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Abstract

Radar sea clutter analysis has been an important area of radar research for many

years. Very limited research has been carried out on coherent monostatic sea clutter

analysis and even less on bistatic sea clutter. This has left a significant gap in the

global scientific knowledge within this area.

This thesis describes research carried out to analyse, quantify and model coherent

sea clutter statistics from multiple radar sources. The ultimate goal of the research

is to improve maritime radars’ ability to compensate for clutter and achieve effective

detection of targets on or over the sea surface.

The first analyses used monostatic data gathered during the flight trials of the

Thales Searchwater 2000 AEW radar. A further sea clutter trials database from

CSIR was then used to investigate the variation of clutter statistics with look angle

and grazing angle. Finally simultaneous monostatic and bistatic sea clutter data

recorded in South Africa using the S-band UCL radar system NetRAD were analysed.

No simultaneous monostatic and bistatic coherent analysis has ever been reported

before in the open literature. The datasets recorded included multiple bistatic angles

at both horizontal and vertical polarisations.

Throughout the analysis real data have been compared to accepted theoretic

models of sea clutter. An additional metric of comparison was investigated relating

to the area of information theoretic techniques. Information theory is a significant

subject area, and some concepts from it have been applied in this research.

In summary this research has produced quantifiable and novel results on the

characteristics of sea clutter statistics as a function of Doppler. Analysis has been

carried out on a wide range of monostatic and bistatic data. The results of this

research will be extremely valuable in developing sea clutter suppression algorithms

and thus improving detection performance in future maritime radar designs.
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Chapter 1

Introduction

1.1 Context of Research

Sea clutter has been studied for many years due to its significance to maritime radar

systems. The extent of activity in this area demonstrates the complexity and range of

phenomenological effects that sea clutter as an area of research presents. The many

important scenarios and applications that require reliable and effective operational

maritime radars have been the driving force behind much of this work.

For effective operation, maritime radar systems require the ability to dynamically

compensate for the effects of sea clutter. The sea’s surface presents a constantly

changing clutter background that requires complex models to accurately describe

the interaction with radar transmissions. This makes the task of distinguishing be-

tween small maritime targets and sea clutter a complex one. In order to be able

to accurately predict and enhance the performance of an operational radar in a real

maritime environment it is therefore essential to understand the behaviour of sea

clutter. Due to the significant range of environmental and radar parameters that

need to be considered, the study of sea clutter aims to characterise the clutter be-

haviour across as many scenarios as possible. The principal reason behind the study

and modelling of sea clutter is to enable a better compensation for the clutter and

improve the effective detection of targets on or near the sea surface.

In most scenarios the limiting factor for reliable detection of small RCS (Radar

Cross Section) targets in the maritime environment is the level of sea clutter returns.

Other possible limiting factors, for example receiver noise, do not reduce the detection

capability of a radar system to the same extent as sea clutter. In general the thermal

noise floor of the system should be much lower than the clutter returns, especially in

high sea states.

Developing a comprehensive understanding of sea clutter returns is critical to

drive improvements in signal processing algorithms, for clutter suppression and hence

the continued enhancement of maritime radar performance. Due to the improvements

in hardware and understanding of the characteristics of sea clutter over the past 20
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years, modern radar systems now have a better prospect than ever before of efficiently

compensating for sea clutter.

Modelling is a very important aspect of sea clutter research and subsequent radar

development. Through both empirical models based on existing recorded data and

EM scattering theory models, there have been many different attempts to describe

the radar returns from the sea surface. Empirical models have been defined by

analysing the clutter statistics, and the variation of these with selected parameters,

from recorded datasets. Due to the significant number of environmental conditions

and radar system variables involved, prior work has only examined part of the possible

range of environmental and radar variables.

Constant false alarm (CFAR) algorithms are commonly used to set adaptive de-

tection threshold levels with the knowledge from developed sea clutter models, [1].

This results in the suppression of the sea clutter and a reduction in the false alarm

rate. The sea clutter model used directly defines these adaptive threshold levels.

Misestimation between these models and the real sea clutter result directly in the

overloading of a radar with false alarms. This demonstrates the importance of good

sea clutter models to the performance of maritime radar.

Modern radar systems have the ability to use coherent processing to reject the

bulk of the sea clutter when searching for low flying aircraft or for fast-moving ships.

This raises a new area of research into understanding the behaviour of the sea clutter

in the Doppler domain. Some research into the variation of Doppler with sea clutter

amplitude distributions has been reported but there are still many areas that have

not been fully explored.

Some key areas of sea clutter research which required further exploration are

highlighted within [2] and are grouped into the following topics:

• Modelling of the Doppler spectrum of sea clutter.

• Characterisation of sea clutter spikes.

• Doppler processing for detection of slow-moving targets in sea clutter

• EM modelling of amplitude statistics and Doppler spectrum, in open seas and

littoral waters.

In addition to the sea clutter specific research areas the topic of bistatic radar is of

significant importance a large section of the work presented in this thesis. The very

first radars were bistatic due to the inability to use a single antenna for reception

and transmission. Since then bistatic radar research has gone through a number of

resurgences, [3]. The latest resurgence in the area of bistatic radar development has

been driven by a number of factors. A major contributing factor has been access to

global positioning satellite facilities that can be used for unified timing, as well as

accurate atomic clocks on a chip. In the context of maritime radar very few bistatic
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radar experimental campaigns have been generated for the purpose of studying the

sea’s surface. This leaves considerable gaps in the scientific knowledge of how the

scattering varies with the significant number of variables. In [4] it is stated that

future bistatic systems will increase the accuracy with which ocean wave information

can be obtained through remote sensing. This improvement in understanding of the

sea’s interaction with radar signals, along with the additional advantages of bistatic

systems seen in section 2.1.8, clearly shows the great potential for future bistatic

maritime radar systems.

1.2 Aims and Objectives

The main aim of the work reported in this thesis has been the statistical study,

characterisation and modelling of radar sea clutter using a number of different data

sources covering a range of different environments. The objective has been to improve

the understanding of sea clutter and optimise the design of maritime radar systems,

allowing an improvement of detection of low RCS targets in sea clutter. The main

objectives of the work towards this over-arching aim are outlined below:

• Analyse the amplitude statistics of the sea clutter returns by fitting clutter

models to the observed amplitude distributions of real sea clutter from recorded

data.

• Develop the understanding of the relationships between sea clutter distributions

and Doppler. The area of Doppler analysis is defined as a important area of

clutter research in [2] and hence is an important part of sea clutter research.

• Define the variation of these sea clutter characteristics as a function of different

geometries and environmental conditions

• Utilise information theoretic measures in a novel way to improve the charac-

terisation of sea clutter.

These objectives have been achieved through the analysis of both monostatic

and bistatic radar data. The study of monostatic radar sea clutter statistics is a

mature area of radar research. Numerous papers and books have been published on

the empirical analysis of monostatic sea clutter data over many years. Despite this,

the novel parts of the monostatic analysis that have been achieved in this work are

of more immediate practical importance to operational coherent monostatic systems.

The outputs of the analysis can be utilitised now to improve the way in which current

monostatic maritime radar system operate.

The bistatic analysis of sea clutter is a more novel area of research as very few

bistatic sea clutter datasets exist, none of which analyse the coherent properties of
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bistatic clutter in comparison to monostatic. The implication of this work is equally

important for bistatic radar systems as it is for monostatic, but fewer operational

bistatic systems exist. Hence the direct influence of the bistatic component of the

work is more long term for the future generation of potential bistatic maritime sys-

tems.

This work has the potential to further optimise maritime radar system capabilities

and help open up a new area of bistatic maritime radar. By characterising bistatic

sea clutter, future bistatic systems can be developed to adapt to the behaviour of

bistatic sea clutter and therefore maximise detection performance in these complex

systems and geometries.

The importance of effective sea clutter modelling is described in great detail

within [5]. A practical radar system requires effective modelling throughout the life-

cycle of the radar. If the wrong models are used in the performance analysis and

prediction stages, incorrect conclusions may be drawn prior to developing the radar.

This generates false expectations for the user of a radar system and on delivery of

the system it will not operate at it’s specified required level. As contracts to provide

radar’s are based on strict performance criteria it is clear the modelling of sea clutter

and a radars ability to compensate for it is an extremely important part of practical

radar engineering.

Information theory is a well establish area of applied mathematical research that

has the aim of quantifying information as well as optimising its use. This wide area

of research has been applied in many fields from data compression, communications

and cryptography. Little prior work from this field has been applied to any radar

applications. The objective of the work included in this thesis is to use an information

theory metric when quantifying real clutter data in comparison to established clutter

models. This novel application in the quantification of the effectiveness of clutter

models is a new proposed way of assessing how well the model is representing the

clutter itself. The concept of applying the selected information theory metric was

initially suggested by A. Charlish and resulted in a joint publication, [6] listed in

Section 1.6 (which demonstrated the concept).

1.3 Importance of Maritime Radar

Maritime radar is of as much great civil and military importance now as it has

been since its invention. Some of the applications of modern maritime radar include

search and rescue, collision avoidance, port security, remote sensing, as well as Air-

borne Early Warning (AEW) used in civil and military scenarios. As well as these

well known applications more recently a resurgence in modern day piracy and hu-

man trafficking has brought more demand for effective maritime radar systems. In

the modern world these applications are as important as ever. Thanks to radar engi-
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neering research, contemporary radar systems are constantly pushing the boundaries

of their capabilities to effectively succeed in these tasks.

The very first application of radar was a maritime radar created by Christian

Hülsmeyer used to detect ships for collision avoidance in low visibility conditions

[7]. This was tested in 1904 in Cologne and successfully detected an approaching

ship whilst located on a bridge. This shows that from the very beginnings of radar

maritime applications have been a key application of the technology.

A few examples of modern maritime radars are presented here to give insight

into the current systems that work in this complex environment. In the area of mar-

itime reconnaissance examples of current radar are the SearchWater 2000, Sharpeye,

Erieye, and Seaspray; seen in Fig. 1.1, 1.2, 1.3 and 1.4 respectively.

Figure 1.1: Searchwater 2000 on Sea King Mk7

SearchWater was originally developed by EMI which later became Thales UK.

The first system was used for maritime reconnaissance (MR) applications and was

located on the British Royal Air Force Nimrod aircraft. The next iteration of the

system, the MK2, was adapted to be located on to a Sea King Mk7 helicopter as seen

in Fig. 1.1 for airborne early warning (AEW) applications. This adaptation occurred

due to the Falklands War and a demand for AEW presence during the conflict. The

systems key advantages are its long range, and good range resolution the combination

of which makes it one of the most effective modern maritime radar systems.
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Figure 1.2: SharpEye radar

The SharpEye system is a solid state radar that has been developed by Kelvin

Hughes Marine Systems. This system claims to be the world’s first solid state civil

maritime radar system, [8]. This fully coherent system is aimed at the civil maritime

market and boasts high reliability due to the use of a solid state transmitter instead

of a less reliable, but more powerful and cheaper magnetron.

Figure 1.3: Erieye radar

The Erieye radar system was first developed in 1985. It is an AEW and control

(AEW&C) radar that is manufactured by Ericsson Microwave Systems (now Saab

Electronic Defense Systems) Sweden, [9, 10]. Examples of the aircraft that used

this system include the Saab2000 and the Embraer EMB-145. The radar employs

an electronic array system with 192 individual transmit and receive modules. This

array allows for electronic beam steering as opposed to physical mechanical steering

of the direction of the radar beam.
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Figure 1.4: Seaspray 7500E radar mounted in U.S Coast Guard HC-130 Hercules

The Seaspray 7500E is another example of an electronically steered active array

maritime radar, developed by Selex Galileo. This system uses a composite scanning

method of an electronically and mechanically steered main beam. Selex defines the

system as a multi-mode surveillance radar which is capable of detecting even small

targets such as fast inshore attack craft (FIAC).

The understanding of clutter amplitude statistics is clearly important for these

radars as they are required to operated in the complex environment the sea represents.

From these examples of maritime radars SW2000, Sharpeye and Seaspray 7500E

are all coherent systems. Therefore the additional understanding of the coherent

characteristics of sea clutter is critical for these systems to maximise the added ability

that coherence gives them. By effectively using the coherence of a maritime radar

it can increase detection probabilities and reduce false alarm rates in comparison to

non-coherent systems.

1.4 Thesis Structure

The thesis has been organised in the following way:

This chapter introduces the background aims and goals of this work, along with

a brief overview of real radar systems that are used in this area of work.

Chapter 2 begins with radar fundamentals including sections on radar equation,

clutter, Doppler and bistatic radar concepts. An overview of the theory behind sea

clutter is then included. The area of information theory is then introduced and

the concepts linked to radar statistics information are discussed. A comprehensive

literature review of prior research into different aspects on sea clutter then follows.

Chapter 3 describes each of the datasets used for analysis in this thesis. Initially
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each dataset is described in detail along with the radar system used to generate

it. The pre-processing analysis techniques applied to all datasets are then described

which enable the data to be brought to a point that statistical analysis can be per-

formed.

Chapter 4 follows this with the comprehensive statistical analysis of all of the

datasets. In each case the non-coherent data is analysed then the Doppler data

characteristics are analysed. This chapter contains the bulk of the practical analysis

of real data.

Chapter 5 introduces a model of sea clutter, first developed by S. Watts, and

applies it to multiple datasets. The simulation results are discussed and compared

with the real dataset characteristics that were defined in Chapter 3.

Chapter 6 discusses the information theoretic work that has been applied to sea

clutter analysis. The relevance of the applied methods are discussed and then their

results of are shown.

Chapter 7 summarises the findings of the research and highlights the key result.

Possible future work is discussed detailing areas where potential gains could be made

through a continuation of research.

1.5 Novel Aspects

The novel aspects of this thesis are contained in Chapters 4-7. These can be sum-

marised as:

• Characterisation of Sea clutter Doppler amplitude statistics as a function of

Doppler frequency. This has been completed by using both the sum square

difference fitting approach and the method of moments. The fitting methods

were applied between raw data and the Compound-K, Weibull and Gaussian

distributions.

• First publication of the analysis of bistatic sea clutter Doppler amplitude statis-

tics. The NetRAD sea clutter dataset has allowed for the analysis of bistatic sea

clutter Doppler statistics. Analysis of data from multiple bistatic angles and

geometries in both horizontal and vertical polarisations has been performed.

• Application of newly developed coherent clutter model to simulate bistatic and

monostatic sea clutter Doppler spectra. The model was originally introduced

by S. Watts [11], the novel aspects of this work are:

– The application to further datasets generated from a different radar that

the model was original tested with.
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– The establishment of relationships between the model parameters and

physical parameters, as well as new relationships between parameters

within the model itself.

• The application of the information theory metric Kullback Leibler Divergence

(KLD) to sea clutter. The metric was used as a measure of goodness of fit of

sea clutter model and raw data. The applicability of the KLD metric in sea

clutter analysis was demonstrated through testing a clutter model’s ability to

represent real data distributions, as well as being able to define the performance

of a model in representing raw data distributions as a function of Doppler.
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Chapter 2

Background

This chapter starts by introducing the relevant aspects of radar and sea clutter theory.

A brief introduction to the subject area is given with an overview of general radar

theory highlighting basics such as the radar equation and RCS. The mathematical

background of information theory is then discussed. The chapter then goes on to

review prior literature in the area of monostatic sea clutter research, bistatic radar,

bistatic sea clutter and finally reviews information theory literature. In the review

of monostatic sea clutter literature the various models for sea clutter that have been

developed are defined and analysed.

2.1 Radar Fundamentals

This section introduces some of the key performance metrics that have to be con-

sidered when analysing any aspect of radar. The necessary background knowledge

required will be introduced here to build on the more advanced research which is

discussed in later sections.

Firstly the term Radar is an acronym which comes from RAdio Detection And

Ranging. In [12] radar is defined as a system that,

operates by radiating electromagnetic energy and detecting the presence and char-

acter of the echo returned from reflecting objects.

The ability of radar to detect a returned signal depends on the capacity of an

EM wave to propagate to a object, be reflected by the object and to propagate back

to a receiver antenna. The target may be approximated by a point scatterer such as

a small aircraft or an extended scatterer such as an illuminated area of land or sea.

It is the interaction of radar with the extended surface of the sea, over a range of

circumstances, which is the focus of interest for this work.

Radar systems are defined by a number of characteristics but a key factor is the

frequency of operation. The range of frequencies that modern radars are capable

of operating at is large, extending from hundreds of mega-Hertz to giga-Hertz. An

example of a very high frequency radar system would be an automobile radar system
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that can operate at ≈ 80 GHz, while over-the-horizon radars for example utilise some

of the lowest radar frequencies, 3-30 MHz. The characteristics, including polarisa-

tion, of the transmitted waveform is also an important factor. Examples of the main

waveform types are continuous wave, pulse and chirp. There are also many other

parameters of importance, which will be discussed subsequently. Similar techniques

to radar do exist, for example systems at optical frequency (LIDAR) and other sys-

tems that use acoustics, although the latter does not use EM radiation and neither

of these propagate the long distances that is characteristic of microwave radars.

The enormous range of applications of radar systems as well as the significant

variation in the characteristics of radars has been a key driver behind the extensive

research in radar systems. Understanding the interactions of the radiated signal with

both the desired target and the background clutter is therefore of upmost importance

especially since these interactions vary greatly for different scenarios and signals.

The basic steps involved in monostatic radar operation is the emission then re-

ception of a EM signal from and then back to an antenna. During the signal’s

propagation across the environment it interacts with the environment via various

scattering mechanisms. Due to backscattering from the environment and targets, a

fraction of the emitted signal returns to the reciever antenna. This received signal

then undergoes signal processing to extract information from it, most commonly de-

sired information is the range and bearing, hence giving the location, as well as the

Doppler of any present targets.

The following sections describe the key fundamental concepts behind radars and

the propagation of their electromagnetic waves. Core texts that summarise this area

well are [1, 12–14].

2.1.1 Radar Equation

The radar equation is the most fundamental equation for predicting the power re-

ceived by a radar system, and depends on a number of important variables. It can

take many forms that range in complexity, although the underlying physics is the

same for all forms. For a monostatic pulsed radar a basic form for the radar equation,

in free space, is defined as:

Pr =
PtG

2σλ2

(4π)3R4L
(2.1)

where Pr is the power received by the antenna given a transmit power Pt and G is

the antenna gain, σ is the target RCS, λ is the wavelength of signal, R is the range to

the target from antenna, and L is a loss factor. The loss factor in this case is ≥ 1 as

it is on the denominator. The RCS term relates to the power reflected from a target

and is defined further in section 2.1.4.
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The power terms in Eqn. (2.1) are related to the absolute values that are trans-

mitted and received by the front end of the radar system. The gain is related to the

effective aperture Ae by:

G =
4πAe
λ2

(2.2)

the effective aperture of the radar antenna is defined by the product of its physical

aperture and its efficiency.

The loss factors represented by L include, for example, receiver losses, beamshape

losses and atmospheric losses.

Eqn. (2.1) only takes into account the significant factors that affect the received

power of the system and hence the performance. There are a large number of addi-

tional variables that can cause the real life performance of a radar system to differ

from this predicted value, but they have not been considered in this simplified case.

As well as the received power from the returned radar signal, receiver noise is

present within the signal. To calculate the signal to noise ratio at the radar receiver

requires the receiver noise power, Pn, to be evaluated:

Pn = kBT0BFn (2.3)

kB is Boltzmann’s constant (1.38× 10−23 JK−1), T0 is the absolute temperature of

the receiver defined as 290k, B is the bandwidth and Fn is the noise figure. The noise

power Pn represents the thermal noise of the environment and system. Due to the

defined temperature T the factor kBT is -174 dBmHz−1 [15].

Using Eqn. (2.1) and (2.3) it is possible to define the signal to noise ratio (SNR)

for the radar receiver.

SNR =
PtG

2λ2σ

(4π)3R4kBTBFnL
(2.4)

The signal to noise ratio is literally the ratio of the power of the received desired

signal (often the selected target) and the noise level present within the signal. Using

the equations presented so far it is now possible to define the minimum signal that a

radar can detect, as follows,

Smin = Pn(SNR) (2.5)

This shows only a simple theoretical equation that describes the minimum de-

tectable signal given the environmental thermal noise and added noise of the system,

kBTBFn. It does not define the practical required signal needed to detect a target

at a given range. In reality this is affected by a number of factors, of which clutter
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is the most important.

2.1.2 Pulse Compression

Pulse compression is a technique which attempts to enhance the detection range as

well as the range resolution of a radar signal. This is achieved by applying a form

of modulation to the transmitted signal. In radar systems the most commonly used

form of modulation is frequency modulation (FM), although it is also possible to

apply phase modulation (PM).

Frequency modulation applies a linear increase or decrease to the frequency of

the transmitted signal as a function of time lag. When this transmitted signal is

then received a filter introduces a time lag that decreases or increases linearly with

frequency at the same rate it was applied to the transmitted signal.

The resulting output signal has much higher amplitude over a shorter period

of time, as the time lag has overlapped the signal onto one location in time, or

compressed the signal. Hence giving the system a finer range resolution, but still

maintaining a long duration pulse. The long duration pulse allows a greater incident

power onto a given target, compared to a short pulse, which increases the maximum

detection range. This is explained in detail within Chapter 13 of [1]. Equation (2.1)

shows that power received from a given target is directly proportional to the pulse

compression gain factor, N , that is applied to the signal.

Figure 2.1, from [1], shows a diagram of a linearly stepped frequency pulse with

a pulse length of τ as an input to a receiver filter. The filter then applies the process

described above and produces the output signal which is much higher in amplitude.

The output is also compressed to a pulse length that is a 1/6th of the original length,

due to the six frequency steps in the input signal.

Figure 2.1: Pulse compression diagram

The disadvantages of introducing pulse compression is that is increases the min-

imum range of the radar system, and it also produces range sidelobes. Using pulse
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compression is a trade off between these disadvantages and the important advan-

tages of increasing both power incident on target while maintaining enhanced range

resolution.

2.1.3 Clutter

In radar the term clutter is defined in [13] as,

a radar return from an object or objects that is of no interest to the radar mission

Examples of these objects that are cited include precipitation, vegetation, soil,

rocks and the sea. As well as these natural existing examples, man-made objects

can also be considered clutter and will generate their own distinct signals. A topical

example of a modern man-made clutter object is a wind turbine. These represent

large objects with fast moving turbine blades that will give high amplitude and

Doppler returns to a radar system that are generally unwanted. All of these examples

have the potential to cause reflections back to the radar which will be included within

the signal along with the desirable components such as targets.

Clutter, like thermal noise, is an unwanted component of the radar signal, and

can be defined in terms of a clutter to noise ratio (CNR). Unlike thermal noise,

which will often have a constant mean amplitude within a received signal, clutter

returns follow an amplitude variation that is related to distance in the same way as

the returned radar signal, see Eqn. (2.1). The samples of thermal noise are also

normally distributed and statistically independent between received pulses, whereas

clutter returns can be highly correlated between pulses and follow a wide range of

statistical distributions. The characterisation of these type of distributions is of great

importance when compensating for these clutter effects.

It is more often the case that the limiting factor for detection in a practical

radar system is the signal to clutter ratio (SCR), not the SNR. This demonstrates

the importance of understanding the clutter returns. In cluttered environments the

detection process of small difficult to detect targets is heavily dependent on SCR.
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Figure 2.2: Clutter limited and thermal noise limited minimum RCS vs. range (miles)

Figure 2.2 taken from [?] shows an example plot of the simulated minimum RCS

of a detectable target as a function of range. The lines labelled SS2 - SS6 refer to

clutter conditions at sea states 2 to 6, see section 2.2, and the line labelled noise

refers to the thermal noise limited case. In the clutter limited cases at low ranges a

significantly higher RCS is required to detect a given target compared to a thermally

noise limited system, which is to be expected. At a certain range each sea state

clutter limited case reaches the same required minimum RCS for detection. This

demonstrates the difference in clutter limited detection and thermally noise limited

detection over a range of conditions.

2.1.4 Radar Cross Section (RCS)

This section introduces the concept of RCS and its relation to scattering theory. The

RCS, σ, of a target is effectively a metric that is related to the power that a object

will return to the receiving antenna, as a fraction of the power incident on the target.

The RCS value depends on an objects ability to reflect signals, and is a measure of

power scattered per steradian (unit of solid angle). The ratio of the power intercepted

by a target to backscattered density is used to calculate the RCS.

The RCS of a target behaves differently to the manner in which visible light

produces a perceived image of an object. An RCS is often larger than the geometric

cross section of the object. This is due to the distinct way EM waves interact with

each target. As the wavelength of the signal used approaches the size of the object,

it is attenuated during the reflection, which results in a received power signal that

does not represent the exact physical size.

RCS is a product of three factors; Projected Cross Section, Reflectivity and Di-
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rectivity. The projected cross section is simply the two dimensional image of the

object, as seen from the point of view of the antenna. Reflectivity is the percentage

of intercepted power that is redirected (scattered) by the object. The Directivity is a

measure of the power reflected back to the receive antenna as a fraction of isotropic

(equal in all directions) scattering.

The RCS factor seen in Eqn. (2.1) and Eqn. (2.4) is given by (Chapter 27 [12]):

σ =
Power reflected towards radar per unit solid angle(

Incident power density
4π

) = lim
R→∞

4πR2

∣∣∣∣ErEi
∣∣∣∣ 2 (2.6)

where σ is the RCS, Er is the electric field strength of the scattered EM wave

received by the radar, and Ei is the electric field strength of the incident EM wave

on the target, and R is the distance from the target to the radar antenna.

A target’s RCS is a basic representation of the complex scattering mechanisms

that occur with the interaction of the radar signal with the target. It can vary

significantly with orientation of the target with respect to the incoming signal. This

is primarily due to how the signals reflected from various components of the target

combine.

Stealth technologies aim to reduce the RCS of a target as much as possible. This is

achieved by using materials that absorb the EM radiation, Radar Absorbent Material

(RAM), minimising the physical size of the targets, and by designing the structure

to reflect back the EM waves in a different direction than its origin. An examples of

a aircraft that uses RAM material are the U-2 and B-2 while a example of a platform

that uses directivity in its design is the F-117 jet.

Bistatic radar systems have potential counter-stealth capability due to their multi

perspective on the target increasing detection of waves scattered in different direc-

tions, see section 2.1.8.

2.1.5 Radar Range Resolution

In a radar the returned target signal delay is directly proportional to the range of the

target. Range resolution is defined as the minimum distance possible between two

separate targets at which it is still possible to independently resolved each target. In

a simple pulsed radar system this is a function of the pulse length that is transmitted:

∆R =
cτ

2
(2.7)

where ∆R is the range resolution, c is the radar pulse speed (which is assumed as

speed of light in free space) and τ is the pulse length.

This shows that range resolution is directly proportional to the length of the pulse
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used. An issue with reducing the pulse length to enable finer range resolution is that

this will reduce the amount of EM energy incident on a given target. This will lead

to a reduction in the signal level received by a radar. A method to enhance the

resolution whilst keeping a long pulse is pulse compression which has been discussed

within section 2.1.2.

Pulse length has an inverse relationship with the bandwidth of the pulse, [1]. To

produce very short square pulses a very large pulse bandwidth is needed. This is due

to short temporal signals having very wide frequency outputs after Fourier transform.

Hence the range resolution is also linked to the pulse bandwidth:

∆R =
c

2B
(2.8)

Where B is the Pulse bandwidth.

2.1.6 Doppler Theory

In coherent radar systems it is possible to measure the Doppler of the returned signal.

This is a measurement of the frequency shift of the returned signal from the original

centre frequency that was transmitted. The extent of this shift is directly proportional

to the relative radial velocity of the target or clutter that is being illuminated. The

Doppler phenomenon is very important to radar systems as the ability to measure

the relative speed of a target gives radars an almost unique input into the targets

characteristics that other sensors require further steps to evaluate.

A coherent system has the ability to measure the phase Φ of the returned signal,

any change in phase is assumed to be due to the relative motion of the target or

clutter. The phase of the signal, measured in radians, is defined as:

Φ = −2R(2π)

λ
(2.9)

The Doppler frequency, in Hertz, is defined as the rate of change in phase, which

is the derivative of Eqn. (2.9):

Φ̇ = − 2Ṙ

(2π)λ
= fd (2.10)

Where fd is the Doppler frequency, Ṙ is the rate of change in the relative radial

distance and λ is the radar signal wavelength. The factor of 2 is due to the radar

signal travelling the two way distance to the target/clutter. The negative sign is used

it is convention that a decreasing relative range gives a positive Doppler frequency,

e.g the frequency is increased from that transmitted. Using the relationship between

wavelength and frequency it is possible to also relate the Doppler frequency to the

transmitted frequency of the radar system,
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fd = −2
Ṙfc
c

(2.11)

As previously noted the velocity vector Ṙ is the relative radial velocity of the

target with respect to the radar. In the case where a radar is tracking a moving

aircraft target the component of the aircraft’s velocity with respect to the ground

based radar is proportional to cosΨ where Ψ is the angle between the aircraft velocity

vector and the radar’s line of sight (LOS), [13]. This gives,

fd =
2V

λ
cosΨ (2.12)

The characteristics of sea clutter Doppler spectra returns are discussed later in

section 2.3.3.

2.1.7 Range and Doppler ambiguities

Pulsed Doppler radar systems operate at a single or changing (agile) pulse repetition

frequency (PRF). This represents the frequency at which the pulses emitted are

repeated at. Within the gaps between pulses the radar detects the returned signal.

The time between pulses is the inverse of the PRF and is commonly known as the

pulse repetition interval (PRI).

Operational radars in practice can use PRFs of the order of a few hundreds of

Hz up to 100’s kHz. The selection of the PRF of a radar is an important decision

and is tightly linked to the applications that the radar is designed for. The balance

between a high or low PRF will define the ambiguities that will be present in range

and Doppler.

Range ambiguous measurements occur when the returned signal is not from the

pulse directly preceding the measurement, but from any number of pulses prior to it.

Often there is no method of identifying which pulse a given return originated from.

Thus the range at which that pulse has returned from is ambiguous.

As the power of the returned signal is related to R−4, Eqn. (2.1), then returns

from more than a couple of pulses preceding the detection are normally not detected

due to the significant reduction of power at long ranges. The unambiguous range of

a radar is as follows:

Runambiguous =
c

2PRF
(2.13)

By operating at a low PRF a significant amount of time is left between receiving

pulses. Thus the vast majority of returns are unambiguous as the ambiguous returns

will occur from such long ranges that they will most likely not be detected. The

disadvantage of this is that the frequency of updates from the scene is lowered, which

may result in lost information, target detections or target track losses. High PRF
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radars obtain more frequent returns from a given target, but limit their maximum

unambiguous range. To overcome this issue it is possible to introduce a changing

PRF. By altering the PRF between pulses it is possible to observe if a target is at

an ambiguous range. An ambiguous range target will shift its distance by a value

related to the change in the PRF. The change in distance due to the PRF shift can

be used to locate the target at its true unambiguous range but still operate at a high

PRF.

The effect of an ambiguous detection can be seen in Fig. 2.3, where target (A)

is unambiguous in range at 20 km, while target (B) is either at a distance of 10 km

after pulse 2 or 40 km after pulse 1 making it ambiguous in range.

Figure 2.3: Diagram of ambiguous target measurement

As well as range ambiguities it is also possible for radar returns to be ambiguous

in Doppler. In the reception and filtering of the returned signal the resulting signal

has sideband frequencies that are separated from the main carrier frequency by ±
PRF (Hz). The resulting Doppler of a target will wrap around in the Doppler domain

to be confined within ± PRF (Hz). Hence a target with a Doppler frequency greater

than the PRF, for example W.PRF +X where W is an integer, will be located at X

in the Doppler domain making it ambiguous.

Therefore it is advantageous to have a high PRF, as this increases the size of the

unambiguous Doppler space. When detecting targets using Doppler processing it is

very easy to achieve a successful detection if the target Doppler is located separately

from the background clutter spectrum. If the system is operating with a large PRF

the target’s Doppler return resides within the unambiguous Doppler region. If a low

PRF is selected then it is very possible that the target’s Doppler return will wrap

into the background clutter and be much more difficult to detect, due to it coexisting

with the clutter spectra, see Fig. 2.4.
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Figure 2.4: Diagram of Doppler unambiguous and ambiguous target measurement

This shows that a careful selection of the PRF is required to maximise either

the unambiguous range or unambiguous Doppler spectrum, or attempt to obtain a

balance between the both of these parameters that satisfies the requirements of the

radar system.

2.1.8 Bistatic Radar

So far all the discussion has been focused on monostatic radar systems, where the

transmit and receive antenna are the same or co-located. This section will introduce

the key theoretical components associated with bistatic radar systems including the

advantages of such systems, the definition of bistatic geometries, bistatic radar equa-

tion and bistatic RCS.

A bistatic radar system is defined as having its transmit and receive antennas at

different positions [12]. A clear and full overview of the area of bistatic radar can be

found in [3, 14,16], as well as Chapter 36 in [12].

Bistatic radars can either use dedicated radar transmitters or non-radar transmis-

sions (for example FM radio or TV transmissions). The majority of the work in this

thesis discusses the configuration when a monostatic radar is used as the transmitter

for the bistatic receiver, which is known as a hitchhiker setup.

There are many advantages of a bistatic radar system. The key ones are:

• Anti-stealth capability due to the bistatic geometry. The re-radiated energy

does not have to return to its source, as in monostatic systems. Therefore the

stealth design that reduces reflection that are directed back to the origin can

be countered by bistatic systems.

• Increased RCS of target when it is close to or on the bistatic baseline. This

is due to Babinet’s principle, where the same scattering occurs for a perfectly

absorbing target and a infinity conducting sheet with hole the same shape as
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the target. Therefore a target on the baseline between the transmitter and

receiver antennas will have a significantly increased RCS, in comparison to the

same target at an equivalent distance.

• Increased coverage, particularly useful in extending coverage into existing mono-

static radar blackspots. For example a monostatic system may not be able to

detect targets behind a mountainous area because of shadowing by the moun-

tains. The used of a bistatic system could allow for detections within this

previously non-illuminated region.

• Covert operation. By using a system in a passive mode it is receive only,

therefore significantly more difficult to detect by EW devices.

• Increased resilience to EW counter measures. This is because in receive only op-

eration the location of the receiver cannot be determined by any EM emissions,

and hence can not be jammed by a directional jammer.

A representation of the bistatic geometry can be see in Fig. 2.5. Lb is the

baseline length which is the separation between the transmitter (Tx) and the receiver

(Rx), RT and RR are the range of the transmitter and receiver from the target, β

is the bistatic angle, and θT and θR are the angle between North and the receiver /

transmitter azimuth.

Figure 2.5: Bistatic geometry convention

As bistatic systems have a complex geometry compared to monostatic systems

there is a different definition for the range and a different range equation is required.
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Some of the literature uses the defines bistatic range as RR + RT − Lb, another

definitions is RR +RT , for the rest of this work the latter will be used.

Bistatic radar systems range contours are defined by ovals of Cassini. The ellipses

are quadratic curves which are described by a point that the product of the distances

from two fixed points a distance 2a apart is a constant b2. The characteristics shape

of the curves are defined by the ratio of b/a. As the ratio decreases the shape moves

from a oval to a figure of eight shape then eventually two separate loops exist if a > b.

In polar co-ordinates ovals of Cassini follow as:

r4 + a4 − 2a2r2[1 + cos 2Θ] = b4 (2.14)

Where r and Θ are the distance and angle to the co-ordinate on a specific oval of

Cassini. The points along an oval of Cassini are all loci that conform to the condition

that they all have the same values for the sum of the two sides of a triangle (RT and

RR), where the third side is fixed as the baseline (Lb). These lines mark out lines of

constant SNR for a fixed baseline Lb. A plot showing examples of ovals of Cassini

with varying parameters can be seen in Fig. 2.6, where a is set to 5 and the ratio of

a/b is varied from 1 to 1.5.
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Figure 2.6: Example plot showing ovals of cassini

The bistatic range equation is:
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Pr =
PtGtGrλ

2σbLp
(4π)3R2

TR
2
RkBT0BFn

(2.15)

where Pr is the power received, Pt is the transmit power, Gt and Gr are the trans-

mitter and receiver antenna respective gains, λ is the wavelength, σb is the bistatic

target RCS, Lp is a system loss, and Fn is the noise figure.

The bistatic clutter cell will obviously not be equal to a monostatic radar equiva-

lent clutter cell. It is defined to be an intersection of the range cell, Doppler cell and

main beam footprint. The clutter cell can either be defined as being beam width-

limited, range-limited or Doppler-limited, [14]. The Doppler-limited case has not

been considered within this work.

In the beamwidth-limited case the clutter cell area (Ac)b can be approximated at

small grazing angles by [14],

(AC)b ≈
(RR∆ΘR)(RT∆ΘT )

sin β
(2.16)

where ∆ΘT and ∆ΘR are the 3dB widths of the transmit and receive beams, RT∆ΘT

and RR∆ΘR are the transmit and receive cross range at the intersection of the two

beams.

The range gate limited clutter area, (AC)r, is always smaller than the beamwidth-

limited case and defined as,

(AC)r ≈
cτRR∆ΘR

2 cos2 β
2

(2.17)

The beamwidth limited and range gate limited cases are shown as the shaded regions

in Fig. 2.7 (a) and (b) respectively. This diagram uses the assumption that the

beamwidth shape is square making a quadrilateral shape, while in reality the beam

will have a fan like shape.

The equations given for the clutter cell areas use assumptions to simplify their

evaluation. Prior work has also been completed into numerical integration methods

to evaluate the areas in [17], which is not covered in this thesis.

