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Abstract

The velocity potential theory has been adopted to describe the inviscid flow around
the marine structures. The two-dimensional vortex shedding problems in marine
hydrodynamics such as a hydrofoil advancing near the free surface, the flow passing
through an orifice of a damaged compartment are studied in the present work.

As the steady motion and small amplitude unsteady motion of a hydrofoil advancing
near free surface is considered, a flat vortex sheet is introduced and imposed behind
the trailing edge. Free surface Green functions, which satisfy the free surface boundary
conditions, are adopted to account for the free surface effects. The effects of wave
radiation and diffraction are investigated.

To study the nonlinear effect of vortex wake and body surface boundary condition of
a foil with thickness or a plate structure, we introduce a time stepping scheme to
simulate the continuous vortex shedding. The functional motion modes of a foil or
plate, including propulsion, energy harvesting and flying, have been simulated. The
damping effect of vortices on the heave motion of a compartment with bottom
opening in unbounded flow is analysed.

The free surface effect on the steady and unsteady motions on a foil is further
studied through the time stepping methodology. The force history at different forward
speeds and submergences is investigated and discussed. The simulations on the free
surface effect on the propulsion, energy harvesting and flying modes are carried out.

Further efforts are made to investigate the forced heave motion of a flooded floating
compartment. The non-linear free surface and non-linear vortex wake are tracked in
the framework of Lagrangian. The ingress and egress fluid flow together with vortices

and their effect on the hydrodynamic force are investigated.



Symbols and nomenclature

Greek characters, lower case

h(t)

a(t) =arctan U_(t) —6(t) + S effective attack angle at the rotational centre

o, = arctan%—é’0 = arctan(zSt) — 6, nominal maximum effective attack angle

S mean attack angle

& phase difference of the rotational motion to vertical motion

&, phase difference of the wave to the oscillatory centre (x=0,t=0)
¢ perturbed velocity potential

¢ velocity potential due to steady motion

¢Tp perturbed velocity potential due to wave radiation and diffraction
#. ,¢_the potential on the upper and lower surface of plate

&, 9., the potential on the upper and lower surface of vortex wake

s, P1, 95, @5, @, Velocity potential due to incident wave, surge, heave, pitch motions

and diffraction waves respectively

y strength of the vortex wake

C

1y =—— propulsive efficiency
C
p

Ne power efficiency of energy harvesting mode

) pUh,

x =g /U? the wave number due to steady motion



A, surface wave length

A, A, parameters to set the time step

u=4a,. —¢, strength of vortex dipole

v=w’lg

7 ratio of the circumference

O(t) = g, sin(at + ) rotational displacement of the foil, the positive direction is defined

as counter clockwise

p density of the fluid

o circular frequency of vertical and rotational motions

@, circular frequency of the incident wave

r=Uw/g

¢(x,t) free surface

Greek characters, upper case

v the angle for circular columnto z=0

Waars Weng the angles of the starting and ending positionto z=0
Yo =Wend ~ Vstart

® total velocity potential

I' strength of the point vortex

Latin characters, lower case

a,,a,,3;,8,,b,,b,,b,,b,, b, the coefficients of decomposed force of frequencies nw



c(x),c,,c, the parameter of damping zone

C,= 2p2 pressure coefficient
pU

Cq =2—F§1, C = 2F33 , Cy = 4F255 > the resistance coefficient, lifting coefficient,
pUC pUC pUC

moment coefficient

Fr -c = Lz thrust and lift coefficients

:—'C
Cr 0.5pCU2" " 05pCU

Cpop :LS; Cop = R - ;ep = P 5 bower coefficients
0.5pCU 0.5pCU 0.5pCU

in in in __
Co. =—Cp,Cpyy =—Cpy ,Cp =—Cpg

Cp =—C; drag coefficient
d size of the orifice

dt, basic time step

dt, basic time step based on the wake velocity

f frequency of the motion

2F, 2F 4F,
f,= pCLj - fy= pCLj - fs = pCZLSJ > the non-dimensional force for the time stepping
simulation

foemene PArameter to control the element size on the free surface

2F AF,

_ ulj _ _ u5j . . .
fiaj _E v fey=—= 0 fs = 2 non-dimensionalized unsteady force

amplitude of a foil
g acceleration due to gravity

h(t) = h, sin ot vertical displacement of the foil



h, the submergence from the trailing edge to still water line

h. the submergence from mean rotational center to still water line
k, incident wave number
k;,k,,K;, Kk, wave number due to wave radiation

| half chord length

|, length of the rotational centre (x,,z_) to leading edge

|, basic element size

m,, m;, m; the m; terms

n=(n,n,, ny)=(n,,n,,—Xn, +2Zn,)normal vector

P.. = P— p, hydrodynamic pressure, p,is the ambient pressure

g, non-dimensional flow rate of ingress/egress flow

S =(s,,S,) tangential vector
Seiement P@rameter to control size of element on free surface

t time scale

t, thickness of the foil
t, the existing time of the point vortex

t the time when the damping of point vortex starts and ends respectively.

start” tend
(X.,z.) the rotation centre

X (X, Z; ) position of the trailing edge

X (X7, Z7.) position of the end point of first vortex dipole element

(%, 2) = (x,z)/C non-dimensional coordinates system for a foil



Latin characters, upper case

A =2h,

A =(A,A,A), A =(A,, A,A) are the translational and rotational displacements
B breadth of the compartment

C chord of the foiland C =2I

F (t), R (t), K (t) transient horizontal, vertical force and moment

Fn =L Froude number
JgC

t+T

F z_%_ IF3 (t)dt time-averaged lifting force
t
t+T

F = !

T IFl(t)dt time-averaged thrust
t

Fuji amplitude of complex wave radiation force

ij amplitude of complex wave force due to incident wave and wave diffraction

G(p,q) H(p,q) Green’s function

P =P_+ B, total power due to vertical and rotational motions

t+T
P :Ti .[F3(T)h(T)dT the power due to vertical motion
t

1 t+T

P, = T IFS(T)Q(r)dr the power due to rotational motion
t

R, radius of inner surface of the circular column

R, modified radius of inner surface of the circular column



R, radius of outer surface of the circular column

R, radius of outer surface of the circular column

St = a)—hoStrouhaI number
U

S, ..length of the vertical side wall of the compartment

wall

T =27/ w period of the oscillation

U speed of the body or the incoming flow

Us =(-U +0; ,W, ) average velocity at the trailing edge
USO =U +92,h—9)()~§ tangential velocity of the plate

V., volume of ingress/egress flow
V, non-dimensional volume of ingress/egress flow

W =UV(¢ —x)

X, =Xy, Yy Z,) coordinate system refers to Earth.
X = (X, Y, z) coordinate system travels with forward speed U
X'=(x',y',z") coordinate system fixed to structure
Abbreviation

BVP boundary value problem

LEV leading edge vortex shedding

MTF multiple transition function

NACA national advisory committee on aeronautics
CPU computer processing unit

CFD computational fluid dynamics

Re Reynolds number
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Chapter 1 Introduction and background

1.1 Introduction

Lifting bodies have been widely used in marine structures. Those include hydrofoils
for supporting hydrofoil boats, screw propellers and sails for propulsion, rudders for
the manoeuvring and anti-roll fins etc. Fluid dynamics used for these bodies can help
the understanding of their lifting generation mechanism, which can lead to the
optimization of the design of these structures. Research on these problems can
improve their hydrodynamic performance and structural reliability, and enhance
efficiency if applicable. Among the issues, understanding of the hydrodynamic
performance of these marine structures is one of the most important aspects in naval
architecture. Some other related problems involving separation effects include the
damaged ship hydrodynamics and biomimetics. To model these problems is actually an
issue related to vortex shedding or flow separation.

Vortex shedding or flow separation usually refers to the breakaway of the body
surface streamline or separation of the boundary layer at sides of structures (Bachelor
1967, p326). This can be observed when a flow passes around a wedge shaped
structure or a foil as shown in figure 1.1. Figure 1.1(a) shows the separated flow of a
rigid wedge; the vortex wake forms and sheds away from the edge tip when the wedge
moves towards the left hand side. Figure 1.1(b) presents an image of the flow around a
foil with a small attack angle. On the upper surface of the foil, the boundary layer and
vorticity are more visible due to thicker boundary layer in an adverse pressure gradient.
From figure 1.1, we notice that the boundary layer is thin when compared with the

scale of the structure; the viscous effect is mainly confined within the thin boundary



layer; along the body surface, there is no flow separation apart from at the sharp
trailing edge; the wake flow leaves the sharp edge more or less tangentially to the body
surface. Consequently, as discussed in the classic book entitled “marine
hydrodynamics” (Newman, 1977), with the assumption that the fluid is incompressible,
velocity potential theory can be adopted to describe the irrotational flow outside of

the boundary layer.

(a) (b)
Figure 1.1 Vortex shedding of (a) a wedge (Pullin & Perry, 1980) and (b) a foil,
http://www. youtube.com/watch?v=ki-CxkRuAxY

Since potential flow theory is considered, the Reynolds number has no effect on the
outer flow. However, for the theory to be applicable to a real problem, the Reynolds
number shall be reasonably high (Newman, 1977). High Reynolds number is usually
related to a thin boundary layer. For approximation, it would be appropriate to ignore
the thickness of the boundary layer and extend the velocity potential theory into whole
fluid domain.

The hydrodynamic problems concerned here are limited to vortex shedding at the
sharp edges of structures with a smooth surface. It is assumed that vortices only shed
from the tip of the sharp edge. The problem with flow separation along a smooth

surface, usually with its separation point unknown, is beyond the scope of the present



study. However, many flow separation problems, including the lifting body problems
and damaged compartment with an orifice, can be simulated using velocity potential
flow theory with the sharp edge vortex shedding model.

In the framework of velocity potential flow theory, the potential flow around the
structure is simulated through the boundary element method plus vorticity or dipole
distribution for the vortex sheet. The velocity potential satisfies the Laplace equation in
the fluid domain, the non-penetrating body surface condition, the proper Kutta
condition, and the kinematic and dynamic free surface conditions when the body is
near the water surface. The boundary in the integral equation is discretized and the
algebraic equations are established based on Green’s third identity. The boundary
value problem (BVP) is solved numerically.

The simulation of lifting bodies with a sharp edge still has many challenges.
Especially for marine structures when the free surface waves are present, the wave and
the vortex shedding will affect the flow and hydrodynamic force significantly. The
combined and coupled effects of the free surface and vortex on the marine structure
can be highly complex. We shall track the motion of the free vortex and the free
surface. Since viscosity has been ignored, the damping or dissipation of the vortices
becomes a problem. However, for specific models, artificial treatments can be
introduced.

When the motion of a foil near the free surface, which is related to high-speed-
vehicle such as a hydrofoil, is considered, the problems of the dynamic stability and the
sea-keeping performance of the boat becomes an important issue. In spite of the
assumption that the speed is constant, the foil will experience oscillations induced by

the waves. The problem is then decomposed into the steady motion problem (with



constant forward speed) and wave radiation and diffraction problems. The study on the
steady motion of a thin foil at small attack angle in unbounded flow has been
presented by Bachelor (1967), Newman (1977), Katz & Plotkin (1991). Giesing & Smith
(1967), Yeung & Bouger (1979), Bal (1999) further studied the linear free surface effect
on the steady motion of the foil with thickness. Grue, Mo & Palm (1988) investigated
the linear surface wave effects of an oscillatory plate. However, the overall
hydrodynamics of a foil with thickness in waves, as described above, seems absent. We
attempt to investigate this specific problem with linearized free surface conditions. A
flat dipole stretching from the trailing edge has been used to approximate the vortex
wake. The body surface condition of wave radiation problem, which contains the well-

known second order derivatives m;terms, is imposed on the mean position. An

efficient finite difference method is proposed to calculate the m; terms. The

appropriate free surface Green functions are adopted to solve the problems.

The shed vortex sheet of a foil with larger amplitudes of vertical and/or rotational
oscillatory motions would move up and down; the body surface condition can no
longer be imposed on its mean position. Therefore the nonlinear continuous vortex
shedding shall be tracked through the time stepping scheme. Anderson et al (1998),
Mantia & Dabnichki (2011) have investigated the oscillatory foil using inviscid flow
theory, the former adopt complex potential theory and the latter used the boundary
element method. Their results showed highly efficient combined vertical and rotational
motions for propulsion. This was further supported by Ashraf et al (2011) based on
Navier-Stokes (N-S) equations at higher Reynolds number. To study the nonlinear
vortex shedding of a foil extensively, we develop a numerical scheme. The Kutta
condition for the unsteady flow is proposed and the Kelvin theorem is imposed to

4



determine the strength of the newly shed vortex element. To avoid numerical difficulty
due to the bundle of the vortex sheet, the continuous vortex sheet is replaced by point
vortex after the vortex leaving the sharp edge. We extended the numerical scheme to
simulate the motion of thin structures such as a plate. A similar time stepping scheme
is applied to study the vortex shedding of an oscillatory plate and a compartment
which consists of two curved plates. The damping effect due to vortex is analysed.

It is known that the free surface has significant effect on the hydrodynamics of a foil
when it approaches the water surface. The nonlinear free surface effect has been
studied by Faltinsen & Semenov (2008); the solutions were achieved through iteration.
There are only a few studies adopting the nonlinear free surface and nonlinear vortex
shedding scheme for the transient motion of a foil. Landrini, Lugni, & Bertram (1999)
studied the steady motion of a foil near the water surface; however, the adopted Kutta
condition would be problematic. In the present study, the developed nonlinear vortex
shedding scheme is used. A foil with an impulsive motion of constant speed under the
free surface is simulated in the Lagrangian framework. Simulations on the oscillatory

vertical and rotational motions under the free surface are carried out.

(a) (b)

Figure 1.2 Experiment on the vortex shedding at the orifice of a damaged compartment

(Smith 2009), (a) egress (b) ingress
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The vortex shedding at the orifice of a floating flooded compartment is similar to that
of a foil near free surface. When a flooded compartment with an orifice is considered,
the fluid inside and outside of the compartment is linked. Fluid will ingress/egress the
compartment when it is in oscillatory motion. The shed vortices will move up and
down along with the ingress/egress flow (see figure 1.2). Smith (2009) studied the
forced motion of a compartment through a multi-pole expansion method; the vortex
shedding has been ignored. Here the time stepping scheme is applied to study the
heave motion of a compartment.

Since the viscosity of the fluid is not involved in the simulation, the dissipation of
vortices does not exist. It is one of the major challenges in the present numerical study.
Artificial dissipation function is introduced to damp the vortices. However, the
treatment of the vortex damping is more or less arbitrary. For a foil advancing in the
unbounded flow, a damping function based on time can be used as the vortices move
far away enough from the body where the vortices have very little effect on the flow
around the foil. The artificial damping function based on time is used for a flooded
compartment with a symmetric orifice. The treatment of vortex wake is introduced as
the artificial damping procedure does not affect the flow and the hydrodynamic force
significantly.

1.2 Literature review

There is a large body of work on vortex shedding and the interaction of bodies and
waves. Their success and ideas are extremely valuable to the present study. Those
typical works are reviewed first below.

As vortex shedding at a sharp edge is considered, theories based on the potential

flow can be categorized based on the ways to impose boundary conditions and the



ways to treat the vortex wake. The body surface condition can be satisfied either on its
mean plane as an approximation if the body is thin, or on the exact body surface; the
free surface boundary conditions can be linear or nonlinear; and the wake can be
treated as a fixed plane or a free vortex sheet. The applicability of these theories
mainly depends on their compatibility with the physical reality concerned.

The theory with its body surface condition satisfied on the centre plane and a flat
vortex dipole imposed on the mean plane behind the trailing edge is the feature of the
linear theory for a thin foil at small attack angle. Its solution is well established which
can be found in many text books, including those by Batchelor (1967), Newman (1977),
Katz & Plotkin(1991) etc. Analytical solution of the steady motion of a plate can be
obtained from an integral equation. When the unsteady motion of a thin foil is of small
amplitude and with low attack angle, one can also find the analytical solution without
much additional effort (Newman, 1977). An integral term regarding the wake is
introduced, which reflects the motion history. If the motion is harmonic or sinusoidal in
time, the effect of wake is frequency-dependent after a sufficiently long period of time,
which can be written in terms of the Hankel function, or the Theodorsen function.
Lighthill (1960, 1970a, 1970b, 1971), Wu (1961, 1971a, 1971b) presented their studies
on the swimming of a plate based on this method. There are practical limitations on
the applications of such a theory: the body should be thin, the mean attack angle
should be small and the oscillatory motion should be of small amplitude.

When the free surface exists nearby, free surface boundary conditions have to be
imposed. Wu (1972) considered the incoming free surface wave. Its effect was however
included only in the boundary condition on the foil surface and the BVP was still solved

in the unbounded fluid domain. The frequency domain free surface Green function is



an effective tool to study the free surface effect of steady motion and harmonic
oscillatory unsteady motion. The wave effects can be automatically included since the
Green function satisfies free surface boundary conditions. Grue, Mo & Palm (1988)
considered the full effects of the linear surface wave on an oscillatory plate without
thickness through the appropriate Green function, in the context of propulsion of a
ship, in the sense that energy can be extracted from waves as the hydrofoil moves
forward with heave and pitch motions. Wu (1994a) also solved the unsteady motion of
a three dimensional vertical plate piercing the water surface. A panel method over the
plate surface was introduced to solve the BVP. We notice that the frequency domain
Green function is valid for steady motion with harmonic motion. For general transient
motion, the time domain free surface Green function should be adopted. However, the
calculation of the integral involving the memory effect could be very time consuming
because of the convolution term. Nevertheless, the free surface Green function
method is convenient to find good results for linear problems with small attack angle
and small amplitude oscillation.

