrix F is a 4 × 2 matrix. Center: The same example after 40000 samples. The
coloring of each sample indicates its density value. Right: The anatomy of a 3D Gaussian. The
walls are now planes and in this case F is a 2× 3 matrix. Figure best seen in color.

3. Reset remaining travel time Tleft ← T . Until no travel time is left or no walls can be
reached (no solutions exist), do:
(a) Compute impact times with all walls and pick the smallest one, th (if a solution

exists).
(b) Compute v(th) and reflect it about the hyperplane fh . This is the updated

velocity after impact. The updated position is x(th) .
(c) Tleft ← Tleft − th

4. Store the new position at the end of the trajectory xk+1 as an HMC sample.

In general, all walls are candidates for impact, so the runtime of the sampler is linear in m , the
number of constraints. This means that the computational load is concentrated in step 3(a). Another
consideration is that of the allocated travel time T . Depending on the shape of the bounding
polyhedron and the number of walls, a very large travel time can induce many more bounces thus
requiring more computations per sample. On the other hand, a very small travel time explores the
distribution more locally so the mixing of the chain can suffer. What constitutes a given travel time
“large” or “small” is relative to the dimensionality, the number of constraints and the structure of the
constraints.

Due to the nature of our problem, the number of constraints, when explicitly expressed as linear
functions, is O(n2) . Clearly, this restricts any direct application of the HMC framework for Gaus-
sian copula estimation to small-sample (n) datasets. More importantly, we show how to exploit the
structure of the constraints to reduce the number of candidate walls (prior to each bounce) to O(n) .

4 HMC for the Gaussian Copula extended rank likelihood model

Given some discrete data Y ∈ Rn×p , the task is to infer the correlation matrix of the underlying
Gaussian copula. Hoff’s sampling algorithm proceeds by alternating between sampling the continu-
ous latent representation Z

(i)
j of each Y

(i)
j , for i = 1 . . . n, j = 1 . . . p , and sampling a covariance

matrix from an inverse-Wishart distribution conditioned on the sampled matrix Z ∈ Rn×p , which
is then renormalized as a correlation matrix.

From here on, we use matrix notation for the samples, as opposed to the random variables – with
Zi,j replacing Z(i)

j , Z:,j being a column of Z, and Z:,\j being the submatrix of Z without the j-th
column.

In a similar vein to Hoff’s sampling algorithm, we replace the successive sampling of each Zi,j con-
ditioned on Zi,\j (a conditional univariate truncated Gaussian) with the simultaneous sampling of
Z:,j conditioned on Z:,\j . This is done through an HMC step from a conditional multivariate trun-
cated Gaussian.

The added benefit of this HMC step over the standard Gibbs approach, is that of a handle for regu-
lating the trade-off between exploration and runtime via the allocated travel time T . Larger travel
times potentially allow for larger moves in the sample space, but it comes at a cost as explained in
the sequel.

5

4.1 The Hough envelope algorithm

The special structure of constraints. Recall that the number of constraints is quadratic in the
dimension of the distribution. This is because every Z sample must satisfy the conditions of
the event Z ∈ D(y) of the extended rank likelihood (see Section 2). In other words, for any
column Z:,j , all entries are organised into a partition L(j) of |L(j)| levels, the number of
unique values observed for the discrete or ordinal variable Y (j) . Thereby, for any two adjacent
levels lk, lk+1 ∈ L(j) and any pair i1 ∈ lk, i2 ∈ lk+1, it must be true that Zli,j < Zli+1,j .
Equivalently, a constraint f exists where fi1 = 1, fi2 = −1 and g = 0 . It is easy to see that
O(n2) of such constraints are induced by the order statistics of the j-th variable. To deal with this
boundary explosion, we developed the Hough Envelope algorithm to search efficiently, within all
pairs in {Z:,j}, in practically linear time.

Recall in HMC (section 3.2) that the trajectory of the particle, x(t), is decomposed as

xi(t) = ai sin(t) + bi cos(t) + µi , (6)

and there are n such functions, grouped into a partition of levels as described above. The Hough
envelope2 is found for every pair of adjacent levels. We illustrate this with an example of 10 di-
mensions and two levels in Figure 2, without loss of generalization to any number of levels or
dimensions. Assume we represent trajectories for points in level lk with blue curves, and points in
lk+1 with red curves. Assuming we start with a valid state, at time t = 0 all red curves are above all
blue curves. The goal is to find the smallest t where a blue curve meets a red curve. This will be our
collision time where a bounce will be necessary.

0.2 0.4 0.6 0.8 1 1.2 1.4

1
23

4

5

1
2

3

4

5

t

Figure 2: The trajectories xj(t) of each compo-
nent are sinusoid functions. The right-most green
dot signifies the wall and the time th of the ear-
liest bounce, where the first inter-level pair (that
is, any two components respectively from the blue
and red level) becomes equal, in this case the con-
straint activated being xblue2 = xred2 .