As a bistatic receiver observes a different target aspect angle in comparison to

an equivalent monostatic system the bistatic and monostatic RCS can vary greatly.

Early work by [18] defined an RCS equivalent for bistatic systems as the sum of

the transmit and receive vector aspect angles. This uses the assumption of a simple

geometric target and a small wavelength in comparison to the target. The theory has

now been expanded by classifying three separate regions pseudo-monostatic, bistatic

and forward scatter. The current region of a system is dependent on the bistatic

angle of the geometry.
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Figure 2.7: (a) Beamwidth limited bistatic clutter cell (b) Range gate limited bistatic
clutter cell

In the first region the RCS of a target can be assumed to be the monostatic

equivalent value if a monostatic radar was located at the central point of the baseline

between transmitter and receiver. This equivalence can be used only up to a given

bistatic angle, which depends on the target and wavelength of the system. The exam-

ple given in [14, 19] shows that for a large sphere the pseudomonostatic assumption

works within 3dB up to β = 100◦ whereas a smaller sphere this region only extends

to β = 40◦.

The next bistatic RCS region as β increases is defined as the bistatic region, this

is where it is no longer possible to utilise a monostatic equivalent for the bistatic

RCS. The key reasons for this break down of the equivalence method are, changes in

relative phase between individual separate scattering centres on the target, change in

the characteristics of the radiation from these discrete scattering centres and lastly

the change in the scattering centres themselves (removal of previous and generation

of new scatterers).

Early work showing the ratio of monostatic RCS to bistatic RCS of real targets

can be seen in [20]. The conclusions from this research was that on average the

bistatic RCS is less than the monostatic. The trend of a decrease in the ratio of

bistatic RCS to monostatic RCS as a function of increasing bistatic angle was also

shown. Exceptions to this trend were shown for a few data values recorded at bistatic

angles that were less than 5◦.

The work completed within [20] is now greater than 30 years old, naval ship design

has changed considerably since then. There is now a greater consideration taken into

the resulting monostatic RCS of modern naval ships. Hence the absolute monostatic

RCS of modern ships would have reduced in comparison to these earlier ship models.

The bistatic RCS potentially may not be reduced by the same amount, meaning that

the conclusions from the [20] work would no longer be valid on modern ships.

The final region of bistatic RCS is the forward scattering regime, which occurs as β
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approaches 180◦. At these angles the transmitter boresight is aimed almost directly

at the receiver antenna’s boresight. At exactly β = 180◦ it is possible to apply

the Babinet’s principle which has its basis within optical physics. This principle

states that the forward scattering pattern of a emission that is diffracted through

an aperture and the pattern of the same emission which is diffracted by a shape

which is the complimentary of that aperture are identical. This gives a significant

gain in the received energy at the receiver in the true forward scattering case of

β = 180◦. As β is reduced from this value the bistatic RCS reduces from this peak.

The behaviour of this change requires numerical evaluation for all targets other than

simplistic geometric shapes.

2.2 Characterisation of the Sea

Before understanding the way that radar signals interact with the surface of the sea

it is important to understand the characteristics of the sea itself. Oceanography is an

extensive subject area and has many technical expressions and terms used to describe

the characteristics of the sea. Some of these which are introduced in this section in

order to facilitate the understanding of sea clutter backscatter in section 2.3. The

terms described here are given in [12,23]

Sea State: The Douglas Sea State is a metric commonly used to characterise the

sea conditions. It was devised in the 1920s by Captain H. P. Douglas CMG, RN

who was a Hydrographer for the Royal Navy. The wave height are used to break up

the sea state in to a range from 0 to 9. Table 2.1, [23], demonstrates each sea state

with its corresponding wave height and description. As well as the Douglas scale the

Beaufort wind scale can also be used to describe the seas’ condition. This relates the

state of the sea directly to the wind speed instead of wave height, Table 2.2 [?].

Sea State Wave Height h 1
3

(ft) Description

0 0 Calm, glassy

1 0 -1
3

Calm, rippled

2 1
3

- 2 Smooth, wavelets

3 2 - 4 Slight

4 4 - 8 Moderate

5 8 - 13 Rough

6 13 - 20 Very rough

7 20 - 30 High

8 30 - 45 Very High

9 > 45 Phenomenal

Table 2.1: Douglas sea states
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Beaufort Number Wind Speed (Knots) Description

0 < 1 Calm

1 1-3 Light air

2 4 - 6 Light breeze

3 7 - 10 Gentle breeze

4 11 - 16 Moderate breeze

5 17 - 21 Fresh breeze

6 22 - 27 Strong breeze

7 28 - 33 Near gale

8 34 - 40 Gale

9 41 - 47 Strong gale

10 48 - 55 Storm

11 56 - 63 Violent storm

12 > 64 Hurricane

Table 2.2: Beaufort scale

Significant Wave Height, h 1
3
: Due to the fact that at any one time there is a range

of wave heights present within an area of sea an accepted term is used to define a

single overall height that can be used for comparison. h 1
3

is defined as the average of

the highest third of the waves present.

Fetch: This is an area of the sea surface over which seas are generated by a wind

having a constant direction and speed

Duration: In the context of oceanography duration describes the length of time

that winds blows in the same direction over a fetch.

Developed/Un-Developed Sea : The sea can be described as either being a fully

developed sea or an un developed sea. It is fully developed when the ocean waves

have reached the maximum height which they can be generated by a given wind

force blowing over a sufficient fetch. This is regards of the duration that the wind

had been blowing. In this state all possible wave components are present and have a

maximum amount of spectral energy.

Swell : This is made by ocean waves that have travelled out of the area they were

generated. Swell is characteristically regular with longer periods and flatter peaks

than waves generated within their fetch.

2.3 Monostatic Radar Sea Clutter Theory

2.3.1 Sea clutter NRCS

As opposed to point targets like ground vehicles or aircraft, sea clutter represents a

return from an extended surface area. Therefore to define a comparable RCS to a
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individual target, section 2.1.4, its RCS must be defined differently. The reflectivity

of the sea surface is a complex result of the interaction between the EM wave and

the dynamic sea surface. The average reflectivity parameter used for sea clutter RCS

is a normalised RCS (NRCS), σ0 given by:

σ0 =
σ

Ac
(2.18)

This normalises the measured returned power from the sea clutter with respect to

an area, or Clutter Cell. The area Ac is the footprint of the radar signal on the sea

surface defined as:

Ac =

(
Rcτ

2

)
(φasecθ) (2.19)

where R is the range of the clutter patch from the antenna, c is the speed of light, τ is

the width of the pulse used, φa is the two-way 3dB azimuth beamwidth (in radians)

and θ is the grazing angle.

This relationship assumes a low grazing angle with respect to the sea surface, and

a relatively narrow azimuth beam width.

Sea clutter reflectivity is a function of a large number of variables, both envi-

ronmental and radar related. Many models have been developed to describe how it

varies with some of these parameters. Sea clutter NRCS values are generally lower

than land clutter NRCS, but they have the added complexity of the dynamic nature

of the sea, making it much more complex to analyse and model. A review of the prior

research into the links between sea clutter reflectivity and some of these parameters

is included in Sections 2.5.1, 2.5.4 and 2.5.5.

2.3.2 Sea clutter scattering components

Research utilising EM scattering theory and empirical analysis of radar data has

shown sea clutter, as seen by non-coherent radar, to have a compound distribution.

This can be attributed to the different scattering components within the signal. The

three main components [21] [22] [23] within the clutter are defined in general as:

• Bragg scattering: This is an important physical scattering phenomenon when

considering sea clutter returns. It is caused by the interaction of the signal with

the local wind generated capillary waves on top of the modulated longer gravity

waves. The statistics for this component is Gaussian in nature as predicted by

the central limit theorem due to the large quantity of scatterers contributing

to the Bragg returns. Vertically polarised Bragg scattering is found to be

consequently greater in amplitude than horizontally polarised [24].
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• Long Duration Spikes (Whitecap): This component is directly related to the

physical effect of waves breaking. This effect lasts for time frames of order ∼1s.

The returns are noise-like fluctuations, with high mean power, that decorrelate

over ∼1ms. The contribution from this component is not polarisation depen-

dent. Their Doppler spectrum is relatively extensive, with a centre around the

main gravity wave phase velocity.

• Short Duration Spikes (Bursts): Burst scattering is generated by the rough

surface on the crest of gravity waves that is generated just prior to the waves

breaking. This component is much larger in amplitude in horizontal polarisa-

tion than vertical. The lifetime of these effects is shorter than the whitecap

component, although they are coherent throughout their duration. Therefore

they do not decorrelate when frequency agility is applied to the radar signal

from burst to burst.

Both Bursts and Whitecap effects are referred as spikes, despite being two clearly

different phenomena. The two key characteristics of these spike returns are high

polarisation ratio and Doppler velocity in comparison to the Bragg scattered returns,

this is illustrated in [24] [25] [26] [27].

The empirical models that have been developed for sea clutter attempt to include

each of these key scattering components. Each of these individual components must

be considered when analysing sea clutter data in terms of the how spiky the amplitude

statistics are as well as the coherence of the spikes present. The separate scattering

components within recorded data can be identified by their polarisation dependence

and the length of time they exist.

2.3.3 Doppler spectra of Sea clutter

Sea clutter returns have a constant dynamic motion associated with them, due to the

nature of the fluctuating motion of the sea surface. This makes the Doppler spectra

of the clutter more complex and difficult to characterise. It is of great importance to

understand components behind the generated spectra and quantitatively characterise

its behaviour. Modern Doppler radars are capable of Doppler processing techniques

that allow for easy detection of fast moving targets outside of the spectra of the

clutter present. This is not the case for slower moving targets that are located in

the clutter dominated section of the Doppler spectra, potentially masking the target

return.

When considering the velocity components of the sea surface its total spectra

contains contributions from the motion of the components described within 2.3.2.

The key velocity components include the main gravity waves and the wind speed

induced capillary surface waves. These two factors induce the main components of

the motion of the sea surface, the large scale wave motion, and the small scale motion
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that is superimposed on top of this. Wind generated sea waves and swell are both

considered to by gravity waves. The gravity wave phase velocity is defined as:

cgw =

√
gλW
2π

tanh
2πd

λW
(2.20)

where cgw is the speed of the gravitational wave, g is the gravitational constant,

λW is the wavelength, and d is the depth of the water. In the case of deep water,

d >> λW [12], this simplifies to:

cgw =

√
gλW
2π

(2.21)

These equations are valid in medium to deep water conditions. Different effects

are generated within very shallow waters but these are not discussed here. This can

be related to the Doppler frequency of the gravity waves using the Bragg scattering

equation:

λ = 2λW cosφ (2.22)

where φ is the angle of the direction of wave propagation with respect to the radar,

and λ is the radar signal wavelength. Using Eqn. (2.20) and (2.22) it is possible to

define the gravity wave Doppler frequency as:

fd = ±
√
g cosφ

πλ
(2.23)

Capillary waves are also generated by wind, but their restoring force is the water’s

surface tension, not the Earth’s gravitational field. Waves of a length of less than ∼ 3

cm are considered capillary waves, [12]. The have much shorter wavelengths and last

for shorter periods of time. Hence if the wind speed drops considerably the capillary

waves will cease significantly before the swell reduces.

Quantifying the relative importance and effect of these two factors has been the

topic of many research projects over many years. This research has been mainly

directed at understanding the effect of these as well as other variables influence on

the observed sea clutter distributions. It is the differences in the spectra seen in

vertical and horizontal polarisation as well as variations with grazing angle that

are of interest to radar engineers. The selection of polarisation is one of the few

parameters that radar engineers have control over that effects the characteristics

of the returned clutter, unlike the uncontrollable parameters such as geometry or

metreological conditions. Prior literature on sea clutter Doppler characteristics is

reviewed in section 2.5.7.
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2.3.4 Sea clutter amplitude statistical models

As well as the average reflectivity sea clutter by nature is fluctuating in amplitude

with time from a single location. The characteristics of this fluctuation is described

by the temporal amplitude statistics of the clutter. This section introduces some

of the models, which have been developed over many years of sea clutter research,

that are used represent the amplitude statistics of sea clutter. Only the core well

known models that have been shown to accurately represent sea clutter distributions

are discussed here. Additional models have been applied previously, but this is often

with limited success or little reasoning behind their methodology.

2.3.4.1 Gaussian model

One of the simplest models that can be used to define the observed statistics of the

sea clutter returns distribution is the Gaussian model. It has been shown, under cer-

tain conditions, that this model can be applied effectively. These conditions include

observations of clutter over short time scales, of approximately 0.1 seconds, medium

to high grazing angles and use of a radar system with low spatial range resolution.

If these conditions are met then it is possible to assume many scatterers inside the

resolution cell contribute equally to the returned signal. The number of scatterers

can be assumed to tend towards a significant number, therefore it is possible to apply

the central limit theorem and the amplitude of the net backscattered signal will have

a Gaussian distribution.

The theory states that the sea surface can be described as a scattering field,

E, that is represented by the complex contributions from a number of independent

scatterers,

E =
N∑
n=1

an (2.24)

If it is assumed that N is a large number then for this case it is possible to define

the predicted scattering statistics. Using an assumed characteristic function of the

summed individual components it can be shown that the model for a large number

of identical scatters simplifies to a Rayleigh envelope, where the Probability Density

Function (PDF) of the in-phase and quadrature components are represented by,

P (EI , EQ) =
1

πx
exp

(−E2
I + E2

Q

x

)
;−∞ ≤ EI , EQ ≤ ∞ (2.25)

After envelope detection of these Gaussian components the exponential intensity

distribution is given by:

P (z) =
1

z
exp

(
−z
x

)
; z = E2; 0 ≤ z ≤ ∞ (2.26)
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The single parameter exponential model for the intensity is defined by x which

represents the mean clutter return which in turn is directly proportional to the clutter

power received by the radar system.

It is important to note that the Gaussian model has been found to be inadequate

at describing the backscatter from the sea surface, at low grazing angles, high resolu-

tions and longer timescales (≈ 10s). The number of scatterers in these situations is

greatly reduced, and hence the central limit theorem assumption is no longer valid. It

is explained in [23] that in these conditions the statistics of the sea clutter has a large

number of high returns, producing longer tailed distributions to which a Gaussian

model cannot be fitted. The failure of the Gaussian clutter model to represent sea

clutter drove numerous other models to be applied to clutter in an effort to improve

upon the Gaussian model.

Although over shorter time scales of << 1 sec the sea clutter distribution due

to the underlying gamma distribution remaining approximately constant over this

time. Therefore only the speckle component of the clutter is sampled which will give

a Gaussian return, see section 2.3.4.4 for the K-distribution that applied a compound

structure to sea clutter.

2.3.4.2 Weibull distribution

The Weibull model was developed by Waloddi Weibull, and was initially used to

model material varying material strength with size [28]. It was then applied to

ground clutter in [29], and since there are many examples of it being applied to both

land and sea clutter. The model is popular as it is described as being analytically

tractable in [23], although it does not have a compound nature like the K distribution

model.

The PDF of the Weibull distribution is given by, [30]:

p(x) =
ηw
σw

(
x

σw

)ηw−1
exp

(
−1

(
x

σw

ηw
))

, x > 0, σw > 0, ηw > 0 (2.27)

where σw and ηw are the scale and shape parameters respectively. The Rayleigh PDF

is a particular case of the Weibull PDF when ηw = 2. With the intensity moments

being defined as:

〈zn〉 = σwΓ

(
n

ηw
+ 1

)
(2.28)

Some example plots of the Weibull PDF distribution with a fixed scale parameter

of 1 and a varying shape parameter can be seen in Fig. 2.8.

Farina et al [31] produced a coherent Weibull clutter model, which was then

expanded on within [32]. This results in temporally correlated in-phase and quadra-
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Figure 2.8: Example Weibull function PDF plots with varying shape parameters

ture components with Weibull distributions which are generated using a nonlinear

memoryless transform.

2.3.4.3 Log Normal Distribution

The Log-normal distribution is only dependent on two key parameters, the mean µLN

and variance σ2
LN . The form of the distribution is a similar to a Gaussian distribution

but contains a logarithmic component within the exponential,

P (x) =
1

xσLN
√

2π
exp
−(ln(x)− µLN)2

2σ2
LN

(2.29)

This has been used previously to model the amplitude distribution of sea clutter

returns. It was first applied to sea clutter analysis in [33] and can also be seen being

used to compare against real data distributions with recent research [34]. Figure 2.9

shows a plot of three separate log normal distribution PDFs all with µLN = 0, but

varying values of σLN .
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Figure 2.9: Example log-normal distribution PDF plots with varying shape parame-

ters

2.3.4.4 K-distribution

The compound K-distribution model is a well established model that was developed

by Jakeman and Pusey in [35] and was found to effectively model sea clutter [36] [37].

The compound model takes into account both the long modulation of the gravity

waves and the additional non-Bragg scattered speckle component. The key strengths

of the model are that it is has been proven to fit well to sea clutter from multiple

datasets as well as being grounded within a logical physical representation of the sea

surface.

A Gamma distributed variant is used to represent the slower fluctuating local

mean power component. The theoretical logic behind the use of a Gamma variable

for the mean power fluctuation is reinforced by a number of points. As the shape

parameter of the Gamma distribution tends to∞ the PDF of the distribution trends

to a Dirac delta function. The implication of this is that the compound K-distribution

will revert to a Rayleigh distribution. Allowing the K-distribution to well represent a

thermal noise power distribution for this limiting special case. In addition to this the

Gamma distribution has been shown to well represent the approximate solution for

the intensity distribution of a sum of a number of random vectors. This was applied

to terrain scatterers and complex targets using a random vector model within [38].

It should therefore be possible to extend this assumption to be applied to the sea
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clutter distribution case.

In addition to this experimental results have also shown it to be a valid assump-

tion. When using a frequency agile system it is possible to obtain independent sam-

ples, due to decorrelation of returns between each pulse. To estimate the local power

component it is possible to average these returns. Using this method to estimate the

local power it has been shown that it follows a Gamma distribution, [23]. Therefore

within the compound K-distribution a Gamma distribution is used to represent the

local power. As follows:

Pc(x) =
bν

Γ(ν)
xν−1 exp(−bx); 0 ≤ x ≤ ∞ (2.30)

where x is the local power, ν is the shape parameter, and b is the scale parameter.

This local power is then combined with the speckle component represented by a

rapidly fluctuating random Rayleigh distributed variable.

The speckle component of the clutter is assumed to be Rayleigh distributed for a

number of reasons. The first is that the contributing scattering components gener-

ating the speckle are believed to be the fine structure on the surface of the sea, the

ripples on top of the larger gravity waves. As many of these scatters will reside within

a single range gate the conditions of the central limit theorem can be assumed hence

Rayleigh envelope statistics are a valid assumption. In addition to this experimental

results shows that the speckle is well represented by a Rayleigh distributed, and can

be assumed to be statistically indistinguishable when measured, [37].

P (E) = 2E

∫ ∞
0

dx

x
exp

(
−E

2

x

)
Pc(x) (2.31)

where E is the sea clutter energy. Combining Eqn. (2.30) and Eqn. (2.31) gives the

compound form:

P (E) =
2Ebν

Γ(ν)

∫ ∞
0

dxxν−2 exp

(
−bx− E2

x

)
(2.32)

Eqn. (2.32) represents the K-distribution in a form that does not take into account

thermal noise. This allows for a closed form solution for the intensity PDF:

P (z) =
2b

ν+1
2 z

ν−1
2

Γ(ν)
Kν−1

(
2
√
bz
)

(2.33)

where z = E2 is the intensity, Γ(.) is a Gamma function, and Kν−1(.) is a modified

Bessel function of the second kind with order ν − 1 (which gives the K-distribution

its name).

The K-distribution shape parameter is linked to the spikiness of the sea clutter;
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Figure 2.10: K-distribution PDFs for varying values of ν

it can, in practice, take values between 0.1 ≤ ν ≤ ∞. When ν ≤ 1 the distribution is

defined as being very spiky, and when the shape parameter tends to ∞ the distribu-

tion become a Rayleigh distribution. The term spiky refers to data that has a large

number of isolated high level returns from individual range gates. The cause of this

effect is generally accepted to be Bragg scattering from resonant capillary waves and

whitecap scattering.

Figure 2.10 shows a series of K-distribution PDF plots with varying shape pa-

rameter values. This clearly demonstrates that as the shape parameter reduces the

proportion of the distribution above a given amplitude increases.

The form of the K-distribution that has been presented so far does not consider

the influence of thermal noise on the amplitude distribution statistics. When the

influence of thermal noise is included, the local clutter power becomes:

P (E | pn, x) =
2E

x+ pn
exp(− E

x+ pn
) (2.34)

This then needs to be integrated over a gamma distribution as completed in the

previous steps for the model that did not take into account thermal noise. The

resultant PDF of the K-distribution + thermal noise is:

P (E | pn, b, ν) =
2Ebν

Γ(ν)

∫ ∞
0

xν−1 exp(−bx)

x+ pn
exp(− E2

x+ pn
)dx (2.35)

This form of the K-distribution has not been shown to have a closed form solution

and therefore requires numerical integration methods to evaluate its solution.
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As well as the direct distribution comparison it is possible to use moments to

compare sea clutter data with a model. The first three intensity moments of the

K-distribution with noise have defined solutions seen respectively below:

〈z〉 =
ν

b
+ pn (2.36)

〈z2〉 =
2ν(ν + 1)

b2
+

4pnν

b
+ 2p2n (2.37)

〈z3〉 =
6ν(ν + 1)(ν + 2)

b3
+

18pnν(ν + 1)

b2
+

18p2nν

b
+ 6p3n (2.38)

These moments can be used in the fitting process when comparing real data

moments with the compound K distribution. It is also seen in section 3.2 that

additional fitting methods can be applied by comparing the probability of false alarm

of data and model.

Knowledge of the variation of PFA distributions allows CFAR processing tech-

niques to define the correct threshold levels to produce the required performance

level for a radar system. Hence allowing the radar system to effectively detect tar-

gets using Doppler filtering taking account of the sea clutter in the target Doppler

bin.

In a noise-free case, the false alarm probability, PFA, is defined as the probability

of the returned clutter signal existing above a set threshold ET . Making use of the

compound K distribution and assuming a square law detector, the false alarm is given

by:

PFA =
2

Γ(ν)
(νa)

ν
2Kν(2(νa)

1
2 ) (2.39)

where ν is the shape parameter of the distribution, a is the threshold level and Kv

is the modified Bessel function of the second kind.

2.3.5 Clutter Probability of False Alarm Distributions

The scattering models discussed so far can all be compared to real data using the

PFA curves generated from sea clutter. Evaluating these curves makes it possible to

define the false alarm rate a radar system will have for a given operating threshold

level. This relates to the radars sensitivity to the sea clutter and is used for CFAR

processing. An example plot showing log10(PFA) against threshold (dB) from real

data, can be seen in Fig. 2.11 generated using CSIR data seen in [86].

The behaviour of the tail of the PFA distribution is important to radar systems,

as to operate effectively they require low PFA levels. For example, if the radar has

a million range/bearing ’cells’ a false alarm probability of 10−6 corresponds to one
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Figure 2.11: Example sea clutter log10(PFA) vs. threshold plot (generated using data
from the CSIR 2007 database)

false alarm per scan. This is equivalent to probabilities of the order of 10−4 to 10−3

(which is -4 and -3 within the log10(PFA) domain) per range/Doppler cell per burst

of pulses, once account is taken of the post-detection processing in the radar.

If the PFA is too high the radar system will be overloaded with false targets and

this will hinder processing such as tracking. Hence to achieve low PFA levels, using

optimum CFAR threshold values, the tail of the distributions of sea clutter statistics

need to be fully understood.

The majority of historical research into the nature of sea clutter statistics has

been with non-coherent data and there has been little prior work on the analysis of

the PFA tail distributions across the Doppler spectrum. Fitting of the raw data to

distribution models at the tail of the PFA distributions could lead to an understanding

of the behaviour of the sea clutter in the area applicable to an operating maritime

radar system.

An issue with analysing the shape and fit of log10(PFA) curves is that the number

of components within the whole data set that contribute to the curve at a given

point is proportional to the location on the curve. For example at log10(PFA) =

−3 only 0.1% of the dataset contributes to the curves location at this point. This

means that the fractional error introduced by the reducing sample size increases with

decreasing log10(PFA). It is important to note therefore that at low PFA levels if a

curve generated from raw data deviates from a given distribution, this may be due

to the curve not defining the clutter behaviour correctly, or due to having a limited
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number of samples. It is therefore important to ensure that if the PFA has to be

defined to a certain level then the amount of samples used is large enough to produce

a acceptably small error at that level.

2.4 Information Theory

Information theory is the study of quantifying the transfer and storage of information.

It is used in many applied disciplines from communications, to mathematics, physics,

statistics, computer science and economics. The study of information theory often

focuses on the optimum information that can be transferred or obtained from a

given data source or signal. As radar involves significant signal processing elements

information theory has great potential to provide solutions to obtaining the optimum

information from the signals analysed. An excellent review of this subject area is

presented within [39].

In information theory the metric of quantifiable measures of information used are

bits. These represent singular digits of data in their most basic form of either 1 or

0. To measure the amount of information that is stored or transferred a value of bits

is defined. This is seen in the size of a hard drives storage capacity which is often

measured in gigabytes which represents 8589934592 bits.

A crucial figure of early information theory research, who is often cited as the

founder of the subject, was Claude Elwood Shannon. His key papers on the subject

are presented within [40].

Shannon’s law [41–43] is an important hypothesis that defines the maximum error

free transfer rate possible for a given channel. The theorem relates the capacity of a

given data channel to its bandwidth, the average thermal noise power and the signal

to noise ratio of a signal passed through the channel. As follows:

C = B log2(1 + SNR) (2.40)

where C is the channel capacity in bits/sec, B is the bandwidth and SNR is the

signal to noise ratio of a given signal. This defines the upper limit on the amount

of bits per second that can be transfer through a channel. This shows that C is

directly proportional to the bandwidth and the log2 of the SNR. This relates directly

to radar signals as systems have a given bandwidth over which they operate and

receive signals with a defined SNR, and hence they possess a given channel capacity.

In addition to defining a theoretical limit on the capacity of a given information

transfer channel Shannon also linked the concept of entropy from thermodynamics to

the area of information theory. Entropy is defined as a quantitate way of measuring

the uncertainty of a given variable. As follows:
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H(X) = −
∑
x

p(x) log2 p(x) (2.41)

where H is the entropy, X is a random variable with possible states x which have a

PDF p(x). The logarithm is to the base 2 so that the output entropy is measured

in bits. It should be noted that the entropy of a variable is only a function of its

probability distribution, not the values the random values can take. Entropy can

be interpreted as a metric that quantifies that amount of information on average

required to describe a random variable.

The entropy of a random variable can also be defined as:

H(X) = Ep log
1

p(x)
(2.42)

where Ep is the expectation value for p(x). This formulation for entropy is commonly

used within thermodynamics. It is clear from this form of entropy that is must alway

take a non-zero value as by definition p(x) takes values between 0 and 1, hence

log 1
p(x)
≥ 0.

As well as individual probabilities and entropy it is possible to define conditional

probabilities that involve two or more variables and their respective probability distri-

butions. The entropy of multiple variates can be either a joint entropy or a conditional

entropy.

The joint entropy of a distribution with an overall PDF of p(x,y) is:

H(X|Y ) = −
∑
xεχ

∑
yεχ

p(x, y) log p(x, y) (2.43)

A conditional entropy between a pair of discrete random variables (X,Y) is pre-

sented as:

H(Y |X) =
∑
xεχ

p(x)H(Y |X = x) = −E log p(Y |X) (2.44)

whereH(Y |X) represents the conditional entropy of Y conditioned onX, and p(Y |X)

represents the probability distribution of Y conditioned on X.

As well as conditional and joint entropy measurements between two random vari-

ables an additional expression labelled relative entropy, D(p||q), also exists. Relative

entropy is also know as Kullback-Leibler Divergence (KLD), [44, 45]. This measures

the distance between two PDFs. It can be interpreted as the error introduced when

one variable PDF was assumed and it was in fact another. As follows:

D(p||q) =
∑
xεχ

p(x) log
p(x)

q(x)
(2.45)
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where p(x) and q(x) are the two PDFs under test. It is normally setup such that

q(x) is the assumed distribution for a given variable and p(x) is the actual. The

KLD is always non-negative, asymmetric, non-commutative and reduces to zero when

p(x) = q(x). The KLD metric is shown as an integral of the log-likelihood ratio of

the two distributions.

2.4.1 Detection Theory

In general the main purpose of maritime radar is the detection of targets within a

background of sea clutter. In section 2.3 the statistics and characteristics of this

background is discussed, using this a priori knowledge detection methods can be

applied in a effective way. Information theory has a connection to the decision making

processing of target detection, this section discusses the application of this knowledge

to radar systems.

A radar signal which includes a target will produce an increase within the am-

plitude of the signal within the time or spatial domain. It is this increase in the

amplitude of the signal that needs to be highlighted in an automated way and de-

clared as a detection. A detection is a binary result from the test of two hypotheses,

that a target is present, or a target is not present.

A detection has two possible error types, a false alarm where a target is declared

as present when it is not commonly know as a type I error; and a false dismissal

which is missing a target detection when one it present commonly known as a type

II error. The detection probability, PD, is defined as follows [23]:

PD =

∫ ∞
Z

PT (z)dz (2.46)

where PT is the PDF of a returned signal which has a target present within it and

z is the threshold set for detection. The probability of detection PD can also be

interpreted as one minus the probability of dismissal. The probability of a false

alarm, PFA is as follows:

PFA =

∫ ∞
Z

PA(z)dz (2.47)

where PA is the PDF of a clutter background with no target present. Equation (2.46)

and (2.47), show that a reduction in the threshold z produces an increase in detection

probability, but also increases the probably of false alarm.

Figure 2.12, from [?], shows a diagram of two separate distributions, a Rayleigh

and a Rice distribution. The Rayleigh distribution represents the PDF for a thermally

noise dominated receiver, see Eqn. (2.26) and (2.25) in section 2.3.4.1. The Ricean
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distribution, [?] has been shown to represent a coherent signal embedded within

thermal noise [23], in this case it has a SNR of 10dB. Where the Ricean distribution

PDF is as follows:

PT (E|A) =
2E

x
exp

(
−E

2 + A2

x

)
I0

(
2EA

x

)
(2.48)

where A is the coherent signal amplitude, E is the signal envelope, I0 is the modified

Bessel function of the first kind with zero order and x is the mean thermal noise

intensity.

Two example threshold levels are marked on the diagram with the relevant PD

and PFA noted next to them. The lower amplitude threshold level achieves a PFA of

10−1 and a PD of > 0.95, when this is increased the PFA decreases to 10−4 but the

PD also decreases to 0.6. This clearly demonstrates the problem of threshold level

setting as the goal of increasing the detection probability is also linked to increasing

the probability of false alarm.

Figure 2.12: Diagram of Rayleigh clutter and Rice target PDFs with two separate

threshold levels

The method for optimisation of detection thresholding uses the maximum likeli-

hood test [46]. This test maximises the detection probability for a fixed probability

of false alarm, by applying the Neyman-Pearson lemma [47, 48]. This lemma is as

follows:

Λ(z) =
PT (z)

PA(z)
> λt (2.49)

Where Λ is the likelihood ratio and λt is the threshold level. The value of λt is

dependent on the SNR of the target and needs to be varied to achieve a fixed PFA

for a given SNR. It is also commonly shown as a log-likelihood ratio:
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log
PT (z)

PA(z)
> log λt (2.50)

Using a the results from a log likelihood ratio it is possible to define the signal to

noise ratio to achieve a given probability of detection and probability of false alarm.

This analysis of the relationship between both the PD and PFA is commonly plotted

as a receiver operating curve (ROC), see Fig 2.13.

Figure 2.13: Example ROC curve example

It is clear that the log likelihood ratio is related to the KLD Eqn. (2.45) seen in

section 2.4 which includes the log of the ratio of two PDFs. Where PA and PT repre-

sent p(x) and q(x) respectively. The difference being that the KLD is the product of

the log likelihood ratio and the numerator PDF integrated over all threshold values.

2.5 Literature Review

2.5.1 Sea clutter NRCS

The analysis of sea clutter mean NRCS has been the key aim of many experimental

trial campaigns, resulting in the production of numerous papers and a number of

chapters in books focusing on this research topic. This section reviews development

of the prior literature on sea clutter NRCS from its beginnings to the most recent

research on the subject.

Some of the early work on sea clutter scattering was completed on the analysis

of the capillary wave component of sea clutter reflections in [49]. This work applied

the scattering theory that had been previously developed by [50] and [51] to the
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backscattering response from sea clutter capillary waves. The conclusions of the

research showed that Bragg scattering effects enhanced the response from sea clutter

returns to be a maximum when the Bragg equation is satisfied,

kwc = 2k cos θ (2.51)

where kwc and k correspond to 2π
λwc

and 2π
λ

respectively, and λwc is the capillary

wavelength, and λ is the radar signal wavelength. The measurements made showing

these Bragg effects were between 4◦ and 80◦ grazing angle at X-band. The comparison

to the theoretical scattering amplitudes as a function of grazing angle showed good

agreement between 4◦ and ≈ 20◦, after which both vertical and horizontal polarised

amplitudes were shown to be less than that predicted by the theoretical models used.

One of the most comprehensive collections of the variation of NRCS, with a range

of parameters, from 60 difference experimental references was collated by Nathanson

[52], an updated version also exists [53]. This is a very useful resource for radar

engineers evaluating the predicted performance across a range of conditions. The

data presented includes both horizontal and vertical polarisation, grazing angles from

0.1◦ to 30◦ and a range of frequencies from 0.5 GHz to 35 GHz, as well as a range

of sea states at which the data were recorded. Although the information available is

extensive it is by no means exhaustive.

Using the collected data empirical models have been developed relating the vari-

ation of individual parameters to the NRCS. Extrapolating these trends enables the

ability of predicting NRCS across a range of parameters that aren’t necessary covered

in the current recorded datasets. The key trends that were noted from this range of

data were:

• Vertical polarisation will return equal or higher NRCS values. This is enhanced

even more at low grazing angles (≤ 1◦) and lower frequencies.

• NRCS increases with grazing angle from 0 to 20◦.

• NRCS increases with sea state. This change is noted to be up to 10 dB per sea

state increase (at low sea states and frequencies).

Nathanson [52] stated that the uncertainties within the database increase at low

carrier frequency and low grazing angle. The values in the datasets were shown to

be larger than predicted by models. A number of explanations were given for why

this occurred:

• These values were recorded on less sensitive older radar systems.

• The experimentalists only recorded points that were noted above the norm.

These could have been induced by an increase in the wind speed or wave height.
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• Ducting events have been noted to increase the σ0 values. This variation can

be up to 10dB at 0.1◦ grazing angle.

Other restrictions of modelling recorded data and following a specific model is

caused by the averaging that occurs when recording/processing the data. When

generating the distributions of the sea clutter the data must be averaged over a finite

length of time and from a discrete number of range gates. This averaging possibly

removes or masks some of the subtle variations that may exist.

The most prevalent of empirical models for NRCS is the Georgia Institute of

Technology (GIT) model [54]. The model evaluates the parameter σ0 by defining

it as a product of three variables, multi path, sea direction and wind speed. It

has been shown to be a close match to the variation of the NRCS over a range of

conditions and is often used as the base model to fit a variation of NRCS with a single

parameter. The model defines mean σ0
HH values for horizontally polarised returns

with a frequency from 1-10 GHz,

σ0
HH = 10 log[3.9× 10−6λα0.4

i AiAuAw] (2.52)

For the mean vertically polarised returns, σ0
V V , there are two solutions one for

the region 1-3 GHz and another for 3-10 GHz, seen in Eqn. (2.53) & Eqn. (2.54)

respectively, [54].

σ0
V V = σ0

HH − 1.73 ln (hav + 0.015) + 3.76 ln(λ) + 2.46 ln(αi + 0.0001) + 22.2 (2.53)

σ0
V V = σ0

HH − 1.05 ln (hav + 0.015) + 1.09 ln(λ) + 1.27 ln(αi + 0.0001) + 9.70 (2.54)

where σ0
HH and σ0

V V are the horizontally and vertically polarised NRCS respectively,

λ is the radar wavelength, αi is the incidence angle, Ai is the Interference factor, Au

is the upwind/downwind factor, AW is the wind speed factor and hav is the average

wave height.

The factors Ai, Au, and AW , included in the vertically and horizontally polarised

NRCS values are defined below.

Ai =

(
σ4
φ

)(
1 + σ4

φ

) (2.55)

σ4
φ is a variable dependent on wave height, grazing angle and signal wavelength,

σφ = (14.4λ+ 5.5)αi
hav
λ

(2.56)
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Au is a function of look angle φ, signal wavelength and grazing angle,

Au = exp(0.2 cosφ(1− 2.8αi)(λ+ 0.015)−0.4) (2.57)

In the GIT model only a single direction, the look angle, is used. The model does

not take into account differences between the wind and swell vectors with respect

to the look direction. It is noted that the emphasise should be placed on the actual

wave propagation vector not the wind vector.