As the ratio of thickness-chord becomes larger, the thickness effect cannot be
ignored. The panel method over the real surface of the body, proposed by Smith &
Pierce (1958) and Hess & Smith (1964), can be used to simulate the flow passing
around a foil with thickness. For a lifting body, source, dipole and vortex wake can be
adopted on and behind the foil; the solution can be obtained by solving the boundary
integral equations, which are established based on the non-penetrating body surface
condition (eg. Bristow, 1980, Katz & Plotkin, 1991) and the Kutta condition. Giesing &
Smith (1967) developed a method to calculate the lifting force of a single or multi

lifting bodies moving near the water surface. The sources and sinks were distributed



over the body surface together with a vorticity to satisfy the Kutta condition at the
trailing edge. The adopted Green function satisfies the linear free surface boundary
conditions and the radiation condition. Similar work based on the panel method for a
hydrofoil at steady forward speed includes those by Yeung & Bouger(1979), Bal (1999)
for two-dimensional foil and Xie & Vasselos (2007) for a three-dimensional foil. Zhu, Liu
& Yue (2006) studied the propulsion of an oscillatory three-dimensional foil near the
free surface, where linear free surface conditions are satisfied.

The frequency domain and time domain free surface Green functions both satisfy
linear free surface boundary conditions. When the body is moving close to the free
surface, the non-linearity of the water surface may become important. As a result,
nonlinear free surface boundary conditions have to be imposed. Detailed discussions
on this can be found in Giesing & Smith (1967). However, there are only a few works,
including Faltinsen & Semenov (2008), which adopt fully non-linear free surface
boundary conditions for foils. Their solution was obtained through iterations. Landrini,
Lugni, & Bertram (1999) adopted the fully nonlinear free surface boundary condition,
and the time stepping method was used. However, their implementation of vortex
shedding scheme was problematic; the adopted Kutta condition was the same as those
that have been criticized by Jones (2003).

Most of the theories discussed above adopted linear wake; the vortex wake dipole,
which is the difference of the velocity potential of upper and lower sides at the trailing
edge, is imposed on the mean plane stretching from the trailing edge. It is appropriate
when the attack angle and the motion amplitude are small. When the attack angle or
the amplitude of the oscillatory motion increases, the vortex wake behind the trailing

edge would move up and down. The free vortex wake shed from the edges of the



structures can no longer be represented by a flat vortex sheet. In this case, a non-linear
wake model should be used and body surface boundary conditions shall be satisfied at
its instantaneous position.

Apart from the vortex wake, the well-known Kutta condition has to be imposed
properly. Mathematically, the Kutta condition can be expressed in the form of the
continuity of pressure or finite velocity. This is achieved through including the effect of
flow circulation. When the nonlinear wake is involved, it is usually unsteady. In this
sense, the corresponding Kutta condition is named the unsteady Kutta condition. The
unsteady Kutta condition is one of the key issues when simulating the vortex shedding
problem.

Early works treated the nonlinear wake using lump point vortices. Researchers have
developed several methods to determine the strength and position of the newly shed
vortex. Different schemes for the Kutta condition have been introduced and imposed
either numerically or through conformal mapping. However, as mentioned by Sarpkaya
(1989) and Jones (2003), most of the methods for the unsteady flow were achieved
numerically, which might not have the full mathematical rigor. As commented by Jones
(2003), several unsteady Kutta conditions were introduced and implemented
numerically, including those by Maskell (1972), Kuwahara (1973), Clements (1973),
Sarpkaya (1975), Katz (1981), and Cortelezzi et al (1997). The strength, position, and
velocity of the newly introduced vortex element are chosen principally as a numerical
treatment, in some of which, the rate of shed vorticity is given based on the velocity of
a point near the sharp edge. The newly shed vortices are introduced either at fixed
points or released at a variable position near the sharp edge. However, the results with

these unsteady Kutta condition have large discrepancies when compared with the
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experimental data of Keulegan& Carpenter (1958) and Pullin & Perry (1980).

To avoid the discontinuity of lump point vortices, a continuous vortex sheet or dipole
was adopted to simulate the separated flow through conformal mapping in the work of
Pullin & Perry (1980) and Graham (1980); although the averaged point vortex array,
which is reduced from the continuous vortex sheet, was used to represent the vortex
sheet released from the sharp edge. It seems that continuous vortex shedding at the
sharp edge can give more accurate results than those by discrete lump point vortex
when compared with experiment data (Nitsche & Krasny 1994).

The discussion of the vortex shedding at a wedge shaped trailing edge has been
discussed by Giesing (1968) and Katz & Plotkin (1991, p245). The effect of the direction
of vortex wake has significant effect on the lifting force and the drag. Kristiansen &
Faltinsen (2008, 2010) adopted dipole segments to simulate the vortex shedding; the
dipole was released continuously from the sharp edge. However, the Kutta condition is
implemented by introducing extrapolation; two additional equations are established
through the extrapolation of the local potential on the two sides of the sharp edge. The
strength of the shed vortex dipole and its shed velocity are obtained based on an
artificial treatment. Although continuous distribution of vortex dipole is used, the
direction of the shed vortex is based on observation. However, their numerical results
avoid large discrepancy when compared with the experimental data.

Rigorous imposition of the unsteady Kutta condition has been presented by Jones
(2003) and Jones & Shelly (2005). The proposed mathematical procedure satisfied the
Kutta condition analytically through asymptotic expansions. To circumvent the velocity
singularity, the continual vortex sheet is required to be tangential at the edge of a

moving plate. Similar to Jones, Alben (2009) adopted a continuous vortex shedding
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model, in which the vortex sheet shed tangentially from the trailing edge. Jones’
tangential vortex shedding model did avoid the singularity mathematically, which
justified its validity itself. However, his tangential vortex shedding method would be
problematic when a body with non-zero angled corner such as a wedge is considered.

In general, it is not possible to let the shed vortex wake be tangential to both sides of
a wedge. However, we can seek new schemes for the simulation of vortex shedding at
the edge. One possible method is to continue the mathematical procedure by
modifying the local shape of the wedge tip, let its two sides be tangential to each
other. Another possibility is to adopt a numerical unsteady Kutta condition which can
lead to a good approximation to the fluid flow.

Let us go back to the physical essence of the Kutta condition. Observation from
experiment shows that the vortex wake is formed in the vicinity of the area at the back
side (view from the coming flow) of the edge, as shown in Figure 1.1(a). It is not shed
from a single point, but a small region. Strictly speaking, the models to simulate the
vortex shedding using vortex sheet or point vortex are an approximation technique for
such a case. As the wedge tip vortex shedding is considered, it is difficult to impose the
tangential Kutta condition to a body whose two sides are not joined tangentially.
However, the Kutta condition is required to circumvent the singularity in the velocity
field of the ideal flow. In the framework of potential flow, we shall choose a Kutta
condition which can ensure the velocity field to be finite at the trailing edge. Since the
sharp edge is considered, the vortex wake released from the tip of the wedge shall be
treated as a continuous distribution of dipoles.

Apart from the unsteady Kutta condition and the treatment of the vortex sheet, the

interaction of vortices and the free surface or surface waves is the interest of present
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study. Simulation of floating bodies near a free surface by pure potential flow cannot
include the damping effect due to vortex shedding. It is known that the sea-keeping
theory based on the potential theory over-predicts the roll motion of a ship as the
damping effect due to viscosity and the vortex shedding at the bilge is ignored in the
motion equation. Therefore, a reliable and accurate procedure or method that can
estimate the damping of vortex shedding becomes most valuable.

As the floating body with sharp edges, like the bilge keel or the orifice of a damaged
ship, is considered, the shed vortices, surface wave and the structure shall be tracked
simultaneously. Figure 1.2 shows the vortex shedding at the sharp edge of the orifice of
a flooded compartment in oscillation (Smith, 2009). As the flow ingresses or egresses
the orifice, vortices are shed up and down. When studying the oscillatory damaged
compartment, the sea-keeping theory based on pure velocity potential theory without
vorticity cannot capture the phenomena of vortex shedding and its effects. The
discrepancy, especially at lower frequency, between the predicted hydrodynamic force
and the experimental data has been found (Smith 2009). Work by Downie, Bearman &
Graham (1988) included the vortex damping effect from the sharp corner of a floating
rectangular barge in waves; the sharp edge was mapped to an infinite wedge, the shed
vortex was then matched with the main flow; the predicted response avoided the
excessive roll motion. Kristiansen & Faltinsen (2008, 2009) revealed that the
discrepancy of the wave response of a rectangular barge predicted by linear potential
theory and the experiment data and the simulation results which included the vortex
shedding explained the discrepancy quite well. Gaillard, Xu & Wu (2011) simulated the
motion of a damaged barge in waves using software WAMIT which is based on pure

linear potential flow theory. They introduced an additional damping coefficient which
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was obtained from the harmonic motion of a damaged compartment in the
unbounded flow. The introduced damping coefficient reduces the discrepancy of the
results from pure potential flow and the experimental data. It is still a challenge to
model the motion of a damaged barge directly. Different from the sloshing problem,
the free surfaces inside and outside of the compartment are linked. The coupled
motion, which involves vortex shedding, motion of the floating body and waves, makes
the problem extremely complicated.

Since the surface wave is involved, the far field wave radiation condition has to be
addressed properly. The far field condition is satisfied automatically when the free
surface Green function is applicable in the linear case. In general case, the computation
domain is always finite for time stepping simulation. As the wave propagates outward,
it has to either pass through the truncated boundary with no reflection or be absorbed
using a damping zone. There are several methods that are useful for linear free surface
problems, including the Sommerfeld condition (Sommerfeld, 1949), Multiple transition
function (MTF) (Liao, et al 1984) and damping zone method. For nonlinear problems,
the damping zone is more effective and practical; it can absorb the wave energy

without significant reflection (e.g. Tanizawa & Swada 1996, Wang & Wu 2006).

1.3 Context of present study

The purpose of our study is to develop a faster and more accurate tool to study the
hydrodynamic characteristics of structures with sharp corners. The integral equation is
applied on the boundary which is divided into small elements, and the matrix
equations are established based on the boundary conditions. Those existing methods
or schemes may have difficulties in treating the problem concerned here. However, the

success of those mathematicians and hydrodynamicists gives a great amount of
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valuable information and their ideas inspire us to push into new territories.

We first consider the linear wave radiation and diffraction of a foil near the free
surface in chapter 3 after the basic theory and equations are presented in chapter 2.
The non-penetration body surface condition for the steady motion and diffraction
problem is satisfied on the exact foil surface other than its centre plane. The linearized

body surface condition is imposed on its mean position. The m; terms are calculated

through finite difference. The effects of submergence, attack angle and frequency
together with various reciprocity relationships are investigated.

We introduce a time stepping vortex shedding scheme to approximate the
continuous vortex shedding. The nonlinear vortex shedding of a foil with large
amplitudes of vertical and rotational motions for the purpose of propulsion, energy
harvesting and flying is investigated in chapter 4. Extensive studies on the effects of
oscillation amplitudes, frequency, the effective attack angle, and phase differences of
vertical and rotational motions are carried out for different motion modes. When the
thickness of the foil is reduced to zero, the foil can then be replaced by a plate. The
fluid flow is then described using a vortex distribution. The time stepping scheme is
again applied to simulate the vortex shedding of a plate with minor modification.
Numerical results on small amplitude oscillation and large amplitude motion are
investigated. Further application is applied to an opening semi-column compartment
with symmetric orifice at the bottom. The damping effect due to the vortices is
investigated.

The transient motion of a foil near non-linear free surface is studied in chapter 5. The
simulations involve the interaction of foil, free vortices and free surface. A foil with an

impulsive motion of constant speed and/or the oscillatory vertical and rotational
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motions under the free surface is studied. The transient wave effect at different
velocities and submergences is investigated; the performance for the purpose of
propulsion, energy harvesting and flying are discussed.

Chapter 6 moves to the simulation of the vortex shedding of a floating flooded
compartment in oscillatory motion. An orifice at the bottom represents the damaged
structure. The thickness of the compartment is included and the sharp edge of the
orifice is modified like the trailing edge of a foil. The numerical scheme for the vortex
shedding would then be applied to model the damaged compartment. As the
compartment moves up and down, the ingress and egress flow through the orifice of
the compartment makes the problem differ from the sloshing problem. There are very
strong interactions between the structure, waves and free vortices. Simulations are
carried out to investigate the effects of motion amplitude, frequency and damaged
orifice size. Apart from the hydrodynamic force, the flow rate through the orifice is

examined.
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Chapter 2 The mathematic equations for vortex shedding

problems

Throughout the studies in the present thesis, there are some important definitions
of coordinate systems, governing differential equations and integral equations that

shall be outlined here.

2.1 Coordinate systems

First of all, we shall introduce the coordinate systems. We define three different
coordinate systems similar to those in the sea-keeping theory (Newman 1977, Wu

1986):
(1) X(X» Yor Z,) is fixed referring to the Earth, in which X,0y, is along the
undisturbed water surface and Z; points upwards if applicable.

(2) X(X, Yy, z) travels with the structure with the forward speed U in the direction of
X axis. X0y is on the mean water surface if applicable; it is originated at the mean

position of the rotation centre of the body when it is in the unbounded flow.

(3) X'(X', y', z') is a coordinate system fixed on the structure.
These three coordinate systems can be transformed from one to the other. We have

X(X, ¥, 2)=X(Xsr Yo zo)—(IUdt 0, 0) (2-1)

and for small amplitude oscillatory motion

X'(X, ¥, 2)=X(% ¥, )= (A +AxX) (2-2)
where A =(A,A,A), A,=(A,A,A) are the translational and rotational
displacements of the structure relative to )Z(X, Yy, 2).

In the case of large amplitude oscillation, Eq.(2-2) should be replaced by

X'(x, ¥y, 29=X( vV, 2)—(A +MxX") (2-3)
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where
cos g, cosg, —cosb,sind,sinf, —cosd, cosd,sing, —cosd,sing, sing,sino;
M =| cosé,sing, +cosb, cosd,sinf;  cosb,cosb,cosd, —sing,sing;  —cosd,sinb,

sinég; sing, oS &, sin 6, cos o,

(0,,6;,06,) are the Euler angles

Here we consider the two-dimensional problem and variations in Y axis are

eliminated. The translational and rotational velocities become Arz(Al,O,As),

A, =(0,A;,0), and
1 0 0
M=|0 cosf, -—siné,
0 O Cos &,

where the over-dot implies the temporal derivative.

2.2 Some basic equations for vortex shedding

Under the assumption that the fluid is ideal and incompressible and its density is

constant, the velocity potential ¢ satisfies the Laplace equation
o’ 0%
Vip=—>+—=0 2-4
¢ ox*  oz? (2-4)

in the fluid domain.

The non-penetrating boundary condition on the body surface gives

o

a—:U-nx+(Ai+A52, A —AX)-n (2-5)
n

where n=(n,n,) is the inward normal vector of the body surface,
(X,Z)=(x-X;,2-12,), and(x.,z.) is denoted as the rotation centre.

In the Eulerian system, the free surface S can be written as

Z=¢(x,t) (2-6)
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The dynamic and kinematic free surface boundary conditions on Z = ¢(X,t) are

‘Zf ~Ug, += v¢v¢+gz— (2-7)
g _ ;
& U= -4, (2-8)

where g is the acceleration due to gravity.

When the free surface boundary condition is linearized, on Z=0 we have

gf Ug, +9z=0 (2-9)
g
at -Ug, =9, (2-10)

Combining Eqgs.(2-6)(2-9) & (2-10), we have
(5-ULyigeg 2l - (2-11)

While in the Lagrangian framework, the nonlinear free surface boundary conditions

can be written as

dg 1
Ty - 2-12
i 2 V- 0z (2-12)
x_ ;.9 dz_0¢ (2-13)
dt ox' dt oz

Once the solution is found, we have the pressure
1
Pre ==p(f ~Ug, + S VIVH+02) (2-14)

where p is the density of the fluid.
When Eq.(2-14) is linearized, we have
pre = _p(¢t _U¢x + gZ) (2'15)

The hydrodynamic force can be obtained through pressure integration over the body
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surface. We have

F = j p..ndS, =135 (2-16)

So

where (n,,n;,n )= (n,,n,, X x), X =(x-x,,2-2,).

The Kutta condition requires the velocity to be finite at the sharp trailing edge of the
structure, or
V¢ = finite (2-17)
at X; =(X;,Z;) which are the coordinates of the trailing edge.

If the body is in the unbounded flow, the perturbed velocity by the body in the far
field disappears, or
V=0 asXx—>+x (2-18)
When the free surface is present, the perturbed velocity far away from the body shall
be finite or
V¢ = finite as X — Fo0 (2-19)

The potential is discontinuous across the vortex sheet. The difference is usually
defined as a dipole, or
M= Py =P (2-20)
Here when one walks along the wake starting from the trailing edge, ¢,, and ¢, _in
Eq.(2-20) are the potentials on the right and left hand sides respectively. The normal

velocity across the wake is continuous, or

OPu. _ Oy (2-21)
on on

where the negative sign is because of the change in direction of the normal from one

side of the wake to the other side.
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Figure 2.1 The integral boundary of a foil in steady motion near free surface

2.3 The integral boundary equation
The problem can be solved through the boundary integral equation. For a point

P(X, 2) in the fluid field the potential can be given by Green’s third identity

2= [ 152D gg)-6(p.0) L, (2-22)

Sg+Sg+Sy+Sc q

where G(p,q) is the Green function, q(&,7)is the point along the integral boundary,

N, is the normal at point q, §; and S are the foil surface and control surface, and S,

indicates the wake surface as shown in figure 2.1.
Substituting Eqs.(2-20) & (2-21) into Eq.(2-22), we have

2mm)= | D) -6(pa) s, + [CLD s, 223
Sw

on .

So+Sg+S¢ q q

Eqg.(2-23) will be modified for specific problems and will be used to solve the BVP

throughout the thesis.

With above equations, we will study the linear and nonlinear vortex shedding of

marine structures in the following chapters.
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Chapter 3 Linear theory for a submerged hydrofoil advancing in
waves

3.1 Description of the overall problem

We consider a hydrofoil advancing in water waves with small attack angle. This is one
of the major concerns of high speed vehicles such as hydrofoil craft. It shall provide a
steady lifting force to balance the weight of the ship. As it encounters incoming waves,
the hydrofoil moving along with the craft would experience an oscillatory flow field
induced by the waves, leading to a combined wave radiation and diffraction. The
overall motion is decomposed into the steady forward speed problem and periodic
wave radiation and diffraction problem. The linearized free surface and body surface
boundary conditions are imposed. The free surface boundary conditions are accounted
for through the Green function. The integral equation involves only the body surface
since the Green function satisfies the free surface boundary conditions. As the
hydrofoil thickness is considered, the body surface condition is no longer satisfied on
the axis line of the foil, but on the mean position of the foil surface. In this sense, for
the forward steady problem and wave diffraction problem without body oscillation, the
boundary condition on the body surface is satisfied on its exact location. When there is
a body oscillation, the body surface condition is satisfied on its mean position. A flat
dipole imposed behind the trailing edge is used to approximate the steady and
unsteady vortex wake, as shown in figure 3.1.