1. First we find the largest component bluemax of the blue level at t = 0. This takes
O(n) time. Clearly, this will be the largest component until its sinusoid intersects that
of any other component.

2. To find the next largest component, compute the roots of xbluemax
(t) − xi(t) = 0 for

all components and pick the smallest (earliest) one (represented by a green dot). This also
takes O(n) time.

3. Repeat this procedure until a red sinusoid crosses the highest running blue sinusoid. When
this happens, the time of earliest bounce and its constraint are found.

In the worst-case scenario, n such repetitions have to be made, but in practice we can safely
assume an fixed upper bound h on the number of blue crossings before a inter-level crossing occurs.
In experiments, we found h << n, no more than 10 in simulations with hundreds of thousands of
curves. Thus, this search strategy takes O(n) time in practice to complete, mirroring the analysis
of other output-sensitive algorithms such as the gift wrapping algorithm for computing convex hulls
[8]. Our HMC sampling approach is summarized in Algorithm 1.

2The name is inspired from the fact that each xi(t) is the sinusoid representation, in angle-distance space,
of all lines that pass from the (ai, bi) point in a− b space. A representation known in image processing as the
Hough transform [3].

6

Algorithm 1 HMC for GCERL
Notation: TMN (µ,C,F) is a truncated multivariate normal with location vector µ, scale
matrix C and constraints encoded by F and g = 0 .
IW(df,V0) is an inverse-Wishart prior with degrees of freedom df and scale matrix V0 .
Input: Y ∈ Rn×p, allocated travel time T , a starting Z and variable covariance V ∈ Rp×p ,
df = p+ 2, V0 = dfIp and chain size N .
Generate constraints F(j) from Y:,j , for j = 1 . . . p .
for samples k = 1 . . . N do

Resample Z as follows:
for variables j = 1 . . . p do

Compute parameters: σ2
j = Vjj −Vj,\jV

−1
\j,\jV\j,j , µj = Z:,\jV

−1
\j,\jV\j,j .

Get one sample Z:,j ∼ TMN
(
µj , σ

2
j I, F(j)

)
efficiently by using the Hough Envelope

algorithm, see section 4.1.
end for
Resample V ∼ IW(df + n,V0 + Z>Z) .
Compute correlation matrix C, s.t. Ci,j = Vi,j/

√
Vi,iVj,j and store sample, C(k) ← C .

end for

5 An application on the Bayesian Gausian copula factor model
In this section we describe an experiment that highlights the benefits of our HMC treatment, com-
pared to a state-of-the-art parameter expansion (PX) sampling scheme. During this experiment we
ask the important question:

“How do the two schemes compare when we exploit the full-advantage of the HMC machinery to
jointly sample parameters and the augmented data Z, in a model of latent variables and structured
correlations?”

We argue that under such circumstances the superior convergence speed and mixing of HMC unde-
niably compensate for its computational overhead.

Experimental setup In this section we provide results from an application on the Gaussian
copula latent factor model of [13] (Hoff’s model [7] for low-rank structured correlation matrices).
We modify the parameter expansion (PX) algorithm used by [13] by replacing two of its Gibbs steps
with a single HMC step. We show a much faster convergence to the true mode with considerable
support on its vicinity. We show that unlike the HMC, the PX algorithm falls short of properly
exploring the posterior in any reasonable finite amount of time, even for small models, even for
small samples. Worse, PX fails in ways one cannot easily detect.

Namely, we sample each row of the factor loadings matrix Λ jointly with the corresponding column
of the augmented data matrix Z, conditioning on the higher-order latent factors. This step is anal-
ogous to Pakman and Paninski’s [17, sec.3.1] use of HMC in the context of a binary probit model
(the extension to many levels in the discrete marginal is straightforward with direct application of
the constraint matrix F and the Hough envelope algorithm). The sampling of the higher level latent
factors remains identical to [13]. Our scheme involves no parameter expansion. We do however
interweave the Gibbs step for the Z matrix similarly to Hoff. This has the added benefit of exploring
the Z sample space within their current boundaries, complementing the joint (λ, z) sampling which
moves the boundaries jointly. The value of such ”interweaving” schemes has been addressed in [19].

Results We perform simulations of 10000 iterations, n = 1000 observations (rows of Y), travel
time π/2 for HMC with the setups listed in the following table, along with the elapsed times of each
sampling scheme. These experiments were run on Intel COREi7 desktops with 4 cores and 8GB of
RAM. Both methods were parallelized across the observed variables (p).

Figure p (vars) k (latent factors) M (ordinal levels) elapsed (mins): HMC PX
3(a) : 20 5 2 115 8
3(b) : 10 3 2 80 6
3(c) : 10 3 5 203 16

Many functionals of the loadings matrix Λ can be assessed. We focus on reconstructing the true
(low-rank) correlation matrix of the Gaussian copula. In particular, we summarize the algorithm’s

7

outcome with the root mean squared error (RMSE) of the differences between entries of the
ground-truth correlation matrix and the implied correlation matrix at each iteration of a MCMC
scheme (so the following plots looks like a time-series of 10000 timepoints), see Figures 3(a), 3(b)
and 3(c) .