The wind speed factor, Aw, only depends on the wind speed, Vw, and wavelength,

Aw =

(
1.94VW

1 + VW
15.4

) 1.1

(λ+0.015)0.4

(2.58)

The relationship of σ0 is more closely tied to wind speed than wave height. Linear

relationships have been shown between σ0 and log wind speed. Although in a fully

developed sea the relationship between wind speed and wave height is,

VW = 8.67h0.4av (2.59)

The characteristics of σ0 are defined to fall into two separate regions, low grazing

angle and a plateau region. Within the low grazing angle region σ0 depends strongly

on the angle, unlike in the plateau region where σ0 can be assumed to be independent

of grazing angle. The dividing point between these two regions is marked by the

critical angle αc. This critical angle is defined as being proportional to wavelength

and inversely proportional to the average wave height,

αc =
λ

Khav
(2.60)

where K is a proportionality constant. This constant is predicted to take the value

4 if interpolated to the location between the two regimes, and experimental results

for S and X band radars have given the values of 6.3, [54].

This model has shown a close match to the variation of the NRCS over a range of

conditions and is often used as the base model to fit a variation of NRCS with a single

parameter. Although the GIT does by no means provide a complete description of

the true relationship. An obvious restriction is that it is limited to small grazing

angles (≤ 10◦) and hence fails to predict the NRCS correctly for medium to large

grazing angles.

Some discrepancies between the GIT model and the data in [52] do exist. This

was particularly true at low grazing angles, when short pulses were used or the data

statistics were particularly spiky. Horst et al [54] commented that the effects of heavy

averaging of the Nathanson collection of data gave a α−2i rather than the predicted

α−4i relationship for small grazing angles beyond the critical angle.
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Further work by Ward [23] using electromagnetic modelling shows a closer agree-

ment with the GIT model than the results shown in the Nathanson datasets.

2.5.2 Amplitude Distributions

As well as the study of the NRCS of the sea clutter many previous research papers

have focused on understanding the characteristics of the amplitude distributions ex-

hibited by sea clutter returns.

As described in section 2.3.4 the key models that have been applied are the

Gaussian, Weibull, Log-normal and K-distribution. The early assumed model of a

simple Gaussian distribution fails to represent the sea surface under key conditions.

It is at these key challenging conditions of low grazing angle, high resolution, high

sea state that a complete separation from Gaussian assumed statistics occur. The

main focus of this section is describing the empirical results from the prior literature

on sea clutter amplitude distributions.

Wright [55] described a compound model made up of the scattering from both the

capillary waves and the large scale gravitational waves. This helped explain the non-

Gaussian nature that was observed within the clutter recording but did not explain

the occurrence of large amplitude spikes within the recordings.

An early experiment to characterise sea clutter RCS variations was completed

by Guinard and Daley, [56]. This also used a composite model of Rice scattering

proposed in [50] superimposed onto a larger swell structure. This was show to effec-

tively represent the scatter only within the wind speed range of 3.5 ms−1 to 6 ms−1.

It was advised that the assumption of a vanishing RCS as grazing angle reduces was

inadvisable.

Leading on from this work Valenzuela and Laing completed amplitude statistics

analysis [57]. This analysis used real sea clutter data to test the amplitude distri-

butions. A Kolmogorov-Smirnov test was applied to the data and showed that for

calm seas and small sample sizes the cumulative distributions exhibited a good fit to

exponential or log-normal distributions. The Kolmogorov-Smirnov test does not give

an absolute solution to the agreement between the distributions tested and in the

information theory research section it is shown that other tests may be more relevant

to radar signal processing.

It was shown that for for large sample sizes, > 30 seconds, the data no longer

can be assumed to be an acceptable fit to the exponential or log-normal distribution.

This may be because only at sample sizes greater than 30 seconds was enough sam-

ples available to characterise the actual distribution of the clutter present. A more

significant deviation was shown at C and X band compared to P and L band. It was

also shown that the vertically polarised data was better represented, in general, by

the exponential or log-normal model in comparison to horizontally polarised data.

Trunk, [58], detailed that sea clutter observed at low-grazing angles with high

64



resolutions has a non-Rayleigh distribution. This work built on previous work com-

pleted in [33]. This key point has led to many researchers exploring and characterising

sea clutter due to its non-simplistic gaussian model. A Ricean model was proposed

as a suitable fit to the observed distributions. Again vertically polarised data were

shown to be more Rayleigh distribution when compared to their horizontally po-

larised counterparts. It was also shown that up/down wind measurements had a

much larger spread in amplitude values compared to crosswind data.

Fay et al. [59] completed analysis using an X-band using both horizontal and ver-

tical polarisation. This was the first practical application of the Weibull distribution

in sea clutter analysis. This analysis showed that the clutter amplitude distributions

were represented very well by the Weibull distribution while the log normal and

Rayleigh failed to effectively model the distributions. The meteorological conditions

recorded during the experiments showed wind speeds of 10-15 knots.

A key difference between horizontal and vertical polarisation was shown in the

experimental results seen in [60]. The observations made in this report showed that

HH polarised data was not well represented by the Weibull distribution especially

when the intensity of the clutter returns were large. This was not noted within the

vertically polarised data.

Jakeman and Pusey introduced optical scattering theory to radar sea clutter

within [35], which was followed up by Jakeman and Tough in [61]. In this work the

K-distribution family was first introduced to sea clutter distributions. The charac-

teristics of the K-distribution, seen in Section 2.3.4, are such that it reduces to the

exponential distribution case when the number of contributing scatterers tends to

infinity. Which is linked to the case of low resolution medium grazing angle clutter

returns. The K-distribution applied to real sea clutter data by Ward in [36]. This

work showed a very good fit of the K-distribution to sea clutter recorded using an

airborne X-band radar at a low grazing angle of 0.75◦ and reasonable sea state of 3.

Through the use of frequency agility it was qualitatively shown that the amplitude

returns are much less spiky when applying this technique. These results agree with

the two component scattering correlation times, showing that the speckle component

is uncorrelated when frequency agility is applied. Leaving a distribution that is close

to the Gamma distribution, which is the assumed large scale structure distribution

within this model. Since then it has become a very popular distribution to use when

modelling sea clutter amplitude distributions.

The work in [37] analysed the statistics of high-resolution (≈ 4m) X-band radar

sea clutter. This research included by incoherent and coherent statistical analy-

sis, showing locally Rayleigh distributed speckle and a mean Gamma distributed

component. Therefore agreeing with the structure of the compound K-distribution

formulation. Where a local illuminated patch has many scatters which leads to the

central limit theorem and a Rayleigh distribution. It is suggested that non-Rayleigh
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distributions are produced by “bunching” of scatterers rather than a lack of scatterers

to allow for the central limit assumption. The suitability of the Gamma distribution

to high resolution scattering modelling is also explained using moments analysis. It

is suggested that the moments of the reflectivity PDF could be expressed in terms of

each scatterers moment along with a probability of the scatterer existing within an

area.

Mn = pMSn (2.61)

where Mn is the nth moment of the reflectivity PDF, MSn is the nth moment of a

typical scatterer and p is the probability of there being a scatterer within an area.

This alters to the following when evaluating the normalised moments,

Mn(norm) = MSn(norm)
p1−n (2.62)

These moments are then compared to the Gamma distribution normalised mo-

ments,

Mn(norm) =
Γ(ν + n)

νnΓ(ν)
' (n− 1)!ν1−n (2.63)

where ν is the Gamma shape parameter, and n is the moment order. It should be

noted that Eqn. 2.63 is valid for small values for ν. The relationship between Eqn.

2.62 and Eqn. 2.63 can then be used to argue that the dominance of the p1−n or ν1−n

terms suggest that the Gamma distribution is a suitable one for very high resolution

reflectivity.

The results of [37] also showed that Horizontally polarised clutter was shown to

be significantly more spiky in nature compared to vertically polarised data recorded

in the same conditions, although the horizontal data deviated away more from the

K-distribution (seen in the moment analysis) compared to the vertical. This agrees

with the analysis of large number of datasets from different radars and conditions.

Stehwien evaluated the statistics observed within sea clutter data recorded using

an X-band radar, [62]. It was concluded that the sea clutter was well represented by

the Weibull, log-normal and K-distribution. Although the log-normal was shown to

be effective in all wind directions, while the Weibull distribution was most effective

in crosswind and the K-distribution in downwind direction.

Recent empirical research evaluated the relationship between sea clutter NRCS

and compound K distribution shape parameter variation with grazing angle is pre-

sented, in Section 8 of [23]. This shows that the relationship between shape parameter

and grazing angle (from 0.1◦ < 10◦), as well as various other parameters, was found

to empirically follow,
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log10(ν) =
2

3
log10(φ

0
gr) +

5

8
log10(Ac)− kpol −

cos(2θSW )

3
(2.64)

where νG is the shape parameter, θ is the grazing angle, Ac is the area of the radar

resolution cell, kpol is a polarisation dependent parameter (1.39 for VV and 2.09

for HH), θSW is the aspect angle with respect to the swell direction. Verifying and

expanding the work on relating the distribution shape parameter to external factors

such as those in Eqn. (2.64) as others is an area of sea clutter research that is of

active interest [2].

A high resolution radar system was recently used to establish if the observed

amplitude distribution at higher frequency, Ka-band, are similar to those at S-band

and X-band, [63,64]. This work was also accompanied by additional studies of target

detection within the sea clutter, [65,66]. A collection of models were fitted to the real

sea clutter data; the Rayleigh, Weibull, log-normal, K-distribution, K-distribution +

thermal noise, generalised K-distribution with generalised gamma texture and the

generalised K-distribution with log-normal texture. From both square difference

fitting and methods of moments it was shown that the best fitting distribution was

the generalised K-distribution with log-normal texture. The speckle components of

the clutter were also confirmed to still maintain Gaussian distributions even for range

resolutions of a few centimetres.

Additional distribution have also been applied to sea clutter modelling and anal-

ysis. The Pareto distribution [67] is an example of one such new distribution to this

area of research. In some cases this did show smaller errors when fitting to real sea

clutter data. The issue with applying this distribution to sea clutter is that it is less

analytically tractable back to the physical phenomena occurring. A key advantage

of the K-distribution in comparison is that its structure can be linked directly to the

physical scattering mechanisms occurring. The two components are representative

of both the large scale gravity waves and the small speckle component from ripples

on the surface.

2.5.3 Key Sea Clutter Datasets

In order to stimulate research into sea clutter analysis some recorded datasets have

been made openly available to the research community. When describing the prior

literature existing on sea clutter distribution analysis it is important to introduce

these openly available datasets. The first modern day radar dataset made available

was the McMaster University Canada IPIX radar datasets from 1993 and 1998. These

datasets were generated using a X-band, coherent, ground based pulsed radar system.

These datasets have produced over 31 publications between them, some of which can

be seen here [34, 68–84]. Between them they represents a significant contribution to

67



sea clutter research.

The second significant sea clutter datasets that is available to researchers was

produced by CSIR (Council for Scientific and Industrial Research) in South Africa.

Two datasets are available for analysis from the 2006 and 2007 sea clutter trials. The

publications resulting from these sea clutter and small boat trials are [85–87]. The

analysis of this dataset is a key component of the research within this Thesis and

will be defined in detail within later chapters.

2.5.4 Variation with grazing angle

The behaviour of sea clutter reflectivity with grazing angle has been analysed in many

datasets. Early work [88] defined a critical angle after which the reflectivity dropped

off very quickly with decreasing grazing angle. This critical angle was shown to be

inversely proportional to frequency, in that it decreased with increasing frequency.

The received power was defined as varying as R−3 up to a certain range (and hence

grazing angle), then the relationship clearly change to R−7 above this critical angle.

Further work has expanded on this and established a three region model, [89].

Figure 2.14, from [23], shows the clear relationship between the reflectivity, σ0, and

the grazing angle within these regions.

Figure 2.14: Reflectivity variation with grazing angle

When the grazing angle is close to incidence the backscatter is considered to be

specular. As the grazing angle moves away from 90◦ the log reflectivity is shown to

decrease quickly with grazing angle from the peak at 90◦ incidence. The behaviour

is then seen to transition between three separate regions with their own distinct

behaviour [23]. The regions are named:
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• Quasi-specular region, at high grazing angles. The reflectivity is found to reduce

steadily with grazing angle for both vertical and horizontal polarisation.

• Plateau region where diffuse scattering dominates, medium grazing angles. The

rate of reduction of reflectivity is found to reduce within the Plateau region,

with vertical polarisation maintaining a higher level than horizontal polarisa-

tion.

• Interference region at low grazing angles. Within this region the reflectivity

drops quickly with decreasing grazing angle. It is believed that this effect is

due to increased shadowing at this geometry and multipath effects.

There is a clear separation of the reflectivity coefficient from horizontal and ver-

tical polarisation within the Plateau region. Yet in both the interference and Quasi-

specular region the behaviour of both polarisations is very comparable.

The location of the division between the Plateau region and the interference region

is defined by the critical angle. The critical angle can shift significantly and depends

on the conditions of the sea clutter and other radar system variables, [23].

The very low reflectivity coefficient at small grazing angles shows that the returned

power from a unit clutter area at these grazing angles is very small. At first glance this

would give the impression that due to the low CNR level the issue of compensating

for the clutter is reduced at these geometries. This isnt true and in fact it is the low

grazing angle sea clutter reflections that are particularly difficult to deal with. This

is because in these conditions the clutter cell sizes are much larger.

A reason for the added complexity for compensating low grazing angle clutter is

that the NRCS is only tells us the mean backscatter level. Defining statistical vari-

ations requires more information. The nature of the statistical fluctuations changes

at low grazing angles and therefore so does the requirements for the models.

At low grazing angles the returned sea clutter is removed significantly from a

simple Gaussian amplitude return model. The majority of the EM wave is forward

scattered and not returned to the radar at all [21], and the component of the signal

that is backscattered has a longer tailed amplitude distribution. This is particularly

true for horizontal polarised signals. These issues are discussed in later sections of this

chapter but are clear examples of the complicated scattering interactions generated

by sea clutter returns.

2.5.5 Polarisation variation

Empirical analysis of sea clutter data has shown a number of differences that have

been documented between vertically and horizontally polarised clutter returns. The

overall characteristics of sea clutter returns are clearly dependent on the polarisa-

tion used, as the key contributing effects are themselves polarisation dependent, see

section 2.3.2.
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Horizontally polarisation sea clutter returns include a great deal more high am-

plitude spiky returns. These alter the amplitude statistics significantly. This is in

contrast to the less spiky vertically polarised returns which have higher mean ampli-

tude; as predicted by the NRCS seen in Fig. 2.14.

The cross polarised returns are much reduced in amplitude, as expected. Also

due to the reciprocal EM scattering theory the VH and HV returns are equal (in the

monostatic case). It was noted in [90] that the cross polarised speckle component

is very small. In comparison the cross polarised spike/mean ratio were shown to be

relatively larger, with on average 7dB more amplitude.

Farina et al. [34] showed in the analysis of X-band sea clutter data that the

vertically polarised data was well represented by the K-distribution. The horizontal

and cross polarised datasets failed to be represented well by the K-distribution and

were shown to be exhibiting distributions closer to the log-normal distribution.

D. Walker, [22], completed analysis on the Doppler spectra of both polarisations

and noted the differences present within the recorded data. The non-Bragg scatterers

that are present within the HH polarisation cause HH to have a higher peak Doppler

frequency. Whereas VV polarisation was shown to have a bi-modal behaviour. The

higher frequency non-Bragg effects have been shown to have larger amplitude in HH

confirming their increased dominance within this polarisation. The reverse is true

at the lower frequency peak of the VV polarised returns which is many dBs larger

than the HH returns, emphasising the dominance of the Bragg returns within the

VV clutter.

The level of the offset of the sea clutter central Doppler frequency is linked to the

speed of the waves, which is closely related to the wind speed. Both polarisations

were shown to have an increase shift in Doppler with wind speed, although this is

seen to be exaggerated in HH polarisation, this is due to the HH having a larger

non-Bragg component present.

2.5.6 Sea clutter correlation properties

The discussion of the characteristics of sea clutter so far has been independent of the

temporal or spatial correlation properties of the clutter itself. Some simple models

treat the clutter as an independent stationary process with no correlation in time or

space. As has been previously discussed the more advance sea clutter models utilise

a compound form which takes into account the large scale and small scale structure

of the sea surface and the effect it has on the scattered EM wave. The components of

the clutter were discussed in Section 2.3.2 and 2.3.4.4. These models can be enhanced

further by applying the correlation properties of the clutter.

Jakeman and Pusey’s work on non-Rayleigh sea clutter scattering showed that

there was two clear components of the backscatter that each had different decorre-

lation time scales, [35]. This introduced the concept of two or more characteristics
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time lengths for the correlation of scattering events.

The separate components of the clutter, the texture and speckle, possess different

temporal correlation characteristics, [34]. These separate components are assumed

to be uncorrelated. It was shown in [91, 92] that it is possible to define the over all

Auto Correlation Function (ACF) of the clutter as the product of the two individual

correlations of these components.

It is important to understand the time scales of the decorrelation of these compo-

nents to appreciate the temporal behaviour of sea clutter. This understanding helps

in the analysis of data and contributes towards developing radar algorithms what

need to compensate for their individual effects. The speckle component of the clut-

ter has a fast decorrelation time of the order of milliseconds. While the component

representing the large scale structure of the sea surface has been defined as having

longer decorrelation time of the order of seconds, [23, 34,93].

When analysing the texture component of the clutter a window of samples has

to be chosen to evaluate the ACF over. Using the knowledge that the texture and

speckle have very different decorrelation times, approximately 10ms and 5 seconds

respectively [23, 37], a window length can be defined. The window is long enough

to allow the speckle to decorrelate over its length, but small enough to ensure that

assumption of non-stationarity of the texture is maintained.

Davidson, [94,95], completed a simulation process in which the correlation prop-

erties that have been observed within sea clutter were imparted on simulated clutter

returns. The process applies a Memoryless Non-Linear Transform (MNLT) which

is seen in Section 5 of [23] and [96], it is also discussed further in Chapter5. This

method allows for the gamma texture to be correctly temporally correlated.

2.5.7 Sea Clutter Doppler

The majority of prior sea clutter research has been focused on incoherent analysis,

making sea clutter Doppler a relatively new research area. Despite this there is still

a reasonable amount of work which has now established a reasonable understanding

of the key effects.

Some of the very early work on sea clutter was completed by V. W. Pidgeon.

He was first to note that there is a separation in the peak amplitude values in hor-

izontal and vertical polarisation within the Doppler spectra, [97]. This early work

was expanded on by G. R. Valenzuela [98] who analysed the variation of the clutter

spectra with frequency, polarisation and grazing angle. In this work the bandwidth

of the spectra was shown to broaden with lower frequencies (frequencies P, L, C and

X were used). The separation of the peak in the spectra, and the difference in this

from both polarisations, was also analysed. It showed that the clutter spectra present

were clearly bi-modal and the relative amplitudes of the two peaks varied between

horizontal and vertical polarisation.
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The importance of modelling not only the average power of the Doppler spectrum

was emphasised in [99]. Analysis is undertaken into the characteristics of the more de-

tailed fluctuations in power, spectral shape and Doppler offset. The research showed

the variation of the centre of the Doppler spectra as a function of into/across the

wind/swell environmental conditions. Only a simple relationship was demonstrated

but it is an important documentation of this link. As well as this the non-Gaussian

nature of the clutter-dominated sections of the spectra was shown, and emphasis was

placed on it requiring further research to understand its characteristics to allow for

optimised detection processing. Continuing on from this work it was shown that the

K-distribution was also suitable to represent the Doppler amplitude statistics as well

as the temporal statistics, [100].

Lee et al collected and analysed sea clutter using an X-band system [101]. The

aim of the work to was to collect sea clutter data at varying grazing angles using a

dual-polarised system. The results showed fast and slow components within the spec-

trums, generating a bi-modal distribution, as had previously been reported in [98].

In some scenarios, particularly at low grazing angles, a single peak dominated in each

polarisation and a clear separation existed between them. Also at low grazing angles

and in horizontal polarisation spiking events were found to contribute significantly

to the recorded data. These observed spiking events were linked to, but not limited

to, breaking wave events.

A basic equation that can be used as an initial estimate for the obtained Doppler

frequency obtained from an individual small scatterer component of the surface of

the sea is:

fD =
2cosθ

λ
(νboat ± νw ± νc ± cp) (2.65)

where θ is the grazing angle, λ is the wavelength, νboat, νw, νc and cp refer to the

velocity of the boat (from which the data is being taken), wind drift, sea current,

and the speed of the scatterer on the surface. This does not take into account tilt

and the vertical motion of the scatterer.

Ward et al. [37] showed some of the first analysis of the mean Doppler of sea

clutter as a function of geometry. This included a simple figure showing 5 samples

taken from up/down wind positions as well as cross swell and into swell geometries.

The mean Doppler of the clutter was shown to vary from ≈ +64Hz to ≈ −64Hz.

Both vertical and horizontal data values are shown, of which the horizontal data gave

a larger variation in mean Doppler values.

A significant section of research of sea clutter Doppler analysis was established

by D. Walker in [22] and [24]. This work consists of analysis and modelling of actual

data collected from both a wind-wave tank and the seas surface, recorded with 6

GHz and 9.75 GHz radars respectively. The Doppler clutter spectra present is shown
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as well as a model developed for the spectra. This model uses three components,

each represented by a weighted Gaussian. These components are directly linked to

those defined in section 2.3.2, hence there is a separate Gaussian to represent each

component; Bragg, whitecap and spike (burst).

The models equations for vertical and horizontal polarisation respectively are

given by the two equations below:

ΨV (ν) = BV ΨB(ν) +WΨW (ν) (2.66)

ΨH(ν) = BHΨB(ν) +WΨW (ν) + SΨS(ν) (2.67)

.

where the subscripts H and V refer to the polarisation, while B, W , and S identify

the component inducing that part of the Doppler the spectra ( Bragg, whitecap and

spike). The key difference between the two polarisations Doppler spectra is that the

horizontal polarised model contains three components while the vertically polarised

model only has two. The Gaussian representing each of the three components are

defined as:

ΨB(ν) = exp
−(ν − νB)2

W 2
B

(2.68)

Ψw(ν) = exp
−(ν − νp)2

W 2
W

(2.69)

ΨS(ν) = exp
−(ν − νp)2

W 2
S

(2.70)

the values νB and νP represent the Bragg resonant wave speed frequency and the

gravity wave phase speed frequency. The model uses these components with different

weighting values which can then be fitted to the observed Doppler spectra.

This model was found to be a good fit to both polarisations in the recorded

Doppler spectra. Although at the edge of the spectra where the clutter returns

merge with the noise floor of the system the model did depart from the recorded

data as noise is unaccounted for within this model.

Non-stationarity as a term have been used to describe sea clutter Doppler spectra ,

[102–105]. In the context of this area of research non-stationarity describes a changing

PSD, shape parameter and mean intensity of the clutter over time. It is observed

through the changing shape and intensity of a Doppler spectrogram over time. This

moving, expanding/contracting spectra is very much characteristics of coherent sea

clutter returns within high Doppler resolution radar systems.

Recent work by G. Davidson [95] shows a method of simulating coherent K-
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distributed sea clutter with the aim of generating large quantities of simulated data

over a range of variables, which is based on the smaller amount of real data that

has been recorded. The key parameters from the data are the Doppler, temporal

correlation and non-coherent signal statistics. This is completed in a non-stationarity

way, in that the Doppler shape and amplitude vary over time. The simulation of the

data successfully replicated the Doppler characteristics observed in the data, although

it was noted that additional Doppler characteristics that occasionally occur could not

be included in this model.

2.5.8 Bistatic Sea Clutter

Very little research has been completed into collecting and analysing bistatic sea

clutter measurements. The majority of the few trials that have been completed are

summarised in Chapter 9 of [14], [3], as well as [53].

The first recorded bistatic sea clutter measurements are discussed by Pidgeon

in [106]. This was completed with a ground based C-band CW transmitter and an

airborne receiver. During the experiment the bistatic angle was altered by changing

the transmitter depression angle, an increase in depression angle resulted in a decrease

in the bistatic angle for the geometry used. This gave values for the bistatic NRCS

for a range of transmitter depression angles from 0.2◦ to 2◦ over sea states 1, 2 and

3. The results showed that there is an increase in sea clutter σ0
B with the increase in

depression angle from 0.2◦ to 2◦. This increase was shown to be greater in the car

of horizontal polarisation, but in general the horizontal σ0
B was less than the vertical

polarised σ0
B. A few issues with these results are that the σ0

B values for sea state 3 was

shown to be lower than sea state 1 and the data compares downwind and crosswind

results which can not be necessarily directly related. Although the general trend of

an increase in σ0
B with the decrease in β over these small angle changes.

This work was followed by Domville’s work [107] and [108] which covered bistatic

measurements of both various types of land and the sea. This consisted of in-plane

measurements of the sea surface using a X-band receiver and transmitter on two sep-

arate airborne platforms; both horizontal and vertical polarised data were collected.

As described in section 2.1.8 the bistatic RCS was shown to be have a equivalent

monostatic region and a forward scattering region. The bistatic RCS region is not

defined in the plots shown, but will exist in the intermediate area that was not as

well defined. Plots of σ0
B vs. θi and θs using vertical polarisation and horizontal

polarisation are shown in the paper can be seen in Fig. 2.15, from [107].

Particular interest was paid to low incident and reflection as well along the region

called the specular ridge, θi = θs, as well as forward scattering experiments. The

results were presented as a gradient map of the σ0
B values as a function of θi and θs,

using the data that was collected and interpolating between to fill the entire space of

0◦ ≤ θi, θs ≤ 90◦. Domville’s results showed a reasonable agreement with Pidgeon’s
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Figure 2.15: Bistatic σ0
B variation with θi and θs angles

work with approximately ±5dB difference over the small range of angles Pidgeon

had collected data. A key limitation of Domville’s work was that no sea state was

recorded during the experiments, this is vital when comparing these results to other

datasets and as seen in Pidgeon’s work [106] a difference in sea state from 1 to 3 can

cause ≈ 10dB’s difference in the σ0
B values obtained.

Iterating Pidgeon’s results the horizontal polarised σ0
B values were shown to be

less than the vertically polarised with a difference seen between ≈ 1−5dB. The issue

with this measurement difference is that it is actually smaller than the fluctuation in

the results (≈ 10dB) or potential changes due to the current sea state.

Kochanski et al. [109] experiments used a ground based transmitter and a airborne

platform as a receiver, like Pidgeon’s bistatic in-plane work [106]. The results agreed

with Domville’s results which demonstrated that σ0
B is not sensitive to a change in

receiver angle over a large range of angles, as well as agreeing on an approximate

average value for σ0
B of -45dB. This data was very limited in terms of the range of

sea conditions it was collected in and only a small set of receive and transmit angles

were used.

The measurements described in this section so far a have all been in-plane bistatic

measurements where within the 3D geometry of a bistatic system the angle φ = 0◦.

Even less experimental results exist for out of plane bistatic sea clutter data. The

earliest work showing out of plane data was completed by Ewell. His bistatic research
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into this area started with bistatic measurements of ships, [20], then developed into

the measurement and study of out of plane bistatic sea clutter, [110, 111]. Small

grazing angles were used to record simultaneously monostatic and bistatic NRCS

values, and the resulting ratio of σ0
B/σ

0 were evaluated. It is stated that the NRCS

values are used to compare the monostatic and bistatic clutter reflections as they

compensate for the difference in clutter cell size. The monostatic clutter cell was

defined as,

Monostatic Area = kR(
cτ

2
)(BW ) (2.71)

where k is a constant related to beam shape (usually close to unity), BW is the 3dB

beam width. The more complex bistatic clutter cell was evaluated using a numerical

integral defined as,

Bistatic Area = R2
TR

2
R

∫
∆
ft(αE − θ1)

r21

f 2
r (βE − θ2)

r22
dA (2.72)

where ft and fr are antenna patterns factors, RT and RR are vectors from the trans-

mitter and receiver respectively to the intersection point, ∆ is a factor that is 1 if

the following inequality is satisfied and 0 otherwise,

c(δ − τ) < r1 + r2 − Lb < cδ (2.73)

δ is the difference in time taken by the signal that travels from transmitter to target

to receiver compared to the signal that travels from transmitter directly to receiver

along the baseline Lb,

δ =
1

c
(RT +RR − Lb) (2.74)

The factors r1, r2, αE and βE are factors all related to the geometry used for the

numerical integral,

r1 = ((x− Lb
2

)2 + y2)
1
2

r2 = ((x− Lb
2

)2 + y2)
1
2

αE = tan−1( y

(x−Lb
2
)
)

βE = tan−1( y

(x+
Lb
2
)
)

(2.75)

The bistatic angles that data were recorded over ranges from 23◦ to 85◦. The

results showed that the σ0
B values were consistently less than the monostatic equiv-

alent. Ranging from a minimum difference of ≈ −5dB at around β = 30◦ to a peak

difference of ≈ −25dB at β = 60◦. The trend showed a inverse relationship of σ0
B/σ

0
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with increasing β, but no data was gather for angles above 85◦, so the relationship

beyond this point is unknown.

Since these early bistatic experimental campaigns very little work has been com-

pleted in this area. A recent campaign completed by UCL in collaboration with

University of Cape Town, Thales UK, Thales Netherlands and the ONR Global is

the most recent published bistatic clutter measurements, [112,113]. The focus of this

trials campaign was to address the lack of knowledge and classification of bistatic sea

clutter, which has been described above within this section, over a range of geome-

tries and meteorological conditions. The analysis of this data collected from those

trials is a key part of this thesis.
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Chapter 3

Data Collection and

Pre-Processing

3.1 Data

This chapter focuses on introducing the individual real sea clutter datasets and the

radar systems that were used to generate them. The radars that are defined are

the SearchWater 2000, the CSIR MerCORT radar and the UCL NetRAD system.

Each of the three radars are characterised in terms of their specifications and the

RF parameters they are capable of. The datasets generated by each radar that are

analysed in this thesis are discussed at the end of each radars subsection.

There are two SW2000 datasets, four CSIR datasets and finally 6 NetRAD

datasets (with both monostatic and bistatic for each). The location of each experi-

ment along with meteorological conditions, if recorded, have been defined. Following

the detailed introduction of the radars and each of the datasets selected is a pre-

processing section. This includes a description of all the pre-processing techniques

that have been applied across every datasets to bring the data to a level that it can

begin to be analysed. Then a description of the statistical analysis techniques and

fitting methods is included to explain how information on the behaviour of the clutter

present was extracted.

Access to multiple datasets has allowed for comparative analysis of the sea clutter

present within each of the databases generated by separate radars. Using common

processing and statistical analysis techniques makes it possible to directly compare

the results and clutter behaviour across dataset to evaluate trends and relationships

produced by the sea clutter itself, independent of the radar system. Due to the

extensive quantities of data available and the significant processing steps applied

only the high level plots of comparative statistics between datasets are shown in the

later part of the analysis on the data from each radar.
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3.1.1 Thales SW2000 Datasets

The first datasets analysed were recorded during the development trials of a vari-

ant of the Thales UK SW2000 radar system. This radar was briefly introduced in

section 1.3, it is designed primarily for airborne early warning (AEW) applications

in the maritime environment. In this application sea clutter compensation is a vital

aspect of the data processing within the radar, making the analysis of the sea clutter

statistics present within the data recorded of practical radar engineering significance

as well as a relevant research opportunity.

The SW2000 system is a X-band (c.a. 9 GHz frequency), coherent radar that

was located on a moving airborne platform during these experiments. The grazing

angles covered from the look angle of the system range from < 1◦ to 7◦. The two

datasets analysed for this work are labelled 612 V and 612 H, where 612 V is verti-

cally polarised and 612 H is horizontally polarised. These measurements were taken

consecutively so allow for the direct comparison of the two polarisation. Although

are not as ideal as a simultaneously recorded dual polarisation measurement. A list

of the radar parameters used can be seen in Table 3.1.

Table 3.1: SW2000 Radar specifications
Parameter Value

PRF ≈ 3kHz, Agile
RF ≈ 9GHz, Agile

Bandwidth 10 MHz
Duty Cycle 3%

Range Resolution ≈ 20m
Polarisation VV and HH. Not simultaneously

The pulse repetition frequency (PRF) used during the experiments was sufficiently

high enough to allow for the data to be unambiguous in Doppler. As the clutter

spectrum only extended over a fraction of the full Doppler dynamic range, leaving

the rest of the Doppler spectra only limited by the thermal noise of the system. The

disadvantage of this is that ambiguities are introduced within the range domain,

see Section 2.1.7. The ambiguities within the data, in both Doppler and range, are

discussed in depth later on within this chapter.

Both the PRF and RF used by the radar system are agile, with the PRF set

at approximately 3 kHz. This agility generates significant issues when integrating

multiple bursts to generate a single sea clutter distribution. After each group of 32

pulses the data changes RF and PRF, it is this group of 32 pulses that will be defined

as a burst when describing the analysis of the SW2000 data. Due to the changes in

PRF the number of unambiguous range gates of data varies, from approximately 2500

to 3000. The methodology used to overcome these effects is described in Section 4.1.2.

A diagram showing the geometry of the air platform and radar look direction can

be seen in Fig. 3.1. The antenna tilt is shown with the 3dB beamwidth located either

79



side of the declined main lobe.

Figure 3.1: Geometry of SW2000 trials

Limited sea conditions characteristics (sea state and wind direction) were recorded

during the trials from the observations on the day. This information along with the

look angle of the radar can be used to approximately define whether the data being

analysed was acquired while looking up/down/cross wind.

Using the notes recorded during the flight trials it is possible to assume a sea state

3 with a northernly wind direction and a swell from 280◦N. Using the depression angle

at the centre of the beam, 1◦, i.e. about 50km range. The expected K-distribution

shape parameter for H pol is 7.7 and in V-pol it is 39 using incoherent processing.

In addition to this for the assumed sea state 3 the expected CNR for V and H

polarisation would be 29dB and 28dB respectively, Chp 3. [23].

3.1.2 CSIR 2007 Datasets

These datasets were generated by the Radar and Electronic Warfare Systems division

of the South African institute the Council for Scientific and Industrial Research

(CSIR). The data were recorded on the coast of South Africa in 2007 using a ground

based, staring, X-band, monopulse radar system. An image of the radar system can

be seen in Fig. 3.2, from [86].

The aim of this experimental campaign was to collect sea clutter measurements as

well as small boat targets data. As a portion of the trials were designed specifically

for the collection of sea clutter, the data is very suitable for the analysis goals of this

thesis. Another key reason for the suitability this data for sea clutter analysis is the

fixed PRF and RF during the experiments, unlike the SW2000 data. This means

that the artefacts introduced by RF and PRF agility do not have to be compensated

for unlike the SW2000 data.
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Figure 3.2: CSIR radar

Figure 3.3: CSIR plan image of radar location

The 2007 datasets were recorded on Signal Hill close to Cape Town South Africa,

see Fig. 3.3, from [86], and Table 3.2 for full location details. The geometry used

meant that the shortest distance to the sea was 1250m at a bearing of 288◦N from

the radar location. Grazing angles of 0.3◦ to 10◦ were possible from the site while

using a maximum instrumented range of 60km.

Table 3.2: 2007 Database Location parameters
Parameter Value
Latitude 33◦55’15.62 S

Longitude 18◦23’53.76” E
Height above sea level 308m

Distance to sea 1250m
Range of grazing angles 10◦ (Coastline) - 0.3◦ (Max Range)

A key advantage of the CSIR dataset is the comprehensive documentation of the

environmental conditions and geometries used during the experiments. An example
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section of the trials summary from one of the datasets is seen in Fig. 3.4, from [85].

These clear recordings of both the environmental conditions and exact radar param-

eters contributes greatly to the usefulness for the data when relating phenomena to

the recorded conditions.
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Figure 3.4: Example CSIR 2007 dataset summary sheet

From the large quantity of CSIR data available for analysis, four datasets were

selected. These are labelled 11-007-CStFA, 11-010-CStFA, 11-012-CStFA and 11-

015-CStFA, and were all recorded on 15th November 2007. For ease of reference

from this point onwards in this thesis the datasets will be referred to as dataset 07,

10, 12 and 15. In addition to these four main datasets three secondary datasets,

11-008-CStFA, 11-009-CStFA and 11-01-CStFA (now labelled 08, 09 and 11), were

selected for use during the simulation and modelling component of this work. The

secondary datasets were selected to allow for a better relationship between modelling

parameters and azimuth, this is discussed later in Section. 5.

The radar and geometry parameters for each dataset is shown in Table 3.3,
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from [?], along with the details of the secondary datasets parameters in Table 3.4.

All of these datasets were recorded over a duration of ≈ 30 seconds, with vertical

polarisation, at a frequency of 8.8 GHz and a PRF of 2kHz.

These four specific datasets were selected as they were recorded for the purposes

of sea clutter analysis not target tracking. Therefore no CSIR controlled targets

were present within any of the range gates of data during these recordings. As well

as this the sea conditions on the day of recording represented some of the greater

wave heights and wind speeds of all the days of the experimental campaign. This

ensures that the sea clutter present would have a high CNR as well as significant

Doppler speeds, in the context of sea clutter. The datasets represent a matrix of 2

azimuth angles (240N and 307.5N) and different 2 ranges (58,036m and 39,449m).

Two of the azimuth angles are directed approximately into the swell (datasets 07 and

12) while the alternate pair (datasets 10 and 15) have an azimuth directed across the

swell present. This allow for the comparison of the statistical variation of the clutter

present with swell direction, which is a key factor in the characteristics of sea clutter.