As the overall hydrodynamic behaviour of a hydrofoil advancing in periodic waves is

considered, the total potential ® can be written as
®(x,2,t) =Ug(x,z) + Re[, (x, 2)e™] (3-1)
where ¢(x,z) and 5p(x, Z) are the potential due to steady motion and the combined

incident, radiation and diffraction potentials, respectively. The latter are based on the
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2
assumption that the problem is already sinusoidal temporally, @ =@, +—U is the

encounter frequency, + and — correspond to waves from the right and left hand sides

respectively, @, is the wave frequency.

The potential qZp related to the periodic motion can be written as
by = Aoy + AP+ Ay + A+ A, (3-2)
where ¢, is the potential due to the incident wave and @; is due to its diffraction by
the hydrofoil; A, is the incoming wave amplitude, and A, = A,; ?; (j=1 3,5) are
the potentials due to surge, heave and pitch motions respectively; A(i=1, 3, 5) are

the corresponding amplitudes of these motions.
The potentials due to steady motion in calm water and the radiation and diffraction
are calculated separately. Once the steady motion and the unsteady motions are

solved, the complete hydrodynamics of the foil can be obtained through superposition.

3.2 Steady motion of a hydrofoil under the free surface

3.2.1 Equations for the steady motion

free surface S

Figure 3.1 Sketch of a submerged hydrofoil advancing near the water surface
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The sketch of a hydrofoil moving near the free surface at constant forward speed U
is shown in figure 3.1. The distance of the trailing edge and the rotation centre to the

mean water line are h; and h. respectively. In this chapter the rotation centre

U
(X.,z.) is at the centre of the chord. We define the Froude number as Fn :ﬁ'
g

and denote C as the chord length, and £ as the mean attack angle.

The potential 5 due to the steady forward motion satisfies the Laplace equation
Vi =0 (3-3)
in the fluid domain.

The boundary conditions for the steady problem, given in Eqgs.(2-5) & (2-11) become

9 _

ny 3-4
an (3-4)

on the foil surface, and
kP, + P =0 (3-5)

on the free surface, where x =g /U 2. In the far field, we have

Vp =0, X—>+o (3-6)
and
V¢ = finite, X ——oo. (3-7)

Once the potential is solved, the steady hydrodynamic force st is obtained from the

full Bernoulli equation since the product term may be more significant near the body.

We have

F, = [ Punjds =— U7 (-4, +%vava)njds i=135 (3-8)
So So

where the gravity term is not included, as it contributes a buoyancy force.
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Here we defined the non-dimensional pressure C, and non-dimensional resistance

Cy, lift ¢, and moment C,, as

C, = % (3-9)

cR—pU—ZC———Ic nds (3-10)
C = pU ZC = c Ic n,dS (3-11)
Cy = pf'JF;éz = és{cp(—an +2n,)dS (3-12)

Since the free surface Green function satisfies the free surface boundary conditions
automatically, the boundary integral equation in Eg.(2-23) only involves the foil surface

and the wake. The Green function can be written as (Wehausen & Laitone 1960)

o k(z+n)
G(p,q)=Inr+Inr'+2 p.v.J'

0

cosk(x —&)dk + 272 sin i (x — &) (3-13)

where r=./(x—&)?+(z=n)° , r'=J(x—&)?+(z+n)?> , and P.V. indicates the
Cauchy principal integral.
To solve the steady potential ¢ , the Constant Boundary Element Method (CBEM) is

adopted. The boundary of the foil surface is divided into N segments. Thus Eq.(2-23)

can be written as

¢ &t oG
Z[am ~b,— ']+[O u(g) - =dS,, =0 (3-14)

q

where

I G(D CI) :IG(p,q)dSq, and I, ] are the numbers of the segments
S, Sj
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corresponding to p, ( respectively. More details on the discretization and collocation

of the foil can be found in the book of Katz & Plotkin (1991).
Since the attack angle is small, the linearized vortex sheet is adopted to approximate
the wake flow. Physically, the pressure on the two sides of the vortex wake shall be

equal. From the linear Bernoulli equation we have

0y _\y 0 000y

= (3-15)
ot OX ot OX
Noting that . = 90 =0 in the steady flow, we then have
ot ot
ou
——=0 or u=const. (3-16)
OX

The dipole (q) in Eqg.(3-14) is constant. This is then obtained by the difference of the
potentials on the two elements attached to the trailing edge of the foil. As a result,
Eq.(3-14) has N unknowns which are obtained from the N conditions imposed at the

centres of N segments.

3.2.2 Pressure distribution and steady force on the foil

-1.0 N=800 upper surface
-0.5-
lower surface

0.5+

1.0 T T
-1.0 -0.5 0.0 0.5 1.0

2x/C

Figure 3.2 Pressure distribution on a symmetric Joukowsky foil with t, /C =11.78%,
h./C=1.0 at Fn=1.0,8=5°
To verify the present method though convergence study and comparison,
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simulations are made for a symmetric Joukowsky foil with the ratio of thickness t, to

chord C equals to 11.78% at mean attack angle #=5°, with the number of
elements on the body N =80,120 and 200 respectively. Figure 3.2 presents the
non-dimensionalized pressure distribution over the foil surface. It can be seen that the
results from these three meshes are graphically indistinguishable. Table 3.1 gives
further results for non-dimensionalized resistance, lift and pitch moment. The table

shows that these meshes have given the converged results.

Table 3.1 The resistance, lift and pitch moment on a symmetric Joukowsky foil with

t,/C =11.78%, h, /C=1.0 at Fn=1.0, 5 =5°.

N=80 N=120 N=200
Cq 0.02182 0.02194 0.02207
C, 0.34116 0.34267 0.34399
Cu 0.15297 0.15275 0.15275

o

Fn=1.03, h./C=0.94 07 Fn=1.03,h./C=06

154 present upper surface present upper surface
o Exp(Ausman1954) / o Exp(Ausman 1954)
10 - - - Giesing&Smith (1967) _.----~

ffffff Giesing&Smith(1967) ..

-0.5

o -05 o
(@) $)
0.0
00 A 19} o' To
054 lower surface lower erface
1.0 , . . , 05 , . . 3
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
2x/C 2x/C
(a) (b)

Figure 3.3 Pressure distribution on the NACA4412 foil at Fn =1.03and B =5° (a)

h, /C=0.94 (b) h, /C=0.6
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0.0 - T T ) 0.2

Fn Fn

(a) (b)

(c)
Figure 3.4 Resistance, lift, and moment on a symmetric Joukowsky foil of

t, /C =11.78% at B =5° and different submergence. (a) resistance (b) lift (c) pitch

moment

We now use the present method to consider the NACA4412 foil. The pressure
distributions over the body surface are presented in Figure 3.3. They are compared
with the experimental data of Ausman (1954), taken manually from the paper of
Giesing & Smith (1967), and very good agreement can be found. The numerical results
of Giesing & Smith (1967) are also included in the figure, which are slightly different on
the upper surface. They adopted source distribution and an additional vortex to

account for the flow with circulation, and the Kutta condition is satisfied when the
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velocities at the elements of the trailing edge are equal. This treatment is right for
steady motion. The results of Giesing & Smith (1967) shall be the same as present
results; however, discrepancies can be observed. This could be caused by fewer
elements they used or the accuracy of the computer in 1960s.

Having verified the method, figure 3.4 gives the resistance, lifting force and moment

on a symmetric Joukowsky foil with t, /C =11.78% against forward speed at

different submergence. As can be seen in figure 3.4(a), the resistance coefficients
increase with Fn initially. They reach a peak at Fn~0.8, Fn =1.5, Fn = 2.4 for

h, /C=1.0, h,/C=20, h, /C=4.0 respectively and then decrease gradually at

larger Fn. We notice that the resistance decreases significantly as the submergence

h, /C becomes larger. In the perspective of energy, the energy of the wave comes

from the work done to water by the foil. Hence the increase of resistance usually refers
to the wave making resistance. Figure 3.4(b) gives the lifting forces which increase as
the speed increases and after the curves reach their peaks they decrease. These curves
for the lifting force then go up gradually and tend to a finite limit. There is a similar
trend in the curves for the moment. We may also notice that the resistance is one
magnitude smaller than the lift. The presence of free surface has a significant effect on
the hydrodynamic force due to the induced surface waves. The forward speed in
x =g /U?in Egs.(3-5) or (3-13) indicates the characteristic of the induced wave. Larger
U means smaller k¥ and longer wavelength. When the submergence is fixed, the
variation of the lifting force is mainly due to the changes of the local flow induced by
surface wave. When U is small, there would be more than one wavelength above the
foil; as U increases, the wavelength increases as well. The foil can be beneath the

crest of the wave which is followed by a trough. This can explain the changes of the
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lifting force corresponding to the forward speed. When the submergence increases,

the free surface will have less effect as shown in the figure.

3.3 Hydrofoil with small amplitude harmonic oscillation in waves

3.3.1 Mathematic equations on the radiation and diffraction problems

wave S

Figure 3.5 Sketch of a hydrofoil advancing in waves
Let us consider an oscillatory foil travelling in waves with constant forward speed.
The incoming wave is assumed sinusoidal both temporally and spatially and the
hydrofoil is in harmonic surge, heave and pitch motions. The potentials due to wave
radiation and diffraction satisfy Laplace equation
Vip,=0,j=1357 (3-17)
in the fluid domain.

The body surface condition can be written as (Newman 1978)

op; . .

a—n‘:la)nj+Umj,(j:1, 3, 5) (3-18)
0P __000 (3-19)
on on

where
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(myms’ms): _(aax 1652 ,8[2(5)( _l)_xi]j.
on  on on

Its boundary condition on the free surface can be written as (Wehausen & Laitone,

1960; Wu & Eatock Taylor 1987)

2
T .
?i +7g0jxx —2itp; —ve; =0 (3-20)

2
@

w
where 7=—, v =—

g

The potential due to the incident wave can be written as

0, = gekozii(koﬂgw) (3-21)

iw

2

[0)
where k, =— is the wave number and &, is the phase of the incoming wave with

respect to the foil centre.
Once the BVP is solved, the force and moment on the foil can be obtained from the

integration of pressure. We have (Newman 1978, Wu & Eatock Taylor 1987)
Fy = Rel(AFyo + AF; + AR, + AR, + AF;) e”] (3-22)
where Fuji is the complex amplitude of the unsteady force.

The force due to wave radiation and diffraction is obtained from the linear Bernoulli

equation as the body surface condition is linear. We have the radiation wave force

F, :—pI(iw¢i +W -Vg)nds, i, j=1,35 (3-23)

S0
where W =UV(¢ —x), which has included the effect of steady potential.

The non-dimensionalized force can be written as

2F

ulj

C

2Fu3j ;
p9C

—h

aF ..
=—=1 (3-24)
9C

ulj — » 'u3j = u5j
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The combined incident wave force and diffraction wave force can be written as

F., =(F,, +F, )=—p[liolp, +¢,)+W -V(p, +¢,)In;dS, =1, 3,5 (325

So

Similar to Eq.(3-24), we have

2F
f = “é,(j=1, 3), fis =% (3-26)

One may notice that the linear unsteady body surface boundary condition Eq.(3-18)
contains the second order derivatives of the steady potential. This is usually

problematic in numerical calculation. The accuracy of this term is a major challenge in

this type of numerical solution. Zhao & Faltinsen (1989) attempted to calculate the M;
term directly. The second order derivatives of the potential near the body surface were
calculated and the mM; terms on the body surface were obtained through
extrapolation. Wu (1991) proposed a numerical scheme to calculate the M; term by

solving the boundary integral equation of the first order derivatives of the steady

potential. Here an efficient numerical scheme based on the finite difference method is

proposed. The M; terms are calculated through the finite difference of the potential

derivative q?x and ¢, along the foil surface. We have

op, - — o,
ms=———X=—¢ n —g n =——= 3-27
1 an XXX ¢xz z 88 ( )
o¢ - o¢
m=—~=—¢n —g n =—2=% 3-28
3 an ¢zx X ¢xx z 85 ( )

where S =(S,,S,) =(n,,—N,) is the vector in the tangential direction of the body
surface. From M;, M, , we have

m; =n, (§Zx _1) - nxgz + Zml - Xms (3-29)

32



For the potential related to the harmonic motion, the Green function can be written

as (Wehausen & Laitone 1960, Wu & Eatock Taylor 1987)

< ; ; 4 +ik: (x—
G=Inr—Inr+ p.v.jek(z*”) [AG)e 9 + B(k)e -9 bk + > b,ei e (3-30)
0

=

when 7 < %, where

AK) = 1 1 1
1-47 (k—-k;, k-Kk,
1 1 1

B(k) = —

W= k—ky k—k,

K, =2V—2(1—27+\/1—4r), Kk, 22%(1—27—\/1—47)
T T

k, = 2L2(1+ 27 + 1+ 47), K, =2L2(1+ 2t — 1+ 47)
T T

iz iz i iz

b=— ’b = — ’b: ’b = —
' 1—47 ¢ 1—47" ° N1i+47” ' 1+4r

and the +sign in the last term is taken positive when j=1,2, and negative when
j=34;

and

G=Inr—Inr+ p.v.J.ek(””) [c()e™® + Bk)e 9 Jik + Dbe 1 e (3-31)
0

j=3
1
when 7 > Z' where

|4

C(k) = :
() 7%k? —v(L-27)k +v?

1
This indicates that there would be four waves of different wave number when 7 < Z'

two travelling before the foil and two behind; there are two waves propagating behind
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. 1 . - . .
the foil, when ¢ >Z. It is a critical point whenz=1/4. We also notice that when

7 — 0, the wave radiation problem becomes the steady motion problem.

For the periodic motion, the pressure at the wake is obtained through the linear
Bernoulli equation
Pre =10p, —Up, (3-32)
which ignores the effect of the steady disturbed potential. As in Newman (1977), its

continuity across the wake means that 4 in Eq.(2-19) satisfies

iou—Uu, =0 (3-33)
This gives
H(X) = g™ (3-34)

where k, =@/U, and the value of u(X;) can be obtained from the difference

between the potentials on the two elements attached to the trailing edge, as in the

steady potential.

3.2.2 Numerical results on the radiation and diffraction forces

We shall first calculate the m; terms. To obtain the m; terms through Egs.(3-27) &

(3-28), there are a few steps to follow: (1) calculate the potential on the nodes of each

element through fourth-order Lagrangian interpolation formula (see Abramowitz &
Stegun, 1965, p878); (2) the tangential derivative ¢1 at the middle of the element is
calculated through finite difference of the potentials at the nodes of the element. (3)
q?x and (/72 are obtained through the known (ZS and (En at the middle of the elements; (4)
the values of ¢TX and ¢TZ at the nodes of each element are again obtained through the

fourth-order Lagrangian interpolation; (5) the m; is then obtained at the middle of the
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element through the finite difference of ¢TX and ¢, at the nodes of each element.
To test the convergence of the above procedures, we calculate the m; terms with 3

sets of meshes. Figure 3.6 shows that the present scheme can give very good results
for these second derivatives. However, compared with the pressure in figure 3.2 and
steady force in table 3.1, a finer mesh is needed to give converged results, especially at

places where the curvature is high. We also notice that m; is quite large especially near
the leading edge. We further notice that n, in Eq.(3-18) are the components of the

normal and thus their magnitudes are always less than one. As a result, the second
term could play an important role, which reflects the significance of the effect of the

steady potential on the unsteady potential.

40+
—=—N=80
~ o N=120 FB
20 s N=200
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Figure 3.6 m; term for the symmetric Joukowsky foil with t, /C =11.78%, h. /C =1.0
at Fn=1.0, 3=5° (a) m, (b) m,

We consider the hydrofoil advancing in a regular wave and with small amplitude

harmonic heave and pitch motions. Figure 3.7 gives the heave force and pitch moment

on the symmetric Joukowsky foil of t, /C =11.78%, with Froude number Fn = 0.6 and

submergence h, /C =1.0. The figure shows that the attack angle has significant effect
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on the vertical force and rotational moment, especially at smallervC. One of the
reasons is that the mean position of the body changes when the attack angle changes.
In this sense, the body becomes different. More importantly, the circulation around the

foil changes as the attack angle changes. This will significantly affect the steady

potential ¢ . As it has been seen in figure 3.6, the m; term can be very large. When it

varies, its effect on the radiation potential can be very significant, as can be seen in
Eq.(3-18), especially at lower frequency. We notice in figure 3.7 that there is a sharp
discontinuity at vC ~0.17. This in fact corresponds to 7 ~0.25. The data closest to
this point used to plot these curves are at WC =0.168 corresponding to
7=0.246<0.25 and vC =0.2 corresponding to 7=0.268>0.25, respectively. The
reason for the sharp variation at this point can be explained by the wave structure
discussed after Egs.(3-30) &(3-31). Further discussions could be found in the work of

Grue & Palm (1985) and Wu & Eatock Taylor (1987). Figure 3.8 presents the force and

moment of Joukowsky foil of t, /C =11.78%, with ﬂ:5° , Fn =0.6 at different
submergence h, /C . The hydrodynamic force varies significantly when vC >0.2due to

different submergence.
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Figure 3.7 to be continued on next page
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Figure 3.7 Hydrodynamic force on a symmetric Joukowsky foil with t, /C =11.78%, at

Fn=0.6, h. /C=1.0
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Figure 3.8 to be continued on
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Figure 3.8 Hydrodynamic force on a symmetric Joukowsky foil witht, /C =11.78%, at

Fn=06, #=5

For a submerged body, Timman & Newman (1962) have shown that the

hydrodynamic forces associated with the wave radiation f. (i, j =1,3,5) satisfy

uij
fuij U)= fuji(_U) (3-35)
which was further confirmed by Wu & Eatock Taylor (1990) at low forward speed. For a

two dimensional body with fore/aft symmetry, Eq.(3-35) means that

fuij :_fuji (3-36)
except that
fus = fusa (3-37)

due to anti-symmetry of the rotational motion when view from the fore/aft body.