(a) (b) (c)

Figure 3: Reconstruction (RMSE per iteration) of the low-rank structured correlation matrix of the
Gaussian copula and its histogram (along the left side).
(a) Simulation setup: 20 variables, 5 factors, 5 levels. HMC (blue) reaches a better mode faster
(in iterations/CPU-time) than PX (red). Even more importantly the RMSE posterior samples of PX
are concentrated in a much smaller region compared to HMC, even after 10000 iterations. This
illustrates that PX poorly explores the true distribution.
(b) Simulation setup: 10 vars, 3 factors, 2 levels. We observe behaviors similar to Figure 3(a). Note
that the histogram counts RMSEs after the burn-in period of PX (iteration #500).
(c) Simulation setup: 10 vars, 3 factors, 5 levels. We observe behaviors similar to Figures 3(a) and
3(b) but with a thinner tail for HMC. Note that the histogram counts RMSEs after the burn-in period
of PX (iteration #2000).

Main message HMC reaches a better mode faster (iterations/CPUtime). Even more importantly
the RMSE posterior samples of PX are concentrated in a much smaller region compared to HMC,
even after 10000 iterations. This illustrates that PX poorly explores the true distribution. As an
analogous situation we refer to the top and bottom panels of Figure 14 of Radford Neal’s slice sam-
pler paper [14]. If there was no comparison against HMC, there would be no evidence from the PX
plot alone that the algorithm is performing poorly. This mirrors Radford Neal’s statement opening
Section 8 of his paper: “a wrong answer is obtained without any obvious indication that something
is amiss”. The concentration on the posterior mode of PX in these simulations is misleading of
the truth. PX might seen a bit simpler to implement, but it seems one cannot avoid using complex
algorithms for complex models. We urge practitioners to revisit their past work with this model to
find out by how much credible intervals of functionals of interest have been overconfident. Whether
trivially or severely, our algorithm offers the first principled approach for checking this out.

6 Conclusion

Sampling large random vectors simultaneously in order to improve mixing is in general a very hard
problem, and this is why clever methods such as HMC or elliptical slice sampling [12] are necessary.
We expect that the method here developed is useful not only for those with data analysis problems
within the large family of Gaussian copula extended rank likelihood models, but the method itself
and its behaviour might provide some new insights on MCMC sampling in constrained spaces in
general. Another direction of future work consists of exploring methods for elliptical copulas, and
related possible extensions of general HMC for non-Gaussian copula models.

Acknowledgements

The quality of this work has benefited largely from comments by our anonymous reviewers and use-
ful discussions with Simon Byrne and Vassilios Stathopoulos. Research was supported by EPSRC
grant EP/J013293/1.

8

References
[1] Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis: Theory and Practice.

MIT Press, 1975.
[2] A. Dobra and A. Lenkoski. Copula Gaussian graphical models and their application to model-

ing functional disability data. Annals of Applied Statistics, 5:969–993, 2011.
[3] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in

pictures. Communications of the ACM, 15(1):11–15, 1972.
[4] G. Elidan. Copulas and machine learning. Proceedings of the Copulae in Mathematical and

Quantitative Finance workshop, to appear, 2013.
[5] F. Han and H. Liu. Semiparametric principal component analysis. Advances in Neural Infor-

mation Processing Systems, 25:171–179, 2012.
[6] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.

Science, 313(5786):504–507, 2006.
[7] P. Hoff. Extending the rank likelihood for semiparametric copula estimation. Annals of Applied

Statistics, 1:265–283, 2007.
[8] R. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Infor-

mation Processing Letters, 2(1):18–21, 1973.
[9] H. Joe. Multivariate Models and Dependence Concepts. Chapman-Hall, 1997.

[10] S. Kirshner. Learning with tree-averaged densities and distributions. Neural Information Pro-
cessing Systems, 2007.

[11] S. Lauritzen. Graphical Models. Oxford University Press, 1996.
[12] I. Murray, R. Adams, and D. MacKay. Elliptical slice sampling. JMLR Workshop and Confer-

ence Proceedings: AISTATS 2010, 9:541–548, 2010.
[13] J. Murray, D. Dunson, L. Carin, and J. Lucas. Bayesian Gaussian copula factor models for

mixed data. Journal of the American Statistical Association, to appear, 2013.
[14] R. Neal. Slice sampling. The Annals of Statistics, 31:705–767, 2003.
[15] R. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,

pages 113–162, 2010.
[16] R. Nelsen. An Introduction to Copulas. Springer-Verlag, 2007.
[17] A. Pakman and L. Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate Gaus-

sians. arXiv:1208.4118, 2012.
[18] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[19] Y. Yu and X. L. Meng. To center or not to center: That is not the question — An ancillarity-

sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. Journal of Compu-
tational and Graphical Statistics, 20(3):531–570, 2011.

9