Table 3.3: CSIR radar 2007 datasets parameters

Parameter
Dataset

07 10 12 15

Time of recording 11:26:40 11:30:59 11:33:37 11:36:41

Duration of

recording (seconds)
29.9975 29.9975 29.9975 29.9975

Frequency (GHz) 8.8 8.8 8.8 8.8

PRF (kHz) 2 2 2 2

Range of first

range gate (m)
58035.8 58035.8 39448.7 39448.7

Range gates 100 100 101 101

Range Extend (m) 1484 1484 1499 1499

Grazing Angles

(Degrees)
0.0958 - 0.108 0.0958 - 0.108 0.293 - 0.314 0.293 - 0.314

Antenna Azimuth

(Bearing)
240◦ N 307.5◦ N 240◦ N 307.5◦ N

Antenna Elevation

(Degrees)
-0.4944 -0.4944 -0.5712 -0.5693
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Table 3.4: CSIR radar 2007 secondary datasets parameters

Parameter
Dataset

08 09 11

Time of recording 11:27:64 11:28:40 11:31:46

Duration of recording (seconds) 29.9975 29.9975 29.9975

Frequency (GHz) 8.8 8.8 8.8

PRF (kHz) 2 2 2

Range of first range gate (m) 58035.8 58035.8 58035.8

Range gates 100 100 100

Range Extend (m) 1484 1484 1484

Grazing Angles (Degrees) 0.0958 - 0.108 0.0958 - 0.108 0.0958 - 0.108

Antenna Azimuth (Bearing) 262.5◦ N 284.5◦ N 330◦ N

Antenna Elevation (Degrees) -0.4944 -0.4944 -0.4944

The location of the radar along with the overlay of the range swath on a map

of datasets 07, 10, 12 and 15 can be seen in Fig. 3.5 and 3.6 . The range swath of

recorded data is shown in yellow, while the recorded wind direction is a red arrow

and the wave direction a blue arrow.
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(a) Dataset 07

(b) Dataset 10

Figure 3.5: CSIR datasets geometry (a) 07 (b) 10
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(a) Dataset 12

(b) Dataset 15

Figure 3.6: CSIR datasets geometry (a) 12 (b) 15

The record of meteorological conditions during the experiments on 15th November

2007 can be seen in Table 3.5, from [?]. The local wave conditions were measured
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using a wave sensor on the seabed located at Camp’s Bay, which is approx 33◦57’04

S and 18◦22’42 E, and a wave buoy located at Cape Point. The wind conditions

recorded were measured at the radar location.

Table 3.5: CSIR Radar 2007 datasets meteorological conditions parameters

Parameter Value

Inst. Wind 15.6 kts, 130 N (SS 3.2)

8hr Avg. Wind 8.29 kts, 12.36 N

Wave (SWH)
2.48 m, 245.3 N (SS 4.4)

Except Dataset 07 2.78 m, 242.7 N (SS 4.7)

Archived meteorological conditions recorded on the weather database website

Weather Underground gave a hourly recorded wind speed measurement, see Table3.6.

This shows the weather conditions from 2hr30mins either side of the experimentation

recordings between ≈11:26am and ≈11:36am.

Table 3.6: CSIR radar 2007 datasets meteorological conditions 1

Time Wind speed (km/h) Direction

9:00am 31.5 SSE

9:30am 37 SSE

10:00am 33.3 SSE

10:30am 33.3 SSE

11:00am 35.2 SSE

11:30am 33.3 SSE

12:00pm 33.3 SSE

12:30pm 33.3 SSE

1:00pm 33.3 SSE

1:30pm 33.3 SSE

2:00pm 38.9 SSE

3.1.3 NetRAD Radar and South Africa trials data 2010

NetRAD is a netted, multistatic, pulsed, S-band (2.4 GHz) radar system that has

been developed at University College London over a number of years. The system was

initially developed to be a low power, coherent system, which was capable of recording

simultaneous monostatic and bistatic data, by T. Derham and S. Doughty [114–116].

It was then further developed to allow the system to be capable of recording multi

static sea clutter data by Waddah Al-Ashwal [117] and Stephan Sandenbergh. The

key upgrades to the system to enable sea clutter measurements were:

1Obtained from website www.wunderground.com
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• Higher power transmitter (HPA)

• Wireless operation between nodes for increased maximum baseline

• Antenna improvements - More robust and improved directional control

• Software upgrades

The initial transmit power low at 200mW per radar node. The power of the

system was then significantly increased by integrating a new external HPA. The

main HPA has an output of 450W (Microwave Amplifiers Ltd. AM85-2.45S-57-57)

and the backup amplifier has 200W peak power (Microwave Amplifiers Ltd. AM82-

2.5S-45-53), see Table 3.7 from [117].

Table 3.7: NetRAD radar parameters

Parameter Main HPA Backup HPA

Output power 57.7 dBm 54.3 dBm

Input power for rated output 5 dBm 10 dBm

Control signal TTL TTL

Control pulse rise time 5µs 10µs

Control pulse fall time 5µs 10µs

Positive bias 12V 12V

Negative bias -12V -12V

Peak positive supply current 120A 60A

Standby current 1400mA 183mA

Maximum duty cycle 10% 10%

Prior to the sea clutter trials the timing of the radar system was changed com-

pletely from a shared wired communicated clock for synchronisation to a wireless

GPS Disciplined Oscillators (GPSDO) system [118, 119] . This provided a coherent

clock reference signal and time synchronisation that could be operated wirelessly.

The hardware and software upgrades to implement this core change to the radar

system were conducted by Waddah Al-Ashwal and Stephan Sandenbergh.
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Figure 3.7: GPSDO schematic diagram

A GPSDO is a clock that uses a combination of a stable oscillator and GPS

signals to increase the overall accuracy of its timing signal. This is completed by

implementing a phase lock between the GPS signal and the clock using a tracking

loop. Within the GPSDO clocks used with the NetRAD system the 1 Hz GPS signal

has been phase locked to a oven controlled crystal oscillator that operates at 10

MHz. This signal is itself multiplied up to the 100MHz reference signal required

for the radar system. A schematic diagram showing the setup of the GPSDOs can

be seen in Fig. 3.1.3. The clocks were integrated completely with the NetRAD

operational GUI to allow control over their parameters. The images in Fig. 3.1.3

(a) and (b) show a GPSDO without its external house and then it with its external

housing and connected to a NetRAD node respectively. The GPSDO can be used

to trigger the radar via the user inputing a given time for the transmission to occur

in the future, as the carrier is synchronised exactly with GPS at this time a trigger

pulse is sent to NetRAD to initiate the transmission.
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(a) (b)

Figure 3.8: Images of GPSDO (a) Internal components (b) Device connected to

NetRAD Node

For the transmission of the data and commands between nodes wireless links were

used. These devices, Ubiquiti “bullet” data links, were connected to 20dBi patch

antennas (L-Com HG5158-23P), see Fig. 3.9. These devices allowed a separations

of radar nodes up to 5km, with line of sight. They operate around 5GHz, which

sufficiently separate from the 2.4 GHz operational frequency of the radar to not

cause any interference with its operation.
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Figure 3.9: Wireless bullet and patch antenna

The antennas selected for use with the radar were the Poynting K-GRID-003-05

grid antennas. Their gain, beamwidth and ruggedness, meant that they were well

suited the experiments planned. The specification data from the manufacturer on

the antennas can be seen in Table 3.8.

Table 3.8: NetRAD antennas specifications

Parameter Value

Electrical Frequency 2.4 - 2.5 GHz

Gain (max) 27dBi (±0.5 dB)

VSWR < 2.0 : 1

E-plane 3 dB beamwidth 11◦ (± 2 dB)

H-plane 3 dB beamwidth 8◦ (± 2 dB)

All sidelobes < -20dB

Nominal input impedance 50 Ohm

Polarisation Linear (Vertical or Horizontal)

During performance evaluation of the antennas it was found that the antenna

gain values were 23.7 dB, and the beamwidth values were 11.23◦ x 8.97◦ (E and H

respectively). These gain and beamwidth values gave sufficient power to be able to

measure returns at monostatic ranges of ≈ 3 km while maintaining a cross range

resolution of the order of ≈ 450m.

The antennas were set up on variable height tripods with a custom built mount-

ing bracket to attach them and set the azimuth and elevation angles, see Fig. 3.1.3

(b). A rotational stage for azimuth positioning was fitted to the mounting structure
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with a vernier to allow angle measurements to be set with a 0.2◦ accuracy. During

experimentation this angular accuracy was not possible due to wind conditions there-

fore the accepted accuracy is given as ±1◦, this was also assumed as the elevation

accuracy error.

(a) (b)

Figure 3.10: NetRAD antenna and setup

The NetRAD data analysed in this thesis was collected during a series of trials

completed in 2010. The trial campaign was located on the coast of South Africa and

organised in collaboration with the University of Cape Town, Thales UK, Thales

Netherlands and the US Office of Naval Research Global. The main campaign was

completed over a period of three weeks, with a team of researchers from UCL trav-

elling with the radar to South Africa to work with the university of Cape Town

team. The aim of the trials was to collect simultaneous recorded coherent monos-

tatic and bi-static sea clutter, as well as data on small maritime targets. This was to

be achieved using the NetRAD system operating over significant baseline distances

(> 1km) wirelessly with GPSDOs and wireless network links. The radar parameters

used for the experimental campaign can be seen in the Table 3.9.

Table 3.9: NetRAD radar parameters

Parameter Value

Carrier Frequency 2.4 GHz

Transmitter Power (HPA) 57.7 dBm

Max range over which data is recorded 3 km

Bandwidth 50 MHz

Range Resolution 3 m

Pulse Length 0.1 - 10 µs

PRF 50 Hz - 3 kHz
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During this campaign only two nodes were used, meaning that a monostatic mea-

surement and a single bistatic measurement could be recorded for each experiment.

This limitation was because the third GPSDO was not available at the time.

Multiple geometries were tested while recording simultaneous bistatic and monos-

tatic clutter. The datasets selected for analysis all used a horizontal plane separation

geometry between nodes, the difference in height of the nodes above sea level was

kept to a minimum. The practical separation was limited by suitable location for

experiments as well as the requirement for direct line of sight between radar nodes

for the wireless communications links to work.

The changes in bistatic geometries were achieved by maintaining the baseline

between the monostatic and bistatic nodes and changing the azimuth angle of the

antennas at each node. Therefore an Isosceles triangle was established between the

intersection point of the two beams and the two nodes. This shift in azimuth angle

allowed for multiple bistatic angle measurements to be taken without the labour

intensive action moving the radar nodes to new location to shift bistatic angle. A

problem associated with this method was that in changing the bistatic angle the

illuminated area of sea that resides at the intersection between the two beams is no

longer the same area of sea prior to the angle change. It was decided that this is an

acceptable experimental method as the shift in area of sea should not be significant

with respect to the expected changes in sea clutter phenomenology.

The datasets selected for analysis were all generated on 10th October 2010 at

a site on the western side of Cape Point named Scarborough. The exact locations

of the two nodes was recorded using the GPS positioning signals from the GPSDO

clocks after setting up the nodes, see Table 3.10. Note that the height values are

taken using the WGS84 ellipsoid which was set ≈30 m below the actual sea level.

In this geometry the horizontal separation was 1827m the vertical separation was

14.17m and the baseline 1827.05m. Plan images showing the locations of the two

nodes can be seen in Fig. 3.1.3 (a) and (b).
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(a)

(b)

Figure 3.11: Image of locations used for sea clutter data collection on Cape Point (a)

Full view (b) Zoomed view

Table 3.10: NetRAD datasets location
Bistatic Node Monostatic Node

Latitude (◦) Longitude (◦) Height (m) Latitude (◦) Longitude (◦) Height (m)

-34.189073 18.366482 65.4 -34.176775 18.353305 79.57
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In total 6 datasets have been selected from all those recorded on 10th October

2010, these include 3 bistatic angles and 2 polarisations, with a monostatic and

bistatic recording for each, see Table 3.11. All of these experiments are out-of-

plane geometry bistatic measurements, in that the monostatic and bistatic nodes are

horizontally separated and not transmitting in the same plane. These 6 measurements

are the focus of all the data analysis from the NetRAD trial campaign as they were

recorded on the same day allowing for a direct comparison between bistatic angles

and polarisation from what can be assumed to be the “same sea”.

Table 3.11: NetRAD datasets
Dataset Label Bistatic Angle Polarisation Pulse Length (µs)

1233 60 Horizontal 3

1244 90 Horizontal 2.2

1253 120 Horizontal 1.8

1551 60 Vertical 3

1603 90 Vertical 2.2

1617 120 Vertical 1.8

Meteorological conditions relating to wave and wind conditions were obtained dur-

ing the trials by CSIR, Table 3.12, Originally shown in [117], this has been collected

on behalf of the Transnet National Port Authority.

Table 3.12: NetRAD data meteorological conditions obtained by CSIR

Dataset Wind speed (ms−1) Wind Direction Period (s) Wave Direction H1/3 (m)

1233 10.15 North 7.1 289 3.28

1244 10.37 North 7.7 279.5 3.48

1253 10.8 North 8.3 270 3.67

1551 11.55 North 8.3 283 3.89

1603 11.55 North 8.3 283 3.89

1617 12.3 North 8.65 276 4.02

In addition to this the trials logs themselves contained basic qualitative obser-

vations and the weather web database www.wunderground.com was also used for

information, see Table 3.13.

Table 3.13: NetRAD data meteorological conditions

Property Value (km/h) Value (ms−1)

Wind Speed 24 km/h 6.67 m/s

Max Wind Speed 63 km/h 17.5 m/s

Max Gust Speed 82 km/h 22.78 m/s
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3.2 Pre-processing

This section describes the general pre-processing techniques applied to all the datasets

analysed. This processing was required to bring that data to the point that statistical

analysis could be applied to characterise the sea clutter present. In each case the

reason for each processing step is explained, along with how they were applied.

The pre-processing description starts with the methods used to produce the short-

time Doppler spectra as well as range-Doppler spectra from the data. Range-Doppler

processing is relevant to the SW2000 data and the short-time Doppler processing

relates to the CSIR and NetRAD data. Following this the statistical analysis applied

to each dataset is defined in detail, stating each model and how it was fitted or

compared to the data.

3.2.1 General Pre-processing and Doppler Processing

The programming tool used for the majority of the analysis was the Matlab software

package including the signal processing, statistical and parallel computing toolboxes.

All of the data was post processed after it was recorded using this software, as this

research did not consider realtime processing of the data.

The first steps for analysing the data was to ensure that it was in a readable

format for the software to be able to input the recorded values. This usually resulted

in converting the binary files values into the raw ADC output voltages if the data is

non-coherent and complex values I and Q for coherent data.

To produce the Doppler spectra from the coherent data then either a long-time

or a short-time discrete FFT (Fast Fourier Transform) was performed on the data,

Eqn 3.1.

Xk =
N−1∑
n=0

xne
−i2πkn/N (3.1)

where n = 0,..., N-1, xn is the input time series of length N and Xk is the output

frequency domain signal. A weighting window is applied to the data prior to input

into the discrete FFT in each case a -55dB Dolph-Chebshev window was used. see

example in Fig. 3.12. This was generated using a Matlab in built function. This

sidelobe weighting function as it gives equal sidelobes that can be a defined level

below the main lobe. The -55dB level was chosen as any values below that level will

most likely be limited by thermal noise.
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Figure 3.12: Dolph-Chebshev window function of length 32 with -55dB sidelobes

The short-time FFT performs the Fourier transform on consecutive samples within

an individual range gate producing Doppler-time data from within that specific range

gate. This technique was used on the staring radar data generated by CSIR and Ne-

tRAD.

A long-time FFT involves completing the Fourier transform on groups of Range-

time samples, where consecutive pulses are selected and then Fourier transformed.

This technique has been used for the scanning radar data recorded using the SW2000

radar. The difference between the long-time FFT and the short-time FFT is that the

Fourier transform output of the former is arranged as Range-Doppler from all range

gates. Whereas in the short-time FFT only the output from a single range gate is

concatenated together with many other FFT outputs.

From the datasets that have been analysed the SW2000 data was processed using

long-time FFTs. This is because the mechanically steered radar changes angle with

respect to the sea surface and wind direction. Therefore data from a single range

gate changes physical location over the duration of the recording. So producing the

Doppler spectrogram for a single range gate would involve joining data from a vari-

ation of physical locations and not allow for characterisation of statistical behaviour

with swell direction or wind direction.

The CSIR and NetRAD recordings were analysed using short-time FFTs as both

systems were setup on land staring into the sea from a fix angle. Hence over the

duration of the recording a range gate still represents the same physical location and

a short-time FFT shows the progression of the Doppler spectra at this location over

this duration.
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3.2.2 Generation of data PDFs and PFA curves from data

To characterise and compare to existing sea clutter models the discrete data must be

assigned a representative continuous PDF. As the data is real discrete samples then

there is no absolute solution for the PDF that represents the data. Therefore the

representative PDF generated for the data is only an approximation. The accuracy of

this approximation increases as the number of samples used to generate it increases

as well as using more advanced techniques to generate the PDF.

Initial methods used to define the PDF of the amplitude statistics of the clutter

involved generating a histogram. This allocated each data sample to a given his-

togram bin based on the amplitude value, generating a discrete PDF in both bin

locations and quantity within each histogram bin. The bins were defined as fixed

number of locations spread from the minimum to the maximum values within the

data passed to it. The characteristics of this discrete histogram PDF method is

dependent on the range and size of histogram bins used. This introduces sampling

noise errors to the PDF amplitude values equal to ± of the histogram bin width.

To overcome the issues of a histogram PDF generation an improved method was

applied to generate PDF curves from the data. This method uses each sample’s

amplitude value as a singular incremental value to the CDF and then normalises the

CDF curve with the sum total of samples used to generate it. Ensuring the values

obtained are bounded between 0 to 1, as required for an CDF. This does not have any

sampling noise associated with it as each sample is located at its exact amplitude.

This also give much greater detail in the shape of the higher values of the distribution

unlike the histogram method. For sea clutter distribution analysis it is important to

characterise the behaviour of the high values amplitudes.

Figure 3.13: PFA to PDF diagram from histogram PDF

The generation of PFA plots from the first method using a histogram was com-

pleted by applying a summation of the PDF from each applied threshold level, see

diagram in Fig. 3.13. The second method uses the relationship,
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CDF = 1− PFA (3.2)

to generate PFA curves from the CDF.

A comparison between the histogram and single value CDF methods can be seen

in the resulting log(PFA) curves seen in Fig. 3.14. This figure was generated by using

simulated K-distribution samples as an input to both the histogram PDF method

and the single value CDF method. The outputs were then used to produce a log(PFA)

curves from the same data. The tail end of the log(PFA) curve has been shown in

this figure as this is where the differences in the two curves are enhanced. The CDF

generated log(PFA) curve shows much more detail with over 3500 samples defining

the log(PFA) curve over this range, while the histogram generated curve has only 10

samples.
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Figure 3.14: Example log10(PFA) vs. threshold (dB) curves generated using two

different methods

3.2.3 Fitting methods

It is important to be able to now compare the real clutter measurement distribution

to accepted models for sea clutter. In this thesis two methods have been used to fit

sea clutter models to real data. The first is completed in the log(PFA) domain using

a sum squared difference (SSD) fit and the second uses the normalised amplitude

moments of the data. The method of moments compares the normalised moments

with predicted moments from given amplitude models.

The SSD fit to the data curves uses the log(PFA) curve and evaluates the summa-
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tion of the square difference between the data log(PFA) curve and a series of theoretic

curves generated from the model that is being fitted. This fitting was completed on

values of the threshold above 0 dB, therefore focusing on the tail end of the log(PFA)

curve, which is of particular interest when evaluating sea clutter. The log(PFA) curve

for a given model was evaluated at each of the log(PFA) sample locations. This results

in a net squared vertical difference between curves being evaluated which establishes

the difference between data and model. A set of model curves were used each with a

different parameter, the curve with the least sum square difference was declared as

the best fitting curve for that model to the data. For the K-distribution the set of

curves used to compare to the raw data curves used shape parameters varying from

0.1 to 10 in steps of 0.1, with an additional curve with a shape parameter of 100

which represents thermal noise like distributions.

Examination of the characteristics of the K-distribution suggests that shape pa-

rameters of less than 0.1 would be very unlikely for non-coherent processing of the

data, [23]. If a fitting was found to suggest a shape parameter less than 0.1 then

it is likely that the data is not well characterised by the K-distribution. It will also

be seen from empirical results, Section 4, that they are not expected with coherent

processing either.

The K-distribution PFA was been defined in Eqn. 2.39 and requires the use of

both a gamma function and a modified Bessel function. For the numerical analysis

completed in this work these functions were approximated using the respective inbuilt

function within the program Matlab. The Matlab gamma function interpolates the

integer solutions from:

Γ(n) = (n− 1)! (3.3)

for the input variable n. The derivation of the exact methods used to evaluate the

Gamma function can be found in [120]. A plot of integer solutions to Eqn. 3.3 as

well as the non-interger interpolate solutions from the Matlab Gamma function for

n = 0 to 5 in steps of 0.1 are shown in Fig. 3.15.
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Figure 3.15: Integer solutions and Gamma function non-integer solutions to Eqn. 3.3

The Bessel function of the second kind in Matlab solves the modified Bessel

differential equation [121]:

z2
d2y

dz2
+ z

dy

dz
= (z2 + v2)y = 0 (3.4)

where v is a real constant and the solution of this differential equation are named

Bessel functions. The second order solution is:

Kν(z) =
(π

2

) I−ν(z)− Iν(z)

sin(νπ)
(3.5)

where ν is the shape parameter, and Iν(z) and I−ν(z) are fundamental sets of solu-

tions to the modified Bessel equation for non-integer ν:

Iν(z) =
(z

2

)ν ∞∑
k=0

(
z2

4

)k
k!Γ(ν + k + 1)

(3.6)

where Γ is the Gamma function. Example plots of the numerical solutions obtained

from the modified Bessel function of the 2nd order with varying shape parameter can

be seen in Fig. 3.16.
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Figure 3.16: Example modified Bessel function of the second order plots

The second fitting method applied was the comparison of amplitude moments of

the data with the predicted theoretic intensity moments of a model. Then the shape

parameter of the data using this relationship is defined. This is called Method of

Moments fitting. The relationship between the K-distribution shape parameter and

the 2nd order intensity moment is defined as:

ν =
1

M2

2
− 1

(3.7)

where M2 is the 2nd order intensity moments and ν is the shape parameter. Moments

are defined as follows,

Mn =

∑
Xn

N

X̄
(3.8)

where n is the order of the moment, and X is the samples being evaluated and X̄ is

the mean of the samples in X.

In the case of a Gamma distribution the relationship between the Gamma shape

parameter, νG and the 2nd order intensity moment is as follows:

νG =
1

M2 − 1
(3.9)

The first three intensity moments of the K-distribution + thermal noise were

previously shown in Eqn. 2.36, 2.37 and 2.38. To relate the K-distribution + thermal

noise first two moments to shape parameter the following equation can be used:
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ν =
2(M1 − Pn)2

M2 − 2M2
1

(3.10)

The advantage of this method is that if a simple relationship exists between the

moments and shape parameter is it easy to evaluate the data shape parameter. Its

disadvantage is that it does not show how close to the assumed distribution that

the data is. Therefore when analysing each dataset care must be taken to evaluate

if the data is well represented by the assumed distribution before using Method of

Moments fitting.
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Chapter 4

Data Analysis

This chapter presents extensive analysis of each dataset defined in Chapter 3. The

data from each radar is first analysed using non-coherent processing, where the corre-

lation and statistical distributions in the time domain are investigated. This validates

that clutter is present with the data and quantifies its behaviour in the time domain.

This is followed by coherent processing, where the unique challenges faced in

processing each dataset are initially described. Statistical analysis techniques are

then applied using the methods defined in Section 3.2. The results within individual

Doppler bins are defined first, this is followed by characterising the distribution as a

function of Doppler in multiple datasets. Finally the characteristic behaviour of the

clutter with Doppler is discussed and compared between datasets and radars.

The overall main aim of this analysis is to characterise statistically the behaviour

of sea clutter as a function of Doppler within multiple dataset and radars. This

characterisation will then be used to draw links between the behaviour of the clutter

and the conditions of the dataset or the radar parameters used. The SW2000 data

analysis provides the initial tests to establish the amplitude statistics of sea clutter in

the Doppler domain. The CSIR data analysis expands this to observe how the clutter

statistics change with azimuth with respect to wind and wave direction. Finally the

NetRAD data analysis also provides information on clutter behaviour with look angle,

but uniquely it directly relates monostatic and bistatic clutter.

During the majority of steps in the process example figures are given to demon-

strate typical characteristic plots from the data. In the coherent processing initial

example range-Doppler (SW2000 data) or time-Doppler (CSIR and NetRAD data)

figures are provided. Due to a significant number of possible plots that can be gen-

erated only a single dataset or range gate from a data was selected to to generate

the example plots for most of the stages. Plot from every dataset available were only

generated for the high level statistical comparative plots, which are used to compare

results between datasets and radars.
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4.1 Thales SW2000 Analysis

This section describes the analysis and results obtained from the processing com-

pleted on the non-coherent and coherent SW2000 data. The non-coherent data anal-

ysis is shown first showing example distributions and detailing any variation of the

statistics with range. This is followed by the coherent data analysis focusing on the

variation of sea clutter statistics with Doppler.

All of the standard pre-processing methods detailed in section 3.2 were applied to

the SW2000 dataset prior to the statistical analysis of the amplitude values. In addi-

tion to this pre-processing Doppler re-sampling was also completed on the coherent

data.

Example results and plots from individual pulses, bursts and range gates of data

are initially shown to demonstrate the characteristic values and shapes of the data.

All of these were generated using a single datasets, trial 612 vertical polarisation.

Following this the high level results showing the variation of the statistics with range

or Doppler are then shown for both the trial 612 vertical and horizontal polarisation

datasets.

4.1.1 SW2000 Non-Coherent data analysis

As detailed in the literature review section on sea clutter, section 2.5, non-coherent

sea clutter has been extensively analysed in the prior research literature. Although

this area of research is therefore less novel in its contribution to radar sea clutter

research it does establish the characteristics of the non-coherent data. These can

then be compared and contrasted with the more novel analysis of the coherent data,

section 4.1.3. In addition to this the method used for fitting the non-coherent data

to the assumed distributions is the same as those used for the coherent data, hence

it also provides a check that these fitting methods are providing valid results within

both domains.

Figure 4.1 shows a flow diagram of the major processing steps completed during

the non-coherent data analysis. Examples from these processing steps completed on

trial 612 vertical polarisation can be seen below. Only the final statistical results are

shown for both datasets, as these are the most relevant when comparing datasets.

As previously described, section 3.2, the initial method of PDF generation from

the discrete data samples used the histogram method, later a single value sampled

CDF method was also applied. Both distribution characterisation methods are shown

in this analysis. The amplitude values of the SW2000 non-coherent data was first

analysed using the amplitude distributions from the sea clutter present within the

data within a single pulse. The normalised power data, it’s PDF and the PFA from

a single example pulse within a burst from dataset 612 vertical polarisation can be

seen in Figures. 4.2, 4.3 and 4.4 respectively.
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Figure 4.1: Non-coherent data analysis flow diagram
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Figure 4.2: SW2000 data normlised power vs. range gate - single pulse

In Fig. 4.2 a clear reduction in the power levels exists between range gates ≈750-

1250. This behaviour shows that the data is dominated by a single range ambiguity.

If multiple range ambiguities were present within the data then the profile of the

mean power levels would be more linear without this dip in power. This is because
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the sum of the multiple ambiguities would flatten out the profile removing any dip

in power levels.

The single dominate ambiguity is fortunate for the analysis performed here as

when selected segments of the data is it possible to confirm that the samples will

be from the single ambiguity. If multiple ambiguities were present the clutter data

would originate from many different ranges and this is an added complication when

defining its characteristics.

As the data selected has been taken from a wide selection of range gates it is

likely to be spatially non-homogenous. The behaviour of the clutter across the swath

of selected data will vary and can not be considered the same. Hence the overall

bulk distribution generated from these samples will be a superposition of the many

varying location clutter distributions.
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Figure 4.3: SW2000 data CDF comparison - single pulse
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Figure 4.4: SW2000 data PFA comparison - single pulse

These plots were all generated using a single pulse of data from a selected burst;

as described in section 3.1.1 there is 32 pulses in each burst with each pulse having

between 2500 and 3000 range gates. It is therefore possible to join 32 consecutive

pulses without the need for any corrective processing to take into account any PRF

or RF changes. It is possible to join multiple pulses of data without any corrective

processing to produce single PDFs, CDFs and PFA plots, similar to those shown from

a single pulse. The joining of the data is simply concatenating the data from each

selected pulse into a single array. Figures 4.5 4.6 and 4.7 show the sample number

against amplitude from a joint array of 32 pulses, the joint CDF and PFA respectively.

All these plots were generated using the same dataset 612 V polarised.

A clear difference between the PFA plots from a single pulse, Fig. 4.4, and 32

joint pulses, Fig. 4.7, is the extent to which the curves go in negative log(PFA). As

the dataset used has 32 times more samples within it the log(PFA) curve is able to

extend to ≈ -4 for the histogram method and ≈ -4.9 for the single sample method.

Whereas in the single pulse case the log(PFA) curve only extended to ≈-3.4. This

is an important extension to this log(PFA) curve as the area of interest for a radar

engineer is the tail end of the PFA. An operational radar will be specified to have a

typical log(PFA) of approx -4 or less as discussed in section 4.1.2.

The single sample method is also shown to extend further into negative log(PFA)

in comparison to the histogram method in Fig. 4.7. This is due to the nature

of how this curve is defined, instead of a set range of fixed width histogram bins

the single sample method used each sample location as a point on the log(PFA)

curve. This extension in the curve is an advantage of this method, although the

associated disadvantage is that the sample error increases with decreasing log(PFA)

as less sample contributed to the curve as the low PFA levels. It is the behaviour of
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these few large samples that is of particular interest to sea clutter research as their

departure from Gaussian model predicted behaviour means predicted false alarms

rates, for a given threshold, are much higher. By increasing the understanding of the

large intensity samples in different conditions methods for threshold level setting can

be improved.
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Figure 4.5: SW2000 data normlised power vs. range gate - 32 joint pulses
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Figure 4.6: SW2000 data CDF comparison - 32 joint pulses
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Figure 4.7: SW2000 data PFA comparison - 32 joint pulses

From the data log(PFA) curves that were generated the K-distribution was fitted

to establish the shape parameter of the clutter present within the data and how this

varied within a dataset and between datasets. A SSD fit of the K-distribution to

the log(PFA) curves generated by a single pulse and a joint distribution of 32 pulses

can be seen in Fig. 4.1.1 (a) and (b) respectively. The fitted shape parameter to the

single pulse was found to be 3 and the joint distribution was fitted to 2.8. The fitting

was completed on the section of the positive dB component of the log(PFA) curve

as the area of interest is the tail end of the curve. In the joint distribution fit the

theoretical K-distribution curve is shown to follow the data distribution very closely

up to ≈ 9dB. After this point the data has a lower PFA level, but still maintains a

close fit to the distribution except for the last value. The single pulse log(PFA) fit

also shows the K-distribution curve to follow the data distribution closely and over

estimate the PFA for threshold values > 8dB by ≈ 0.1 log(PFA).
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Figure 4.8: SW2000 data - K-distribution SSD fitted PFA - (a) Single pulse (b) 32

joint pulses

The SSD and moment fitted shape parameters from both datasets using the in-

dividual distributions of each pulse from the first 10 successive bursts of data can

be seen in Fig. 4.9. The mean values from these fits are shown in Table 4.1. The

horizontally polarised data is shown to have a larger value in both the SSD and

moment fitted values. This disagrees with prior research showing that horizontal

polarised amplitude statistics show a more spiky distribution compared to vertical

polarisation. The disagreement may be due to using a too small a sample set, or

because of the large increase in shape parameter shown in the fits to pulse numbers

> 250 which would have significantly increased the average.

Table 4.1: Non-Coherent data Fitted shape parameters
Mean SSD fitted ν Mean Moment fitted ν

V pol 2.3 2.4
H pol 3.4 3.5

This shows the importance of sample group size when analysing amplitude statis-

tics present with a dataset. The variations in shape parameter for the K-distribution

only produce small differences, ≈ 0.3 dB, in the threshold at a log(PFA) = -3. Al-

though at lower shape parameter values closer to 0.1 the same absolute difference

in shape parameter would produce a much more significant difference in threshold

sensitivity of the order of a few dB’s.
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Figure 4.9: SW2000 Data - K-distribution SSD and moment fitted (a) Vertical po-

larisation, (b) Horizontal polarisation

The Weibull distribution was additionally fitted to the non-coherent data us-

ing the SSD method. A plot showing the Log(PFA) curve of data, SSD fitted K-

distribution and SSD fitted Weibull distribution can be seen in Fig. 4.10. Although

the fit to the Weibull distribution looks superficially acceptable, the closest fitting

Weibull log(PFA) curve was found to have an average square difference of 66 dB2 per

sample in comparison to 0.56 dB2 for the K-distribution. This result was calculated

by averaging the SSD values for the fitted distribution for each pulse in the first burst

of the Trial 612 V polarisation dataset. It clearly shows that the K-distribution rep-

resents the amplitude statistics of the sea clutter present much more closely, and that

the difference in this goodness of fit is significant. Therefore the Weibull distribution

was not fitted to any further non-coherent SW2000 data.

Figure 4.10 states normalised power on the x-axis. This is because the data was

normalised with respect to the mean of the power, such that 0dB is the mean. Data

from these distributions does exist at values below 0dB but throughout this thesis
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the plots will only show 0dB onwards. This is because the study of sea clutter has

particular interest in the behaviour of the tail end of the clutter distributions. By

fitting and studying from the mean 0dB onwards this focuses the analysis on the

component of the data that is of interest to this research.
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Figure 4.10: SW2000 data - K-distribution and Weibull Distribution SSD fitted PFA

- Burst 2 Pulse 5

Analysis using additional distributions was not performed on the SW2000 data as

the CSIR and NetRAD datasets are from instrumented radar systems that are more

suited to the study of sea clutter data. Hence the characterisation of the clutter with

multiple distributions is will be completed with these other datasets. The SW2000

data issues of RF and PRF agility as well as a rotating airborne antenna mean that

the characterisation of sea clutter statistical behaviour with weather, sea or geometry

conditions (except changes in polarisation) are very difficult and sub optimal.

4.1.2 PRF resampling

In this section the methods applied specifically to the SW2000 data to correct for the

agile PRF between pulses prior to producing joint distributions from multiple bursts

of data are described.

To perform valid analysis of sea clutter statistics significant quantities of samples

are required. To ensure that a sufficient data is used to generate a representative

distribution it was required to join consecutive pulses into a single distribution. The

key issue with joining multiple bursts when using the SW2000 data is the agility of

the PRF. The agility of the PRF means that within the Doppler domain the dynamic

range of the Doppler spectra as well as the sample locations of the Doppler bins are

not equal when comparing bursts of data. To overcome this, a method was used to
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resample the data and limit the unambiguous dynamic range of the Doppler to the

lowest PRF. This made it possible to join the Doppler samples from multiple bursts,

and generate distributions of the amplitude statistics within each Doppler bin with

an order of magnitude more samples.

The data recorded using the SW2000 radar is also RF agile between bursts of

pulses. This agility could potentially effect the statistics of each burst as the RF

emissions with different frequency interact with the sea surface in a different way.

For this research it is assumed that the relatively small shift in frequency has an

insignificant affect on the statistics of the individual bursts. This is deemed a valid

assumption as the shift in frequency is a small fraction of the main frequency of

the radar ≈ 9GHz and therefore will not affect the amplitude statistics of the clut-

ter returns significantly. Using this assumption it is possible to then concatenate

adjacent bursts (with different RF) to obtain enough samples to complete a valid

statistics characterisation. If this assumption was not used it would introduce sig-

nificant delays between bursts that could be selected as every Nth burst with the

same frequency could only be used when joining the data. The introduction of this

delay between selected bursts would influence the characterisation of the data, due

to the mechanically steered antenna, every Nth burst will be significantly separated

spatially.

Maritime radars are required to operate with a give specified false alarm rates that

are caused by sea clutter returns. An acceptable rate for a coherent maritime radar

would be of the order of 1x10−4, meaning that 1 in every 10,000 returns produce

a false alarm. If an radar system has 2000 range gates and operates at 3kHz a

false would be required to occur every 5 bursts which is 1 every 0.0017 seconds. To

characterise the PFA curves of the statistics of the clutter present at least 10 samples

at the 1x10−4 level are required, meaning 105 samples. If it is assumed that 2000

range gates can be selected from each burst this requires 50 bursts of data to be

joined to produce a single PFA distribution.

The lowest PRF data has the smallest unambiguous Doppler spectra width and

the finest Doppler resolution. As the unambiguous Doppler range is directly propor-

tional to the PRF and there is the same number of pulses within each given PRF.

Therefore the same number of samples cover a smaller dynamic range in Doppler

giving a finer Doppler resolution. To correct the Doppler spectra of each group of

pulses with a given PRF the dynamic range of all the spectra produced was limited

to that of the smallest PRF. Then the samples within that limited Doppler spectra

were interpolated onto a uniform grid with the same sample locations as the highest

PRF spectra. This can be seen in Fig 4.11 where in part (A) the low PRF data

is interpolated and in (B) the high PRF data has its Doppler dynamic range lim-

ited. The resulting spectra can then be directly compared with one another and

therefore joined to allow for the production of probability distributions from each
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corresponding uniform Doppler bins.

The interpolation used on each of the lower PRF bursts was a 2D spline interpola-

tion on the amplitude values of the range Doppler data. The interpolation algorithm

took the input values within each range gates Doppler spectra and evaluated the

interpolated value at a fixed uniform Doppler sampling grid that all bursts have been

interpolated onto.