It was, however, found by Wu & Eatock Taylor (1988) that this relationship is valid
only at low forward speed. At large forward speed, Wu & Eatcok Taylor (1988) have
shown that
Re(f,;) =Re(f,;),Im(f,;)=—Im(f,) (3-38)

which do not require the body to have fore/aft symmetry.
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We consider an example at VC=2.012 or o=~ and plot f; and f, against

Froude number in figure 3.9. The data plot in figure 3.9 starts from Fn =0.25 with an
increment of 0.25. The results do not satisfy the Timman & Newman relation at low
Froude number. This is in fact not a surprise, because the hydrofoil does not have
fore/aft symmetry and because of the presence of the wake effect here. One can also
see in the figure that Eq.(3-36) is not satisfied either in most cases. This is again due to
the effect of the wake, as the relationship does not require fore/aft symmetry of the
body. There are in fact further relationships to link these hydrodynamic forces with the
radiated wave at infinity for a non-lifting body (Wu 1991b). However because of the

wake effect, such a relationship may not be relevant here.
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Figure 3.9 f and f ; of a symmetric Joukowsky foil witht, /C =11.78%, 8 = 5°,

VC =2.012.
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Figure 3.10 The hydrodynamic force due to the incident wave, with Fn =0.6,

h,/C=10, t,/C=11.78%, and ¢, =0. (a)(b) vertical force and (c)(d) moment

Figure 3.10 presents the wave excitation force and moment due to incident potential
and diffracted potential when the wave is from the right hand side, or the head sea.
For the diffraction problems, there is also a relationship linking the force with the
amplitude of the diffracted wave at infinity (Wu, 1991b) and a relationship linking the
amplitudes of the reflected and transmitted waves themselves (Wu 1993). The wake
here however has changed the validity of these relationships. In particular, for a non-
lifting body the wave structure is that discussed after Eq.(3-31). For a hydrofoil in
waves, however, because the vortex sheet in Eq.(3-34) extends to infinity, the waves
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will become more complicated. The curves show the force, including contribution from
both the incoming wave and diffracted wave. The differences due to the attack angle
become significant when 1C increases. These curves increase when vC becomes larger
and then decrease after they reach their peaks. It is expected that these curves

approaching zero when C be very large because of the e™ " term in the incident

wave.
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Chapter 4 Nonlinear vortex shedding of an oscillatory foil or plate
in unbounded flow

4.1 Introduction

When the attack angle and/or the amplitude of oscillation becomes large, or there is
oscillation without forward speed, the shed vortex can no longer be approximated
using the flat vortex sheet behind the trailing edge. The vortices would tend to move
out of the centre plane, and the flow near or behind the trailing edge would be
affected. Figure 4.1 shows the snapshots of these kinds of vortices behind a foil. The

non-linear vortex shedding of a foil or plate shall be investigated in this chapter.

T Y ""8/'

Figure 4.1 the visualization of vortex snapshots behind a foil (Lai et al 2002)

The nonlinear vortex shedding is prevailing in the scope of biomimetics. Swimming
fish and flying birds are experts in fluid mechanics. Their tails or wings appear to be
highly efficient. Man-made robots to fully mimic fast moving fish/cetaceans are still in
progress. The manipulation of the shed vortices is a high technology and the motion of
a flexible body has a great number of degrees of freedom. Review of oscillatory foil and
biomimetic studies have been presented by Triantafyllou et al (2000, 2005). Among a

large volume of theoretical and experimental studies, the foil is one of the most
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popular geometries. For propulsive foils, Anderson et al (1998), Read et al (2003)
presented their experimental data, and the thrust, input power and the efficiency of
foil NACA0012 at various oscillatory frequencies was extensively investigated. High
propulsive efficiency was observed in both works, although there were some
differences in the exact results.

To simulate continuous vortex shedding, a numerical time stepping scheme is
developed. The boundary element method through distribution of singularities over
the body surface and over the vortex sheet is used. The unsteady Kutta condition is
imposed at the trailing edge. The summation of tangential velocities on the upper and
lower surfaces of the sharp edge of the foil equals the tangential derivative of the wake
dipole attached to the trailing edge. The boundary integral equation is solved through
linear elements on the body surface and on the newly shed vortex dipole element,
together with point vortex in the wake which is tracked as part of the solution.

The numerical method is verified through a convergence study. Extensive simulations
are made for the foil NACA0O012. The results are first compared for the lifting force with
the experimental data for the steady motion of the foil at various Reynolds numbers.
Further comparison is made for the propulsive mode of the foil with the experimental
data presented by Triantafyllou et al (2005). After these verifications, simulations are
carried out to investigate the motion modes for propulsion/swimming, energy
harvesting and flying. For propulsion and flying, the foil advances with constant
forwards speed; while for energy harvesting, a foil with zero forward speed in current is
studied. The kinematic energy of the flow is extracted by manipulating the motion of
the foil. The effects of oscillatory frequency, effective attack angle, vertical motion

amplitude, and phase difference of the motions on the performance of propulsive

44



efficiency or power coefficient are analysed.

When the foil thickness approaches zero, the implementation of this form of the
integral equation becomes difficult. The body is then replaced by a plate. The
numerical vortex shedding scheme is applied with minor changes. The unsteady Kutta
condition is implemented by the continuous distribution of dipoles. The boundary
integral equation is solved based on the non-penetration condition and the linear
vortex element is used. The steady and unsteady oscillatory motion is studied. The
numerical scheme is further applied to study the vortex shedding of a compartment

with a bottom orifice. The damping effect due to the vortices is analysed.

4.2 The nonlinear vortex shedding of a foil

4.2.1 Description of numerical scheme

dhdt
o

AN o0

@ ' B U

Figure 4.2 The sketch of the problem, vertical and rotational motion of a foil

We consider a foil moving forward at translational speed U or in the uniform coming

flow with harmonic vertical and rotational motions with their motion amplitudes h,

and 0, respectively. They are referred to heave and pitch motions, respectively, in
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some publications. We do not adopt the terms here to avoid the confusions with the
terms used in naval architecture. The Cartesian coordinate system 0Xz, as shown in
figure 4.2, originates at the mean position of the rotation centre. The governing
equations and the boundary conditions are the same as those in chapter 2. The
perturbed potential ¢ satisfies the Laplace equation; the body surface condition on S,

is the same as that in Eq.(2-5), and A3 A5 in Eq(2-5) shall be replaced by ﬁ, 9, we

have

0 . S
8_(rf =U -éZ)n, + (h+6X)n, (4-1)
on the body surface S,, the dot over 6, h means the time derivative, and

X =(x—X.), Z=(z-1z,) withl./C=1/3 for the cases in this chapter, |_ is denoted as

the distance from leading edge to (X,, Z.).

(a) (b)

Figure 4.3 lllustration of vortex wake at the trailing edge (a) shed vortex and (b) Kutta

condition

Vortices will be shed from the trailing edge to form a wake sheet. For a linearized

problem, it is usually assumed that the shape of the wake is a straight line in the
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direction of incoming flow behind the trailing edge. When the attack angle and/or
amplitude motion becomes larger, the shape and location of the wake will be part of

the solution, which becomes one of the main challenges in the present work. As shown
in Fig.(4.3a), the element in the wake attached to the trailing edge is denoted as S,

where the Kutta condition and vortex shedding scheme will be imposed, and the rest
of the wake is denoted as S,

To improve the computational performance, the differential Eq.(2-23) can be

modified. We notice that

dG(p,q) _oH(p.q)
on 0s

(4-2)

—<

where H(p,q) = arctan— S =(s,,S,) is the tangential vector along the integral
-n

boundary, and when one walks along the S direction, N points to the right hand side.
It is common that when there is a discontinuity between tangential velocities across a

sheet, their difference is defined as vorticity 7 . As a result, from Eq.(2-20) we have

ou
= 4-3

P (4-3)

Substituting Eqs.(4-2) & (4-3) into Eq.(2-23) and using integration by parts over S,,,, we

have

aG(IO q)

C|

2ai(9) = [0 2 o -G (p ) L s

(4-4)
+J (p q)ﬂ(q) dS + u(x JH(p. X'y )+ [H(p,q)y(a) dS

SwZ

where X; =(X;,Z;) is the starting point of the S,,, or the trailing edge and

X' =(X;,2%) is the finishing point of S, as shown in Fig.4.3(a). It should be noticed

that the fact that the dipole strength is zero at the end of the wake has been used in
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Eqg.(4-4).
We then discretize the integral boundary. The foil surface is divided into N elements,

and in the wake there are one dipole element S, and m vortex elements at (m+1)th

time step. We have

24(p) = 3. [I55 2L ()~ 6(p, ) "X Pas
o k—l)sk q q ) (4-5)
+ [ P (@) a8+ (e H(p ) + 3. [H(p (@) s

For a non-lifting body, the boundary integral equation in Eq.(4-5) will have the term
over the body surface only. The existence of the wake distinguishes a foil from a
smooth body and therefore presents the major computational challenges. The choice
of a right scheme for the vortex shed from the trailing edge, the suitable form of the
Kutta condition and the appropriate method to track the wake are essential
components in a successful solution technique. We may use linear distribution of ¢
over the body surface. At t =0, we impose the body surface boundary condition at the

nodes of the each element on the body. Since no circulation has yet developed around
the foil, Eq.(4-4) can be solved without the wake and ¢" =¢~ is used at the trailing

edge. At the next time step t =dt, S,; will be formed and X'; =(X;,Z;) is obtained

from
Xt =X +(-U+0U, )dt (4-6)
7'y =1, +W, dt (4-7)

where U; and W, are the average horizontal and vertical velocities obtained by ¢,
when approaching the trailing edge from the upper and lower sides of the foil. From

the continuity of the pressure p,, across S, or pre+ =P, , we shall have
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du ou
-0 4-8
t “dt v os (4-8)

where U, =(-U +0, , W, ). In the discretised form, this can be written as

p(X'y t+dt) = (X, ,t) (4-9)
which means the dipole strength at X'; =(X;,Z';) can be obtained from the dipole
strength at X, =(X;,Z;) at the previous time step. However, at t =dt, ¢" #¢~ at the
trailing edge and therefore (X, ,t+dt) in Eq.(4-5) is unknown although x(X'; ,t+dt)
is known from Eq.(4-9), and there is still no S, at this stage. This means that when we

impose the body surface boundary condition at element nodes, there will be one
equation short. This shortfall is met by the Kutta condition at the trailing edge in the

following form

op| _op| _aom 4-10)

0s . 0s . 0S|y,

where 0f ,% 8_,u denote the tangential derivatives based on the
os |~ 0s . s |y,

definition of the direction of S after Eq.(4-2).

We then have the right number of equations for the unknowns in Eq.(4-4) which can

now be solved. At the next time, the dipole in S,; moves downstream and the first
element in S,, will be formed. The strength of the vortex in this element can be

obtained from

(4-11)

UI‘ O
—~|=
[l
o

in the Lagrangian sense. This means that the vortex strength in the first element at this

time step can be obtained from its strength in S, at the previous time step, which is
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0
in fact a—'u and is therefore known. In particular, we shall use point vortex x; to
S

replace the distributed 7 in the element. Its total strength will be clearly the
: : ou R
integration of N over S, at the previous time step, or

S

[ (t+dt) = g%, 1) — (X5 1) (4-12)
The position of I can be obtained by following the movement of the fluid particle at

middle of S, attime t to its new location at t+dt using the average velocity on both

sides of S . Eq.(4-5) can then be solved again. In the next time step, the strength T}
will not change and its position can be obtained by following the fluid particle in the
Lagrangian sense. A new point vortex k, formed from S,; will be obtained. S, will be
updated using Eqgs.(4-6) & (4-7) and Kutta condition will be imposed through Eq.(4-10).
In the following steps, the above procedure can be repeated and the position of I
i1 =1,2,3...m can be updated using the Lagrangian method. The calculation can continue
until the desired time step. The vortex wake S, is like the tail of the foil, and there will

be a newly shed point vortex behind the trailing edge at each time step. The vortex
shedding scheme is an ‘egg-laying’ procedure.
The force and moment on the foil can be obtained through the integration of

pressure, which is calculated using Bernoulli equation, or

b =—p[%f—(u ~02 i+ 0X) -V + 2V g9 ] (4-13)

D
where E is the derivative with respect to time for a point fixed on the body.

Consequently, the horizontal, vertical force and moment can be obtained through

pressure integration in Eq.(2-16). We have
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F, =jprenjd3=—pj[%f—(u—9z,h+@<).v¢+%v¢v¢]njds,j:l, 3,5 (4-14)
So

So

4.2.2 Numerical results of different motion modes

4.2.2.1 Steady motion of a foil

We first consider the foil at steady forward motion only. In this case, it is possible that
one could introduce
$=UCoqp (4-15)
Boundary conditions can then be applied to ¢ together with the treatment at the
trailing edge. The forward speed U has no explicit effect on the non-dimensional
results. This means that when the problem is solved using @, the results normalized by
U should be independent of forward speed. To investigate the convergence of the

results with respect to time step, we use dt=ﬂ,lC/UST, where UST is the shedding

velocity of the vortex elements attached to the trailing edge, 1, is a parameter that
can be chosen from 0.01-0.05 and a variable time step has been used. In the case of

every UST , a large value of allowed dt can also be specified. For periodic motion, the

time step dt <A, T is also required, where parameter A, shall be chosen smaller than

0.02. We consider a case in which the foil starts moving at a given forward speed
suddenly with 5°angle of attack. Foil NACA 0012 is used as an example to study the
vortex shedding problem. Figure 4.4 presents the lifting force. The results from
different time steps agree well and there is no graphically visible difference in the
curves. Here we have to state that all the force history curves have a very big value at
the first and/or second time step, the spike of the curve has been ignored here and

throughout the thesis.
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0.0 T T

ut/C
Figure 4.4 The lifting force history of NACA0012 foil with an impulsive constant motion

at f=5"

To validate the present results, comparison is made with the experimental data. In
figure 4.5, the calculated lifting force is taken at the time when the foil has travelled a
distance equal to 50 chords. The experimental data is taken from Sheldahl et al (1981).
The experiment was conducted in the Walter H. Beech Memorial Wind Tunnel, Wichita
State University. The wind tunnel has a 2.13mx3.05m test section fitted with floor to
ceiling two-dimensional inserts for testing two-dimensional airfoil sections. A balance
system is used to obtain the lift, drag and moment data. All the data were corrected for
wake and solid blockage, buoyancy, upwash and wind tunnel factor. The published data
can be used for the comparison of present study. As shown in the figure, the
agreement is quite good when the attack angle is small. Discrepancy appears as the
attack angle increases. However, the discrepancy at higher Reynolds number is reduced

due to the reduced flow separation.
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Figure 4.5 The lifting force of NACA0012 foil with various attack angle at Ut/C =50.

4.2.2.2 Propulsion / swimming mode
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Figure 4.6 The forces history under St=0.3 h,/C=0.75, o, =15°, & = 90°
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It has been found that generally, when gis close to 90°, an oscillatory foil can
a)hO
produce thrust when arctanT >0,, or &, >0(Anderson et al 1998). We shall use the

present methodology to investigate such a case. Convergence study on the oscillatory

motion has been carried out similar to that for the case of steady forward speed; the
forces history are in good agreement when 4 =0.01, 4 =0.02,2 =0.05 are used for
dt=A4,C/Ug,, as shown in figure 4.6. In the figure, we can observe that the thrust is

always above the zero line. It is interesting to see that the period of the thrust is half of
the motion period or it has two cycles for each oscillation period; while the periods of
vertical force and rotational moment are the same as that of motion. This is in fact
similar to the behaviour of the force on a floating body undergoing periodic horizontal
oscillation perpendicular to its vertical symmetry plane (Wu 1994, 2000). As the foil is
symmetric and in the periodic motion, the body and flow pattern at t and t+T /2 form
the mirror images about z=0. Using this fact and following the procedures of Wu
(1994, 2000), it can be shown that the force in the x direction will have only

components of frequencies 2nw, n=0, 1, 2... and the force in the z direction and

rotational moment have only components of (2n+1)w. This is what is reflected in

Fig.4.6.
If we use the definition in Eg.(4-15) again, the boundary condition in Eqg.(4-1) in the

non-dimensional coordinate system (X, 2) =(x,z)/C becomes

9 _ [1-ZB cos(z—ﬂt +¢&)n, +[Dcos LI cos(z—ﬂt +é&)In, (4-16)
on T T T

where

B= Caby _ 7St [, —arctan(#St)]

U  h
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D = #St
This shows that in addition to St, the results normalised by U will depend on the

vertical amplitude hO/C, nominal maximum effective attack angle a,and phase

difference of vertical and rotational motion & . Their effects are now investigated.

254
. A = Exp data (Triantafyllou et al, 2005)
124 : S;’;jz:ﬁ):&ﬁgsg?;lli)jt;l’alzgggg) o calculation (Triantafyllou et al, 2005)
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Figure 4.7 (a) Thrust coefficient C; , (b) input power coefficient c‘; with h,/C=0.75,
a, =15°, & =90°at various St.
We consider the foil motion with h,/C=0.75, ¢, =15°, & = 90° at various St. As

shown in figure 4.7, the present results agree well with the experimental data and the
nonlinear numerical solution presented by Triantafyllou et al (2005), which is obtained
using a complex potential method. The experiment was carried out by Anderson et al
(1998) at MIT tank; the data was obtained from a NACA0012 foil with 10cm chord and
60cm span. The submergence of the foil is 60cm. Since the side plate had been used
and the chord-span-ratio and chord-submergence-ratio are as large as 6, the three-
dimensional effect and free surface effect would be insignificant. AsSt increases,
thrust coefficient C; and the input power CiF? increase rapidly. However, we can see
that the thrust curves from the calculation are slightly higher than the experimental

data in figure 4.7(a). As commented by Triantafyllou et al (2005), this might be due to
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the frictional resistance, which would be 0.05approximately. We notice that the
discrepancy is larger when Stis near 0.1. A leading edge vortex shedding (LEV) might
appear and a larger discrepancy between experimental data and inviscid flow theory
results can be observed at lower St. When St becomes larger, the oscillatory
frequency increases, and the LEV would be reduced or eliminated (Maresca et al 1979,
Ellington 1984, Ellington et al 1996, and Dickinson et al, 1999). However, as St keeps

increasing, for example when St > 0.4, the maximum of the varying attack angle «(t)
can be very large and excessively large attack angles may cause LEV (Pan et al 2012) or

‘stall’ phenomena. As a result, larger discrepancy of C; can be found when St >0.4.
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(a) (b)

Figure 4.8 The effects of (a) heave amplitude h,/C at St=0.2, o, =15°,£=90° and

(b) nominal maximum attack angle «,, atSt=0.2, h /C=10,&=90°.

Figure 4.8(a) presents the effect of vertical motion amplitude h,/C on the

propulsive foil at St =0.2, o, =15°,&=90°. The data in the figure show that the
thrust, input power and propulsion efficiency all increase with the vertical motion

amplitude. The effect of nominal maximum effective attack angle «,is shown in figure

4.8(b),atSt=0.2, h,/C=10,¢e = 90°. When a, increases, both the thrust and input
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power increase rapidly; but the rate of input power increase is higher than the
propulsion power. As a result, the efficiency decreases.

We further study the effect of the phase difference of the vertical and rotational
motion on the thrust and propulsive efficiency. From their experimental data,
Anderson et al (1998) stated that the highest efficiency can be achieved when ¢ is
around 70°, while Read et al (2003) reported that the highest efficiency is found when
& is around 110°. The experiments were carried out by Anderson et al (1998) and
Read et al (2003) using the same equipment. However, it is really unusual that their
data are different. Here we simulate the specific oscillatory motion with St =0.22,

h/C=0.75, o, =15°, which are the same as one set of data in their experiment. &
varies from 45°to 135°. The thrust coefficient, power coefficient and the propulsive

efficiency are presented in figure 4.9. We notice that the lowest thrust coefficient ¢,

and power coefficient Ci; are achieved when £~75°, and the highest propulsive

efficiency appears when & ~70°. The numerical results of present simulation support

the data of Anderson et al (1998).
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Figure 4.9 The effect of the phase difference between vertical and rotational motions,

with St=0.22,h, /C=0.75, o, =15°
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4.2.2.3 Energy harvesting mode

When the foil has no forward speed but in a uniform incoming flow, the foil can
absorb energy from the current through its vertical and/or rotational motion. This is
usually defined as energy harvesting mode and can be achieved if the oscillatory
motion of a foil is adjusted properly. The foil in a current with velocity —U is
equivalent to the foil with forward speed U . Therefore the boundary conditions and
the vortex shedding scheme are the same. In fact it has been found from the extensive

simulations that the vertical motion is likely to become energy harvesting mode when

a, <0and £~90°.
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Figure 4.10 Effects of (a) St (b)h,/C, (c)&, and (d) ¢
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Here the effects of St,h,/C, &, £on the performance of an oscillatory foil are

investigated, which are given in figures 4.10 (a) (b) (c) & (d) respectively. When one
parameter varies in each of these figures, the other three will be fixed at St =0.3,

h,/C=1.0, o, =—15°, £ =90°. As can been seen in figure 4.10(a), the power coefficient

Cp. due to vertical motion and the input power CiF,n,\,I due to rotational motion are both
positive and increase with St. The total power coefficient can be obtained as
Cpo =Cp_ —CE‘M . Here we adopt the assumption that the total fluid energy which can be

absorbed is within the span of the vertical motion at the rotation centre, which differs

from that based on the motion amplitude of the leading or trailing edge. Thus we have

the fluid energy as %p(ZUhD)UZ = pU°n,and the harvest energy efficiency can be

written as 7. :Lschog. We notice that 7. is proportional to c,., .for fixed
P, O,
C/h,, and for this reason the curve for C,, is not presented in figures 4.10(a) (c) & (d)

but only in figure 4.10(b) where h,/C varies. As can been seen in figure 4.10(a), e
increases with St within the region given. Figure 4.10(b) shows that the net power
coefficient Cpg increases with N, /C . This is because although the reduction of power
coefficient Cp_ can be observed at smaller St, the input power coefficient C,TM
decreases more rapidly. The power coefficient Cpq of an oscillatory foil increases with

h,/C but the power efficiency 77, which is normalized by vertical motion amplitude,

decreases. Figure 4.10(c) shows an almost linear increase of Cg_, CEM and 5. with o,.
A higher increase rate of Cp_ can be observed, and thus results in the increase of 77,

Figure 4.10(d) gives results for & varying from 70° ~110°. It can be seen that the
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highest value of 77¢ is achieved when & ~90°.

Figure 4.11 Force history with St =0.3,h,/C =1.0, ¢, =-15°, £ =90°

Figure 4.11 further presents the force history for the case at St =0.3. Similar to
figure 4.6, the frequency of the horizontal force is double that of motion. In this case
however, the most part of the horizontal force is below the zero line, which means that
the force is a drag. It suggests that the foil is no longer in the propulsive mode. Since
the drag is produced in the energy harvesting mode, it can also be called the braking

mode when in comparison of the propulsion mode.

4.2.2.4 Flying mode

One major difference between a flying bird and swimming fish is that the former
needs constant lifting force to support its weight while fishes can balance themselves
principally with the help of their buoyancy. A flying mode is therefore defined as the
motion which will create lifting force and propulsive force. For an oscillatory foil it is

observed that with a mean upward attack angle or a biased rotational angle, it will
normally be in a flying mode. We investigate this mode under h,/C =0.75, ¢, =10°,

g=ml2.The results are provided in figure 4.12. It can be seen in Figs.4.12(a) (c) & (d)
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that results for the thrust, input power coefficient and propulsive efficiency from the
two cases of #=5"and =10°are close to each other, although the former is slightly
higher than the latter. However, the lifting force almost doubled when the bias angle
doubled for same St, as shown in figure 4.12(b). It suggests that there is a linear
relationship between mean lifting force and g , as in the case of pure steady motion at
small attack angle. The average lifting forces for zero mean attack angle in figures 4.6 &
4.11 are expected to be zero, while for biased rotational motion, apart from increasing

£, higher lifting force can also be obtained by increasing St as expected.
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Figure 4.12 the performance with hy/C =0.75, o, =10°, £ =90°. (a) thrust (b) lifting

force (c) input power (d) propulsive efficiency.
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t/T
(c)

Figure 4.13 The forces histories with St =0.3,h,/C =0.75, o, =10°, £ =90°. (a) f, (b)

fy (c) fg

We further present the forces histories with St=0.3, h,/C=0.75, , =10°, £ =90°

in figure 4.13. The amplitude of the horizontal force curve with g=10s larger than

that of ﬂ:50, although their mean values are close. The lifting forces, as shown in
figure 4.13(b), are periodical and have a non-zero mean line, which explains the mean
lifting force in figure 4.13(b). The moment curves also have similar non-zero offsets as
shown in figure 4.13(c). There are troughs and peaks in each motion cycle, which differ

from these curves in figures 4.11. The curves do not show the simple superposition of
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those induced by the steady motion and the oscillatory motion. They are then
decomposed into components of frequencies nw. We have similar to Hu et al (2002)

and Wang & Wu (2006)
f, =b,+>_(a,sinnat+b, cosnat), i=1, 3, 5,n=1, 2, 3.... (4-17)
n=1

The least square method has been used to obtain the coefficients a,and b, , by
truncating the expansion at n=4. Table 4.1 shows the details of the coefficients of
each component. Unlike the case of g =0 in above sections, the force and moment at
B =0 have all the components nw, n=0, 1, 2... It is evident that the argument of
Wu (1994, 2000) is no longer valid in this case and this kind of behaviour of the force
and moment there can no longer be expected here. As g doubles its value from 5% to

10°, the components of the horizontal force at n=1, 3 and the components of the
lifting force and moment at n=0, 2, 4 are also approximately doubled. These

components are in fact zero when g =0, as discussed previously. It is therefore not too
surprising to see they vary approximately linearly with g when gis small. The peaks

and troughs in figure 4.13(c) are the results of first, second and third order terms, since
the coefficients of the second and third order terms are 20% ~ 30% of the first order

terms.

Table 4.1 decomposition of the forces with St=0.3,h,/C =0.75, ¢, =10°, £ =90°

by & b, a, b, ag b, a, b,

f,p=5° |0.285| 0.068 |-0.614 | 0.491 | 0.243 | 0.032 | -0.032 | 0.065 | -0.040

f,,p=10° | 0.270 | 0.133 | -1.229 | 0.500 | 0.220 | 0.061 | -0.063 | 0.062 | -0.038
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fy, p=5° | 0.798 | -1.184 | -0.802 | -0.027 | 0.078 | -0.201 | 0.120 | 0.013 | -0.003

f,,$=10° | 1.590 | -1.161 | -0.774 | -0.052 | 0.154 | -0.192 | 0.112 | 0.025 | -0.006

fs, =5 | 0.118 | 0.278 | -0.051 | 0.017 | 0.026 | 0.084 | -0.001 | -0.002 | 0.001

fo, p=10° | 0.233 | 0.274 | -0.037 | 0.033 | 0.051 | 0.083 | -0.002 | -0.004 | 0.003
1.0 —l—azso N 1.2
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Figure 4.14 the performance with h,/C =0.75, f=5", £ =90°. (a) thrust (b) lifting

force (c) input power (d) propulsive efficiency.

Figure 4.14 gives the performance of the foil with h,/C=0.75, f=5", £ =90°at

different @, against St. We can see in figures 4.14(a) & (c) that the thrust coefficient
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and input power increase with St. Generally, the thrust, shown in figure 4.14(a), is
linearly proportional to @, at smaller St number. As Stincreases, the thrust force with
a, =10°, 15° keep increasing, but the curve with a, =5"decreases. Figure 4.14(b)

shows that the average lifting force increases with St. However it is not strongly

affected by «@,. Figure 4.14(d) shows that the propulsive efficiency decreases as St
increases. To give some insight into the effect of ¢, figure 4.15 gives the forces history
atSt=0.3,h,/C=0.75, f= 5°, £ —=90°. We further give the coefficients of the force

components in Table 4.2, decomposed using Eq.(4-17). The whole horizontal force

curve, as shown in figure 4.15(a), moves up as @;increases. As expected then, the

mean value term |b0| for thrust increases in table 4.2. For the second order terms, a2|

decreases and|b2| increases as &, increases, which result in a slight change of the phase

of troughs and peaks. In addition, the third and fourth order terms have some non

negligible effects. Figures 4.15(b) & (c) present the lifting force and moment. Their

decomposed coefficients in table 4.2 show that the constant term b, changes slightly
and first order terms |a1| and|bl| decrease and increase respectively, as @,increases.

This means that there is a change of location of the peak.

Figure 4.15(a) To be continued on next page
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(b)

(c)

Figure 4.15 The force history with St =0.3,h, /C =0.75, #=5", £ =90° (a) f, (b) f,

(c) f5

Table 4.2 Decomposition of the forces in figure 4.15.

by & b, a, b, a; b, a, b,
f,o=5" |0.110 |0.112 |-0.656 | 0.623 | 0.054 |0.033 | -0.038 | 0.082 | -0.058
fi, o =100 [0.285 |0.068 |-0.614 | 0.491 | 0.243 | 0.032 | -0.032 | 0.065 | -0.040
f, a=18° 0.442 | 0.022 |-0.568 | 0.399 | 0.409 | 0.028 |-0.025 | 0.048 |-0.023
fs'% -5 |0.802 |-1.420 | -0.314 | -0.004 | 0.076 |-0.198 | 0.161 | 0.017 | -0.007
fyra,=10° | 0.798 | -1.184 | -0.802 | -0.027 | 0.078 | -0.201 | 0.120 | 0.013 | -0.003
f3'O{O _150 | 0.788 | -0.950 | -1.292 | -0.044 | 0.075 | -0.185 | 0.074 | 0.009 | 0.000
fg,q,=5 |0.122 | 0.425 | 0.066 | 0.014 | 0.030 | 0.097 |0.007 |-0.003 | 0.002
fora, =100 | 0.118 | 0.278 | -0.051 | 0.017 | 0.026 | 0.084 |-0.001 | -0.002 | 0.001
]‘5’0(0 _1s0 [ 0.112 | 0.136 |-0.161 | 0.018 | 0.020 | 0.069 |-0.007 | -0.001 | 0.001
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Figure 4.16 The effect of h, /C to the flying mode under St =0.3, B=5°  —10°,

&=90°

As discussed in section 4.2.2.2, the increase of vertical motion amplitude would

result in the increase of the thrust and propulsive efficiency. Here we study its effect on
the flying mode. The simulations are carried out atSt=0.3, f = 50,(10 =10°, £ =90°,
with hy / C varying from 0.5 to 2.5. The thrust coefficient increases with N, /C ; and the

input power and mean lifting force decrease and then increase, as shown in figure

4.16. However, the propulsive efficiency increases as h0 /C becomes larger.
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Figure 4.17 The effect of & on the flying mode under St =0.3, f=5°, a, =10°,

h,/C=1.0
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The effect of phase difference & on vertical and rotational motion is also
investigated. We chooseﬂ=50,8t =0.3, hy/C=1.0,a,=10°, and & increases from
60° to 110°. We plot the thrust, mean lifting force, input power and propulsive
efficiency in figure 4.17. The lowest value of ¢, CiF? appear when £ ~90° and g = 75°

respectively. The highest efficiency of propulsion 7, ~84% when & ~70°.

4.3 The vortex shedding of a thin plate

When the thickness of the foil approaches zero, the foil becomes a plate. The
continuous vortex shedding from the plate is similar to that of a foil. To solve the BVP,
the body surface boundary condition and Kelvin vortices conservation condition are
satisfied. Comparing the vortex shedding scheme for a foil, the time stepping

procedures have minor changes when imposing the Kutta condition.

4.3.1 Equations and time stepping scheme for a plate

We consider a plate advancing forward with/without harmonic vertical and
rotational motions. The governing equation and the body surface boundary condition
are the same as those in chapter 2. As the plate is concerned, the normal velocities on
the two sides of the plate have same magnitude and direction but opposite in sign with

respect to N. We have

%. o 19
on on

where ¢, ¢ are the potential on the right and left hand sides of the plate when one

walks along the plate towards trailing edge.

We define
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Uu=¢. 9. (4-19)
on the body surface. As P approaches the plate, the coefficient on the left hand side of
Eq(2-23) remains 27 . Using Eqgs.(4-18) & (4-19), the boundary integral equation (2-23)

can then be written as

2mp(p) = [ R g, + [EELD ygpas, (4-20)

So q q

Substituting Eqs.(4-2) & (4-3) into Eq.(4-20), we have

_[oH(p.9) Hip.a)
27z¢(p)—sfo . A(a)dS + SI sV (@)as (4-21)

= —J. H(p,q)y(g)dS — IH(p, Q)7 (a)dS

SO w
in which integration by parts and zero x(q) value at the leading edge and at the end of
the vortex ending have been applied.

Applying the body surface condition Eq.(4-1) to Eq.(4-21), we have

o¢(p) 1 [oH(p,) 1 (8H(p.9) ]
s Zﬂj (s - [ = (s (4-22)

p So p Sy p
To solve the BVP through boundary elements, the plate is divided into N segments.
Linear distribution of vortex on each segment is assumed and the non-penetration
boundary condition is imposed at the middle of each segment. At t =0, there is no
vortex wake. There are N equations based on Eq.(4-22). To solve the N +1 unknowns
on the segment nodes, one complementary equation is required. Kelvin theorem

requires the total circulation to be zero, we have

[7(@ys =0 (4-23)

So
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Figure 4.18 Scheme of the vortex shedding of a plate

Figure 4.18 presents an illustration for the scheme. At t =dt, there will be one free
vortex segment connected to the trailing edge. Eqs.(4-6) & (4-7) are adopted to update
the position of the end node of S,,. The vortex strength is updated similar to Eq.(4-9),
we have
y(X7 t+dt) = y(%,t) (4-24)

The unsteady Kutta condition is circumvented by the assumption of continuous
distribution of vortex over the plate and free vortex sheet. The Kelvin theorem in Eq.(4-

23) at t = dt becomes

[7(@)ds + [7(a)ds =0 (4-25)

SWl

which means that the total circulation of the plate and the newly shed vortex wake is
zero. There are N +1 unknowns (the vortex strength at the end node of S, is known)
and the algebraic equation can then be solved.

As the time step advances forward, the wake segment of S,; will move downstream

and is approximated by a point vortex at the middle of the segment. We have the
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strength of the point vortex

Iy = [7(a)ds (4-26)
Sw1

The strength of the point vortex is known and will remain unchanged subsequently and
new Swl will form. At t =2dt , The new vortex segment, which is shed from the

trailing edge, is developed and its end node position is calculated by Eqgs.(4-6) & (4-7).

Eq.(4-22) can then be rewritten as

o¢(p) _ 1 roH(p,q) 1 roH(p,9) 1 oH(p.9) ,
on. 272"[ on 7(@)as 27z-|. on 7(Q)aS Zﬂzri on 4-27)

p So p Sw p p

The Kelvin theorem gives an additional equation

[r(@ds+ [y(@yds+> T =0 (4-28)
So Sw1

Repeat the scheme and the simulation continues.
In the present simulation, the shedding velocity of the new point vortex in Eqs.(4-6)

& (4-7) is replaced by the velocity of the newly shed vortex sheet at the middle point of
S,, for approximation. This treatment is not mathematically rigorous. However,

numerical tests show a convergent solution and this will be verified.

The pressure difference over the plate can be written as

+ - D * - - a

Apre =Pre = Pre == _p[%_uso a_lu]

5 S (4-29)

)7
- (== _U_ -
Pl Yo 7)
where U, = (U +6Z,h —69()-§ is the tangential velocity of the plate.
The force on the plate is obtained from pressure integration, we have
Du .
F, = [Ap.nds =—pj(ﬁ—uso ) ndS,i=1 35 (4-30)
S So
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We notice that the integration is performed numerically and the ‘suction force’ at the

leading edge has been ignored.