The disadvantage of this processing is that the Doppler dynamic range is limited

by the lowest PRF, and the resolution is limited to the length of the shortest burst,

i.e. that with the highest PRF. The down sampling method is still used instead of

up sampling because the generation of artefacts can be reduced in down sampling in

comparison to possible generation of artefacts when generating new sampling loca-

tions in Doppler.

Figure 4.11: Resampling in Doppler domain diagram

The key reason for this PRF resampling is to combine multiple consecutive bursts

of data. When doing this the assumption is made that the sea clutter statistics are

at some level consistent from burst to burst. This is believed to be a legitimate

assumption for a limited number of bursts. As the SW2000 recordings were made

with a rotating antenna the patch of sea that is being accumulated to produce a

single observed distribution grows with each burst added. The limitation of joining

the bursts will be when the antenna has significantly changed angle with respect

to factors such as swell, and wind direction. This is dependent on the rotational

rate of the mechanically steered radar, hence pulse groups were not collected from a

significant number of bursts that cover a large cross range physical area that has a

substantial change in azimuth angle across it’s width.
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4.1.3 SW2000 Data Doppler Analysis

The statistical analysis performed on the coherent SW2000 radar data is reviewed

in this section. The Doppler data was generated using the pre-processing techniques

described within section 3.2, then similar statistical analysis seen in the non-coherent

analysis section have been applied. Example plots of distributions and fits are shown

only for the Trial 612 V polarisation. While the results showing the variation of the

amplitude statistics as a function of Doppler are shown from both datasets. The key

processing steps of the analysis completed in this section have been summarised in

Fig. 4.12.

Figure 4.12: Coherent data analysis flow diagram

The Doppler pre-processing applied to the data gave complex range Doppler data

from each burst, an example range-Doppler normalised power plot is shown in Fig.

4.13. The central Doppler sea clutter column is shown to extend from ≈ -200 to +350
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Hz, outside of this region the data is shown to be thermally noise dominated. This

demonstrates clearly the difficulty of detecting slow moving targets within the mar-

itime environment. Fast moving targets with Doppler shifts in the noise dominated

region can be easily detected, as the detection of the target return is only limited by

the noise floor of the system. Whereas in the clutter dominated region there is an

increase of up to ≈ 50 dB in interference from the clutter which could easily result

in a missed detection.

The length of the FFT used was 32 points, this was selected mainly due to the

PRF agility. The additional reason for this short length FFT was because a shorter

length FFT captures the quick changing affects within the clutter spectra and results

in more samples per Doppler bin for amplitude statistics analysis.

Note that the CNR and K-distribution shape parameter estimates from the non-

coherent data are approximately what would be expected. Therefore this data can

be assumed to be atypical example sea clutter measurements. Using this assumption

it is possible to infer that the new novel Doppler results reported here, regarding the

statistics, can be thought of as broadly typical for sea clutter. Although through the

use of further dataset the characterisation and variation in the behaviour is explored

further.
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Figure 4.13: SW2000 data range-Doppler burst 2

Figure 4.13 shows that the clutter spectra has an approximately fixed mean width

and CNR which do not vary significantly with range. The structure of the individual

clutter spectra appear to be a single Gaussian, each with small variations in width,

CNR and centre of gravity. The 32 point FFT gives a low resolution for characterising

the detail of the individual Doppler spectra, but the compromise on this resolution

is counterbalanced by the quantity of samples needed to produce the spectra.

117



The clutter spectra shown has maintains a bulk central structure with no dis-

cernible fast moving components. Additional trials with the ARTIST system observ-

ing sea clutter show fast moving individual components that may be attributed to

sea clutter, [122]. These are not present here and the spectra is shown to be much

more predictable. There is some departure from the main body of the clutter spectra

in the lower range gates, 0-300, on the positive Doppler side of the spectra. This

isn’t small individual components though and doesn’t show similar characteristics to

the effects seen in [122].

In addition to Fig. 4.13 a plot of multiple overlaid Doppler spectra of 20 adjacent

range gates, 1001 to 1020, is shown in Fig. 4.14. This demonstrates the consistency

of the single Gaussian structure of the clutter spectra from range gate to range gate,

as well as the consistency noise floor level. The sample locations of each of the spectra

differ due to the PRF agility but qualitative observations of each PSD is still valid,

see section 4.1.2.

These observations differ in some degree from the D. Walker measurements and

model, [22,24], which uses a three component Gaussian form for the sea clutter. The

difference may be due to the Doppler resolution of this data, which may limit the

ability to observe the independent components within the Doppler PSD. A small

number of the spectra do shift their central Doppler frequency, which may be an

additional fast moving Gaussian component being present or a shift of the total

single Gaussian spectra itself.
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Figure 4.14: SW2000 data - 20 example Doppler spectra burst 2

It is the characterisation of the sea clutter amplitudes statistics as a function of

Doppler that is of critical importance for the effective operation of coherent maritime

radars. Figure 4.13 shows the increase in power of the sea clutter within the cen-

tral Doppler bins, but it does not give any information on changes in the statistics
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behaviour of the clutter as a function of Doppler. To characterise the amplitude

statistics as a function of Doppler the same methods used on the non-coherent data

in Section 4.1.1 have been applied. The log(PFA) curves have been evaluated using

the amplitude values within each Doppler bin, then SSD fitted to the K-distribution.

The data and SSD fitted curves from two example Doppler bins that are clearly sea

clutter dominated can be seen in Fig. 4.15. The two plots show that the amplitude

statistics of the data within these two Doppler bins is well represented by the K-

distribution. An important difference between the two plots is the significant change

in the K-distribution shape parameter despite the Doppler bins being adjacent, from

ν = 2 in Doppler bin 19 and ν = 0.7 in Doppler bin 20. This shows that the amplitude

statistics for the clutter clearly change from one Doppler bin to another and that the

change can be dramatic. This is an important novel discovery of the variation of

the sea clutter amplitudes statistics and the following work aims to characterise this

variation further.
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Figure 4.15: SW2000 data - Doppler burst 2 - log(PFA) vs. threshold (dB) and

K-distribution SSD fitted curve (a) Doppler bin 19, (b) Doppler bin 20

The SSD fitted log(PFA) curves from the noise dominated section of the Doppler

spectra did not show the expected shape parameters, which for thermal noise tend

towards infinity but as the SSD fitting method uses a maximum possible ν of 100

the outer Doppler bins should be fitted to 100. Figure 4.16 shows Doppler bin 5

fitted and its SSD fitted K-distribution curve. This figure is unlike the previous two

Doppler bin plots, Fig. 4.15, as the data distribution is not well represented by the

closest fitting K-distribution, which was in fact a very spiky value of 0.3. The data

log(PFA) curve has a uncharacteristic concave shape, for thermal noise, which shows

that the data from this Doppler bin does not contain just thermal noise. Additional

outer Doppler bins that should have been thermally noise dominated showed similar
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non-thermal noise behaviour. The interference within these Doppler bins removed

the ability to effectively compare the sea clutter amplitude distributions with the

outer Doppler bins.
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Figure 4.16: SW2000 data - Doppler burst 2 - log(PFA) vs. threshold (dB) and

K-distribution SSD fitted curve Doppler bin 5

Further observations of the range-Doppler plots of the data from this burst showed

interference in the outer Doppler bins within the first ≈ 500 range gates. By removing

the data from these range gates the outer Doppler bin amplitude distributions then

displayed the expected thermal noise limited characteristics, and fitted to the largest

shape parameter available in the fitting process, 100, see Fig. 4.17.
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Figure 4.17: SW2000 data - Doppler burst 2 - log(PFA) vs. threshold and K-

distribution SSD fitted curve Doppler bin 5 - range gates 500 to 2500
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This range gate selection was then applied to the data across all Doppler bins

to allow for the comparison of the SSD and moment fitted shape parameters as a

function of Doppler bin. The inverse shape parameter obtained from SSD fitting to

the range gate limited data across each Doppler bin from burst a single burst can be

seen in Fig. 4.18. The average Doppler power from the range gate limited data is

also plotted along side the inverse shape parameter to allow a comparison of where

the clutter power is in comparison to the changes in statistics. The inverse value of

the SSD fitted ν values was plotted as this gives a clearer visual representation of

the variation in shape parameter than plotting the ν value itself. For consistency,

throughout the rest of the analysis included the standard representation will be the

inverse fitted shape parameters, unless otherwise stated. The maximum values pos-

sible for the inverse shape parameter through SSD fitting is 10 due to the fixed grid

of tested solutions having a minimum of ν = 0.1, see Section 3.2.3.
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Figure 4.18: SW2000 data - Doppler burst 2 - SSD fitted 1
ν

vs. Doppler - range gates

500 to 2500

In Fig. 4.18 the SSD fitted inverse shape parameters were shown to increase to a

maximum of 10 (ν = 0.1) on the leading possible Doppler edge of the clutter spectra

present. This marked increase in shape parameter was found to only occur at this

frequency within the spectrum. In comparison at the peak CNR only a relatively

small increase in the 1/ν was shown. This is a very important result for coherent sea

clutter analysis. Firstly the clutter clearly shows a marked variation in its amplitude

statistics as a function of Doppler which would effect greatly any CFAR algorithms

operating on this Doppler data. Secondly the most spiky amplitude distribution was

shown not to be at the peak of the clutter power, but offsest at the leading Doppler

edge of the clutter. A plot comparing the two SSD fitted theoretical K-distribution
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curves at the maximum CNR, ν = 2.3, and the max 1/ν can be seen in Fig. 4.19.

The difference in threshold required to produce a false alarm rate of 10−2 between

the two distributions is significant, ≈ 4.6dB. If the clutter statistics at the peak CNR

were assumed across the Doppler distribution then a marked increase in false alarms

would be obtain in the peak 1/ν Doppler bins, a shift from log(PFA) from -2 to -1.425

in this example.
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Figure 4.19: K-distribution log(PFA) vs. threshold for ν = 2.3 and ν= 0.1

The variation of shape parameter with Doppler, seen in Fig. 4.18, was repeated

for consecutive bursts of data to analyse the consistency of the observed character-

istic variation with Doppler. It is important to define whether the phenomenon of

the variation of statistics is seen within multiple bursts and the extend of variation

between bursts and datasets. The extent to which valid information is gained by pro-

ducing joined distributions from multiple bursts can also be established by analysing

the variation of statistics from individual bursts. This was tested by plotting both

the average power and inverse SSD fitted ν values from bursts 1 to 10 in Fig. 4.20.

The average power is shown to be consistent in shape, a single Gaussian, and peak

CNR, ≈ 45 dB, over the 10 bursts of data shown. The inverse shape parameter from

all bursts showed the same increase centred around 500 Hz, located on the leading

positive Doppler edge of the clutter spectra. On the negative Doppler side of the

spectra 4 of the 10 bursts exhibited a marked increase in the inverse ν value located

around ≈ -500 Hz. As well as this a clear sloped increase in the inverse shape pa-

rameter is centred around the peak of the CNR at 0 Hz. The variation of shape

parameters evaluated at 0 Hz ranged from ν = 1.2 to ν = 2.6.

123



−1000 −800 −600 −400 −200 0 200 400 600 800 1000
20

30

40

50

60

70

80

N
o
rm

a
lis

e
d
 P

o
w

e
r 

(d
B

)

Doppler (Hz)

Trial 612 V Polarisation Average PSD (dB) vs. Doppler
Bursts 1 to 10

 

 

Burst 1

Burst 2

Burst 3

Burst 4

Burst 5

Burst 6

Burst 7

Burst 8

Burst 9

Burst 10

(a)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

1
/ν

Doppler (Hz)

Trial 612 V Polarisation SSD fitted 1/ν vs. Doppler

Bursts 1 to 10

 

 

Burst 1

Burst 2

Burst 3

Burst 4

Burst 5

Burst 6

Burst 7

Burst 8

Burst 9

Burst 10

(b)

Figure 4.20: SW2000 data - trial 612 V pol - Doppler bursts 1 to 10 - (a) Average

PSD vs. Doppler (dB), (b) SSD fitted 1/ν vs. Doppler

This analysis was repeated for the trial 612 horizontal polarised data, using the

same processing methods. The resulting average power and 1/ν plotted against

Doppler from bursts 1 to 10 are shown in Fig. 4.21. The averaged power spectra

show a CNR that is comparable, but slightly less at 40 dB, than the vertically po-

larised data. The inverse shape parameter results confirm that the consistently spiky

section of the Doppler spectra is focused on the leading positive edge of the clutter

distribution at ≈+500 Hz within the horizontal data also. The negative Doppler side

of the spectrum shows much more variation in its distribution characteristics in com-

parison to the vertical polarised results in Fig 4.20 (b). High inverse shape parameter

values exist at frequencies well into the thermal noise floor of the Doppler spectra,

these are likely to be caused by effects other than sea clutter. A small number of high

amplitude returns from small targets would alter the statistics greatly in a thermal

noise dominated Doppler bin, an effect that is discussed later in this section.
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Figure 4.21: SW2000 data - trial 612 H pol - Doppler bursts 1 to 10 - (a) Average

PSD vs. Doppler (dB), (b) SSD fitted 1/ν vs. Doppler

As previously discussed, due to PRF agility each burst is sampled at slightly dif-

ferent locations in Doppler. This therefore makes a direct comparison of the statistics

at a given exact Doppler frequency impossible. Despite this before resampling is ap-

plied it has still been possible to qualitatively compare the general structure observed

within the Doppler spectra of each burst, see Fig. 4.20 and 4.21.

The next step in the analysis was undertaken to overcome the difference in sample

locations for each burst, see section 4.1.2. After this processing a single distribution

can be generated for each Doppler bin by joining multiple bursts of data. This allows

a single characterisation of the variation in 1/ν with Doppler using a much greater

number of samples. The first 10 bursts were joined using these techniques and Fig.

4.22 shows the resulting average PSD (dB) and SSD fitted inverse shape parameter.

The inverse shape parameter increased at both ± ≈ 500 Hz, with the positive Doppler

edge increasing to 5 and the negative Doppler increasing to 10.
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Figure 4.22: SW2000 data - trial 612 V pol - joint distribution bursts 1 to 10 average

PSD and SSD fitted K-distribution vs. Doppler

The moment fitting method was then also applied to the same joint distribution

generated from bursts 1 to 10, Fig. 4.23 (a). This fitting method gave extreme values

for the inverse shape parameter, peaking at 1/ν ≈ 150, that disagreed with the SSD

fitted results and are well above the possible solutions for the K-distribution. This

issue was resolved by removing the 5 largest amplitude samples within each Doppler

bin prior to evaluating the moments within each Doppler bin. The removal of 5

samples from the total set of 20,010 (2001 x 10 bursts) in each Doppler bin made

a significant difference to the moment fitted shape parameters, see Fig. 4.23 (b),

but only reduced the size of the dataset analysed by 0.0002498%. These samples

were therefore almost certainly either interference from other radars or small targets,

which were too weak to be visible in the power spectrum but had a considerable

effect on the CDF. These assumption make it valid to remove these data points to

ensure the analysis performed is focused on sea clutter and not other external effects.
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Figure 4.23: SW2000 data - trial 612 V pol - joint distribution bursts 1 to 10 average

PSD and moment fitted K-distribution vs. Doppler (a) All samples (b) 5 largest

amplitude samples removed

The same reduced size dataset from each Doppler bin was then processed using

the SSD method to allow for a direct comparison of the variation of the inverse

shape parameter, for both H and V polarisation Fig. 4.24 and 4.25 respectively.

These two plots shows that the SSD and moment fitting method closely agreed on

the best fitting shape parameter K-distribution curve. With the exception of a single

Doppler bin in Fig. 4.24 where the SSD fit gave a fit value of 1/ν = 10 and the

moment fit gave 1.86. The dual peak shown in the negative doppler region of -650

to -200 Hz may be indicating a multiple Gaussian structure within the faster moving

components moving out of the main Gaussian causing increased spiky distributions

at these locations.

The inverse shape parameter axis was limited to a maximum of 10 for Fig. 4.25

despite the moment fitted parameters taking values greater than this. The axis were

limited to allow for a direct comparison between datasets and the real limit on the

values 1/ν can take is 10. The two Doppler bins that the moment 1/ν values were
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greater than 10 were 17, 1/ν = 21.8, and 18, 1/ν = 11.2.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

Doppler (Hz)

1
/ν

Trial 612 V Polarisation SSD and Moment fitted K−distribution ν vs. Doppler

 Joined Bursts 1 to 10 Range gates 500 to 2500

 

 

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

P
S

D
 P

o
w

e
r 

(d
B

)

SSD fitted 1/ν

Momment Fitted 1\/nu

Doppler Power

Figure 4.24: SW2000 data - trial 612 V pol - joint distribution Bursts 1 to 10 average

PSD and SSD and moment fitted K-distribution vs. Doppler - top 5 samples removed
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Figure 4.25: SW2000 Data - trial 612 H pol - joint distribution bursts 1 to 10 average

PSD and SSD and moment fitted K-distribution vs. Doppler - top 5 samples removed

4.1.4 SW2000 Data Analysis Summary

The analysis of the SW2000 dataset has shown that the sea clutter present in the

non-coherent time series domain is a good fit to the K-distribution. The shape
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parameter from adjacent pulses were shown to oscillate within a range of ± 2.5 in

the vertical polarised data and ±4 for the horizontal polarised data with exception of

outlier values. The vertically polarised dataset was shown to have more spiky (small

ν) values than the horizontally polarised data. This disagrees with accepted prior

research on the statistical comparison between the two polarisations which shows

that the horizontal polarised data is on average more spiky. The reason for this may

be due to the outlier values produced by a small subset of the pulses averaged.

It will be shown below that the for coherently-processed data, the clutter in indi-

vidual Doppler bins is generally more spiky in horizontal than in vertical polarisation,

the same as is seen with incoherent processing. Since the general values of the inco-

herent shape parameters and the clutter power levels are compatible with the values

which would be expected, the ratios of the values observed with the coherently-

processed data may be assumed to be statistical outliers

The fit of the Weibull distribution to the data was additionally tested, and was

shown to fail to represent the data sufficiently well.

Both the histogram and single values CDF distribution methods have been used

to produce discretely sampled log(PFA) against threshold graphs. It has been shown

that the single values CDF distribution methods produced more detailed quantitative

representations of the data at the tail end of the distributions. Due to this all

further analysis on the additional radar datasets uses only the single CDF method

to represent the log(PFA) curves of the data.

Once the very small number of examples or targets or interference have been

removed, the coherent statistical analysis of the SW2000 data showed that the outer

Doppler bins are noise limited. The Doppler bins with clutter present, from a low

CNR to the peak CNR, fitted well to the K-distribution using both SSD and moment

fitting methods which agreed closely with each other.

In the single burst analysis the characteristics of the variation of shape against

Doppler bin was shown to be consistent from successive bursts. The variation showed

a consistent increase in the inverse shape parameter on the leading positive Doppler

edge of the clutter in both horizontal and vertical polarisation. The vertical polarisa-

tion exhibited fluctuating spiky statistics on the negative Doppler edge of the clutter

spectrum at the location where the CNR entered the noise floor. In the case of the

horizontally polarised data the spiky component fluctuated in its existence as well as

location in negative Doppler.

The analysis of the coherent data using joint bursts was made possible because of

the PRF resampling interpolations applied. This method ensured that it was viable

to generate single distributions for each Doppler bin using multiple bursts of data.

This allowed the tail of the distributions present to be evaluated at significantly lower

PFA levels. The results from the joint bursts distributions showed that the vertical

polarisation was less spiky than the horizontal (1/ν = 5 and 1/ν = 10 respectively)
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at the consistently spiky positive Doppler edge. Unlike the non-coherent statistical

results this agrees with the prior research on the comparison of the average spikiness

between vertical and horizontal polarisation.

The key result within the SW2000 data analysis is that a significant variation in

statistics of the sea clutter across the Doppler spectrum exists. This variation has

been shown to be consistent across multiple bursts of data, and present within two

separately recorded and differently polarised datasets. This shows that the variation

with Doppler is a real phenomena related to sea clutter, that is repeatable and pos-

sible to characterise. Without compensating for this variation detection algorithms

using an assumed distribution will generate large numbers of false alarms potentially

overloading any tracking processing. This is shown in the example comparing the

fitted distributions from the peak CNR and peak 1/ν distributions at a given false

alarm, Fig. 4.19. This comparison produces a significant difference in threshold, -4.6

dB, for the given example false alarm level of log(PFA) = -2.

4.2 CSIR Results

This section details the analysis and results from the selected CSIR 2007 Signal Hill

sea clutter datasets, 07, 10, 12 and 15, which are detailed in Section 3.1.2. The first

part of the work discusses the non-coherent time series data analysis, which quali-

tatively compares each datasets Range Time Intensity (RTI) plots and investigates

the temporal correlation properties of the time series data. This is followed by the

Doppler analysis which reproduces the Doppler-time spectrograms from each dataset

and goes on to quantify the amplitude statistics within each Doppler bin and how

these vary with Doppler and dataset.

4.2.1 CSIR Non-Coherent Data Analysis

The data was initially investigated to establish whether sea clutter was present and

the general statistical and temporal characteristics of the clutter, before further co-

herent analysis was completed. Figure 4.26 shows a flow diagram describing the key

steps in the CSIR non-coherent data analysis.
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Figure 4.26: Non-coherent data analysis flow diagram

The RTI plots from the four selected datasets can be seen in Fig. 4.27, 4.28, 4.29

and 4.30. These figures show the clear large scale structure of the sea surface and

the progression of waves through the range gates over the period of recording, ≈ 30

seconds.

Datasets 07 and 12 were recorded using an up-swell azimuth configuration, see

Fig. 3.5 and 3.6, this produces RTI plots which clearly show the modulation of the

swell structure produced by the presence of well developed waves, Fig. 4.27 and 4.29.

Datasets 10 and 15 were recorded with a cross-swell configuration. At these azimuth

angles coupling between the waves and the underlying modulation is less pronounced,

Fig. 4.28 and 4.30. This is due to multiple individual waves existing within a single

resolution cell; which is defined by the antenna azimuth beam width as well as the

pulse width used. Despite this, clutter is qualitatively visible within these RTI plots

but its periodic structure is not as significantly dominant in the image.
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Figure 4.27: CSIR dataset 07 RTI
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Figure 4.28: CSIR dataset 10 RTI
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Figure 4.29: CSIR dataset 12 RTI
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Figure 4.30: CSIR dataset 15 RTI

Following on from qualitatively establishing the existence of sea clutter within

these selected datasets statistical characterisation was performed. As in the SW2000

non-coherent anaylsis, Section 4.1.1, the K-distribution shape parameters from the

data were obtained. In this case the method of moments was used to evaluate the

shape parameters from the time series data within each range gate. This has been

completed for each datasets in turn and is shown in Fig. 4.31.

133



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

ν

Range gate

CSIR Datasets 07 & 12 moments fitted K−distribution ν vs. Range gate

 

 

07

12

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30
ν

Range gate

CSIR Datasets 10 & 15 moments fitted K−distribution ν vs. Range gate

 

 

10

15

Figure 4.31: CSIR Non Coherent data Datasets 07, 10, 12 and 15 moment fitted

shape parameter vs. range gate

There is no any overall increasing or deceasing trend in the shape parameters

obtained as a function of range gate. Comparing between datasets it is clear that

Evaluating the temporal correlation properties of the times series data is an impor-

tant component of sea clutter analysis. The following analysis reviews and compares

the temporal correlation properties of the 4 CSIR datasets. To quantify the tempo-

ral correlation of the clutter the ACF from individual range gates was generated, an

example plot from dataset 07 using data from range gates 10 to 15 is shown in Fig.

4.32.
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Figure 4.32: CSIR Dataset 07 ACF from range gates 10 to 15
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The ACF was evaluated using Fourier analysis and is defined as,

ACF = IFFT [[FFT (X − X̄)]2] (4.1)

Where X is the dataset input. It has been normalised for the maximum to be equal

to 1. The average ACF from all the range gates in each dataset was evaluated and

plotted on the same axis to compare the average temporal correlation characteristics

of the datasets, Fig. 4.33. The figure shows that dataset 07 and 12 have a strong

long term periodic structure that exists after the averaging over all range gates.

This means that the correlation of each range gate has a similar period in each range

gate across the whole dataset. In contrast datasets 10 and 15 have a flat average long

term temporal correlation with no periodic structure. All the datasets exhibit a large

initial short time deccorelation. This is the decorrelation of the speckle component

in contrast to the decorrelation of the texture component of the clutter present.
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Figure 4.33: CSIR Datasets 07, 10, 12 and 15 ACF - Averaged over all range gates

4.2.2 CSIR Data Doppler Analysis

This section details the Doppler analysis performed on the CSIR datasets. The

key processing stages are presented within the flow diagram seen in 4.34. The pre-

processing applied to the data is described in section 3.2, where the Fourier analysis

was applied in the short time domain to produce Doppler-time spectrograms for each

individual range gate within a dataset. A 64 point short time FFT was used to

obtain a higher Doppler resolution than the SW2000 data analysis, but maintain the

short time frame over which the sea clutter Doppler spectra is evaluated. In addition

to the change in Fourier transform window used an overlap of 50% was introduced

when generating the Doppler spectra from the time series values. The reasoning for
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applying an overlap to the discrete samples that are input to the FFT processing

is to reduce the artifacts that may be produced at the boundary between discrete

sample groups. The use of a 50% overlap in the FFT processing does mean that there

is a partial correlation between the adjacent blocks of Doppler-time data. Therefore

when a PDF is produced using the data from a Doppler bin all the samples are not

independent. This correlation issue is not considered to effect the resulting overall

statistical trends that are shown within this research.

Figure 4.34: Coherent data analysis flow diagram

Doppler-time spectrograms from a example range gate within each dataset are

shown in Fig. 4.35, 4.36, 4.37 and 4.38. Each spectrogram shows that sea clutter
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is present for the given range gate selected, with a CNR of ≈ 30 dB - 40 dB. The

centre of gravity of the Gaussian spectra is shown to have a net positive shift for

datasets 07, 12 and net negative shift for datasets 10 and 15. The Doppler resolution

of the spectra gives more detail in comparison to the SW2000 Doppler spectra. This

allows further extensive analysis on the behaviour of the sea clutter overall and how

it develops/varies over time.

The width and centre of gravity of the spectra is shown to dynamically evolve

with time as well as the CNR, which is known as non-stationarity. The breathing

of the PSD width and shifting of its centre of gravity is a key affecting factor on

the characteristics of the amplitude statistics variation with Doppler bins. This is

defined by the temporary shift of the spectra into the boundary Doppler bins which

are for the majority of the time thermally noise dominated, and for the other period

clutter dominated when the spectra shifts or expands into that Doppler frequency.

This shifting of the clutter into normally thermally noise dominated Doppler bins

produces a more spiky distribution, due to the occasional existence of high CNR

values in the Doppler bins.
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Figure 4.35: CSIR Dataset 07 Doppler-Time Spectrogram - Range gate 15
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Figure 4.36: CSIR Dataset 10 Doppler-Time Spectrogram - Range gate 15
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CSIR Dataset 12 Doppler−Time power plot (dB) Range gate 15
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Figure 4.37: CSIR Dataset 12 Doppler-Time Spectrogram - Range gate 15
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Figure 4.38: CSIR Dataset 15 Doppler-Time Spectrogram - Range gate 15

Further study of the Doppler spectra from all the ranges gates within each dataset

revealed interference within the spectra. This was shown to occur only in individual

specific range gates. Figure 4.39 (a) is a plot of each of the time averaged Doppler-

time spectra against range gates. Five of the ranges gates have a significant increase

in the averaged power across the whole Doppler spectrum. It is these range gates

that therefore must include interference affecting the average power. The effect is

seen more clearly when only the power from a single thermal noise limited Doppler

bin is plotted. Figure 4.39 (b) shows a slice of Fig. 4.39 (a) at Doppler frequency

-562.5Hz which is normally in the thermal noise floor area. The interference is ≈
10 dB greater than the thermal noise floor and exists at ranges 58,081m, 58,381m,

58,875m, 59,370m and 59,520m.
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Figure 4.39: CSIR Dataset 07 Averaged Doppler-Time Spectrogram vs. Range (a)

All Range gates (b) Slice of power profile at Doppler bin -562.5 Hz

This phenomenon is definitely not related to sea clutter and must have been

caused by an external RF source active during the experiments. Therefore a thresh-

olding technique was utilised to remove the individual Doppler PSD profiles in the

Doppler-time spectrograms for the range gates that are highlighted in Fig. 4.39.

Otherwise these high power interference signals would alter the evaluated statistical

behaviour of the sea clutter as a function of Doppler. Figure 4.40 shows the Doppler-

time spectra before (a) and after (b) this thresholding. Only a single Doppler spectra

was removed during this process, located at ≈ 13 seconds, but by completing the

thresholding the dynamic range to reduce from ≈ 45 dB to 30 dB. This process was

repeated for all range gates that showed interference in the averaged Doppler-time

spectra plots for all datasets prior to statistical analysis.
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Figure 4.40: CSIR Dataset 07 Doppler-Time plot from Range 58,085m (a) Before

Thresholding (b) After Thresholding

After the thresholding process was complete all datasets Doppler spectra was

ready for statistical analysis. The SSD fitting method was then applied to the ampli-

tude values within each Doppler bin, from the Doppler spectra of each range gates,

this was repeated for all 4 datasets. Initial qualitative checks on the fittings were

performed for each dataset to ensure that the data was well characterised by the

K-distribution at high CNR Doppler frequencies and that the thermal noise floor

was showing an expected Rayleigh distribution. Two examples plots from dataset

07, Fig. 4.41 (a) and (b), show the Log(PFA) vs. Threshold curves for both the data

and the SSD fitted K-distribution. The Doppler bin at -250 Hz is dominated by ther-

mal noise and fits well to the highest shape parameter value, 100, as expected. The
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187.5 Hz Doppler bin is clearly within the area that is dominated by a high CNR,

≈ 30 dB, see Fig. 4.35, and it seen to be well represented by the K-distribution.

There is a discrepancy between the fitted K-distribution curve and the data curve

at the 0dB threshold level. This is because the SSD fitting method used to select

the best representative curve is applied to samples at threshold level of 0dB and

greater. Data samples do exist at values less that 0dB but the aim of this work is to

characterise the behaviour of the tail of the clutter distribution. The 0dB values on

logPFA vs. Threshold plots shown represents the mean value within the normalised

dataset. Therefore this selected curve may not closely represent the data at 0dB in

comparison to other potential K-distribution curves, but its is the over all best curve

to represent the data when the emphasis is based on the tail of the distribution.

As well as these checks the mean SSD values for each fit performed was stored.

This information can be used to check if individual range gates or datasets the good-

ness of fit for the K-distribution to the data and flag up any issues.

142



0 2 4 6 8 10 12 14 16
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Threshold (dB)

L
o
g
(P

fa
)

CSIR Dataset 7 log(P
FA

) vs. Threshold − Doppler (dB) −250 (Hz) Range 58095.8 (m)

 

 

Data

K−dist with nu = 100

(a)

0 2 4 6 8 10 12 14 16
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Threshold (dB)

L
o
g
(P

fa
)

CSIR Dataset 7 log(P
FA

) vs. Threshold − Doppler (dB) 187.5 (Hz) Range 58095.8 (m)

 

 

Data

K−dist with nu = 0.6

(b)

Figure 4.41: CSIR Dataset 07 Log(PFA) vs. Threshold curve of data and SSD K-

distribution curve - Range 58095.8 (m) (a) -250 Hz (b) 187.5 Hz

The shape parameter around the peak CNR was given as 0.7 which matched

closely the SW2000 data result seen in Fig. 4.15 (b). This adds to credibility of

the analysis of the sea clutter statistical behaviour as two separate radar system

observing different seas both show similar results.

The SSD and moment fitted shape parameters from all Doppler bins within a

single example range gate in dataset 07 have been plotted in Fig. 4.42. The 1/ν

values increase to a maximum on the leading edge of the clutter PSD, agreeing

with the SW2000 analysis. The average PSD has a main Gaussian shape with an

additional shoulder protrusion on the positive Doppler edge, where the statistics are

most spiky. This structure may indicate a multiple Gaussian clutter spectra with
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a second lower amplitude Gaussian with a higher central Doppler frequency. Both

the SSD and the moment fitted shape parameters are shown in the figure and agree

closely with each other. The only separation between fitting results is seen in the

most spiky result at Doppler frequency 281.2 Hz, where the SSD gave 1/ν = 10 and

the moment 1/ν = 9.53. Even this is not a significant disagreement and amounts to

very little realistic dB difference in threshold at the operational PFA levels of a radar

system.
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Figure 4.42: CSIR Dataset 07 SSD and moment fitted 1/ν vs. Doppler (Hz) Range

58335.6 (m)

After verifying that the single range gate fits were giving comprehensible results

the analysis focused on the variation of the fitted shape parameter with range gate.

The SSD fit from all range gates have been plotted as a function of range and Doppler

in Fig. 4.43, 4.44, 4.45 and 4.46 for datasets 07, 10, 12 and 15 respectively.

These plots show the variation of the shape parameter with both Doppler and

range, giving a detailed insight into how the statistics are correlated. Within dataset

07 the most spiky component of the clutter is shown to consistently exist on the

leading positive Doppler edge, as seen in the example Fig. 4.42. It varies in width

from a single Doppler bin to covering an area of ≈ 200 Hz, and shifts its location

from +375 Hz to +200 Hz. A second less spiky ridge between 0 Hz and -75 Hz also

exists, this does not increase up to the maximum of 1/ν = 10, but peaks at 1/ν ≈ 5

and is less consistent in its existence.
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Figure 4.43: CSIR Dataset 07 SSD 1/ν vs. Doppler (Hz) and Range (m)

The inverse shape parameter variation from dataset 10, Fig. 4.44, shows that the

spiky section of the spectra has shifted to the negative side of the Doppler spectra

following the shift in the CNR power within this dataset, see Fig 4.36. At ranges

between 59,000 m and 59,200 m there is a significant increase in 1/ν at greater

negative Doppler that the body of the clutter, between -400 Hz and -700 Hz. This

is most likely to be non-sea clutter related phenomena, and not discussed further in

this comparative analysis. It is important to understand that other phenomena does

occur during clutter measurements and to remove factors that can not be attributed

to the clutter. As in Fig. 4.43 a two sided increase in 1/ν is shown either side of the

peak CNR, with a wider max 1/ν on the negative side of the peak CNR.
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Figure 4.44: CSIR Dataset 10 SSD 1/ν vs. Doppler (Hz) and Range (m)

Figure 4.45 shows the variation of 1/ν for dataset 12, this has the most spiky

statistics of all the CSIR datasets. Wide areas, ≈ 300 Hz, of maximum 1/ν values

exists across the spectra on both the negative and positive side of the peak CNR. As

in Fig. 4.43 for dataset 07 the positive Doppler leading edge of the clutter is shown

to have the most consistently spiky statistics. In addition to this large sections of

the negative Doppler spectra, around ranges 39,400 m to 39,700 m, are also shown

to have very spiky statistics.
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Figure 4.45: CSIR Dataset 12 SSD 1/ν vs. Doppler (Hz) and Range (m)
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The inverse shape parameter variation for dataset 15, Fig. 4.46, shows very

similar characteristics to dataset 10. This is to be expected as they both have the

same azimuth angle with respect to the swell. The peak 1/ν values are focused at two

points around 75 Hz and - 300 Hz, with the latter showing a wider increase in 1/ν

compared to the first ridge. A difference between the 10 and 15 datasets statistical

behaviour is that dataset 15 has a more prominent spiky edge to the negative Doppler

side of the spectra. Possibly an attribute of shifting closer to the radar. This may

have increased the possibility of detection of the faster moving components of the

clutter which contributed to the statistics within this region.

These results show that the cross swell configuration has a more consistent statis-

tical variation behaviour that changes very little with changing elevation angle (and

therefore grazing angle) and absolute range. Whereas the up swell azimuth results

have a much greater variability in the statistical variations with Doppler.
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Figure 4.46: CSIR Dataset 15 SSD 1/ν vs. Doppler (Hz) and Range (m)

To characterise the average variation of the statistics with Doppler the average

SSD and moment fitted 1/ν were evaluated. The moments fits were generated by

averaging the moment values from each range gates then producing the averaged 1/ν

from this, while the SSD fits were completed by averaging the ν values directly to

produce an average 1/ν variation. The averaged spectra from all the range gates were

also evaluated to plot along side the 1/ν variation. The plots showing the average

SSD fitted 1/ν, Moment 1/ν and PSD for all datasets can be seen in Fig. 4.47, 4.48,

4.49 and 4.50.

Each averaged inverse shape parameter plot shows a good agreement between

the SSD and moment fitted shape parameters, with the exception of dataset 12
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which has the largest disagreement in the spiky areas of the PSD. All the averaged

PSD spectra show general single Gaussian shape, that is slightly asymmetric with an

elongated side on either the positive (datasets 07 and 12) or negative (datasets 10 and

15) Doppler edge. As discussed previously this may indicate that a secondary less

powerful doppler component on the leading edge of the clutter is sometimes present.

Although due to the averaging process it is shown as a extension to the side of the

Gaussian shape.
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Figure 4.47: CSIR Dataset 07 Average SSD and Moment fitted 1/ν vs. Doppler (Hz)
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Figure 4.48: CSIR Dataset 10 Average SSD and Moment fitted 1/ν vs. Doppler (Hz)
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Figure 4.49: CSIR Dataset 12 Average SSD and Moment fitted 1/ν vs. Doppler (Hz)
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Figure 4.50: CSIR Dataset 15 Average SSD and Moment fitted 1/ν vs. Doppler (Hz)

The main peak 1/ν values from the datasets are shown in Table 4.2, along with

1/ν for the secondary peak if a second local maxima existed within the 1/ν values.