4.3.2 Simulation of vortex shedding of plate

4.3.2.1 Numerical results for a flat plate

1.0-

0.9

0.8 —cJ/c,

ol GG
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0.5 : : ; .
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Figure 4.19 The lifting force and moment of a plate start with constantU , S = 5,

-1007 upper surface of plate
lower surface of a plate
54 thin foil
upper surface
a 0 A
(&)
lower surface
50 4
100

08 -04 0.0 0.4 0.8
2x/C

Figure 4.20 The pressure distribution over a plate at Ut/C =80

The numerical scheme is first verified through a plate in steady motion. We consider
a plate travelling at constant speed with small attack angle. The node of the element is

based on equal spaced cosine function with X, =0.5C cos(iz/100), i=1~100. The

result in figure 4.19 shows the force history on the plate against travelled distance. The
72



curves are ratios of the calculated results to the steady linear analytical lifting force

coefficient C_, =270 and moment coefficient Cy, =70 (Newman, 1977). The lifting

force and moment approach the analytical solution of a steady plate. However, the gap
between the numerical results and the analytical solution can be observed, even when
Ut/C =80, we have C_/C_, =0.985 and ¢, /C,,, =0.988. The discrepancy would be
further reduced if the plate travels a longer distance. However, we notice that the
analytical solution of the vortex strength at the leading edge is infinite and will result a
suction force (Newman, 1977, Grue et al 1988); while the present numerical solution is
from a nonlinear vortex shedding method and the results at the leading edge are finite.
Therefore, there is small discrepancy. We further present the pressure distribution over

the plate, as shown in figure 4.20. Comparing the pressure of a thin foil with thickness
t, /C =0.003 and the plate, the overall pressure is very close except at the leading

edge. The pressure on the lower surface of the thin foil is much smaller than that of a
plate. This indicates that using a plate to replace the thin foil will bring in inaccuracy
due to the difference at the leading edge (Giesing & Smith 1967).

We then consider the problem of a plate travelling at constant forward speed with
oscillatory vertical and rotational harmonic motions. Small amplitude vertical motion is

simulated first. Figure 4.21 presents the shed vortex structure and the lifting force
history on the plate under U=10,w=7x, h,/C=0.025, =0 or the Strouhal

number St =0.05. The shed vortices move up and down with the oscillatory motion.
There are two rows of vortices close to the centre line, which resemble the Karman
Vortex Street. However, the vortices strength is reversed. This is referred to the
reversed Karman Vortex Street (Lighthill 1975, Anderson et al 1998). The vertical force

is shown in figure 4.21(b). When compared with the linear analytical solution (Newman
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1977), they are in good agreement although the amplitude of present result is a bit

smaller.
sl
ﬁ_ ST T T T
2/c CEFEXN AL ¥ TS I
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(b)

Figure 4.21 Vertical motion of a plate in the unbounded flow, with U =1.0,

h,/C =0.025, =7 or St =0.05 (a) vortex structure (b) vertical force history
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Figure 4.22 To be continued on next page
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Figure 4.22 The force history under St =0.2, h,/C =1.0, &, =10°,£=90°, =0 (a)

fi (b) T3 (c) fs

Table 4.3 The performance of the plate under St=0.2,h,/C =10, «,=10°¢=90°,

p=0
Cr cp T
plate 0.175 0.274 0.637
t /C =0.003 0.197 0.266 0.738

We further study a plate with larger amplitude motion. The force histories under
St=0.2, h,/C=1.0, a, =10°,6 =90°, B=0 are shown in figure 4.22. Similar to
figure 4.6, most of f, is above the zero line; the period of the horizontal force is half of

the motion period due to the ‘mirror effect’ of the motions and flow att and t+T /2

about z=0(Wu 1994, 2000). Comparing the force history of the plate and thin foil with
t, /C=0.0015, the peak of the horizontal force is slightly smaller; and the vertical

forces are close although minor difference can be observed; the amplitude of the
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moment is slightly smaller. As discussed above, the flow near the leading edge would
be singular although numerical results give a finite value. The leading edge suction
force has been ignored. The overall propulsive performance is shown in table 4.3.

Comparing with the results from the thin foil, the thrust c; is slightly smaller and input

power c;,“ is slightly larger; therefore the propulsive efficiency is lower.

0.8 —— plate

. . 2.5 — plate
———————— thin foil C o
06 o0l thin foil
0.4+
“ o02]
0.0
02 - <. - ’, 4.0
0 1 2 3 4 0 1 2 3 4
T 72}
(a) (b)
0.3 — plate

———————— thin foil

-0.1

()
Figure 4.23 The force history under St =0.2, h,/C =1.0, ¢, =10°, £ =90°, =5
(a) f; (b) f3 (c) f5
When the flying mode is considered, a non-zero mean attack angle ,B=50 is
introduced. The force histories under St=0.2, h,/C=1.0, a,=10°, £ =90° are

shown in figure 4.23. Similar to figures 4.13 & 4.15, peaks and troughs in each period
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can be observed and most of these curves are above the zero line. Comparing the
results with that of thin foil with t, /C =0.0015, the peak of the horizontal force is
slightly smaller; and the vertical force amplitude is slightly larger; while the moment of
the plate has smaller amplitude. The overall performance of the plate is presented in

table 4.4. The thrust coefficient is smaller and the input power is slightly larger than

that of the thin foil, which results a lower propulsive efficiency.

Table 4.4 The performance of the plate under St=0.2,h,/C=1.0, «, =10°%,£=90°,

p=5
Cy cp ’h
plate 0.117 0.274 0.430
thin foil 0.144 0.267 0.542

When a thin foil is replaced by a plate with zero thickness, the pressure distribution
near the leading edge is no longer smooth but sharp (Giesing & Smith 1967). The
velocity at the leading edge shall be infinite in the analytical solution. Grue & Palm
(1988) treated the leading edge as a point with suction force by applying Blasius
formula to a small circle of radius surrounding the leading edge. In the present study,
the velocity at the leading edge is large and finite since the element size at the leading
edge shall be finite; the contribution of the ‘suction force’ at the leading edge has been

ignored. This could be the reason for the discrepancy when compared with thin foil.

4.3.2.2 Application to a compartment with bottom opening

Here we attempt to simulate the vortex shedding of a two dimensional compartment
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with a bottom orifice/opening in heave motion. A semi-circular cylinder with bottom

orifice/opening, which consists of two curved plates, as shown in figure 4.24, is

adopted to approximate a damaged ship structure. The vortex shedding scheme for the

plate is applied at the edge of the orifice at the bottom.

Figure 4.24 The sketch of a semi-circular column model with orifice

To avoid the impulsive motion or acceleration, the vertical motion of the

compartment is then given by

h(t) =

(l—cosﬁ)
wh, cos(awt +7z)TT, t<iT

(4-31)
oh, cos(at + ), t>IT

where an initial phase angle ris added, i is the number of the smoothing period.

Unlike the vortex shedding of a foil the vortices will not move away the structures.

When longer time simulations are considered, one key numerical problem is the

damping of vortices. The vortices will not dissipate since viscosity has been ignored in

the framework of potential flow. Kristiansen & Faltinsen (2008, 2010) attempted to
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‘dump’ the vortex sheet when the dipole strength equals zero after it shed a short
time. However, the ‘dumping’ of the vortex sheet would cause a sudden variation of
the local flow; the discontinuity of the flow field would cause a large impulse force
when the Bernoulli equation was used to calculate the pressure. For a compartment
with symmetric orifice, the vortices appear in pairs. Consider the mixing and cancelling
of the vortices, a smooth artificial dissipative function is introduce to damp the
vortices. Here we assume that the strength of the vortices decreases gradually through

a dissipative function based on time. We have

0’ 1:i >tend
1 m(t —t
fdamping(ti) = E (1+ cos M)i ti > tstart (4-32)
end ~ “start
1’ ti <tstart

wheret, =t -t is the existing time of the point vortex from the moment the point

temp
vortex is generated, {g,,, {,,q are the start and end time of the damping.

Parameters i, t.,q used in the present simulation are usually chosen between

1
[ZT,T] as long as the chosen parameters have no significant effect on the main flow

and hydrodynamic force.

Figures 4.25(a)&(b) show the vortices moving along with the ingress and egress flow
near the orifice of the compartment under h,/B=0.1, f =1.0,d/B=0.1. Here the
frequency f is used to describe the motion instead of St in this section since the
forward speed U =0. In the simulation, i =1 is used in Eq.(4-31) and t,,=0.25T,
t,.s =0.5T are used in Eq.(4-32). The shed vortex from the orifice always appears in

pairs. Its motion mainly depends on the velocity of the motion and the flow through
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the orifice. The pattern of those vortices is quite similar although the vortices strength
and mean velocity are different. It is expected that the flow and hydrodynamic force
would be affected by the orifice size, motion amplitude and frequency. These

parameters will be investigated. When one parameter varies, the others will be fixed at

h,/B=0.1, f =1.0,d/B=0.1.

05 o5}
z/8 O 2/B OF : flow
05t ';?*% e ; o5
]
flow
1 1 1 1 A 1 1 1
1 0.5 0 05 -1 0.5 0 05
x/B x/B
(a) (b)

Figure 4.25 The vortex structure near the orifice with h,/B=0.1, f =10,

d/B=0.1 (a)ingress and (b) egress of the flow

—— d/B=0.05
20, e d/B=0.10
- d/B=0.15
----- d/B=0.20

Figure 4.26 The effect of orifice size d /B

The effect of orifice size is investigated first. As shown in figure 4.26, the vertical
force decreases as the orifice size increases. When the orifice size increases, it is

expected that more fluid flow can ingress/egress the compartment and less fluid
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moves along with the compartment. Table 4.5 shows the decomposed force obtained

through Eq.(4-17). The constant term D, increases slightly; and the first order

component a,, which is referred to the ‘added mass’ term, decreases as d/B increases;

while the value of |

, wWhich is referred to the ‘damping’ term, increases and then

decreases. This indicates that the most significant damping effect appears with

medium size orifice. Comparing with the first order terms, those higher order terms are

less important.

Table 4.5 Decomposition of the vertical forces with different d /B under f =1.0,

h,/B=0.1
by a b, a, b, 8 b, a, b,
d/B=0.05 | 0.40 1152 |-2.70 |-0.04 (042 |-085 |0.60 |[0.04 |-0.04
d/B=0.10 | 0.35 9.65 |-423 |002 |0.70 |0.37 1.07 |-0.08 |-0.05
d/B=015 [ 0.28 |7.14 |-480 |037 |063 |072 |0.18 |-0.03 |-0.02
d/B=0.20 | 0.19 504 |-417 |049 |037 |046 |-0.15 |-0.02 |0.01

Table 4.6 Decomposition of the vertical forces with different h, / B under f =1.0,

d/B=0.1
b, a, b a, b, a, b, a, b,
h, /B =0.05 012 |7.03 |[-458 [0.27 |0.25 [069 [0.02 |0.01 |0.02
h,/B=0.10 035 [9.65 |[-423 |002 |070 |037 |[1.07 |-0.08 |-0.05
h,/B=0.15 056 [105 |[-3.46 |-0.21 |0.69 |-0.31 [1.15 |[-0.01 |-0.11
h,/B=0.20 078 [108 |[-290 |-0.22 |0.68 |-0.72 |1.0 0.05 |-0.16
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Figure 4.27 The effect of vertical motion amplitude h,/B with f =1.0,d/B=0.1

The effect of motion amplitude Ny/B under f =1.0,d/B=0.1is studied. The

overall vertical force increases as h0 /B, as shown in figure 4.27. In table 4.6, the value

of b, and &, increases and |b1| decreases as N,/ Bincreases, and the increment of a, is

larger than the decrement of |b1| This results in the increase of the overall force

amplitude.

Table 4.7 Decomposition of the vertical forces with different f underh,/B=0.1,

d/B=0.1
b/ £7 [ a/f2 | /2 | &/ 12 [ b,/ 62 | &/ £2 [ b/ 12 | &/ 87 | b,/ 2
f=05 0.35 9.66 -4.20 |0.01 0.70 0.36 1.07 -0.07 -0.05
f =10 0.35 9.65 -4.23 | 0.02 0.70 0.37 1.07 -0.08 -0.05
f=15 0.36 9.67 -4.23 | 0.04 0.68 0.37 1.10 -0.07 -0.03
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The effect of frequency is considered next. A increase of vertical force amplitude is
expected as the frequency increases. The force history is not plotted here as the

periods of different frequency are very different. However, table 4.7 shows the

decomposed force components over the square of the frequency. The value of |b0

7 7

|b1| and most of these higher order components over the square of the frequency are
very close. This indicates that the motion and vortex shedding can be non-
dimensionalized with the square of the frequency in the unbounded flow when hO/B

and d/Bare fixed. This indicates that the effect of damping force in the unbounded

flow is quadratic to the motion frequency.
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Chapter 5 The nonlinear free surface effect on a hydrofoil

5.1 Introduction

Many previous works on 2D and 3D foils with steady or periodic motion, including
Giesing & Smith (1967), Bal (1999), and Zhu, Liu & Yue(2006), adopted linear free
surface conditions. The free surface effect, which has been studied in chapter 3, varies
significantly under different submergence and Froude number. When the foil is close to
the surface, the nonlinear effect of the free surface and free vortex wake would
become important. The free vortices shed from the trailing edge interact with the free
surface, and in return affect the flow around the foil. Faltinsen & Semenov (2008)
adopted the nonlinear free surface boundary condition in their studies and the wave
profile was achieved through iteration. However, there are only a few works that focus
on the transient motion of an arbitrary foil. The nonlinear free surface effect on a foil in
steady motion at small attack angle has been studied by Landrini, Lugni & Bertram
(1999), the free surface was tracked using the time stepping method. However, large
amplitude motion of a foil near the water surface seems absent, where the cross-
coupling effect of foil, wave motion and vortex wake shall be investigated.

Here we consider a foil traveling under the water surface with constant forward
speed and harmonic vertical and rotational motions; the vortex shedding and wave
motion are tracked through the time stepping scheme. Nonlinear free surface
boundary conditions are used when updating the free surface. The nonlinear vortex
shedding scheme, which is outlined in chapter 4, is adopted to track the free vortices.
As the free surface effects are included, the hydrodynamic performances of a hydrofoil
travelling at different Froude number and submergence are studied. NACA 0012 is used
for the simulation. The oscillatory vertical and rotational motion for propulsion, energy

harvesting and flying are simulated under a few selected submergence and Froude
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number.

When the foil is very close to the free surface, the nonlinear effect of the surface
wave becomes important; the wave may break and cause difficulties in the simulation.
One of the challenges is the instability caused by the vortex wake when the vortices
nearly touch the free surface. The free surface may distort or break. Therefore, the
simulation has been made with certain limits of the submergence of the foil. The
present work is for non-breaking wave. To avoid the breaking of the free surface, the
foil cannot penetrate the free surface. The amplitude of the vertical motion shall be
much smaller than the submergence. There shall be a sufficient gap between the water

surface and the top position of the foil.

5.2 Description of the free surface

Apart from the nonlinear vortex shedding behind a hydrofoil, the transient nonlinear
free surface effect on the foil is the concern of this chapter. A moving coordinate
system 0OXz, with origin on the mean free surface, is adopted (see figures 3.1 and 5.1).
The fluid flow satisfies the Laplace equation, the body surface boundary condition,
Kutta condition as those in chapter 4. The Lagrangian form of the non-linear free
surface boundary conditions are used in this chapter. The boundary integral equation,

therefore, includes the foil surface S;, vortex wake S, free surface S; and control
surface S., as shown in figure 5.1. Once the BVP is solved, the free surface is updated

and the simulation continues. This is actually the procedures of the well-known Mixed-
Eular-Lagrangian method proposed by Longuet-Higgins & Cokelet (1976). The pressure

and force on the foil can be obtained using Eq.(4-13).
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Figure 5.1 The sketch of the foil under free surface

The free surface is discretized by small elements, the size of the elements on the free

surface near the foil (say |x| < 2C ) is of the similar order of those on the foil surface.

The element size on the free surface increases gradually when approaching the far
field. We also notice that the element would be very large when large computational
area is considered. Therefore, 20 to 30 elements in each wavelength are required. To

save the computational effort without losing accuracy, the size of the elements is set as

fyem times its basic element size |, based on the coordinates system in x axis. We
have
1, |X|<2C
felemt = 9 Setent +(1_Se|emt)(l+|x|_2C) ' |X| >2C, [Selemt +(l_selemt)(l+|x|_2C)]< 2);;
0
A A
— [Sgert + €= Sger )AL+ X —2C)] > 2
s B+ 0 San )L -20)]>
(5-1)

where 4, is the typical wave length, the parameter s is chosen within [0.2, 0.5].

elemt
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To update the free surface, free surface boundary conditions in Eqgs.(2-11) & (2-12)
will be imposed. The constant forward velocity is incorporated since we use a moving
coordinate system. As the oscillation is considered, the radiation wave propagates
outside to the far field. A wave absorbing zone / damping zone is introduced. Here we
adopted the damping zone used by Tanizawa & Swada (1996) and Wang & Wu (2006).

The free surface boundary condition can be written as

d¢

1
ot —EVW¢—QZ—C(X)¢ (5-2)

%:%, %:%_C(X)Z (5_3)
dd ox dt oz

0, [x<x

h c(x)= _
where ¢(x) caw(MTxi)z, X, <|[X| <X +CyA,

As suggested by Tanizawa & Swada(1996), ¢, =1 and ¢, =1 can be used and the wave

would be absorbed; there would not be a significant reflecting wave. The wave motion
near the control surface is very limited and therefore can be treated as a solid

boundary (Wang & Wu 2006). We have

% _,

on (5-4)

on S..

When updating the free surface, the time step is chosen to make sure that the
displacement of each element is less than or equal to one quarter of the basic element.
The time step dtis chosen based on the maximum velocity of free surface and vortex

wake, we have

. I
dt = dt,, dt,, £ 5-5
min(dt,, dt, N ) (5-5)

f _max
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where dt, =0.005T is the time step base on the oscillation period if applicable; dt, is

the time step based on the shed vortex, details have been discussed in chapter 4;

Vi x is the maximum velocity of the free surface.