The table shows a clear mirroring in the locations of the 1st primary peak between

the two azimuth angles; with the exceptions of 07 (SSD) and 15 (Moment) peaks.

Datasets 07 and 12 had the largest 1/ν value as 281.2 Hz while datasets 10 and 15

have a peak at -281.2 Hz. The change in azimuth from 240◦ N to 307.5◦ N induced the

exact same shift in 1/ν at both ranges, which is reasonable to expect. The moment

estimation of the shape parameter is shown to always estimate a larger values for
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the 1/ν. The closest agreement occurred in dataset 10, ∆1/ν = 0.38, and the largest

difference was found in dataset 12, ∆1/ν = 2.24.

Table 4.2: CSIR Datasets Peak 1/ν values

Dataset 1st Peak 2nd Peak

1/ν Value Doppler Freq (Hz) 1/ν Value Doppler Freq (Hz)

07 (SSD) 2.04 250 N/A N/A

07 (Moment) 2.86 281.2 0.4 -31.25

10 (SSD) 0.76 -281.2 0.3 -31.25

10 (Moment) 1.14 -281.2 0.48 31.25

12 (SSD) 3.33 281.2 0.99 -93.75

12 (Moment) 5.57 281.2 1.56 -93.75

15 (SSD) 1.21 -281.2 0.89 62.5

15 (Moment) 1.70 -312.5 2.12 62.5

4.2.3 CSIR Data Analysis Summary

The analysis of the CSIR data successfully evaluated the variation of sea clutter with

azimuth angle with respect to swell and wind direction. The four key datasets selected

were found to be very suitable for sea clutter analysis and presented different char-

acteristic behaviour in the non-coherent and coherent analysis. The key differences

between the datasets was the azimuth and less so the range. All other parameters

were maintained including the day of measurement, allowing the assumption of the

sea being tested.

The non-coherent analysis showed that the average temporal correlation of the

sea clutter was very dependent on look angle with respect to the swell. A long term

(≈30 second) correlation in the clutter returns in datasets 07 and 12 demonstated

was clearly present.

The coherent analysis showed that the clutter in all cases fitted well to the K-

distribution at high CNR levels, after the removal of interference. The edge of the

clutter spectra was also shown to be the location of the most spiky statistics, agreeing

with the SW2000 results. The most spiky edge was the positive side for the up swell

datasets 07 and 12, and the negative Doppler edge for the cross swell datasets 10 and

15.

The most spiky clutter was shown to exist in the up swell dataset 12, which was

recorded at a range of 39448.7 m to 40947.7 m. With the main 1/ν peak almost

twice that of dataset 07 which has the same azimuth angle. The variability of the

1/ν results within dataset 12 were shown the be the most in comparison to all the

other dataset.

The cross swell 1/ν fits with Doppler and range gate from datasets 10 and 15
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were very consistent in Doppler location of the 1/ν peak and width of the increase

in 1/ν.

4.3 NetRAD Results

This section presents the analysis and results obtained from the NetRAD 2010

datasets which were defined in Section 3.1.3. The non-coherent time series data

analysis is performed initially, investigating the amplitude statistics of the clutter

present. This is followed by the Doppler amplitude statistical analysis and com-

parison between the 6 datasets. As well as comparing the monostatic and bistatic

recordings within each dataset.

The data was recorded as .bin files in a 16 bit unsigned integers, uncompressed

pulse form. This needed to be read in and manipulated to produce complex range-

time data before analysis could begin. Header files are saved with each binary record-

ing, these contain all waveform and configurable radar parameters. The ADC values

were offset by 2n−1, where n is the bits of the ADC, 14 in the case of NetRAD. In

order to recover the complex components of the signal a Hilbert transform was used

in the Matlab processing giving a complex array that is 1024 range gates by M pulses

recorded.

NetRAD does not record the actual transmitted signal due to limitations of the

system. Therefore a prior laboratory recorded version of the pulse transmitted, with

the correct pulse length, was used to perform the matched filtering of the received

signal. During this process the data was also passed through a low and high pass

filter to remove spurious components.

As the main focus of the NetRAD data analysis is the comparison of monostatic

and bistatic sea clutter at different bistatic angles it is important to address the

specific issues relating to bistatic experiments prior to analysis. By evaluating these

bistatic issues it is possible to confirm the validity of the results shown in Section

4.3.1 and 4.3.3.

A very important factor when evaluating bistatic data is to ensure that the data

from the seperate nodes corresponds to the same physical geolocation. This depends

on the reliability of the timing of the system and the correct selection of range gates

within each dataset. In bistatic radar experiments the area of interest for analysis is

bounded by the interaction between the transmitted and received beams. At these

ranges the SNR is a maximum for the bistatic node. Regardless of the configuration

the monostatic node data performs as a stand alone radar, so the data from all

range gates is valid for analysis. Although to allow for effective scientific comparison

between the phenomena observed by the two separate nodes only the monostatic

data focused around the intersection area has been selected. The range of interest

is defined in terms of the two way bistatic range for all NetRAD analysis, including
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the monostatic node. For the bistatic node this is the range from transmitter to

intersection point plus the distance from intersection to receiver. For the monostatic

node this is twice the normal accepted monostatic range of transmitter to target.

The ranges selected were done so using both geometry calculation to evaluate the

location of the intersection patch and qualitative analysis of CNR levels within the

bistatic RTI data itself, they are shown in Table. 4.3. As the bistatic angle increased

the number of overlapping range gates that could be used for analysis (due to having

sufficient CNR) reduced from 130 at β = 60◦ to 58 at β = 120◦. Even at β = 60◦

the number of range gates was still sufficient to allow for quantitative comparisons

between the datasets. The selected range gates represented an absolute range extent

of 342m and time duration of 40sec, which was adequate for characterisation of the

clutter in this configuration.

Table 4.3: NetRAD Datasets range gates of interest

Dataset Bistatic Angle Two-way Range (m) Number of Range gates

1233 & 1551 60◦ 3228 - 4002 130

1244 & 1603 90◦ 2310 - 2826 87

1253 & 1617 120◦ 1962 - 2304 58

Due to the 11◦ beamwidth of the antennas used the bistatic angle varied across

the clutter cell. This means that each range gate within the bistatic data contains

scattered returns from a range of bistatic angles. This was a physical limitation of

the system, the beam widths were selected to be a reasonable size to ensure that the

intersection area of the two beams was wide enough to allow for alignment.

4.3.1 NetRAD Non-Coherent data analysis

The following plots show the RTI from the range gates of interest in both the monos-

tatic (a) and bistatic (b) nodes from all the datasets, Fig. 4.51, 4.52, 4.53, 4.54, 4.55

and 4.56.

Dataset 1233 in Fig. 4.51 shows clear large scale wave structure within both the

monostatic and bistatic node. The CNR of the clutter in both cases is ≈ 40 dB, more

than sufficient for analysis. The wave fronts are different relative angles with respect

to the receiving antenna which is to be expected at the bistatic angle of 60◦. A

stationary line is shown in the bistatic data at ≈ 3250 m. This may be a fixed target

within the scene and data from this range gate has been removed from statistical

analysis of the sea clutter present.

The change in the angle of the wave front with bistatic angle can be seen by

comparing the wave front angle in the bistatic results from dataset 1233 and 1244,

Fig. 4.51 (b) and 4.52 (b). Dataset 1244 has a less steep incline in the wave fronts as
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the bistatic main beam has been altered to be directed closer to being perpendicular

to the incoming waves.

This change in angle is important, as the CSIR results show the angle with respect

to the swell changes the characteristics of the statistics significantly. The NetRAD

data presents and opportunity to study this variation in greater detail as three bistatic

angles are available in both polarisations.

The RTI plot from dataset 1253, Fig. 4.53 shows the wave structure within the

monostatic node, and part of the bistatic node. The bistatic results clearly have

additional phenomena occurring in the early range gates from 1900 m - 2100 m. This

may be due to the configuration bringing the intersection patch closer to the shore

line, or a spurious effect caused by switches within the radar.
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Figure 4.51: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation RTI

plots (a) Monostatic (b) Bistatic
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Figure 4.52: NetRAD Dataset 1244 Bistatic Angle 90◦ Horizontal Polarisation RTI

plots (a) Monostatic (b) Bistatic
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Figure 4.53: NetRAD Dataset 1253 Bistatic Angle 120◦ Horizontal Polarisation RTI

plots (a) Monostatic (b) Bistatic

The vertically polarised results in Fig. 4.54, 4.55 and 4.56 all clearly have clutter

present within them. Wider wave fronts are seen in these RTI plots in comparison

to the horizontally polarised data. This is accounted for by the difference in the

interaction of the vertically polarised EM wave with the sea surface.

For parts of the bistatic results in datasets 1603 and 1617 a similar effect as seen in

the beginning range gates bistatic 1253 data is shown. It is particularly prominent in

dataset 1617, ranging from 1900 m to 2150 m. This effect has the same characteristics

as seen in dataset 1253 and is assumed to have the same cause. It appears to be

increase with increasing β angle and therefore a reduction in bistatic range. During
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the statistical analysis of the data these effected regions are not included to avoid

corruption by this non-thermal noise component.
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Figure 4.54: NetRAD Dataset 1551 Bistatic Angle 60◦ Vertical Polarisation RTI plots

(a) Monostatic (b) Bistatic
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Figure 4.55: NetRAD Dataset 1603 Bistatic Angle 90◦ Vertical Polarisation RTI plots

(a) Monostatic (b) Bistatic
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Figure 4.56: NetRAD Dataset 1617 Bistatic Angle 120◦ Vertical Polarisation RTI

plots (a) Monostatic (b) Bistatic

4.3.2 Phase Correction

The bistatic data recorded using NetRAD was affected by the issue of phase drift.

This was introduced to the data by the GPSDOs timing equipment. The oscillators

at each node are completely separate GPSDOs and due to imperfections on the

synchronisation process they tend to drift in phase synchronisation. Hence there is a

difference in the frequency of each clock. The main repercussion of this phenomena

is the appearance of tramlines within the Doppler spectra.

The phase drifting issue has been rectified using Doppler post-processing on the

bistatic data prior to qualitative and statistical analysis was performed. The phase

of this direct breakthrough should be constant as the phase from a stationary target

should remain constant, as long as no changing multipath effects are present. The

phase of the direct breakthrough signal was extracted from the signal and used to

correct the phase of all the data in the bistatic node.

During the transmission from the monostatic node part of the signal propagated

directly into the sidelobe of the bistatic node. As the two nodes antennas were sta-

tionary during the experiments the relative distance between then should be constant,

hence so should the phase. The phase of this break through was shown to drift, and

it was this changing phase of the direct break through that was used to correct the

phase of the rest of the bistatic data.

The side lobe direct breakthrough was easily detectable within the bistatic record-

ing as it propagated along the shortest path to the bistatic node and hence stands

out on its own as the first signal to arrive at the node. Figure 4.57 (a) shows RTI

plot of all the 1024 range gates recorded from the first 2000 pulses within the bistatic

node in dataset 1233. A clear solid line of increased power is present around range
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gate 350. This is the direct break through of monostatic signal that has travelled

directly from node 3 into node 2 approximately along the baseline. The sharp in-

crease caused by the break through can also be seen clearly in Fig. 4.57 (b) which is

a range profile from a single pulse. This shows that only a single range gate contains

the breakthrough. These phase values have been used to correct the phase within

the rest of the data.

The sea clutter recorded in the bistatic node is shown to be visible between range

gates 600 to 750 in this dataset. This signal has propagated to the intersection point

and reflected towards the bistatic node, travelling significantly further.
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Figure 4.57: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation (a)

All range gate RTI (b) Single Pulse Power vs. Range

The phase taken from this single range gate from all pulses should show zero

change if there was no relative drift between the two oscillators, but when analysed

a drift is found. The phase from the direct break through range gate is shown within

Fig. 4.58. The shift in phase has a clear trend that represents the difference in phase

between the monostatic and bistatic node oscillators. By removing the phase change

from the direct break through range gate from the rest of the data it is possible to

compensate for this phenomena.
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Figure 4.58: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation -

Phase drift from direct break through signal

The before and after phase correction plot of Doppler-time from an example range

gate within dataset 1233 is shown in Fig. 4.3.2. The tramlines that appear in (a)

are removed completely by the phase compensation.
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Figure 4.59: NetRAD Dataset 1244 Bistatic Angle 90◦ Horizontal Polarisation Ex-

ample Doppler-Time spectra (a) Non-Corrected Phase (b) Corrected Phase

4.3.3 NetRAD Doppler data analysis

This section describes the processing results from the Doppler NetRAD data sets.

The order of the processing and analysis steps are shown in the flow diagram shown in

158



Fig. 4.60. The pre-processing to obtain the Doppler data was the same as applied to

the CSIR data described at the beginning of Section 4.2.2. The Doppler processing

used a 64 point short-time -55 dB Dolph-Chebyshev weighted window with 50%

overlap on all the time samples within each range gate.

Figure 4.60: NetRAD Coherent data analysis flow diagram

The Doppler-time spectrogram from an example range gate in both the monos-

tatic and bistatic nodes for datasets 1233, 1244, 1253, 1551, 1603 and 1617 respec-

tively are shown in Fig. 4.61, 4.62, 4.63, 4.64, 4.65 and 4.66.
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Figure 4.61: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation

Doppler Time plots from example range gate 3462 m (a) Monostatic (b) Bistatic
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Figure 4.62: NetRAD Dataset 1244 Bistatic Angle 90◦ Horizontal Polarisation

Doppler Time plots from example range gate 2544 m (a) Monostatic (b) Bistatic
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Figure 4.63: NetRAD Dataset 1253 Bistatic Angle 120◦ Horizontal Polarisation

Doppler Time plots from example range gate 2196 m (a) Monostatic (b) Bistatic
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Figure 4.64: NetRAD Dataset 1551 Bistatic Angle 60◦ Vertical Polarisation Doppler

Time plots from example range gate 3462 m (a) Monostatic (b) Bistatic
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Figure 4.65: NetRAD Dataset 1603 Bistatic Angle 90◦ Vertical Polarisation Doppler

Time plots from example range gate 2484 m (a) Monostatic (b) Bistatic
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Figure 4.66: NetRAD Dataset 1617 Bistatic Angle 120◦ Vertical Polarisation Doppler

Time plots from example range gate 2196 m (a) Monostatic (b) Bistatic

The amplitude statistics from all the NetRAD datasets have been evaluated using

the same methods applied to the CSIR dataset Doppler analysis, Section 4.2.2. An

example SSD fitted log(PFA) vs. threshold plot from in the outer thermally noise

limited Doppler bin at -234.375 Hz for both monostatic and bistatic nodes in dataset

1233 are shown in Fig. 4.67. The distributions were both fitted to the highest possible

K-distribution shape parameter allowable in the SSD fitting process. This shows

that both the monostatic and bistatic data have a well behaved noise floor within

the Doppler for dataset 1233. This check was repeated for all datasets to ensure that

similar interference issues that were seen in the CSIR data did not exist. During this
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check it was clear that interference was present within the monostatic node data for

datasets 1551, 1603 and 1617. A thresholding process similar to that used to remove

the CSIR coherent data interference was also applied to the monostatic data in these

datasets.
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Figure 4.67: NetRAD Dataset 1233 - β = 60◦ Horizontal Polarisation - Monostatic

and Bistatic Log(PFA) vs. Threshold data and SSD fitted K-distribution curve.

Range 3282m, Doppler - 234.375 Hz

After thresholding of the monostatic data in datasets 1551, 1603 and 1617 the

SSD and moment fittings methods were applied to all available data. The results of

the moment fitted shape parameters plotted against the range gates of interest and

Doppler bin are shown in Fig. 4.68, 4.69, 4.70, 4.71, 4.72, and 4.73. These show

clear characteristic shapes in the variation of the amplitude statistics that vary with

Doppler, as well as showing the variation that this behaviour has between monostatic

and bistatic data and bistatic angle.
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Figure 4.68: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation Mo-

ment fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic

The increased 1/ν values in a curved shape within in Fig. 4.68, between range

3800 m and 4000 m at a Doppler frequency -50 Hz to -200 Hz, stand out from the

bulk variation of ν. As it is at Doppler frequencies significantly separated from the

main clutter spectra then it will be considered to be a feature that was not generated

by sea clutter.
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Figure 4.69: NetRAD Dataset 1244 Bistatic Angle 90◦ Horizontal Polarisation Mo-

ment fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic
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Dataset 1253 β = 120° H Pol Bistatic Moments fitted 1/ν vs. Range and Doppler
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Figure 4.70: NetRAD Dataset 1253 Bistatic Angle 120◦ Horizontal Polarisation Mo-

ment fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic
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Dataset 1551 β = 60° V Pol Monostatic Moments fitted 1/ν vs. Range and Doppler
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Dataset 1551 β = 60° V Pol Bistatic Moments fitted 1/ν vs. Range and Doppler

 

 

−250 −200 −150 −100 −50 0 50 100 150 200 250

3300

3400

3500

3600

3700

3800

3900

4000

0

20

40

60

80

100

120

(b)

Figure 4.71: NetRAD Dataset 1551 Bistatic Angle 60◦ Vertical Polarisation Moment

fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic
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Dataset 1603 β = 90° V Pol Monostatic Moments fitted 1/ν vs. Range and Doppler
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Dataset 1603 β = 90° V Pol Bistatic Moments fitted 1/ν vs. Range and Doppler
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Figure 4.72: NetRAD Dataset 1603 Bistatic Angle 90◦ Vertical Polarisation Moment

fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic
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Dataset 1617 β = 120° V Pol Monostatic Moments fitted 1/ν vs. Range and Doppler
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Dataset 1617 β = 120° V Pol Bistatic Moments fitted 1/ν vs. Range and Doppler
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Figure 4.73: NetRAD Dataset 1617 Bistatic Angle 120◦ Vertical Polarisation Moment

fitted 1/ν vs. Range and Doppler (a) Monostatic (b) Bistatic

For the two datasets 1603 and 1617, Fig. 4.72 and 4.73, the 1/ν values are shown

to decrease significantly at shorter ranges. For dataset 1603 this occurs at ranges <

2650 m and for 1617 reduced values are seen for ranges < 2200 m. This significant

reduction in shape parameter is linked to the changes seen in the RTI plots for both

of these datasets, Fig. 4.55 and 4.56 respectively. At these reduced range for these

two datasets non-sea clutter affects are shown to dominate the RTI plots, and hence

the statistics of the data is also shown to change. In the further range averaged

analysis of these datasets these component of the data has been removed.

The significant amount of information that is shown in the shape parameter vs.

range and Doppler has been further summarised using averaged shape parameter val-
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ues from selected range gates. The average SSD and moment fitted shape parameters

for datasets 1233, 1244, 1253, 1551, 1603 and 1617 are plotted in Fig. 4.74, 4.75,

4.76, 4.77, 4.78 and 4.79 respectively.
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Figure 4.74: NetRAD Dataset 1233 Bistatic Angle 60◦ Horizontal Polarisation Av-

erage SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic
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Figure 4.75: NetRAD Dataset 1244 Bistatic Angle 90◦ Horizontal Polarisation Av-

erage SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic
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Dataset1253 Monostatic Average Inverse K−distribution shape parameter vs Doppler

 

 

−250 −200 −150 −100 −50 0 50 100 150 200 250
−40

−35

−30

−25

−20

−15

−10

−5

0

5

P
o

w
e

r 
(d

B
)

Average SSD fitted 1/ν

Average Moment fitted 1/ν

Average Doppler Power (dB)

(a)

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

1
 /

 ν

Doppler Frequency (Hz)

Dataset1253 Bistatic Average Inverse K−distribution shape parameter vs Doppler

 

 

−250 −200 −150 −100 −50 0 50 100 150 200 250
−40

−35

−30

−25

−20

−15

−10

−5

0

5

P
o

w
e

r 
(d

B
)

Average SSD fitted 1/ν

Average Moment fitted 1/ν

Average Doppler Power (dB)

(b)

Figure 4.76: NetRAD Dataset 1253 Bistatic Angle 120◦ Horizontal Polarisation Av-

erage SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic
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Figure 4.77: NetRAD Dataset 1551 Bistatic Angle 60◦ Vertical Polarisation Average

SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic
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Figure 4.78: NetRAD Dataset 1603 Bistatic Angle 90◦ Vertical Polarisation Average

SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic
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Figure 4.79: NetRAD Dataset 1617 Bistatic Angle 120◦ Vertical Polarisation Average

SSD and Moment fitted 1/ν vs.Doppler (a) Monostatic (b) Bistatic

A key characteristic that is obvious when comparing the monostatic and bistatic

result, in the majority of cases, is that the monostatic 1/ν variation shows a double

peak, whereas the bistatic result has a single peak. This comparison is clearest in

datasets 1233, 1244, 1551 & 1603 where both SSD and moment fitted 1/ν values

show a double peak in the monostatic case and single in bistatic.

In datasets 1233 and 1244 there is a wide increase in the moment 1/ν values in

the bistatic case to the left of the single peak, ≈-175 Hz to -50 Hz for 1233 and ≈-125

Hz to -25 Hz for 1244, but this has a very different characteristic in comparison to

the clear double peak seen in the monostatic case.

The two datasets that do not have double peaks in the monostatic are 1253 and

1617. Dataset 1253 shows single peak in the SSD 1/ν values, the moment fitted 1/ν
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values do have a secondary peak that is very low relative the to main peak. In the

case of the 1617 dataset a single peak is shown in both the SSD and moment fitted

values. The loss of the second peak was not due to a reduction in CNR as both

datasets have CNR levels that are comparable to the other datasets. A reason for

this change could be that at the geometries used to generate these datasets the sea

conditions are altered. As the bistatic angle increases from 60◦ to 120◦ the patch of

sea illuminated is shifted towards the shore. This shift may be causing the change in

the 120◦ datasets 1253 and 1617 as the sea clutter is now very much in the littoral

environment.

When comparing the SSD fitted peak 1/ν values between monostatic and bistatic

datasets the bistatic data is shown to be less spiky for β = 90◦ & 120◦, but more

spiky for the β = 60◦ case in both polarisations.

4.3.4 NetRAD Data Analysis Conclusions

The analysis showed a direct comparison of how spiky the clutter distributions were

as a function of Doppler for both the monostatic and bistatic case. As the datasets

were measured on the same day within hours of each other the assumption is made

that the same sea state is maintained between datasets. This is assumption is re-

inforced by the meteorological measurements, seen in Table. 3.12, which show the

conditions remained ≈ the same between measurements. This is of significant impor-

tance as understanding how the amplitude distributions vary with β will enable radar

engineers to design systems that can use this information to operate at β angles that

minimise the spiky clutter. Therefore allowing a reduction in the threshold level set

for the same PFA which will make the system more sensitive to detections of targets

within the clutter.
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Chapter 5

Modelling and Simulation of Sea

Clutter

This chapter looks at a technique developed by S. Watts to model and then simulate

coherent sea clutter spectra. It describes an implementation of that model and shows

its application to a wider range of clutter data than that used by S. Watts. This

work is able to show connections between some of the parameters which is a step

towards reducing the number of required parameters.

The model is based on a Gamma distributed coherent texture with a Gaussian

shape PSD that varies in location and width in time. The Gamma distributed texture

links to the K-distribution which uses a Gamma texture and a Rayleigh speckle

component, Section 2.3.4.

As has been described previously it is an important scientific and radar engineer-

ing based objective to classify the behaviour of sea clutter. This knowledge can then

feed into developing models that can represent both the quantitative and qualitative

qualities of sea clutter. These models can be used to simulate sea clutter samples

under a number of input conditions. By simulating sea clutter in different conditions

it is possible to test new algorithms or radar hardware, therefore minimising the time

consuming and expensive process of real world trials, [5]. These results from using

simulated sea clutter data can give predicted performance results or allow for testing

of new algorithms, which is vital when evaluating a maritime radar.

The model, applied in this work, uses a number of input parameters taken from

real sea clutter Doppler spectra to simulate coherent clutter which aims to replicate

the statistics of the original data. The simulated clutter is well representative of both

the qualitative shape, the amplitude values, correlation and variation in statistical

characteristics with Doppler.

To characterise the model the input parameters required will first be defined. The

mathematical techniques used to simulate the coherent clutter are then detailed, in

Section 5.1. Once the model is fully described real sea clutter data is used to extract

the relevant characteristic parameters needed as inputs (Section 5.2). The methods
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of extraction of each input is detailed, demonstrating example parameter values for

each component. The variation of the input parameters within and between datasets

is also a key point of discussion in this section. Finally the simulation process is

explained and the resulting simulated sea clutter spectra are compared to the original

input Doppler spectra, in Section 5.3. Both the real values and the statistical nature

of both data and simulation are compared.

The key strength of this model it is that is capable of reproducing the key features

that are observed within real sea clutter datasets, as well as the behaviour of the

statistical variation with Doppler. The key features extracted include :

• Asymmetric shape observed within the Doppler PSD.

• The variation of the clutter spectra with time due to its non-stationarity. Which

is seen via the widening, shifting in centre of gravity and contracting of the

spectra in time.

• The variation in amplitude statistics behaviour with Doppler observed in real

data. See Section 4.2.2.

Additional recent work on modelling sea clutter was developed within [94]. This

does also allow for the generation of k-distributed sea clutter, but does not create

continuous coherent sea clutter samples that are directly comparable to real observed

spectra.

5.1 Coherent sea clutter model description

The model applied in chapter was first proposed by S. Watts in [11] and later more

fully defined within [123]. It was originally based on qualitative and quantitative

analysis of the structure of temporal variation of sea clutter Doppler spectra within

an individual range gate. The computer code to execute the simulation model for this

work was generated independently from the original work. A thorough understanding

of the method had to be achieved in order to be able to reproduce it, so this chapter

contains some more explanations of some parts of the process than is found in the

references. The model was then was applied to further datasets than those in [11] to

analyse the effectiveness of the model under a wide range of conditions.

The first set of data originally used in [11] was taken from the CSIR 2006 database

(CFC17-001). For the work shown in this thesis the data was selected from the CSIR

2007 sea clutter database, which was described in Section 3.1.2. Both the key four

datasets extensively analysed in Section 3.1.2 as well as the additional three secondary

datasets defined in Table 3.4 are used in this section. This data is well suited to this

modelling process as the 2007 CSIR datasets selected were recorded specifically for

sea clutter analysis and they have similar properties to the 2006 dataset which has
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been proved to be suitable for this task. A key advantage is that further testing of

the model and its effectiveness with varying datasets can be completed.

By using all eight datasets it is possible to compare the performance of the sim-

ulation model as a function of both range and azimuth. In particular the secondary

datasets give an additional three sample location in azimuth, and therefore bearing

with respect to wind and swell directions. The azimuth of each measurement as well

as the wind and wave directions are shown in Fig. 5.1. The wind and swell bearings

for the 2007 data were 157.5◦ N and 235◦ N respectively. The wind parameters were

measured at the radar site itself, while the swell azimuthal direction was measured

at −33.8648◦ S Latitude and 18.3302◦ E Longitude, which is approximately 20km

south along the coast from the radar location. Note that the figure does not show

the range swath extent to scale, only a unit length is used for each marker. This is

because the purpose is only to demonstrate the azimuth of the datasets with respect

to the wind and sea direction.
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Figure 5.1: CSIR datasets azimuth direction as well as wind and wave azimuth

directions

The construction of the model is based on the following components:

• The texture of the sea surface.

• The correlation of the texture.

• The speckle.

• The behaviour of the individual Doppler spectra with time.

Both the non-coherent and coherent properties of the real sea clutter data are

required as inputs to the model. Using the compound K-distribution as the basis
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for the model, the sea clutter texture is defined as a correlated Gamma distribution

with a given shape parameter. The Doppler component of the clutter is defined as a

Gaussian with a defined location in Doppler and width. This Doppler spectra is then

combined with a Rayleigh distributed speckle component producing a joint texture

plus speckle Gaussian shaped Doppler spectrogram.

One of the fundamental components that this clutter model introduces is the link-

ing between the centre of gravity of the Gaussian Doppler spectra and the intensity

values of the Gamma texture. As the intensity of the Gamma texture increases so

does the centre of gravity of the Gaussian PSD. Prior to this model no proposed

linked between these two characteristics existed.

In the process of constructing the model the texture of the simulated clutter is

produced first. To do this the following inputs are required: number of samples

needed, the Gamma texture shape parameter of the texture and correlation. For

each time-series of PSD which is simulated, a single sequence of properly-correlated

Gamma distributed samples is required. These samples will then be weighted by

a Doppler spectrum window. To produce correlated Gamma samples a Memoryless

Non-Linear Transform (MNLT) has been used, in a similar approach described in [96].

This method uses an input of normally distributed samples and outputs Gamma

distributed values with a desired shape parameter. The key relationship use for

converting to a Gamma distribution is,∫ ∞
η

Pdist(η
′)dη′ =

1√
2π

∫ ∞
x

exp(
−x′2

2
)dx′ =

1

2
erfc(

x√
2

) (5.1)

where the PDF of the values η is the required distribution PDF Pdist(η). The

second equality shows the complimentary error function, erfc. This means that the

complementary quantile function of the desired distribution must be,∫ ∞
Qdist(ξ)

Pdist(η)dη = ξ (5.2)

where Qdist(X) is the complementary quantile function. Using this an MNLT can

be defined that uses an input of Gaussian distribution random samples and produces

samples with the desired distribution, Gamma in this case.

η(x) = Qdist(
erfc( x√

2
)

2
) (5.3)
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Figure 5.2: Example input Gaussian samples and resulting output Gamma samples

with given shape parameter

Using this transform the output samples will be Gamma distributed with a given

shape parameter. Figure 5.2 shows the Gaussian samples used to generate Gamma

samples with a shape parameter of 1.5. The accuracy of this method of simulating

Gamma distributed samples was tested by generating 1x105 samples with a range

of shape parameters and using method of moments to compare the estimated shape

parameter with the input desired shape parameter. This was repeated 100 times for

each shape parameter and the average difference between input and estimated shape

parameter was evaluated as a function on input shape parameter, see Fig. 5.3. This

shows that the difference is <0.003 for all shape parameters between 0.1 and 5.
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Figure 5.3: Average difference between input shape parameter and estimated shape

parameter of Gamma distributed samples

An important issue is that the generated Gamma distributed samples do not

have the same correlation as the input Gaussian samples used to generate them.

The MNLT process of converting the samples from Gaussian to Gamma distributed

does not maintain the correlation. The method used to overcome this is to apply a

modified correlation to the input normal distributed samples prior to their conversion

to Gamma distributed samples. A transfer function from the input correlation to

output correlation was used to map the relationship between the desired ACF and

the required input modified ACF prior to MNLT. This was defined in [96] as the

following,

< η(0)η(t) >=
1

π

∞∑
n=0

RG(t)n

2nn!
(

∫ ∞
−∞

dx exp(−x2)Hn(x)Qdist(
erfc(x)

2
))2 (5.4)

where RG(t) is the ACF value at a given lag (t) and Hn is the Hermite polynomial.

This integral was evaluated numerically in Matlab to produce a lookup table for

correlation values relating an input ACF to the output ACF after MNLT processing.

The numerical evaluation was completed for increasing values of n, as the series is

rapidly convergent, especially when ν > 1, only a few increments of n are required

obtain a very accurate solution. It is stated that for ν = 2 the first two terms of this

series contain 92% of the output correlation function [23]. The relationship evaluated

for a series of shape parameters (0.1, 0.2, 0.3, 0.5,1, 2, 3, 5 & 10) can be seen in Fig.

5.4.
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Figure 5.4: ACF conversion function between input ACF and output ACF from a

MNLT transform - Using a range of shape parameters

An initial test produced Gamma samples from input correlated normal distributed

samples. The correlation applied was modified from the actual desired correlation

using the mapping function seen in Fig. 5.4. A comparison of the desired ACF, the

modified input ACF and the output ACF after MNLT processing can be seen in Fig.

5.5. The desired correlation was defined as a exponentially decaying cosine function,

ACFDesired = cos(
x

100
) exp(− x

400
) (5.5)

This is because qualitatively sea clutter correlation is reasonably represented by

a this function. The desired and actual output ACF in Fig. 5.5 are very similar

showing that the process is successfully able to produce correlated Gamma samples.
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The actual input Gaussian correlated samples and the output Gamma correlated

texture samples are shown in Fig. 5.6. The Gamma samples in this figure represent

typical texture amplitude values that would be used in this model to simulate the

clutter.
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Figure 5.6: (A) Example simulated correlated Gaussian samples with modified ACF

and (B) Gamma samples with ν = 1 and desired ACF

To generate individual short time spectra from the extracted parameters the M

texture samples were weighted using a varying Gaussian PSD defined over N points.

This produces a set of Doppler spectra of size M x N where N is the number of

Doppler bins present.
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Each of the Gaussian PSDs is random with defined mean width and centre of

gravity. The width of the Gaussian is obtained from normally distributed randomly

varying value with a set mean and variance. The mean and variance are set by

the input data that is being simulated. The model applies a correlation to the

width values to ensure a smooth transition of spectra widths from each subsequent

spectra. This is achieved by under sampling the required spectra width values, M,

and interpolating between them. In this case every tenth width value was generated

and then interpolation was applied to produce the intermediate values.

In the sea clutter model the centre of gravity of each Doppler spectrum is linearly

related to the intensity of the spectrum. This was defined from qualitative obser-

vations of the spectra’s relationship with intensity, where a trend was observed in

the time domain of an increase in the PSD intensity this was linked directly to an

increased shift in the PSD centre of gravity away from its long term mean value. The

linear relationship is generated from using a straight line fit to intensity vs. centre

of gravity samples. The Gamma intensity value for the given PSD being simulated

is then used to define its centre of gravity using the linear relationship.

All these values are linked together to produce a simulation of a shifting breathing

correlated Doppler spectrum. As noted above, the shape of the spectrum of the

texture is assumed to be Gaussian. This is mathematically represented by,

Gsim(f, x, s) =
x√
2πs

exp[−(f −mf (x))2

2s2
] (5.6)

where Gsim is the simulated intensity of the texture within a given Doppler bin,

x is the mean intensity (defined by the texture), f is the Doppler bin frequency, mf

is the centre of gravity of the Gaussian spectra and s is the standard deviation width

of the spectra. The mf value is related to the intensity through the linearly fitted

parameters,

mf = A.x+B (5.7)

where A and B are defined from fits to the input data values. The spectrum width

itself is a random variable with a Gaussian distribution and with a given PDF,

p(s) =
1√

2πσs
exp[−(s−ms)

2

2σ2
s

] (5.8)

where ms is the mean spectrum width and σ2
s is the variance of the spectrum

width. Both of which are obtained from analysing the input clutter spectra that is

being simulated, see Section 5.2.

The speckle component was then applied to the values of Gsim to ensure both

texture and speckle components are present as defined by the K-distribution model.

The speckle is represented by a complex independent normally distributed I and

Q values. To include the speckle the product of the Gsim array and this I and Q
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component speckle was used.

As in a real radar system added thermal noise was introduced to the resulting

texture plus speckle array. This was done at a level that gave the desired CNR for

the simulated clutter. The thermal noise was summed with the texture and speckle

array to produce the final resulting fully simulated spectra.

5.2 Extraction of parameters from real sea clutter

As defined in the model description, [123], the required parameters for simulation

include non-coherent time series values as well as inputs generated from the Doppler

analysis. The full list of each parameter needed are listed as follows:

• Non-coherent data parameters:

– Gamma shape parameter

– Temporal ACF of texture

• Doppler data parameters:

– Centre of gravity of the PSD

– The 3dB widths of each spectrum:

∗ Average of the width values

∗ Variance of the width values

– Linear relationship between PSD Centre of Gravity and Amplitude

– CNR of spectra

∗ Relative CNR can be used. It is also possible to correct for absolute

signal levels to model the correct levels for a particular radar system.

The following Sections, 5.2.1 and 5.2.2, show examples of each of these parameters

in the order defined here. The example dataset selected is 07 from the CSIR 2007

dataset, each of the parameters has example plots using this dataset. In addition to

showing examples plots of the parameters the methods used to generate them have

been described.

5.2.1 Non-coherent data parameters

The first parameter defined was the non-coherent data texture Gamma shape param-

eter and the ACF of the texture, for a given range cell. To ensure that the texture

component of the data was the focus of this analysis block averaging was imposed

on the data with a window of length 64. This removed any speckle component from

the time series data leaving only the texture component, as speckle is substantially
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removed via averaging. An example of the range gate amplitude profile before and

after block averaging can be seen in Fig. 5.7. This shows an average shape parameter

of 2.17 over all range gates. Some marked increase from this average is seen at range

gate ≈ 90 where the values increase up to a maximum of 6. This is unexpected

as the data recording is sufficiently long for a number of wave fronts to propagate

through each range gate over its duration. Meaning that the same wave fronts would

have propagated through successive range gates and should not have induced any

markedly different statistics while passing through each range gate. The increase at

range gate 90 onwards has been noted and the simulation process for these range

gates will be monitored later.
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Figure 5.7: CSIR dataset 07 range gate profile before and after block averaging

The Gamma shape parameter values are then obtained from this texture com-

ponent using moment analysis, which is defined in Section 2.3.4. The relationship

between the Gamma shape parameter and the moments of the data is seen in Eqn.

3.9. Using this the moments of the each range gate of data were used to define the

Gamma distribution shape parameters. The defined Gamma shape parameters from

all range gates within dataset 07 are shown in Fig. 5.8.
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Figure 5.8: CSIR dataset 07 Gamma shape parameter vs. range gate

The number of samples within each range gate that were used to estimate these

Gamma shape parameters was 1845. To evaluate a predicted error in this mea-

surement a Monte Carlo simulation was used to estimate the predicted error in the

moment estimated shape parameter as a function of shape parameter. 1845 Gamma

simulated samples with a defined shape parameter were input to a moment estimator.