The re-meshing procedures are followed since the element sizes on the free surface
are not even. Here the re-meshing is achieved through interpolation. The original X
coordinate of each element is used during the interpolation; the value of zZ coordinate
and the potential ¢ at each time step are obtained through four-point-Lagrangian
interpolation equation. For the normal interpolation point, two points before and two
points after it are used, as shown in figure 5.2(a); while for the point near the fore/aft
control surface, the first or last four points are used, as shown in figure 5.2(b). The
procedures can give good results for the present simulations. When the free surface
becomes steep or the overturning wave appears, the interpolation procedures would
be a problem; a re-meshing procedure based on the arc length shall be used (Wang &

Wu 2006).

(a) (b)
Figure 5.2 lllustration of the interpolation, i is the interpolation point. (a) two before

and two after the interpolation point (b) interpolation near the control surface
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For longer time simulations, smoothing technique becomes necessary since the free
surface profile would have saw-tooth behaviour due to numerical instability. The five
point algorithms, which were used by Longet-Higgins & Cokelet (1976), Maruo & Song
(1994), Xu, Duan & Wu (2010), can be adopted to smooth the wave elevation and the
potential. Here we adopt what has been used by Maruo & Song (1994), Xu, Duan & Wu

(2010). If the element nodes are numbered sequentially from 1 to m, we then have

f, :7—10(69x1+4x2 —6X; +4X, —X;) (5-6)
1

f,= = (2%, +27%, +12x, —8X, + 2X;) (5-7)
1

f, = g(—sxi_2 +12x,_, +17%, +12X%;,; —3X;,,) (5-8)

1

fo.,= £(2xm74 —8X,, 5 +12X,, , + 27X, , +2X,) (5-9)
1

f,= -0 (=X g +4X, 5 —6X, , +4X, , +69X.) (5-10)

The coordinate z or potential ¢ can also be smoothed using the above equations

after X isreplaced by zZor ¢.

5.3 Results on the transient free surface effect and discussion

5.3.1 Steady motion near free surface

The transient motion of a foil beneath the free surface at constant forward speed is
considered. The transient force on a foil in unbounded flow has been studied in
chapter 4. Before the steady force on the foil is achieved, the lifting force on the foil
increases rapidly when the foil starts to move at constant speed. Here we attempt to
study the transient surface wave effect on a foil in steady motion. The simultaneous
interaction of foil, nonlinear wave and vortex wake are simulated through the time
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stepping method. The hydrodynamics of a foil travelling at different speed and

different submergences are investigated.
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Fig. 5.3 To be continued on next page
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free surface

(c)

Figure 5.3 The free surface profile and wake of NACA 0012 with h. /C =10, = 5% (a)

Fn=0.4, Ut/C=23 (b) Fn=0.8,Ut/C =80 (c) Fn=1.2, Ut/C =140

First of all, the simulations on NACA0012 at different forward speed are undertaken.
Figure 5.3 shows the vortex wake behind the foil and the wave profile of different
velocities under h. /C=1.0, [ =5°. Comparing the curves in figures 5.3(a) (b) & (c),
the wave amplitude and wave length increase with Fn. According to the linear steady
theory, we have the wave number of the induced wave x = g/U?. As Fn increases at
given C, the wave number becomes smaller, which means the induced wave has a
longer wave length in space or larger period. This can explain figure 5.3 in spite of the
fact that nonlinear free surface conditions are imposed. We also notice that the surface
wave profile in figure 5.3(b) & (c) is similar to the nonlinear Stokes wave with steeper
wave crests and flatter troughs. There is an obvious downwash of flow above the foil in
figures 5.3(b) & (c) which would decrease the effective attack angle. While in figure
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5.3(a), there is a small downwash and a following wave crest above the foil; this would
increase the effective attack angle. Due to the induced waves, the lifting force
coefficient shall be different. We notice that there is a small wave before the foil in
figure 5.3(c), while in figures 5.3(a) & (b) there is no significant wave before the foil.
This could be caused by the cross-coupling effect of the foil motion and the oscillatory
vortex wake. It is expected that the induced wave would affect the vortex shedding.
The vortex wake fluctuates with the surface wave and there is a downwash near the
trailing edge in figures 5.3(b) & (c); the amplitude of the vortex wake increases when
the wave amplitude becomes larger. Therefore the local flow around the foil is the
coupled interaction of foil, surface wave and vortex wake. As expected, the circulation
around the foil fluctuates due to the fully coupled motion of wave, body and vortex
wake.

The time history of resistance, lifting force and moment under h./C =1.0, f#=5°

are shown in figure 5.4. When the foil starts moving at constant speed, the forces,
including resistance, lift and moment, increase rapidly. Different from those lifting force
in the unbounded flow in figure 4.4, these curves approaching their steady state with
fluctuation with reduced amplitude as shown in figure 5.4. The surface wave due to
impulsive motion of the foil affects the hydrodynamic force significantly. Comparing
the lifting force of linear theory in chapter 3, the lifting force from the present study is
larger at Fn=0.4 and Fn=1.2, but smaller at Fn =0.8, as shown in figure 5.4(b). The
discrepancy could be caused by the nonlinear free surface effect and nonlinear vortex
shedding. In figure 5.3(b) (c), the downwash of the free surface and the vortex wake
change the effective attack angle and affect the circulation of the foil. As discussed in

the book of Katz & Plotkin (1991), the influence of the shed vortex sheet has a
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significant effect on the lifting force. The force history is the history of the coupled
motion of foil, nonlinear free surface and vortex wake.
Figure 5.5 gives the pressure distribution on the foil in figure 5.4 at Fn=0.4, 0.8, 1.2

when the foil travels Ut/C =23, 80, 140 respectively. As expected, the pressure

coefficient difference of the upper and lower surface decreases as the velocity

increases.
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Figure 5.4 to be continued on next page
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Figure 5.4 The (a) resistance, (b) lifting force and (c) moment on NACA 0012 at different
velocity with h. /C =1.0, g =5°.

2xIC

Figure 5.5 Pressure distribution on the foil under h. /C =1.0, f = 5° with
Fn=0.4, 0.8, 1.2and Ut/C =23, 80, 140 respectively.
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Figure 5.6 Continued on next page
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Figure 5.6 The resistance, lifting force and moment on NACA 0012 at different velocity

with h./C=0.5, B =5, the flat straight line in (b) is from the linear theory. (a) F, (b)

F; (c) K
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Figure 5.7 Highlight of the local free surface profile
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We further reduce the submergence to h. /C =0.5. The simulation on the transient

fully coupled problem of foil, free surface and vortex wake is carried out. The transient

forces on the foil at Fn =0.4, 0.6, 0.8, 1.2 are shown in figure 5.6. The resistance and

the moment decrease as Fn increases; the lifting force decreases when Fn increases
from 0.4 to 0.8. However, the lifting force at Fn=1.2 increases. We also notice that
the lifting force by the present method is very different with that based on the linear
free surface theory in chapter 3. The lifting force coefficient of the present simulation
at Fn=0.6 is around 0.27, which is almost half of that from linear free surface theory.
While the lifting force coefficient at Fn =0.4is around 0.85, which is much higher than
that from the linear free surface theory. This would again be due to the coupled effect
of the nonlinear free surface and vortex wake. More details on the nonlinear wave
effect will be investigated.

Figure 5.7, shows the local wave profiles at Fn =0.4, 0.6, 0.8, 1.2 when the foil
travels a distance at Ut/C =45, 63, 88, 120 respectively. There is a leading wave

starting with a downwash of the free surface above the foil, which is followed by a
smaller amplitude wave. When Fn =0.4 is considered, the downwash of the first wave
is significantly larger than the following wave, and the wave profile rises up to its crest
just above the foil. The downwash free surface flow at Fn =0.4 is actually confined to
a small area near the leading edge; and it becomes an uprising flow above the trailing
edge of the foil. The surface flow actually increases the effective attack angle when

Fn =0.4. This explains the higher lifting force. Linear free surface theory is valid when

A

the ratio of wave amplitude and wave length are small, or —2 < 0.05. As shown in

Fig.5.7, % is not a small value and the linear free surface green function may give

w
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inaccurate results. The free surface profile is definitely nonlinear and its full effect
cannot be included by the linear free surface theory. The downwash of wave profile at

Fn=0.6, 0.8, 1.2 affect the lifting forces in a different way as the wave length

becomes longer. When Fn =0.8, for example, the effective attack angle decreases due
to the downwash of the free surface. Generally the overall hydrodynamic force on the

foil is significantly affected by the free surface flow.
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Figure 5.8 Pressure distribution on the foil under h. /C=0.5, g = 5%, (a) Fn=0.4,

Ut/C =45 (b) Fn=0.6, Ut/C =63 (c) Fn=0.8, Ut/C =88 (d) Fn=1.2,Ut/C =120

The pressure distributions on the foil provide further details, as shown in figure 5.8.

The pressures on the lower surface are similar as shown in figure 5.8 (a) (b) (c) & (d).
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However, the upper surface pressure decreases as the Froude number increases.
Therefore the difference of the pressure coefficient on the upper and lower surface
becomes smaller. We notice that the pressure of the upper and lower surface are
almost the same on the aft body at Fn=1.2. The pressure distribution gives good

explanation of the overall force in figure 5.6.

5.2.2 Nonlinear free surface effect on an oscillatory foil

We consider the wave effect on the oscillatory foil. The transient free surface effect
on the hydrodynamics of a foil in steady motion is significant. However the nonlinear
free surface effect for a foil with small or large amplitude oscillatory motion is not clear
enough. Would the wave effect improve the propulsive efficiency sometimes? Will the
‘mirror effect’ (Wu 1994, 2000) remain the same as for those in the unbounded flow?
Here we will first simulate the small amplitude oscillatory motion, and then the
simulations are carried out at various submergences and Froude number with large
amplitude oscillatory motion. The free surface effect on the propulsion, energy

harvesting and flying modes will be investigated.
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Figure 5.9 To be continued on next page
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Figure 5.9 The shed vortices and the force history under h. /C =1.0, St=0.05
h,/C =0.05, §,=0, Fn =0.22576

We first study the wave effect on the small amplitude vertical motion with

submergence h./C =1.0 under Fn =0.22576, St=0.05, h,/C =0.05, §,=0 p=0.

The vortex structure behind the foil at t/T =4.0 is shown in figure 5.9(a). The vortices
move up and down as the vertical oscillatory motion. The horizontal force history, as
shown in figure 5.9(b), has two peaks and troughs in each period. However, compared
with the results in the unbounded flow in each period, the peaks are higher; and the
first trough is higher and the other, corresponding to the top position of the foil, is
lower. This indicates that the procedures of Wu (1994, 2000) would not be applicable
here due to asymmetry of the flow about its mean position due to the wave effect. The
surface wave radiation would induce downwash or uprising of the flow. Compared with
the result in unbounded flow, the vertical force has smaller amplitude, however the
moment is very close, as shown in figure 5.9(c) & (d). The peak value of the vertical
force is slightly higher than the absolute value of troughs, which means there is a small
steady suction force. The overall performance of the foil is shown in table 5.1.
Compared with the results in unbounded flow, the thrust coefficient is slightly higher

and the input power is slightly lower, therefore lead to a higher propulsive efficiency.
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We shall note that the propulsive efficiency may decrease when different
submergences and frequencies are considered.

Table 5.1 The performance of the foil under St =0.05,h,/C =0.05, ,=0, =0

CT Cp 77T
h./C=1.0 0.0178 0.0418 0.426
h./C=c0 0.0157 0.0437 0.359

2z/C Q[

. P -
s
- 4 L1 " "

4 | 4 / Y
. N

0.2 T T T .
IR R R RN [ S SN N S SN ]
2045 -30 20 -10 0 3.0 35 f/'% 45 50
2x/C
(a) (b)
——h/C=2.0
rrrrrrrrrr h,/C=3.0
h_/C=4.0
0.5 > ~ c
" e
0.0
05
-15 : : : : . . . :
3.0 35 4.0 45 5.0 3.0 35 4.0 45 5.0
T
(c) (d)

Figure 5.10 Vortex structure and the force histories on the foil at various
submergence under h,/C=1.0, St=0.3 ¢, =15°,Fn=0.8, ¢ = 75°, B =0 (a) vortex
structure at t/T =4.0with h./C=2.0(b) F, (c) F; (d) F,

Let us consider larger amplitude vertical and rotational oscillatory motion of the foil
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near the water surface. The propulsive mode with various submergences h. /C =2.0,
h./C=3.0 and h,/C=4.0 at Fn=0.8 under h,/C=1.0, St=0.3 ¢,=15" B=0

are considered first. As shown in figure 5.10(a), the vortices are very close to the free
surface after the vortices move a distance behind the foil. The simulation may break
down if the vortices penetrate the free surface due to numerical instability. This is the
limitation of the present simulation. Therefore the submergence of the foil cannot be
too small; and the gap between the mean free surface and the top position of the foil
shall be large enough. The horizontal force, as shown in figure 5.10(b), is not a
sinusoidal function of double frequency of the motion; the two peaks in each period
are slightly different. When the foil is leaving the mean position upwards when t ~iT
the peak value of the horizontal force is a bit smaller when compared with the peak
value when it is leaving the mean position downwards when t = (i+0.5)T , where i is a
positive integer number. When the submergence increases, the higher peak decreases
and the lower peak increases slightly, which results in a smaller difference of the two
peaks in one period. It is expected that when the submergence of the foil becomes
very large, the value of these two peaks shall be equal. We also notice that the troughs
of the horizontal force are not significantly affected by the submergence. As shown in
figures 5.10 (b) & (c), the absolute value of the peak is larger than the absolute value of
the troughs, which means the mean value is larger than zero. There would be a
constant lifting force and moment on the foil when it is decomposed by Eq.(4-17).

Table 5.2 gives the coefficients of these decomposed forces for h. /C =2.0. Generally,
the coefficients are very close to those in the unbounded flow. We have b, = 0.0894

for the mean vertical force, which is the mean value of the ‘suction force’ due to the

free surface effect. There is a constant term for the moment too. The overall
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performance in terms of propulsion is given in table 5.3. The mean thrust and input

power at h. /C = 2.0 is slightly smaller when compared with those in the unbounded

fluid. However the propulsive efficiency is very close to that in the unbounded fluid.

The effect of free surface is insignificant against submergence at Fn=0.8, h./C =2.0.

Table 5.2 The decomposition of the forces with h./C=2.0,5t=0.3,h,/C =1.0,

a,=15°,6=75°, =0

by a, b a, b, a, b, a, b,
f1 ’ %C =2 | 0.486 | -0.007 | -0.093 | 0.141 0.446 | -0.003 | -0.003 | 0.012 | -0.031
fl'hEC = | 0.499 0.000 0.001 | 0.1550 | 0.463 0.000 0.000 0.012 | -0.031
f3'%° =2 | 0.089 | -0.214 | -1.169 | 0.001 0.009 | -0.079 | 0.082 0.001 | -0.002
f3'%°=oo -0.001 | -0.217 | -1.218 | 0.000 0.000 | -0.080 | 0.082 0.000 | 0.000
fs'hEC= 2 | 0.016 | 0.179 | -0.421 | 0.001 | 0.000 | 0.058 | 0.030 | 0.001 | 0.001
fS'hEC:oo 0.000 0.167 | -0.403 | 0.000 0.000 0.056 | -0.027 | 0.000 | 0.000

Table 5.3 The performance of the hydrofoil under h./C =2.0,5t=0.3,h,/C =1.0,

a,=15°,£=75°, f=0

CT Cp 77T
h./C=2.0 0.486 0.584 0.832
h./C = 0.501 0.606 0.826
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Figure 5.11 The forces histories of the foil with different Fn under h. /C =2,

h/C=1.0, St=0.3 o, =15°, £=75°, =0

Table 5.4 The overall performance of the foil with different Fn under h. /C =2,

h/C =10, St=03 o, =15°, £=75", =0

Cr Cp T
Fn=04 0.481 0.581 0.8282
Fn=0.8 0.486 0.584 0.8323
Fn=1.2 0.481 0.582 0.8270
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We then study the propulsion of this foil at different Froude number Fn. We run the
simulation with h./C=2.0, h,/C=10, St=0.3, «,/C=15", e=75, £ =0 at
Fn=0.4, Fn=0.8, Fn =1.2 respectively. The force history is shown in figure 5.11.
Again, we can see from the figure that the absolute values of the two peaks in each
period are slightly different when the foil is moving away from the mean position
upwards and downwards. When the Froude number increases, an increase of the
higher peak and decrease of the lower peak can be observed. We note that the
frequency of the oscillatory motion increases with Fn when St is fixed. The free
surface effect becomes more obvious when Fn increases. Figures 5.11 (b) & (c) show
the vertical force and moment; these curves are slightly affected as Fn increases. It
can be observed that the troughs of the vertical force move up slightly when the foil is
leaving its mean position upwards. Table 5.4 gives the overall performance of the foil at
different Fn . The thrust coefficient, input power and the propulsive efficiency are very
close when different Fn are considered, although there are slight differences in the
force histories in figure 5.11. This means that Fn has limited influence to the

propulsion of an oscillatory foil at h. /C =2.0.

—h/C=2.0
fffff h/C=infinite

0.4 —h/C=2.0

fffff hC/C=infinite

2.0 25 3.0 35 4.0 2.0 25 3.0 35 4.0
YT uT

(a) (b)

Figure 5.12 To be continued on next page
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Figure 5.12 Force history under Fn=0.4, h./C =20, h,/C=1.0, St=0.2,

a, =-10°, £=90°, B=0

Table 5.5 The performance of the foil with Fn =0.4, under h./C =2.0, h,/C =1.0,

St=0.2, 0, =-10°, £=90°, 3=0
o CoL Ceo
h./C =20 0.326 0.316 0.279
h./C = 0.319 0.305 0.269

The energy harvesting mode under the free surface is simulated next. Computation

is carried out at h,/C =2.0under h,/C=1.0, St=0.2 ¢,

-10°, £=90°, B =0.