This process was repeated 1000 times for each shape parameter. Shape parameters

between 0.1 and 6 were tested as all the results within Fig. 5.8 reside within this

range. The results from the estimation in error are shown in Fig. 5.9. This shows that

the estimation error increases with shape parameter, but for the same size sample

set all errors should be below 0.18.
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Figure 5.9: Monte Carlo estimated error in moment shape parameter estimation

These shape parameters were then used as inputs for simulating the Gamma

distributed correlated components. As described in Section 5.1 the Gamma texture

samples also need to be correlated. The ACF of the texture was defined using the

same techniques applied in Section 4.2.1. An example ACF from the texture samples

within a single range gate in dataset 07 is shown in Fig. 5.10.
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Figure 5.10: CSIR dataset 07 ACF of texture component from range gate 10

The ACF shows a typical two component structure as predicted by previous em-

pirical results, [23]. The fast reduction after the first few lag shifts is the decorrelation

of the residual speckle component, while the long scale sinusoidal variation is due to

the texture component. The tested artificially generated ACF applied, Eqn. 5.5
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in Section 5.1, has a similar decaying sinusoidal structure. Therefore the methods

applied should be able to replicate the real clutter correlation without any problems.

5.2.2 Doppler data parameters

The input Doppler spectra used was exactly the same as that used in the previ-

ous Doppler analysis in Section 4.2.2. The Doppler data is represented by a 64

Doppler bin by ≈ 1845 individual PSDs for each range gate. For this analysis prior

to obtaining parameters the Doppler spectra was averaged using a window size of 10

consecutive Doppler spectra. This reduced the originally amount of 1845 individual

PSDs for each range down to 184. This method was also applied in the work seen

in [11]. The averaging was completed because each spectrum is generated from 64

consecutive samples, with 50% overlap at a PRF of 2 KHz, meaning it covers ≈ 16ms

in the time domain. This makes each spectra a noisy representation of the actual

local spectrum. Therefore by averaging over 10 successive spectra, 128ms in time, a

more stable representation of the clutter spectrum is obtained. An example of the

short time Doppler spectra before and after the block averaging can be seen in Fig.

5.2.2 (a) and (b) from range gate 10 taken from dataset 07.
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Figure 5.11: CSIR dataset 07 Doppler-time spectra (a) Before averaging (b) After

block averaging

The averaged spectra from each range gate was then analysed to obtain the centre

of gravity as a function variation across all the spectra from a given range gate. This

centre of gravity was evaluated using the following equation,

xCoG =

∑n
i=1 (PSDi.Fi)∑n

i=1 PSDi

(5.9)

where xCoG is the frequency value of the PSD centre of gravity, PSDi is the PSD
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power value for Doppler bin i and Fi is the Doppler frequency of Doppler bin i. The

results from multiple range gates within the CSIR 2007 dataset 07 can be seen in

Fig. 5.12.
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Figure 5.12: CSIR dataset 07 averaged PSD spectra centre of gravity vs. PSD index

from single range gate

The model assumes a linear relationship between the centre of gravity and the

intensity of each spectra. This was first proposed by S. Watts within [11] and has

been shown to be valid in further publications [123, 124]. The values shown in Fig.

5.12 were plotted against the intensity of the PSDs and a standard linear regression

fit [?] was applied, see Fig. 5.13. The scaling of each axis within Fig. 5.13 is different

to allow the whole dataset to be clearly shown within the plot. The linear fit, y = A

+ B.x, for range gate 20 was found to be y = 16.6x + 34.2.

The apparent perception that some extreme values are being neglected in the fit

within Fig. 5.13 is resolved when we appreciate that there is actually a high density

of point clustered near the line. This is particularly true for intensity values between

2 - 4 and Doppler shifts between 50 - 150 Hz. The confidence in the fits applied is

further enhance when observing the consistence within the averaged fitted parameter

values shown later within Fig. 5.19 and Fig. 5.20.

The samples within Fig. 5.13 show a large standard deviation from this linear

relationship, particularly at lower intensity values. It is shown that for the larger

intensity values a more direct linear relationship is apparent in the few large intensity

values. This shows that at the lower intensity values of the texture the clutter is

likely to have a larger standard deviation from the averaged offset in Doppler. As

the intensity increases it is the fewer high intensity texture events that produce a

clearer change in the spectra centre of gravity that results in the main body of the
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sea clutter shifting out in Doppler from its mean location. The importance should

therefore be place on ensuring the linear fit follows the trend of the few large intensity

values while being centrally located within the bulk of the numerous lower intensity

values.
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Figure 5.13: CSIR dataset 07 PSD intensity vs. centre of gravity

Both of the fitted linear parameters A and B have been plotted as a function of

range gate in Fig. 5.14 from dataset 07. The mean and standard deviation values

of A are 62, and 23.3, for B the same values were 11.1 and 5.6 respectively. The

gradient of the fit (B) is consistently positive for all range gates. This shows that the

linear fit was always found to have the same positive sloping value which validates

that the major axis of the cluster of points is always in the same positively sloping

direction.
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Figure 5.14: CSIR dataset 07 Linear fit parameters A and B vs. range gate

The linear fit process was then completed on all four CSIR datasets. The first

comparison is between the plots of intensity vs. centre of gravity plots from individual

example range gates, as in Fig. 5.12 for dataset 07. The plots for datasets 10, 12 and

15 are seen in Fig. 5.2.2 (a) (b) and (c). Similar to the dataset 07 result, Fig. 5.13,

these example plots all show a large dispersion in the data points, in particularly

for the lower intensity results. Again the confidence in the validity of these fits is

reinforced when the overall averaged values are compared with the bearing used when

the data was recorded. The clear trends between datasets show that the assumption

that a linear fit can be effectively applied to the data is legitimate.
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Figure 5.15: CSIR datasets centre of gravity of PSD plotted against intensity with

linear fit applied (a) Dataset 10, (b) Dataset 12, (c) Dataset 15

The linear fits as a function of range gate from dataset 10, 12 and 15 can be seen

in Fig. 5.16, 5.17 and 5.18 respectively. The additional datasets 08, 09 and 11 have

not been plotted here as do not give any additional information that can not already

be seen within these figures. All datasets show a similar trend in parameter fits across

range, with no net mean increase of decrease shown as a function of range. In some

cases it is apparent that consecutive range gates show a correlation in parameters

are a function of range over a short number of range gates. An example of this is

the A and B parameters in range gates 2 to 6 in Fig. 5.16. The A parameters are

shown to increase from ≈ -100 to ≈-55, while the B parameters decrease from ≈ 1 to

≈ -8. This correlation shows that, over short ranges, there is a relationship between

the Doppler spectra of consecutive range gates that results in a trend in the fitted

parameters. The sinusoidal shape of parts of Fig. 5.14 also agree that a correlation

exists between the fitted linear parameters.
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Figure 5.16: CSIR datasets Linear fit parameters A and B vs. range gate - dataset
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Figure 5.17: CSIR datasets Linear fit parameters A and B vs. range gate - dataset

12
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Figure 5.18: CSIR datasets Linear fit parameters A and B vs. range gate - dataset

15

The averaged values from all the linear fits in each dataset, including the addi-

tional datasets 08, 09, and 11, were evaluated and the results are shown in Table

5.1. The mean A parameter values are shown to decrease with range, seen from the

direct comparison of same azimuth datasets 07 & 12 and datasets 10 & 15. The

fractional change in A being 4.5% for datasets 07 to 12 and 21.57% for datasets 10

to 15. This shows that the change in A parameter is more significant for the cross

swell measurements than the up swell configurations.

The contrast between B values at the same azimuth shows a different behaviour

in comparison to the variation in A. Dataset 07 and 12 have a difference of -72%

and datasets 10 & 15 have a difference of -97%. These are much more significant

percentage changes showing a greater sensitivity of the B parameter to a change in

range.

Table 5.1: CSIR 2007 Datasets mean fitted linear parameters
Dataset Mean B Parameter Value Mean A Parameter Value

07 11.1140 61.9905
08 9.5792 -6.5870
09 1.3851 -48.7758
10 -2.5290 -81.6609
11 -3.7338 -95.8923
12 3.0944 58.9520
15 -0.0672 -64.0470

The relationship between the mean parameters shown in Table. 5.1 and the

bearing used for each given dataset was then investigated. Figure. 5.19 and 5.20
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show the A and B parameters respectively, plotted against the bearing of antenna

during the recording of that dataset.

The average A parameter fits, Fig. 5.19, from all datasets show a close agreement

for the two pairs of datasets at matching bearing angles (07 & 12) and (10 & 15).

As well as a definite trend in relationship between A and bearing. To quantify the

relationship with bearing a quadratic fit was applied to the parameters A vs. bearing

data points. The results of this fitting gave the following relationship,

A = 0.0148B2
earing − 10.13Bearing + 1636 (5.10)

Where Bearing is the azimuth bearing value in degrees. This fitted curve was

found to have a root mean square error (RMSE) of 7.79. This shows a reasonable

agreement to the trend present and shows a clear quantified relationship between

A and bearing. As the bearing from the radar is a circularly wrapped metric the

relationship itself will alter if evaluated over a large enough azimuth variation. With

expectation that at the inverse angle, 180◦ from the original, the linear relationship

would have the same values but negative (or positive if they were originally negative).

The samples in between these opposite angles would presumably produce a sinusoidal

variation. This is not covered here as data was not available at any further azimuth

measurements.
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Figure 5.19: All CSIR Datasets average linear fit parameter A vs. bearing

For the B parameter values, Fig. 5.20, the variation in average value for the at

the same azimuth is much greater. For datasets 10 and 15 they both appear to still

lie within a quadratic trend, but datasets 07 and 12 have a significant variation. It

appears that the average B parameters from dataset 12 do not fit the trend set by

all the other datasets. The reason for dataset 12 not adhering to the trends seen in
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the other datasets may be due to a missing unknown parameter that has not been

included within this model.
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Figure 5.20: All CSIR Datasets average linear fit parameter B vs. bearing

The same method was used to fit to the B parameter values, but the outlying odd

result from dataset 12 was removed from the fit. This gave the following relationship,

B = 0.0005629B2
earing − 0.5024Bearing + 100.3 (5.11)

The fit was found to have a RMSE of 2.02 mean sum square difference from the

least squared fit method. To directly compare both fits the R2 values were evaluated

and found to be 0.99 and 0.937 for the A and B parameters respectively. This shows

a better fit to the quadratic shape was found for A parameters, although both fits

are very good, therefore a clearer relationship between bearing and this parameter is

present.

These two figures, 5.19 and 5.20, clearly show that the parameters are bearing

dependent. As the bearing of the antenna increased from 240◦ (N) to close to 330◦

(N) both parameters reduce. These parameters will be dependent directly on the

wave and wind directions, hence will have a peak when the wind and wave force

the sea Doppler to have a maximum shift in the PSD centre of gravity will large

intensity spectra. Datasets 07 and 12 are measured with an azimuth facing into the

swell direction, hence the Doppler will be larger in comparison to the cross swell

azimuth used for datasets 10 and 15. The results found from these mean linear fits

agree with this hypothesis.

The mean linear fit values from all seven CSIR datasets have been plotted against

each other to visually compare the parameters as a function of dataset, Fig. 5.21.
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When comparing parameters generated from the same azimuth measurements it is

clear that the average A and B from datasets 10 and 15 show a much closer agreement

in comparison to datasets 07 and 12. These parameters have similar average A values

and markedly different B values. Highlighting that the potential error in defined

parameters or disagreement to this proposed quadratic link between the A and B

parameters comes from the B values.
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Figure 5.21: All CSIR Datasets Average linear fit parameters A and B vs. range gate

As seen from the B parameter fits the dataset 12 was an odd result. Therefore

for this A vs. B plot a quadratic fit was applied to all the datasets except this one.

The relationship was found to be,

A = 0.248B2 + 6.91B − 67.13 (5.12)

The fit was found to have an RSME of 21.62. The relationship between A and B

reduces the complexity of the model as they are no longer independent parameters

but a defined by the single relationship seen in Eqn. 5.12. This is a positive improve-

ment for the simulation model as it allows the clutter to be described with one less

independent component, improving the efficiency of the model.

It is also theorised that the relationship between A and B is probably related

to the sea conditions. With emphasise based particularly on wind speed as this has

a significant influence on the Doppler spectra of the sea. As the data used for this

research was all collected on the same day using the assumption of the same sea state

for all datasets this can not be tested. Further investigations into the variation of A

and B with sea conditions would certainly be a worth while expansion to this work.

The next parameter extracted from the data was the 3 dB width of each PSD as
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well as the variance of this width. This was achieved by interpolating the averaged

spectra in the Doppler domain by a factor of 10. A spline interpolation was used,

with the general Gaussian shape of the PSD this was assumed to represent the data

sufficiently. The interpolation gave a much higher resolution in Doppler, thus allowing

the width of the assumed Gaussian PSD to be defined with greater accuracy. The

width of a Gaussian at the half power point, equivalent to -3dB, in the linear domain

is:

∆x = 2σs
√

2 ln 2 (5.13)

Where ∆x is the full width of the Gaussian and σs is the variance of the Gaussian

curve shape. The relationship for the 1/
√

10, equivalent to -5dB, point below the

peak power of the Gaussian PSD in the linear domain is,

∆x = 2σs

√
2 ln (

√
10) (5.14)

By obtaining the width of the spectra and these equations it was possible to

define the σs values for each PSD. Both the half power and 1/
√

10 thresholds were

used to obtain an averaged sigma value with higher degree of accuracy. If the CNR

ratio was too low to use a 1/
√

10 threshold on the data then only the half power

threshold was performed. Figure 5.22 shows an example of a -3dB and -5dB threshold

being performed on a PSD. A dB scale was used to plot the figure for clarity of the

thresholding, in reality the analysis Eqn. 5.13 and 5.14 refer to the linear power

domain. Where the equivalent linear threshold levels of 1/2 and 1/
√

10 were used.
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Figure 5.22: CSIR Dataset 07 interpolated PSD spectra thresholded at -3 dB and -5

dB

The obtained width values from a single example range gate within the CSIR 07
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dataset are shown in Fig. 5.23. The 184 width values were generated from the 184

averaged PSD spectra within a single example range gate. Both -3dB (1/2) and -5dB

(1/
√

10) threshold values are shown.
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Figure 5.23: CSIR Dataset 07 PSD width values from thresholding at -3 dB and -5

dB

These values were then obtained from each range gate in each dataset, Fig. 5.24.

The mean PSD width values for both the 3 dB and 5 dB thresholds are shown to be

consistent with each other as well as over range. Using an average of both results

should produce a PSD spectra that is very similar to the real data.
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Figure 5.24: CSIR dataset 07 mean of PSD widths -3 dB and -5 dB

Table 5.2: CSIR datasets mean fitted full width values
Dataset Mean 3dB Gaussian full width (Hz) Mean 5 dB Gaussian full width (Hz)

07 47.3 64.4
08 46.2 62.5
09 44.2 59.2
10 43.8 58.8
11 45.0 60.8
12 45.0 60.4
15 40.4 53.6

The mean full width values over all range gates from each dataset are recorded in

Table. 5.2. The into swell datasets 07 and 12 show the larger average PSD Gaussian

width values in comparison to the equivalent cross swell measurements of 10 and 15.

The direct comparison of datasets at the same azimuth shows dataset 07 is 5.1%

and 6.6% larger than 12 (3dB and 5dB measurements respectively), and dataset 10

is 8.4% and 9.7% larger than dataset 15. In addition to this the data recorded at

longer ranges, 07 and 10, at both azimuths shows a wider PSD shape.
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Figure 5.25: All CSIR datasets mean -3dB widths vs. bearing

These mean width values from each dataset has been plotted against azimuth

in Fig. 5.25. This shows a trend in a reduction of 3 dB width with an increase in

bearing up to 310◦ for datasets 07, 08, 09 and 10 all at the same range. Dataset 11

has an increase 3 dB width that does not fit with the reducing values of the previous

datasets.

As described when evaluating the PSD centre of gravity linear fits the parameters

fitted will have a sinusoidal relationship with bearing. This is due to the circular

wrapping of the azimuth as the antenna rotates. In the case of the PSD width it

is predicted that bearings separated by 180◦ will have the same PSD width values.

This is not possible to verify with the datasets available as the radar would point

in land for a large section of the possible bearings. Therefore the increase shown in

dataset 11 may be an indicator of the beginning of this sinusoidal relationship with

bearing. To indicate this behaviour datasets 07 to 11 have been plotted against a

summed sinusoidal curve in Fig. 5.26.

197



230 240 250 260 270 280 290 300 310 320 330
43

44

45

46

47

48

49

Bearing (N)

M
e
a
n
 3

d
B

 W
id

th

CSIR Datasets Bearing vs. Mean 3dB Width with Fitted curve

 

 

07

08

09

10

11

Fit

Figure 5.26: CSIR datasets 07 to 11 mean -3dB widths vs. bearing with fitted curve

This fitted summed sinusoidal curve was found to be,

3dB Width = 50.57− 3.47 cos (0.0017458Bearing) + 5.473 sin (0.0017458Bearing)

(5.15)

The curve itself has been shown to have a reasonable agreement with the mean

data points. It would be possible to further validate this proposed relationship with

datasets with bearings outside of the range of 230◦ to 330◦ or inter-sampled locations

between the selected bearings shown.

The final parameter extracted from the data was the CNR as a function of range

gate. The mean CNR for each range gate was recorded to be used to simulate the

correct CNR within the modelled data. An example plot of all the mean CNR values

from dataset 07 is shown in Fig. 5.27. The CNR values are shown to vary ±3 dB

across all the range gates, all of the values are significant clutter CNR levels which

confirms that the data is suitable for this analysis.
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Figure 5.27: CSIR dataset 07 mean CNR vs. range gate

5.2.3 Extraction of parameters conclusions

This section has provided clear examples of all the input parameters required for the

simulation model to replicate the datasets properties. As with the characterisation

process of any dataset the more samples available the better it can be defined. In the

case of the CSIR data used even when starting with ≈ 6x104 samples this was reduced

to only 184 averaged spectra to extract width and centre of gravity measurements.

Despite this each step has shown:

• The suitability of the data for this analysis:

– The significant CNR levels.

– Well characterised Gamma texture

• Established new trends:

– Between different proposed parameters. For example the relationship be-

tween A and B.

– Or between the defined parameters and the azimuth of the dataset.

A very important component of the analysis was the establishment of the link

between the A and B parameters. This new discovery gives an insight into the

relationship of the linear fit between intensity and the centre of gravity of the Doppler

spectra. As well as this the parameters individually were shown to be closely linked

to the bearing angle used.
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A partial limitation of the parameters extraction process was the number of

datasets avaliable. Further analysis over more azimuth angles and ranges would

improve the fits of individual parameters against bearing. In addition if recordings

were made during a variety of sea states and wind conditions this would expand the

knowledge into how the spectra relates to these important environmental factors.

5.3 Simulation Results

The practical and mathematical methods behind creating the model have been de-

fined, as well as this real values for the input parameters and figures showing their

variation have all been shown. All of this is now applied to generate correlated

Doppler spectra from individual range gates within a single dataset, then from all

range gates within a dataset and finally from additional datasets. Example real and

simulated range gate spectra are shown, then the statistics of the simulated and real

clutter as a function of Doppler are compared. The effectiveness of the model in

replicating the data and comparisons between different datasets are then made.

The simulated Doppler spectra as well as the original real data spectra from

dataset 07 range gate 30 can be seen in Fig. 5.28.
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Figure 5.28: CSIR dataset 07 Doppler time spectra - (a) Real data (b) Simulated

data

The two spectra show very similar shape and distributions of the amplitude values

in both frequency and time. The simulation has successfully replicated the periods of

increased intensity and spectral width along with sections that have lower intensity

and centre of gravity. The CNR on average is seen to be comparable.

Once the data was simulated statistical analysis was performed on the amplitude

statistics within each Doppler bin. The same methods were applied as seen in the
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analysis of the real CSIR data in Section 4.2. The amplitude moments of the data

were used to generate the K-distribution shape parameter variation as a function of

Doppler bin. Once this was complete it was possible to directly compare the statistics

of the simulated data and the real original data that it was based upon.
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Figure 5.29: CSIR dataset 07 single range gate average PSD power (dB) and inverse

K-distribution shape parameter vs. Doppler - (a) Real data (b) Simulated data

Figure 5.29 shows the results from a single range gate, 30, of the average Doppler

spectra power over time and the inverse K-distribution shape parameter variation as

a function of Doppler frequency, for the real data (a) and the simulated data (b).

This comparison shows how effective the simulation is are replicating the not only the

qualitative behaviour of the sea clutter but also the variation of amplitude statistics

across the Doppler spectra. Both 1/ν variations have their peak, 9.3 for the simulated

data and 8 for the real data, on the leading positive edge of the Doppler spectra. The

width of the increased spiky area within the Doppler spectra is directly comparable

between the data and simulation results, with the simulation being fractionally wider.

The most significant difference is that the simulation statistics show an increased

inverse shape parameter value at the centre of the average PSD peak in comparison

to the real data. Although this is the clearest difference between the results it is only

a small difference and the close agreement in the key leading edge area shows the

simulation has successfully replicated the important aspects of the real sea clutter.

The inverse shape parameter values from all the simulated range gates are shown

in Fig. 5.30 (a) along with the real data values in Fig. 5.30 (b). The figures have

the colour regime limited bounded between 0 and 20. This is due to single irregular

1/ν values within the simulated results.
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Figure 5.30: CSIR Dataset 07 1/ν vs. Range and Doppler - (a) Simulated Data (b)

Real Data

The average moment fitted shape parameters from all the range gate generated

values in the simulated data and from real data are shown in, Fig 5.31.
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Figure 5.31: CSIR Dataset 07 Average Real and Simulation 1/ν vs. Range and

Doppler

This shows that over the 100 range gates that were input the simulation is well

representative of the data on average. The simulation is shown to over-estimate how

spiky the distributions are on average. Over estimating this parameter will make

assumptions about false alarms more conservative which can be seen as being safe as

long at the difference is not significant. The peak values for the simulation and data
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1/ν parameter are 3.0 and 1.87 respectively. At a log(PFA) of -4 this represents a

difference of only 0.9 dB in threshold, as seen in Fig. 5.32.
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Figure 5.32: CSIR Dataset 07 Data and Simulation peak 1/ν average comparison

K-distribution Log(PFA) Curves

Further CSIR datasets were then also used as inputs for simulation. Each dataset

was analysed and the required parameters defined in Section 5.2 were recorded. These

parameters were used in the simulation process using the same methods applied to

produce the 07 dataset simulation results. Example Doppler time spectra from a

single range gate from datasets 10, 12 and 15 can be seen in Fig. 5.33, 5.34 and 5.35

respectively.
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Figure 5.33: CSIR dataset 10 Doppler-time spectrum from example range gate - (a)

Simulated data (b) Real data

Doppler Frequency (Hz)

T
im

e
 S

a
m

p
le

CSIR 2007 Dataset 12 Simulated Data Doppler−time Spectra from Range gate 10

 

 

−600 −400 −200 0 200 400 600

200

400

600

800

1000

1200

1400

1600

1800

−50

−40

−30

−20

−10

0

10

20

30

(a)

Doppler Frequency (Hz)

T
im

e
 S

a
m

p
le

CSIR 2007 Dataset 12 Real Data Doppler−time Spectra from Range gate 10

 

 

−600 −400 −200 0 200 400 600

200

400

600

800

1000

1200

1400

1600

1800

−50

−40

−30

−20

−10

0

10

20

30

(b)

Figure 5.34: CSIR dataset 12 Doppler-time spectrum from example range gate - (a)

Simulated data (b) Real data
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Figure 5.35: CSIR dataset 15 Doppler-time spectrum from example range gate - (a)

Simulated data (b) Real data

The same moment analysis was applied to generate the K-distribution shape

parameters from the data and simulated samples. This was completed on each range

gate, see Fig. 5.36, 5.37 and 5.38.
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Figure 5.36: CSIR dataset 10 1/ν vs. range and Doppler - (a) Simulated data (b)

Real data
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Figure 5.37: CSIR dataset 12 1/ν vs. range and Doppler - (a) Simulated data (b)

Real data
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Figure 5.38: CSIR dataset 15 1/ν vs. range and Doppler - (a) Simulated data (b)

Real data

When comparing the ν variation between data and simulation there are some

qualitative differences. The simulation results show the lines with the highest 1/ν

values more consistently with range, and the spiky trailing edge is also qualitatively

more prominent. These comparisons are reinforce by the quantitative results in Table

5.3 and 5.4.

The averaged values of all the moment defined shape parameters from each dataset

are plotted in 5.39, 5.40 and 5.41. These figures show a direct comparison for each

dataset of how effectively, on average the simulation was replicating the statistics of
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the real data. In all occasions the simulation and data shows two key peaks in the

inverse shape parameter variation. These peaks reside either side of the peak in the

PSD power, as discussed in Section 4.2.

Within Fig. 5.39 a clear spike in the data and simulation averaged 1/ν values is

shown at ≈ +550 Hz. This is considered to be unrelated to the sea clutter due to its

significant separation from the bulk of the clutter.
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Figure 5.39: CSIR Dataset 10 Average Real and Simulation 1/ν vs. Range and

Doppler
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Figure 5.40: CSIR Dataset 12 average real and simulation 1/ν vs. range and Doppler

207



−600 −400 −200 0 200 400 600
−1

0

1

2

3

4

5

CSIR 2007 Dataset 15 Average Simulation and Data 1/ν vs. Doppler

Doppler Frequency (Hz)

A
v
e

ra
g

e
 1

/ν

 

 

Average Data 1/ν

Average Simulation 1/ν

Figure 5.41: CSIR Dataset 15 average real and simulation 1/ν vs. range and Doppler

The peak values of the inverse shape parameter curves on either side of the peak

in the PSD power have been recorded in Table. 5.3 and 5.4. These tables show that

the location of the peaks in the inverse shape parameter are typically within one

Doppler bin range, 32.25 Hz, although the right hand peak in dataset 10 is separated

by two Doppler bins. It is important that these locations show a good agreement

in order for the model to successfully represent the behaviour of the data statistics.

As the processed Doppler data has a relatively crude resolution the results shown in

Tables. 5.3 and 5.4 can be considered to be acceptable.

Table 5.3: CSIR Simulated Data Peak 1/ν values and Frequencies
Dataset Left hand peak 1/ν Right hand peak 1/ν

Freq (Hz) Value Freq (Hz) Value
07 -62.5 0.62 218.8 3.0
10 -250 1.96 31.25 1.06
12 -125 2.95 218.8 4.58
15 -250 4.59 62.5 4.38

Table 5.4: CSIR Real Data Peak 1/ν values and Frequencies
Dataset Left hand peak 1/ν Right hand peak 1/ν

Freq (Hz) Value Freq (Hz) Value
07 -31.25 0.2 250 1.87
10 -281.3 0.77 -31.25 0.31
12 -93.75 1.0 281.3 3.17
15 -281.3 1.21 62.5 0.98

Along with the peak values and locations the difference in threshold, ∆T, at a
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set false alarm rate level of log(PFA) = -4 has also been evaluated, Table. 5.5. The

difference in threshold values is an important comparison between simulation and

data as it shows how the assumed modelled distribution compares to the real data

distribution at these crucial locations. The values have been generated by evaluating

a K-distribution log(PFA) vs. Threshold curve for the simulated and real 1/ν values

and comparing the difference in threshold at the level of log(PFA) = -4. On average

dataset 12 has the lowest difference in threshold between the two

Table 5.5: CSIR Threshold Difference Between Simulation and Real data Peak Value
Shape Parameters

Dataset Left hand peak ∆T (dB) Right hand peak ∆T(dB)
07 3.2 0.9
10 2.1 3.2
12 2.2 0.5
15 2.4 2.9

After reproducing the simulated spectra for all four CSIR datasets the difference

of the simulated data shape parameters and the real data were investigated. To show

a clear comparison between the datasets the difference between the real data shape

parameter and the simulated shape parameters was first evaluated.

The number of samples that had a difference less than a given value was calculated

for a range of ∆1/ν values from 0.1 to 10 in steps of 0.1. This has been shown as a

percentage of samples with a difference less than the selected ∆1/ν, for all datasets

in Fig. 5.42.

0 1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

95

100

(1/ν
data

 − 1/ν
sim

)

%
 o

f 
S

a
m

p
le

s

CSIR Datasets 07, 10, 12 & 15 Percentage of samples vs. difference in 1/ν

 

 

Dataset 07

Dataset 10

Dataset 12

Dataset 15

Figure 5.42: CSIR Datasets 07, 10, 12 & 15 Percentage of samples vs. Difference in

1/ν
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The results show that all datasets produced 90% of samples with a difference

in 1/ν of 1.3 or less, except dataset 12. Dataset 10 shows the closest agreement,

having the height percentage matching over all ∆1/ν. Dataset 07 also shows a good

agreement but becomes less. Relating this to the dataset parameters it is clear that

the cross swell datasets 10 and 15 shown a better matching to the model. With

the further ranged, 58,036m, dataset 10 performing better than the same azimuth

shorter range, 39,449m, dataset 15.

In comparison the two up swell configuration datasets, 07 and 12, showed the

largest percentage of samples over a given threshold, dataset 12 performing the worst.

This shows that the model is better suited to simulating sea clutter Doppler spectra

in a cross swell scenario.

A potential reason for the closer matching of data to model for the shorter range

dataset in both cases is potentially because at the reduced range the data is recorded

in an increasingly littoral which will produced different Doppler behaviour in com-

parison to open sea characteristics. This could be further tested through observing if

there is a degradation in the percentage of samples that match by a given difference

as the range is decreased.

5.4 Modelling and Simulation conclusions

The application of the coherent Doppler spectrum modelling method has been dis-

cussed from introduction of its background and theory to the comparison of input real

sea clutter data and the produced simulated data. The methods used by S. Watts

to produce simulated samples were described, in particular the production of corre-

lated Gamma texture samples and the reproduction of a Gaussian shape PSD with

a randomly varying width and a linearly proportional centre of gravity to intensity

were both described in detail and the model has been implemented. A systematic

description of all the input parameters required was given, showing examples of all

input parameters and comparisons of key parameters between all four of the CSIR

datasets described in Section 3.1.2.

Key parameters such as the mean linear fit A and B from the intensity and

centre of gravity of the PSD as well as the mean 3dB width have been related to

the experimental geometry in which the dataset was obtained. Particularly the true

bearing of the radar antenna. All 7 datasets were used to relate these parameters

to maximise the amount of bearing sampled available. This showed that the A

and B values were themselves related to each other as well as exhibiting a smooth

relationship with bearing. The 3dB width values exhibited a consitent decrease with

range at the same azimuth angle and a steady decrease as the bearing was increased

from 240◦N to 310◦N at a given range.

The resulting simulated data was well representative of the input data from all of
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the selected datasets. Qualitatively the spectra showed directly comparable CNR in

all Doppler bins, thermal noise levels, mean width and correlation in the texture. All

of these properties gave the simulated data very close characteristics to the input data

and verifying that this method is suitable for use in testing of detection algorithms

within radar systems testbeds. In addition to being well representative of many of

the qualitative properties of sea clutter as discussed so far in this thesis the ability

of the simulated clutter to replicate the statistics of the input sea clutter was also

quantitatively tested. The results from the moment analysis of each range gate and

the averaged range gate values again demonstrated that the simulated clutter closely

match the real data. The inverse shape parameters matched well at the peak of the

PSD power as well as at the important peak 1/ν locations.

The limitations of the model have also been investigated during the processing.

The structure of real sea clutter has been well replicated by the model. The real

sea clutter often shows a more asymmetrical shape in its departure from its mean

centre of gravity. These shifts in frequency are generally seen on the leading edge

of the clutter. This is the positive Doppler side if there is a mean positive Doppler

shift (datasets 07 and 12) and the negative Doppler side if the spectra has a mean

negative Doppler shift (datasets 10 and 15). This behaviour has not quite been re-

created by the model. Despite these limitations the simulated clutter is still closely

representative of the vast majority of the real clutter properties.

In all cases that have been tested it was shown that this model is well suited to

reproducing real sea clutter characteristics. This expands the initially hypothesised

model from the single range gate and dataset it was initially tested with. The model

can now be accepted to be more generally applicable to sea clutter over a variety

of conditions. Importantly even recorded using a different radar system on different

occasions.

This work has linked closely to all the prior analysis of the many aspects of sea

clutter completed in Chapter 4. It then goes on to compliment this work through

applying the qualitative and quantitative methods used to define the clutter to allow

it to be reproduced through these simulation techniques. The result of which allows

sea clutter Doppler to be simulated for given input parameters, which could then be

used to evaluate a radars ability to operate within a sea clutter environment.
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Chapter 6

Application of Information Theory

to Sea Clutter Analysis

This chapter introduces the application of information theory concepts to the area

of sea clutter statistical analysis. The aim of this work was to propose and then test

a link between the established metrics used in information theory research and sea

clutter analysis. The chapter begins by introducing and characterising the compo-

nents of information theory applied to the sea clutter data. It then goes on to detail

initial practical example tests of the theory. Finally real data and established sea

clutter models are compared against each other using this novel metric. The work

contained within this chapter is based upon the original published paper, [6], that

first introduced the application of this concept.

In Chapters 4 & 5 sea clutter was characterised using its PDF and PFA, which was

then compared to theoretical models which have a defined PDF and PFA. Through

these comparisons it was judged whether the model was representative of the real

data. In addition to this the variation of the shape parameters of the distributions

were defined as a function of selected parameters such as Doppler frequency or range

gate.

Prior analysis comparisons between the real and modelled distributions were com-

pleted using either a sum square difference between data and simulation or using a

method of moments estimate. By using the field of information theory a novel method

of quantifying how effectively models represent real sea clutter was tested. The met-

ric that has been applied was the Kullback-Leibler divergence (KLD). As defined

in Section 2.4 the KLD quantifies the divergence between two input PDFs. It was

shown to be defined as,

D(p||q) =
∑
xεχ

p(x) log
p(x)

q(x)
(6.1)

where p(x) and q(x) are the two input PDFs that are compared. For this work the

q(x) distribution has been assigned to be the assumed distribution. This is the model
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PDF that a radar uses to make assumptions for the behaviour of the clutter, and

therefore set the threshold for detection. The p(x) distribution is the actual real sea

clutter distribution. The properties of the KLD means that it:

• Will always take non-negative values

• Is asymmetric

• Is non-commutative

• Gives the result 0 when p(x) = q(x).

The connection of the KLD to radar signal processing can be seen through the

use of log likelihood ratio. In the area of radar detection, as well as statistical tests in

general, a likelihood ratio test is a common method of defining if a target is present

or not. This uses the test,

Λ = ln

(
PT (z)

PA(z)

)
(6.2)

When Λ is greater than a set threshold λt a target is deemed to exist, and if

Λ < λt then no target is present. This same ratio of PDFs exists within the KLD,

Eqn. 6.1 hence the two values are directly related.

When completing the detection process it is critical to consider carefully the as-

sumed clutter component that is input to the test. This is because when applying

this detection test the null hypothesis is that the cell under test contains clutter of

a given distribution. If this assumed distribution is incorrect the resulting predicted

and actual false alarm rate may be dramatically different for a given defined detec-

tion threshold. The probability of a Type I error (of incorrectly rejecting this null

hypothesis) which equates to the probability of false alarm, (PFA), is represented by

the symbol α,

α =

∞∫
θ

fN(z)dz = PN(θ) (6.3)

where fN(z) is the probability distribution of the clutter. In a practical radar system

the threshold value θ will be set by inverting Eqn. 6.3, and evaluating it at the desired

false alarm probability using a given background distribution fN . In the case that an

incorrect distribution is assumed, fQ, this will produce an incorrect threshold value

θ′. When this incorrect threshold is applied to the actual distribution the resulting

false alarm rate, α′ is no longer the expected desired value.

α′ =

∞∫
θ′

fN(z)dz (6.4)
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Due to the lack of perfect knowledge and as real clutter distributions are always

only at best well represented by models this misestimation will always occur. The

application of the KLD to this area of radar processing allows for this error to be

quantified in different scenarios from real datasets. The result of which is the quan-

tification of the performance of the selected assumed distribution models, or the

application of the metric as a fitting mechanism itself.

A potential reason for why the KLD has as of yet not been applied to radar

signal processing in a practical way is its requirement for a full defined PDF. When

analysing the output clutter distributions an empirical discretely sampled PDF can

be produced, but it is not the true representative distribution of the clutter. The

KLD therefore lends itself to the comparative analysis of theoretic distributions well,

but is not as suited to the analysis of real data. This work investigates the application

of the KLD to both theoretic and real data distributions and discusses the results for

both cases.

In addition to testing the application of the KLD metric in sea clutter analysis

another distribution comparison technique is applied. The Kolmogorov-Smirnov (KS)

two sample test is often used to compare two sets of samples and evaluate if they

have the same distribution [125, 126]. The KS test has been applied to sea clutter

analysis previously, [34,127] to confirm that the fitted theoretical distribution curves

well represent the actual data.

The two sample KS test evaluates the max absolute difference between the CDFs

of the two sample sets. This is defined as

D∗ = max (|F1(x)− F2(x)|) (6.5)

where F1(x) is the proportion of x1 values less than or equal to x and F2(x) is the

proportion of x2 values less than or equal to x. The null hypothesis is that the two

sample sets have the same distribution. This is rejected at a level αKS if,

D∗ > c(αKS)

[
n+ n′

nn′

]1/2
(6.6)

Where αKS is the defined significant level. The variable c relationship with αKS is

defined from a lookup table, for example αKS = 0.05 → c = 1.36.

6.1 Application to Theoretical Distributions

The initial tests of the application of the KLD were completed using an exact theoretic

PDF solution for both the assumed and real clutter distributions. For these theoretic

tests a K-distribution with varying shape parameters was used for both of the input
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PDFs. This allows testing on expected KLD values as well as the behaviour of the

KLD as the distribution is altered.
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Figure 6.1: KLD between two example single K-distribution PDF curves and an

array of other PDF curves with shape parameters between 0.1 and 10

The PDF of the K-distribution has previously been defined, Eqn. 2.33, this

was used to generate input PDF curves to the KLD calculation. An array of K-

distribution PDF curves were generated for a range of shape parameters from 0.1 to

10 in steps of 0.1. Each of these curves were evaluated numerically over a range of

intensity values from 0 to 30 in increments of 0.01.

To evaluate the summation component of the KLD equation a numerical solution

was applied to these finite and discretely sampled theoretic PDF curves. The first

experiment evaluated the KLD between a fixed selected K-distribution and all the

possible K-distribution curves. This process was repeated for two separate fixed

reference PDFs to produce Fig. 6.1. In this case the reference distributions represent

the actual, i.e. p(x) in Eqn. 6.1, distribution while each of the other distributions

tested against it are defined as the assumed distributions.

Figure 6.1 demonstrates clearly the non-commutability of the KLD. When the

actual distribution was 0.5 it gave a KLD of 0.031 against the assumed distribution

of 2. While in the reverse situation when the actual distribution was 2 a KLD of 0.041

was found between it and the assumed distribution of 0.5. The increased KLD value

shows that there is an increased loss of information when interpreting the spikiness

as ν = 0.5 when the actual distribution is 2 that the reverse scenario. An important

result from this is that under or over estimating the actual distribution by the same

amount will produce different degrees of loss in detection power. In particular a

greater loss occurs when the assumed shape parameter is higher than the actual

value.
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The obtained KLD values can be compared to other metrics that have been

previously used to define the difference between two given distributions. This allows

a direct comparison between known metrics and the newly proposed KLD technique.

The metrics that have been compared are:

• Difference between the desired and achieved PFA for a given threshold level.

• Error in the threshold, and consequent reduction in radar sensitivity, due to

deriving it from the incorrect distribution.

• The mean sum square difference (MSSD) between pairs of PDF and PFA curves.

The first comparison made is the difference between the desired and obtained

PFA levels between two distributions. A reference level of log(PFA)= -6 for the input

actual distribution was used. Therefore the difference in PFA was evaluated from

this point to the PFA of the selected assumed shape parameter distribution curve.

An example of the difference in PFA between two distributions is shown in Fig. 6.2.

The vertical line in this plot shows the threshold location where the reference curve,

ν = 2, has a log(PFA) = -6. The difference in PFA is evaluated vertically between

the two curves at this point.
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Figure 6.2: Example difference in PFA between two K-distribution PFA curves

This was then repeated between for two reference shape parameters curves of 0.5

and 2, against all other shape parameter curves between 0.1 and 10, Fig. 6.3. To

establish the variation in PFA as a function of the reference and assumed distributions.
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Figure 6.3: Difference in PFA between two example single K-distribution PFA curves

and an array of other PDF curves with shape parameters between 0.1 and 10

The changing shape parameter on the abscissa of Fig. 6.3 is the shape parameter

of the assumed distribution, as in Fig. 6.1. The difference reduces to zero when

the assumed and actual distributions are exactly the same, which is to be expected.

The steeper curves to the left of the matched shape parameters show that a larger

difference in PFA is obtained when the actual clutter has a relatively smaller shape

parameter in comparison to the same equivalent increase in shape parameter, agreeing

with the trends shown in KLD variation.

The next parameter evaluated for comparison to the KLD was the difference in

threshold, for a given expected PFA. The threshold difference between two example

curves is seen in Fig. 6.4. It is a measure of the horizontal separation of the two

curves at a fixed log(PFA), which was again -6.
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Figure 6.4: Example difference in Threshold for a fixed PFA between two K-

distribution PFA curves

217



The threshold difference as a function of assumed shape parameter was then

evaluated and is shown in Fig. 6.5. Each value on the curve in this figure corresponds

to the difference shown in Fig. 6.4, but for different distributions. This shows real

values for the cost of misestimating the distribution of the clutter present. A loss

of 3dB sensitivity was obtained, when using the reference distribution of ν = 0.5,

at ν = 0.2 & 1.4. Therefore underestimating the shape parameter by 0.3 gave the

same loss as overestimating it by 0.9, when the actual value was 0.5. In comparison

when the actual distribution was equal to 2 the threshold difference was only greater

than 3dB for ν ≤ 0.6. In this case none of the ν > 2 curves gave a threshold

difference greater than 3dB. The two example curves both again are shown to have a

steeper side to the left of the reference ν value, agreeing with the KLD and log(PFA)

differences.
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Figure 6.5: Difference in Threshold (dB) between two example single K-distribution

PFA curves and an array of other PDF curves with shape parameters between 0.1

and 10

The final comparative metric is the SSD between the assumed and actual distribu-

tions. The SSD between the same pairs of curves used to generate Fig. 6.1 is shown

in Fig. 6.6. The nature of the SSD curves shows a similar shape to the KLD curves.

This is a positive result as it reinforces the previous analysis used within this thesis.

The KLD has a sound information-theoretical background and has been shown to

agree with the variation given by the SSD evaluation. This therefore supports the

assumption used previously in this thesis that the SSD is an effective method to fit

theoretical distributions to the data.
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Figure 6.6: SSD between two example single K-distribution PDF curves and an array

of other PDF curves with shape parameters between 0.1 and 10

The next step was to expand the investigation from using analytic solutions for

the theoretical K-distribution PDF as inputs to the KLD. To achieve this Monte-

Carlo simulation have been used as a way of showing that the distinctions shown

previously are still apparent when using finite datasets of the sizes typical to clutter

datasets. The modelling techniques used in Chapter 5 were applied to generate K-

distributed samples with a given shape parameter. The PDF of these discrete sample

sets was then evaluated and the resulting KLD between pairs of distributions was

produced. The processing steps completed were:

• Simulate 105 samples of K-distributed variates with a given shape parameter.

• Define discrete PDF from the samples using a kernel density estimator. An

in-built Matlab function was used for this.

• Evaluate KLD between pairs PDFs defined from the samples.

• Repeat process for all combinations of shape parameter pairs between 0.1 and

10.

The kernel density estimator applied was the“ksdensity” function within Matlab

and used was applied by fixing the solutions to positive values, and used a fixed

bandwidth for the kernel smoothing window of 0.01. The output kernel density PDF

samples were evaluated over a range of 0.01 to 50 in steps of 0.01.

The resulting variation of KLD and difference in threshold (dB) between pairs of

PDFs can be seen in Fig. 6.7 and 6.8 respectively. The KLD is shown as a function

of the ν of p(z) and the ν of q(z) which are denoted as ν1 and ν2 in Fig. 6.7. The
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threshold difference has been evaluated at a fixed log(PFA) of -4. The logarithm of

the KLD has been plotted, as it allows for the whole dynamic range of values to be

visualised. A logarithmic scale was also used because when comparing the result to

the difference in threshold (dB) to allow a clearer comparison to be made.
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Figure 6.7: KLD between pairs of PDF curves generated using simulated samples
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Figure 6.8: Threshold difference, at a set log(PFA) = - 4, between pairs of PDF

curves generated using simulated samples

The two figures showing the KLD and difference in threshold (dB) between pairs

of curves clearly have a close relationship. In both cases the most significant errors

occur in the region where either the actual data has a very low shape parameter or

the assumed shape parameters has a low shape parameter (< 1). This emphasises
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the requirement of interpreting clutter with high accuracy when spiky (low shape

parameter) clutter is present. While the cost of misestimation is much reduced in

larger shape parameter scenarios.

The analysis performed to produce Fig. 6.7 was then applied to the KS two

sample test. The K-distributed samples generated with a range of shape parameters

were used to compare the KS test result. A fixed shape parameter distribution was

compared to a range of varying shape parameter distribution samples. The result

from the KS test is either 0 when the null hypothesis is accepted, which is the two

sets of samples have the same distribution, or 1 when the null hypothesis is rejected.

Figure 6.9 shows the KS test output from comparing a set of K-distribution samples

with a ν = 1 to multiple other sets of K-distribution samples with varying ν values.

The significant level used for this KS test analysis was 0.05.
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Figure 6.9: KS Test between generated samples of a fixed K-distribution ν = 1 and

varying other K-distribution ν values

The output values clearly show that the test accepted the null hypothesis only

for one shape parameter, ν = 1 which was the only distribution generated with the

same shape parameter value. This binary result does allow for a verification when

comparing data the proposed representative distribution.

This process was then repeated by varying both ν values of the two sample sets

that are input into the test, see Fig. 6.10. The significant level used for this analysis

was 0.05. In this figure all the KS test 0 values are shown in blue and all the KS test

1 values are shown in red. This method is comparable to that used to generate the

KLD values in Fig. 6.7 when comparing two K-distribution datasets. The results

here show that at low shape parameters only the exact distributions were shown to

pass the null hypothesis. As the shape parameters increase a wider array of samples

were shown to pass the test despite being generated with a different intended ν.

This shows the importance of assessing the shape parameters correctly at low values,
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ν < 2, as they are clearly very different and a small misestimation clearly fails the

KS test. Whereas in the case of ν > 6 the difference between K-distributions reduces

and the KS test can not differentiate them successfully.
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Figure 6.10: KS Test between generated samples with varying K-distribution ν

6.2 Application to Real Sea clutter

This section applies the KLD metric to the assessment of how well theoretical dis-

tributions represent real sea clutter data. Initially the K-distribution and a thermal

noise distribution (negative exponential) were tested against the selected real sea

clutter distributions. The data used for this analysis was taken from the CSIR 2007

dataset, see Section 3.1.2, specifically dataset 07. The Doppler data from this indi-

vidual dataset has been selected and the distributions within each Doppler bin were

defined. Each Doppler bin contains 1845 samples, which are then used to generate a

PDF that represents the statistics within that individual Doppler bin.

As the real clutter data is finite and discretely sampled an approximate PDF

representation is required. In order to produce the representative PDF for the data

the same methods used in Section 6.1 were applied. A kernel density estimate was

used to produce a smoothed PDF estimate from the discrete data samples. The same

kernel density estimate methodology was used as that described in the KLD theoret-

ical analysis Section 6.1. This method can be considered to provide the best possible

non-parametric density estimate possible for the input data. Although in addition to

the kernel density estimate a basic histogram estimate for the PDF was also tested

to obtain comparative results. The resulting PDF is then used as the actual clutter

distribution and the assumed distributions were a range of K-distribution curves,

with the same range of shapes used in Section 6.1.
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Figure 6.11: CSIR Dataset 07 Histogram and Kernel Density Estimate PDFs from

individual Doppler bins data (a) Doppler bin 10 (b) Doppler bin 35

Two example plots of the estimated PDFs from separate Doppler bins are shown

in Fig. 6.11 (a) Doppler bin 10 and (b) Doppler bin 35. In the case of Doppler bin

10 the data is thermal noise limited with no clutter present. For Doppler bin 35

the CNR is ≈ 20dB, meaning that the distribution will be dominated by sea clutter

amplitude statistics. This is seen by the significantly longer tail of the distribution

which increases intensity to ≈ 16 where as Doppler bin 10 only goes to ≈ 6.

The data distributions were then used to evaluate the KLD between real sea clut-

ter and selected theoretical distributions. A varying array of K-distribution curves

evaluated with the PDF (evaluated at the same locations in the intensity), were used.

The shape parameters varied from 0.1 to 10 in steps of 0.1, as well as having an ad-

ditional shape parameter 100 curve. This was used as the data itself was fitted to

this range of shape parameters using a SSD fit shown in Section 4.2.2. The scale

parameter was normalised with respect to the mean of the dataset in all cases.
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The result of this analysis from a single Doppler bin is shown in Fig. 6.12.

where the set of shape parameters used is plotted against the resulting KLD between

the data and the K-distribution curve with that given shape parameter. The K-

distribution shape parameter PDF that was found to have the minimum KLD was

1.2, while the SSD fitted and moment shape parameters for this Doppler bin were

1.1 and 1.13 respectively. These results show a very close agreement as to which

K-distribution curve best represented the data.

The difference that does exist between the fitted results has a number of possible

explanations. In attempting to represent the discretely sampled data points as a

continuous PDF, using the kernel density estimate, errors will be introduced. The

actual PDF distribution of these samples is difficult to characterise as it has not ab-

solutely correct solution. This could possibly lead to a misestimation in the resulting

KLD as to which K-distribution curve best represents the data. Another possibility

is that the SSD method is itself failing to select the best representative distribution

and the KLD is in fact an improved method for fitting a distribution to the data.
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Figure 6.13: KLD and SSD fitted 1/ν values vs. Doppler bin - Dataset 07 Range

gate 10

The analysis was then extended to all Doppler bins within a selected range gate.

In each case the data distribution within the selected Doppler bin was represented

by a PDF defined using the kernel density estimate. This PDF was then input to a

KLD evaluation between itself and a range of K-distribution shape parameter curves.

The K-distribution that gave the smallest KLD value was defined as the KLD fitted

K-distribution curve. This gave the variation of K-distribution shape parameter from

both methods seen in Fig. 6.13. It can be seen that in the outer thermally noise

dominated Doppler bins (1 to 28 and 45 to 64) the two fitting methods agree very

closely. It is also shown that the two peaks in the inverse shape parameter, which

were first noted in Section 4.1.3, exist for both fitting methods at the same location

in Doppler.

The next step in the analysis was to compare the KLD values as a function of

Doppler. The KLD was evaluated between the SSD fitted K-distribution and the

data, as well as the minimum KLD value K-distribution (see Fig. 6.12) and the data.

This is a direct comparison of the minimum of the curve in Fig. 6.12 to the KLD

value from the SSD fitted curve, the red data point, as a function of Doppler bin.

The KLD fitting method shows lower inverse shape parameters of 0.456 and 0.909

for the left and right peaks respectively. While the SSD fitted inverse shape parameter

peak values were shown to be 2 and 1.67. Even though the shape parameter values

do not agree exactly both methods are therefore demonstrating that it is at this

section of the Doppler spectra that the sea clutter definitely changes its statistical

behaviour. The KLD and SSD show that the distribution shifts and becomes an

increasingly longer tail distribution.
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Figure 6.14: KLD vs. Doppler of KLD and SSD fitted K-Distribution Curves -

Dataset 07 - Range gate 10

The KLD was then evaluated between a fixed distribution PDF and the data

PDF for each Doppler bin. The fixed distributions selected were a thermal noise

distribution (defined by the Rayleigh distribution) and a K-distribution with a fixed

shape parameter of 2.

By using a Rayleigh distribution for each Doppler bin it is possible to evaluate the

cost in misestimation when using a thermal noise distribution to represent the data

in all Doppler bins. The KLD between the data PDF and a Rayleigh distribution

evaluated at the same intensity locations is shown in Fig. 6.15.

The thermal noise KLD comparison shows that the outer Doppler bins have rel-

atively very low KLD values. Meaning that they were a good fit to the thermal

noise distribution suggesting they contain only noise, i.e. the clutter spectrum is

narrower than the available unambiguous Doppler range. Over the region where the

clutter is present the KLD values increase dramatically. The peak value is shown to

increase up to ≈ 0.3, in comparison the KLD fitted curve in Fig. 6.14 and has a peak

value of ≈ 0.04. This quantifies how ineffective the assumption of Rayleigh noise

is at representing real sea clutter in the Doppler domain. There are two peaks in

the KLD values that exist at the leading (Doppler bin 40) and trailing (Doppler bin

31) Doppler edge of the clutter PSD. It is therefore at these points that the clutter

deviates most significantly from a thermal noise distribution, which is also seen in

the K-distribution KLD evaluations. This shows that both distributions are least

effective at representing the real data at these location, but to different extents.
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Figure 6.15: KLD between Data and Thermal Noise PDFs vs. Doppler - Dataset 07

- Range gate 10

The second KLD evaluation between the data and a fixed distribution is shown

in Fig. 6.16. The KLD between the data PDF and a K-distribution with ν = 2

was used to produce this figure. This shape parameter was selected due to it being

the SSD fitted ν at the peak in CNR. This compares the divergence between the

data and the closest fitting distribution where the clutter is at it’s peak power. It

represents the potential mistake of using the simple assumption that the clutter is

always distributed the same way it is at its peak power. By evaluating the KLD

between the fitted K-distribution at the CNR and the distribution in each Doppler

bin the cost associated with this simple assumption is shown.
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Figure 6.16: KLD between Data and Fixed K-distribution with ν = 2 vs. Doppler -

Dataset 07 - Range gate 10
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The KLD values produced using a fixed K-distribution are much less than those

seen in Fig. 6.15 within the clutter dominated region, but much greater over the rest

of the Doppler spectrum. The fixed K-distribution best represented the data at the

peak CNR Doppler bin, which is expected as it was selected using the SSD fitted

ν value from this Doppler bin. Over the CNR dominated region the KLD values

are shown to be lowest around the peak of the CNR and at the very leading edge

of the Doppler spectra before the CNR reduces to its minimum. The peak in the

KLD values is found on the rising edge of the spectra at Doppler bin 40. This is the

same location in Doppler that the peak in the KLD has been shown for both the

thermal noise and fitted K-distribution KLD values, Fig. 6.15 and 6.14. This makes

this Doppler bin the least well represented by all tested distributions. It is important

to note the difference in scale of the KLD values between Fig. 6.15 and 6.16. The

thermal noise was found to have a KLD of 0.29 while the K-distribution ν = 2 had a

KLD of 0.06. Hence the thermal noise had a divergence of ≈ 5 times more than the

selected K-distribution.
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Figure 6.17: Averaged KLD between data and fixed K-distribution with ν = 2 vs.

Doppler - Dataset 07
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Figure 6.18: Averaged KLD between data and thermal noise vs. Doppler - Dataset

07

The process of KLD evaluation between a fixed K-distribution or thermal dis-

tribution and the data was then repeated within all the range gates of dataset 07,

in Fig. 6.17 and 6.18 respectively. The fixed K-distribution used was ν = 2 for all

the range gates. The averaged values reinforce the key results seen within the single

range gate figures. The fixed K-distribution was most effective at the peak of the

CNR while failing on the leading edge of the clutter. The thermal noise distribu-

tion failed to represent clutter distributions over the clutter dominated region of the

Doppler spectrum, particularly on the leading edge of the clutter.

6.3 Information Theory Conclusions

This chapter has introduced the KLD as an effective quantitative measure for compar-

ing the divergence of two distributions in the application of sea clutter analysis. The

principles behind the KLD as well as its mathematical background were first defined.

These principals were applied using theoretical distributions to model the difference

between K-distribution PDFs with varying shape parameters. This demonstrated

the loss relating to the misestimation of a parameter within a fitted distribution.

The KLD was shown to produce results that were comparable to relative values

found when using other ad hoc measures of difference, such as the SSD. The use

of the KLD in the application of distribution fitting and quantification was further

validated by this, as well as reinforcing methods that have been used throughout

previous analysis. The non-commutability of the KLD represents the consequences

of mis-interpreting the background clutter distribution as more or less spiky than it

actually is, which is not accounted for by metrics such as the SSD.

The KLD was then applied using real sea clutter distributions generated from
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Doppler data taken from the CSIR 2007 database. The analysis demonstrated the

novel use of the KLD as an effective analytic tool for fitting distribution models to real

sea clutter data. As well as the ability to fit distributions to real data the KLD also

gave a quantitative measurement of the effectiveness of the models in representing

the data. In the analysis shown this was demonstrated as a function of Doppler. The

K-distribution was shown to well represent the clutter at the peak CNR location in

Doppler, but was not as effective on the leading and trailing edges of the clutter.

The next processing stage involved evaluating the KLD between the data and fixed

distributions as a function of Doppler. The two distributions, a K-distribution with

a fixed ν and the thermal noise distribution, were compared to the data distribution

with each Doppler bin. The results from this processing showed the cost of assuming

a basic thermal noise distribution for the clutter, or assuming an unchanging K-

distribution. This relates well with the work described in this thesis that characterised

the variation of the amplitude statistics with Doppler. This strengthens the argument

behind adapting for the changing amplitude statistics of the sea clutter as a function

of Doppler.

The KS test results showed that is can successfully differentiate between sets of

K-distribution samples and will validate if a theoretical distribution fits to the input

data. The difference between the KS test and the KLD is that the KLD produced a

metric not a binary result, this is importance because it means that more information

is contained within the KLD output in comparison to the KS test.

Fundamentally the KS test has a null hypothesis that the two distributions are

the same, and tests whether the test results disproves this. Using the KLD the

assumption is that the two input distributions are different and we are analysing

how different they are, as we want to ask is model A closer to the data than model

B?. The theory behind the KLD can also be related closely to the problem of radar

detection and background misestimation.

Considering the analysis performed there are some issues with the application

of the KLD, a key issue being that an approximation of the real sea clutter must

be made. This issue does not affect the theoretical analysis, which observes the

variation of the KLD between relative K-distributions PDF curves. For real data

the approximation is difficult and in this analysis it was limited by the ability of the

kernel density estimate to generate the correct PDF. To achieve this a kernel density

estimate was applied to the discrete finite samples, it is considered to be an effective

solution. The KS test uses the CDF of the data samples and therefore does not

require this estimation which is a source of error.

In summary it is important to consider that within real world scenarios the sea

clutter is beyond the control of the radar engineer and its actual distribution re-

mains undefinable. The models used here will never exactly represent the clutter

distribution but can be considered to be successful if they will effectively represent
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the clutter effectively in the majority of scenarios. The KLD metric, which is base

on clear mathematical reasoning, has been presented as a measure of how effective

the models are at achieving this goal. In this application is has been shown to be

suitable and should therefore become a more commonly used analytic measure for

defining the success of further models in their application to additional datasets.
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Chapter 7

Conclusions

This chapter summarises the key conclusions, novel contributions and achievements

of this research. Future potential research areas related to the material that has

been presented within this thesis are also discussed. The key conclusions discussion,

Section 7.1, progresses in line with the analysis that was performed in Chapters 4

to 6. The novel contributions are then clearly presented in Section 7.2, highlighting

where this research has contributed to the current scientific understanding. Finally

potential areas where the research could now be expanded are highlighted in Section

7.3.

Sea clutter research is an important topic within the radar research community.

Despite this, novel contributions to the global knowledge and understanding of this

phenomena have been demonstrated within this work. As the analysis progressed it

has been shown that each dataset provided incremental understanding of sea clutter

statistical variations. At each stage more detailed and deeper relationships of sea

clutter to additional parameters have been revealed.

It was shown that that little information exists on the specific characteristics of

the amplitude distributions of sea clutter in the Doppler domain. This specific area

of sea clutter work hence clearly showed good potential for further investigation. By

researching into this domain the resulting conclusions have both contributed to the

scientific research community, as well as provide practical radar engineering advan-

tages gained from the knowledge of how the statistics of the sea clutter behave. By

furthering the understanding of the phenomena this research has direct implications

for quantifying the effectiveness of detection algorithms that are used for Doppler

signal processing applied in any radar system.

232



7.1 Summary

7.1.1 SW2000 Data analysis

The first dataset that was made available for analysis was from the Thales UK

SW2000 AEW radar system. This data analysis was on recordings from an oper-

ational radar system. Therefore the results from this study are not only scientifically

important but they also are of practical radar engineering relevance. The practical

engineering aspect is linked to the improvement of radar performance in the sea clut-

ter environment. The information shown will enable future enhancement of detection

algorithms to more successfully adapt to the clutter environment.

Through statistical analysis of the amplitude distributions within individual Doppler

bins it was possible to show a clear variation in the statistical behaviour. The vari-

ation was shown by fitting a widely accepted sea clutter model, the K-distribution,

to the data using SSD and moment fitting methods. These results are the first to

quantify a variation with sea clutter data of the K-distribution shape parameter as a

function of Doppler. The variations shown were clear, were shown to have a charac-

teristic shape and were consistent. A comparison between the vertical and horizontal

polarised datasets showed the largest increase in the moment fitted 1/ν values on

the leading edge of the PSD within both datasets and a secondary increase on the

trailing edge. The horizontally polarised data demonstrated the largest increase in

inverse shape parameter, which is consistent with prior literature on the time domain

statistics of vertical and horizontal polarised data.

The SW2000 datasets were not ideal for pure sea clutter analysis due to the

PRF agility of the radar with complicates the analysis. There was also the limited

meteorological information avaliable. Despite this it was still possible to achieve this

first quantification the variation of the sea amplitude statistics with Doppler, and

compare these results between two polarisations. This work could then be expanded

upon, though characterising the variation with azimuth angle or in the bistatic case,

via the analysis of the two datasets reviewed below.

7.1.2 CSIR Data analysis

Following the SW2000 data analysis the focus of the research moved to the analy-

sis of the CSIR 2007 data. As this dataset was generated specifically for sea clutter

measurements and included carefully measured meteorological and geometric param-

eters. The RF parameters were also well characterised. The potential of furthering

the understanding of the variations of observed phenomena with these parameters

was therefore significant. Four key datasets were selected for analysis that were shown

to be best suited to characterise the behaviour of the statistical distributions as a

function of azimuth angle and range.
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The first analysis completed was on the non-coherent data from each measure-

ment. The temporal ACF was produced for each range gate within each dataset,

and by averaging these it was possible gain an understanding of how consistent was

the long term temporal correlation. This showed a clear sinusoidal structure within

the upswell geometry datasets, and a flat long term correlation profile within the

cross swell data. This information would later prove very valuable when applying

the Doppler model to simulate individual datasets.

The results from the statistical variation of the amplitude of the sea clutter with

Doppler showed that it was most spiky in two key Doppler locations, except in the

07 dataset. These locations in Doppler were on the leading and trailing edge of the

clutter PSD, which were dependent on wind and swell direction. The highest peak

inverse shape parameter values were shown to be the leading positive Doppler edge

on the upswell datasets and the leading negative Doppler edge in the cross swell

datasets. This is related to the downwind side of the Doppler spectra showing a

more spiky distribution. This is potentially linked to the wind blowing spray from

the white cap waves, which resulting is numerous high amplitude returns. Overall

the results showed that the upswell measurements produced the most spiky statistics,

in particular the closer range upswell dataset (Dataset 12).

These results of statistical variation reinforced the top level conclusions from the

SW2000 data. By confirming this characteristic behaviour this analysis therefore

demonstrated that the initial discoveries shown using the SW2000 data were neither

unique to that radar system nor the particular environment that it was measuring.

7.1.3 NetRAD Data analysis

The NetRAD sea clutter data analysis represents very novel using a unique dataset.

This radar system is an S-band system in comparison to the two prior datasets, which

allows the previous X-band results to be compared to S-band sea clutter amplitude

statistics demonstrating if they are still valid. The data was generated by the research

group at UCL specifically to obtain the first coherent simultaneous measurements of

bistatic and monostatic sea clutter. I was personally involved in the generation of

this data and was therefore able to use my insights from this to progress the data

from a raw state all the way to the high level statistical comparisons that have been

made.

The South African trials campaign produced a number of sea clutter datasets

over a period of weeks. The initial task in the analysis was to select which were the

most relevant to the goals of my research. The six datasets that were selected were

generated at three bistatic angles (60◦, 90◦ & 120◦) at two polarisations (vertical and

horizontal). The results of the variation of both the monostatic azimuth angle and

the resulting comparative bistatic angle could be observed in each of the datasets.

This connects the results to the CSIR data analysis as well and producing completely
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novel results pertaining to the equivalent bistatic measurement.

The complexities of generating bistatic data and analysing the results were a

major issue when undertaking the analysis of the data. These had to be overcome

in order to allow effective direct comparisons between monostatic and bistatic data.

The phase correction processing was a very important step when comparing Doppler

spectra of the two radar nodes, with this no comparison could be made between the

monostatic and bistatic results.

When comparing the monostatic results with the previous work completed on the

SW2000 and CSIR datasets it is clear that these established characteristic variations

are again repeated within the NetRAD data. The horizontal monostatic statistics

are shown to be more spiky than the vertically polarised, a double peak in the 1/ν

values is frequently seen in the variation with Doppler, not in all cases though. As

well as this the location of the PSD and the peak in 1/ν shift with the moving β,

and therefore azimuth, angle.

When comparing the simultaneous monostatic and bistatic data it was shown

that both datasets were a good fit to the K-distribution, the first time that this has

been shown in the bistatic case. The PSD shape and absolute power were shown to

be comparable between the monostatic and bistatic data, the significant differences

were shown in the statistical behaviour of the data. The bistatic data was on average

shown to be less spiky than the equivalent monostatic data. In all cases the range

gate averaged K-distribution SSD fitted 1/ν values were less in the bistatic case,

except for both H and V polarisation datasets at β = 60◦. In the β = 60◦ datasets

the bistatic data was shown to be more spiky at it’s peak, but this increase in the

spiky behaviour of the clutter was over a small range within the Doppler spectrum.

This relationship agrees with other data analysis using SAR data recorded over land

in a semi-urban environment in [128], but has not yet been shown with sea clutter

Doppler spectra prior to this research. These key results were published within [129],

which was the first publication to describe the Doppler bistatic sea clutter statistical

variations.

When considering these results in the context of the task of detecting targets

in clutter the bistatic geometry has been shown to be potentially more favourable.

This is because on average the clutter is less spiky, and hence has a shorter tailed

distribution. It is considered that the bistatic geometry avoids the frequent high

amplitude returns due to the change in scattering angle with respect to the wave

surface. For the same given desired PFA a bistatic system would have a greater

sensitivity to target signals because of this. Even in the β = 60◦ datasets where the

peak 1/ν was larger in the bistatic data, this was over a smaller area within Doppler.

Hence the bistatic system would still more effective within the majority of Doppler

spectrum. In terms detection processing this means that a lower threshold could be

set across the Doppler spectra allowing for the detection of lower RCS targets within
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the clutter.

7.1.4 Simulation and Modelling

The simulation and modelling research completed within this thesis follows on directly

from the sea clutter analysis. It relates directly to the analysis previously discussed

as it represents a direct application of the knowledge obtained from the analysis of

real data.

The first step of this work was the independent algorithm development of the

recently established Doppler spectra model, that was first proposed by S. Watts. In

its initial presentation the model itself was tested on a single range gate within one

dataset. This research applied the model to significantly more data, from the CSIR

2007 dataset, which varied over a variety of azimuth angles.

By characterising the required input properties it was possible to simulate the

Doppler spectra of each dataset. The successful simulation of the data both repre-

sented the observed qualitative properties of the PSD but also replicated the statis-

tical variation which has been shown to be a key feature throughout this thesis.

A novel aspect of the simulation processing was the link discovered between the

centre of gravity of the PSD and the intensity values. Using multiple datasets gen-

erated at different azimuth angles it was shown that the linear fit parameters A

and B were related to each other as well as being a function of azimuth, with re-

spect to wind/swell direction. This discovery enhances the model as the number of

independent variables required is reduced.

The results shown within the simulation and modelling research have been sub-

mitted for publication in [124]. This represents the first large scale application of the

proposed model and further establishes it as an effective method of simulated sea

clutter Doppler spectra.

7.1.5 Information Theory Analysis

Through the application of the KLD metric it was possible link the fields of sea

clutter analysis and information theory. The metric was first shown to be suitable

for the area of distribution comparisons as well as begin directly related to detection

likelihood tests used in radar detection theory.

The initial tests using the KLD evaluated the divergence between two theoretical

distributions. The resulting values were then compared to other metrics that have

been used previously as well as quantitative values such as PFA and difference in

threshold (dB) to put the divergence variation in context. This gave a valuable insight

into the theoretic values that would be obtained if real sea clutter was represented

exactly by a K-distribution with a given ν, and the assumed distribution used a

different ν.
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The KLD was then applied to real sea clutter data from multiple Doppler bins

taken from the CSIR 2007 database. The real sea clutter PDFs were successfully

replicated using kernel density estimates to allow a KLD evaluation between data

and theoretic distribution. The analysis demonstrated that the KLD was able to

capture the varying divergence between data and K-distribution as a function of ν.

This information could then be used as a new form of fitting of the K-distribution to

the data.

The processing was then expanded to all Doppler bins to fit the K-distribution to

the data as well as quantify the divergence as a function of Doppler. The KLD was

found to give divergence values that matched the characteristic variation in 1/ν with

Doppler, therefore strengthening the prior research within the thesis that initially

defined these variations.

Fixed distributions were then input to the KLD for each Doppler bin to evaluate

the cost of assuming the same distribution across all Doppler bins. The distributions

used were a K-distribution with the ν values obtained from the peak CNR Doppler

bin and a thermal noise distribution. This analysis showed that significant divergence

values were obtained if the peak CNR ν was used across the clutter dominate sections

away from the CNR peak. The largest divergence values were found on the leading

edge of the clutter PSD.

By relating the KLD to sea clutter analysis a link has been developed between

the established area of optimisation information extraction from signals and the area

of sea clutter distribution analysis. The conclusions of this work are supported by

the publication of parts of the analysis in [6]. The results within this chapter clearly

showed that the KLD is an applicable and effective metric that has the potential

to be a widely used method of quantifying the misestimation of model against real

clutter.

7.2 Achievements and Contributions of Research

The wide ranging analysis that has been completed has added significantly to the

knowledge base of the area of sea clutter research. The key contributions of this

research are as follows:

• The research relating to the analysis completed on the SW2000 data is the

first demonstration of the variation of sea clutter statistics with Doppler using

the K-distribution. This work also demonstrated for the first time a direct

comparison between the vertical and horizontal sea clutter amplitude statistic

variation as a function of Doppler. The results of analysis performed from my

research were published in [130]. All the analysis results shown within this

publication were generated by myself from software that I wrote. The paper

was then co-authored with A. Stove and K. Woodbridge.
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• The analysis completed on the CSIR dataset enhanced the understanding of

how amplitude statistics altered with azimuth angle in relation to swell and

wind direction. The expansion of the initial results confirmed that the char-

acteristic behaviour, an increase 1/ν at the leading and trailing edge of the

clutter, was consistent with the SW2000 results as well as showing a strong

dependence on look angle.

• The analysis of the NetRAD simultaneous bistatic and monostatic sea clutter

is a very novel area of research. The S-band monostatic sea clutter data is

shown for the first time to be well represented by the K-distribution. The co-

herent monostatic and bistatic comparisons the statistical variation of the sea

clutter as a function of Doppler also have never been shown within prior liter-

ature. This work has provided the first insight into the comparative behaviour

of the coherent clutter in these two scenarios. This work represents a clear

step forward in this area allowing opening the area of research up for further

experimental campaigns to compliment the samples of the multi-dimensional

problem that have been analysed.

• The modelling and simulation work demonstrated the effectiveness of a newly

proposed model, as well as begin able to further reduce its complexity. The

initial analysis showed that the model was applicable to a much wider set of data

that it had been previously tested with. This strengthened the confidence in

this model as a practical and effective representation of sea clutter Doppler over

a wide range of conditions. The latter analysis within this work demonstrated

a new connection between variables within the model, which hence reduced the

number of variables required to simulate the clutter. This was shown through

the direct connection of PSD centre of gravity and the azimuth angle of the

recording.

• The information theory research is the first application of the KLD to the study

of sea clutter analysis. It was demonstrated that the KLD metric was a relevant

quantifiable value that can be used to estimate the cost of misestimation be-

tween two theoretic models with varying parameters, or between distribution

models and real sea clutter distributions. In addition to this it was used to

determine the cost of assuming a uniform distribution across all Doppler bins.

7.3 Future Work

Leading on from this research there are a number of potential avenues that could be

explored, the most significant of which are discussed below.

The research in this thesis has focused on furthering the understanding of the

statistical variation of sea clutter. There has been no specific analysis using targets
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within the sea clutter itself. An obvious future extension of the work would be to

analyse targets within sea clutter data to observe the influence sea clutter has on

targets and vice versa. It may be potentially possible to detect targets not only from

their reflections but from the changes to the Doppler distributions of the observed sea

clutter. As well as this the new understanding that has been demonstrated within

this thesis could then be taken forward by the detection and tracking community

to optimise the efficiency of their algorithms using this a priori knowledge of the

environment as a whole.

The modelling and simulation theory work is an area that is clearly opened to

further expansion. The model itself has only be shown to effectively represent sea

clutter at X-band frequencies. No experiments have been completed at and alter-

native frequencies, such as the S-band NetRAD data, modelling analysis on further

frequency bands would be of great value to the research community.

The observations made when completing the simulation and modelling work all

used data recorded on the same day, over assumed constant conditions. By testing

the model further using data generated over a variety of sea conditions it would be

possible to determine if the Doppler spectra is still well represented by the model. As

well as understanding how the input parameters of the model change with variables

such as sea conditions, wind speed / direction and grazing angle.

The KLD analysis only represented the first application of this metric to the area

of sea clutter analysis. Prior work has been completed on the use of the KLD in ATR

in the presence of land clutter, in [131]. The work shown within this thesis could

be developed further towards targets detection sea clutter. By relating the KLD

directly to the difference in threshold averaged over all false alarm rates it would

be possible to gain a directly relevant understanding of how the metric relates to

radar performance. A concise relationship between these two parameters would be

of significant practical use to radar engineers.
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