Figure 5.12 shows the time history of the foil, which is very close to that when

h. /C = . However, there is a visible difference when the foil is moving away from

the mean position and approaching the water surface in figures 5.12(a) & (b). Table 5.5

shows the resistance coefficient c,, power coefficient from lifting force ¢, and the

total power coefficient C,,. The free surface effect makes very small difference as

shown in the table.
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R hC/C=?.9 . 3. —h/C=2.0
,,,,,, h,/C=infinite ------h /C=infinite

(a) (b)

—hJC=2.0
o84 h/C=infinite

(c)

Figure 5.13 Force history with Fn =0.4,h./C =2.0, under h,/C =1.0, St=0.3,
a,=10°, B=10°, £=75", B =0.

We further simulate the flying mode. The Froude number Fn is found to have
important effect on the hydrodynamic force as the foil is in steady motion, especially
when Fn =0.4. Then simulation for the flying mode is carried out with Fn=0.4,
h./C =20 under h,/C=10, St=03, B=5", a,=10°, £=75". Figure 5.13
presents the force histories. Compared with the results in the unbounded flow, the
amplitude of the horizontal force is larger; and the overall lifting force is larger, the
amplitude of the moment is slightly higher too. It is expected that the increase of lifting
force is mainly due to the free surface wave of certain wavelength, similar to that in

section 5.3.1. The overall performance for propulsion, which is measured from t =3T
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till t =4T , is presented in table 5.6. Compared with that in the unbounded flow, the
thrust coefficient is higher; however the input power coefficients are similar. The
propulsive efficiency, therefore, is higher than that in unbounded flow. The reason
would be very complicated since the free surface flow, vortex wake are involved.
Although only one case of flying mode is studied here, we can expect that the
propulsive efficiency will vary due to the wave effect when different forward speed and

submergence are considered.

Table 5.6 The performance of the foil with Fn =0.4, h./C = 2.0, under h,/C =10,

St=0.3,8=10°, ¢, =10°, £=75", B =5

CT Cp 77T
h./C=20 0.3164 0.3932 0.805
h./C = 0.2625 0.4083 0.643
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Chapter 6 The vortex shedding at the orifice of a floating

compartment

6.1 Introduction

Ships can be damaged by an accident (collision, grounding, structural failure, fire). In
most cases, the orifice caused by damage is either at the bottom or on the side of the
ship. If the damage is below the waterline, the compartment is then flooded. The static
and dynamic stabilities will be very different from those of the intact ship, because the
meta-centre and the floating centre will change. An understanding of the
hydrodynamics of the damaged ship will be highly important to the emergency
response system (ERS) and salvage, as well as in the assessment of its capability of
remaining operation. Guidelines for design and ERS planning and decision support
systems, which will avoid risky operation and help the survival of the passengers, crew
and ship will be based on the study of hydrodynamic loads. The present study focuses
on the wave radiation of a flooded compartment with a bottom orifice. The
hydrodynamic force and ingress/egress flow will be investigated.

Vortices shed at the orifice of a flooded compartment can be expected and have
been observed (Smith 2009). The vortices move in and out along with the ingress and
egress flow when the compartment is in forced heave motion. The vortex shedding at
the orifice in the unbounded flow has been studied in chapter 4, as an example of
using the developed methodology. The shed vortices significantly affect the local flow
near the orifice. Damping effect due to vortices has been documented. Pure potential
flow, which does not include the vortex shedding, cannot capture the characteristics of
the flow with vortices. Discrepancy between the experimental data and the simulation

results from pure potential flow theory for a flooded damaged compartment at lower
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frequency has been reported by Smith (2009). The typical inviscid flow around a plate
is inaccurate without vortex shedding (Lamb, 1932). When the flow around an orifice
of a floating body is considered, besides the tracking of free surface, the shed vortices
shall be incorporated properly.

We focus on the vortex shedding at the orifice of a floating oscillatory compartment
in this chapter. A compartment with bottom orifice in initially calm water, which is to
model a section of a damaged ship, is simulated. Harmonic vertical (heave) motion is
prescribed. The free surface deformation together with vortex shedding at the orifice is
tracked using the time stepping method. The numerical vortex shedding scheme, which
has been used in the last two chapters, is applied. As the radiated wave propagates
towards the control surface, a damping zone the same as that in chapter 5 is used to
absorb the wave; the velocity and wave elevation are reduced through artificial
damping parameters. The hydrodynamic force and the flow through the orifice will be

analysed and discussed.

6.2 Description of the simulation for a flooded compartment

Figure 6.1 The sketch of a damaged compartment
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The governing equation and the boundary conditions are the same as those in
chapter 2 and chapter 5, when the forward speed is taken as zero. To simulate the
vortex shedding of a flooded compartment, a few numerical treatments are required,
such as the geometrical modelling of the compartment and damping of vortices.

Following the successful simulations on the vortex shedding of the submerged foil
near the free surface in chapter 5, the continuous vortex shedding procedures from the
sharp edge will be again applied to the problem of an oscillatory surface piercing
floating structure here. Figure 6.1 shows the sketch of the problem of a damaged
compartment with a bottom orifice. The thickness of the structure is included in the
model. As shown in the figure, the geometry of the compartment in this example is
constructed by a semi-circular cylinder and vertical side walls. The thickness of the side

wall is the difference between the outer surface with radius R, and inner surface with
radius R,of the circular column. To adapt to the vortex shedding scheme, we shall

make the edge of the orifice a thin sharp corner. A linear function is introduced to let
the inner and outer surface of the compartment join to form a sharp angle. Thus the
thickness of the structure decreases gradually and becomes zero at the orifice edge.

Mathematically, we can write the modified radius as

Rl' 4 & (l//startf V/end)

R(y)=1A 1. A (6-1)
TR TR AR, Y e W Vi)
0 0
- R2' l// & (l//start!l//end)
R,(v) = (6-2)

A 1, A
TER,+ 2 U= ER AR, WS W Wons)

¥, ¥V,

where Wy =Woq ~Vearty AW =W —W,wand W4 is the angle at the orifice edge.

We choose % <y, < %; if it is not specified, v, :% is used.
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The size of the element is chosen at 0.02B on the free surface; it increases with the

distance to the compartment, and the maximum element shall be less than 0.054,,.

Eq.(5-1) is used and C in the equation is replaced by the breadth of the compartment
B. As the radiated wave propagates to the far field, the damping zone is adopted;

Egs.(5-2) & (5-3) are used and the control surface is chosen at x = max(10B, 104,,) .

6.3 Numerical results and discussions

6.3.1 Comparison with experiment data

A Exp
777777 present + vortex
,,,,,,, present + no vortex

Figure 6.2 Vertical force on the compartment, f =1.333Hz, R, =0.1575m,
R, =0.1495m,d =0.07m,s,,, /B =0, h, =0.04m
We simulate a compartment with bottom orifice with d/B=0.27, f =1.333Hz.

Eq.(4-31) is used to prescribe the motion of the compartment and i =2 is used. To
damp the vortices, Eq.(4-32) is adopted. The force history is compared with the
experimental data provided by Daniel Fone through personal communication. The
model is the same one used by Smith (2009), as shown in Fig. 2. Compared with the
experimental data, the peak value and the trough value of present simulation are lower

than that of the experimental data, as shown in figure 6.2. However the elevation from
112



the trough to peak is close. The present numerical simulation results ignore the gravity
of the fluid. In the experimental data, the mean hydrostatic force has been excluded
while the effect due to the change of the free surface inside and outside the
compartment is not excluded from the original data; we also notice that the thickness
of the sidewall above the mean free surface is 20 millimetre, which is much larger than
the circular column part. Considering this fact, the simulation result is acceptable. The
simulation result without vortex shedding is shown in the figure as well. The force
amplitude is smaller than the results including vortex shedding. We will adopt the

numerical scheme to study the characteristic of the damaged compartment.

6.3.2 Characteristics of vortex shedding at the orifice

t=3.5T
t=3.25T
o] = -
L. i
Y O e T [
il
! F
z/B i ;E
z/B -05 05 z’rA »
A P IS 21‘. S #
Y ~
1 \\ﬁf 1+ \a., A
A
1 1
uey o5 5 o5 } oF 05 0 o5 1
x/B x/B
(a) (b)
t=3.75T t=4.0T
of ol
i
i
i z/B
it i | 1
z/B .05} 05 |} )
" s /‘/ -
A 9 27 a,«-""
1 L 1 1
185 05 0 0.5 1 153 0.5 0 0.5 1
x/B x/B

(c) (d)
Figure 6.3 The vortices underd /B=0.2, S,,,/B=0.4, f =1.0Hz, and h,/B =0.05 (a)

t/T =325, (b) t/T =35,(c) t/T =3.75,(d) t/T =4.0
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1.54

Fa/pghOSA

-1.5

vortex shedding

no vortex shedding

Figure 6.4 The vertical force on the compartment underd/B=0.2,S,,,/B=0.4,

f =1.0Hz, and h,/B=0.05

Table 6.1 The coefficient of decomposed force of figure 6.4

by a b, a, b, a b, 8 b,
Vortex -0.0330 | -1.0314 | 0.4430 | 0.0088 | 0.0012 | -0.0351 | 0.0348 | 0.0010 | -0.0005
Novortex | 0.0037 | -0.9473 | 0.0069 | 0.0007 | 0.0299 | 0.0003 | -0.0005 | 0.0001 | -0.0003

To study the vortex shedding effect, simulations are carried out in sinusoidal motion

with heave amplitude h,/B=0.05 and frequency f =1.0Hz. Here we choose the orifice

size d/B=0.2, side wall S,,,/B=0.4.Figure 6.3 shows the vortices at different times

with a step of T /4 from t =3.25T to t =4T . The vortices pairs move up / down along

with the ingress / egress flow can be observed. The mean free surface inside the

compartment is lower than that outside when the compartment passes its mean

position and moves down; and the internal free surface is higher when the

compartment moves upwards after passing its mean position, corresponding to the

typical moment at t/T =3.25and t/T =3.75, as shown in figures 6.3(a) & (c). The

strength of the vortices and the flow through the orifice would not be as strong as

those in unbounded flow when there is free surface; however, it is expected that the
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vortex structure is quite similar although the orifice size, motion frequency and
frequency are different. The time history of the vertical force, as shown in figure 6.4, is
periodical after two cycles since i =2 has been used in Eq.(4-31). The amplitude of the
force predicted by the present vortex shedding scheme is larger than that of the pure
potential theory, and phase difference between them can be observed. We further
decomposed the force using Eq.(4-17) and the coefficients are given in table 6.1. The

leading term is the first order force; the values of a, from these two curves, which are
related to the acceleration or the added mass, are similar. However the value of b,

which is related to the velocity of the compartment or the damping coefficient, from
vortex shedding model is larger than that from pure potential flow. This is consistent
with the fact that vortex shedding mainly affects the velocity or damping term.

The ingress/egress flow is the concern of the present study. The volume of the flow
and the flow rate through the orifice are shown in figure 6.5. The non-dimensional flow
rate is defined as

qe = dVe 5 ’ Ve :\i (6_3)
dt whyd B

where V. is the volume of ingress water.

The ingress/egress volume V, predicted by models with/without vortex shedding has

an obvious discrepancy at the starting period, when the compartment starts to move

with smaller amplitude motion as described in Eq.(4-31). During the following periods,
the flow rates (, predicted by these two models are close although an obvious
difference at the starting period can be seen. Generally, their phases are close to the
phase of the motion; the variations of volume V, and flow rate (, follow the variation
of acceleration and velocity of the compartment respectively.
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0.04

0.024

-0.02+

-0.04

—— with vortex shedding
no vortex shedding

(a)

with vortex shedding
no vortex shedding

(b)

Figure 6.5 The ingress/egress volume and the flow rate at the orifice with d /B =0.2,

Swan/ B=0.4, f =1.0Hz, and h,/B=0.05

——hy/B=0.02
,,,,,, h,/B=0.05
,,,,,,,,, h,/B=0.10

Figure 6.6 The effect of the heave amplitude on the vertical force withd /B =0.2,

S, /B=04, f =1.0Hz

Table 6.2 The decomposed force for varioush, /B withd/B=0.2,S,,,/B=0.4,

f=1.0

by & by a, b, 8 b, ay b,
hO
EZO'OZ -0.013 | -1.057 | 0.196 0.003 0.007 | -0.032 | 0.007 0.003 0.002
hy
E:O.OS -0.033 | -1.031 | 0.443 | 0.009 | 0.001 | -0.035 | 0.035 0.001 | -0.001
hO
EZOl -0.028 | -1.096 | 0.794 | 0.018 | 0.031 | -0.079 | 0.057 0.004 0.004
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The heave amplitude, size of the orifice, and the frequency would have a significant
effect on the vortex shedding and the hydrodynamic force. Simulations are carried out

by varying one parameter and others are fixed. The heave amplitude is considered first.

We simulate the same compartment with different heave amplitudesh,/B=0.02,

h,/B=0.05 and h,/B=0.1 underd/B=0.2, S,,,/B=0.4, f =1.0Hz. The vertical

wall
force histories are shown in figure 6.6. The non-dimensionalized force amplitude
increases slightly as the heave amplitude. As these curves are decomposed using Eq.(4-
17), the coefficients in table 6.2 show that the leading term is the first order
components. The value of a, does not change much, while b, increases as the heave
amplitude. b, is nearly proportional to the heave amplitude, which is different to that
in the unbounded flow in section 4.3.2. It is expected that the increase of the heave
amplitude results in larger relative motion of the fluid inside and outside of the
compartment, therefore inducing stronger vortices and damping effect. The damping

effect is the cross effect of wave radiation and vortex shedding.

—— d/B=0.05
————————— d/B=0.10

d/B=0.15
——————— d/B=0.20

F./pgh,S,

Figure 6.7 The force history on the compartment of various orifice size d / B with

f =1.0Hz, h,/B=0.1, s,,,/B=0.4.

wall
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Table 6.3 Decomposition of force of various orifice size in figure 6.7

by & b, a, b, 8 b, a, b,
d
EZO'OS -0.063 | -2.839 | 0.703 | -0.058 | 0.102 | 0.138 | -0.243 | -0.026 | -0.000
d
E:OI -0.065 | -2.396 | 1.013 | -0.023 | 0.154 | -0.141 | -0.220 | -0.021 | 0.015
d
—=0.15 | -0.050 | -1.829 | 1.139 0.056 0.130 | -0.170 | -0.039 | -0.001 | 0.020
d
E=0.2 -0.003 | -1.095 | 0.794 | 0.017 | 0.031 | -0.079 | 0.056 0.004 0.004
——d/B=0.05
——diB=0.05 60~ d/B=0.10
- d/B=0.15
-----d/B=0.20
>° o’
-0.08 T T T T ) T T T T )
0 1 2 3 4 5 0 1 2 3 4 5

(a) (b)
Figure 6.8 (a) the ingress/egress volume and (b) the flow rate across the orifice

f =1.0Hz, h,/B=0.1,s,,,/B=0.4

wall
Simulations with different sizes of the orifice are carried out under f =1.0Hz,

h,/B=0.1,s,,,/B=0.4. As shown in figure 6.7, the non-dimensionalized vertical

force decreases when the orifice size increases. The decomposed component

coefficients of the vertical force are shown in table 6.3. The term by, which refers to

the mean force, and term a, decrease as d /B increases. As expected, a larger orifice
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means that the fluid can ingress/egress more easily. Consequently, there would be less
fluid moving along with the compartment and the ‘added mass’ of the compartment
decreases. b, , which refers to the damping term, increases with d/B and then
decreases when the orifice size becomes larger. The damping effect due to vortex
shedding becomes more significant with medium orifice size, which is consistent with
that in section 4.3.2. In the table, we also notice the value of a,, b,,a,, b, appears as a
secondary important component, especially at smallerd/B. Figure 6.8 gives the

volume of the ingress/egress fluid and the flow rate across the orifice. As expected, the

amplitude of V, becomes larger whend/Bincreases. However, the amplitude of the

flow rate (, decreases. This indicates that the pressure difference of the inner and

outer flow decreases when the orifice becomes larger. The equations to predict the
flow rate based on the hydraulic model would be inaccurate based on the present

simulation.

Table 6.4 The decomposed force for various frequency underd /B =0.1, hO/B =0.1.

b,/ 2| a/f2 | b/t [ a/f2 [ b,/ £2 ] a, /2| b/f2 ] a2 | b,/ f?

f=05 | -0.083 | -0.161 | 0.463 0.014 0.022 -0.032 0.026 0.006 0.001

f =075 | -0.096 | -1.793 | 0.803 0.019 0.124 -0.140 -0.154 | -0.015 0.018

f=1.0 -0.051 | -2.268 | 1.161 0.041 0.084 -0.213 -0.211 | -0.009 0.023

f =15 | -0.044 | -2.673 | 1.318 0.015 0.168 -0.171 -0.284 | -0.022 0.014

f=20 | -0.040 | -2.872 | 1.304 -0.043 0.174 -0.164 -0.271 | -0.021 0.016

We further study the effect of frequency underd/B=0.1, h,/B=0.1,s,,,/B=0.4.

It is expected that the vertical force would increase with the frequency like that in
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section 4.3.2. The force history is not plotted here. The decomposed coefficients of the

force are divided by the square of the frequency. As shown in table 6.4, the value of
a,/ f?increases rapidly as the frequency; b,/ f’ increases at lower frequencies and
remains the same level when f =1.5 and f =2.0. Compared with those of higher
frequencies, the value of a,/ f*> and b,/ f? at f =0.5 are very small. The underlying
reason could be the flow due to gravity and the free surface. When the compartment
moves up and down slowly, the ingress and egress flow is driven by the hydrostatic
force at lower frequencies. Therefore the damping force is dominated by the flow due

to free surface and the gravity at low frequency; it is quadratic at higher frequencies.
We notice that the terms a,/ f%, b /f® (i >2) are very small when compared with the

first order terms.
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Chapter 7 Concluding remarks

7.1 Conclusions

The present study focuses on the simulation of vortex shedding from the sharp edge
of marine structures. The potential flow theory and boundary element method are
adopted to describe the inviscid flow around the marine structures.

For the linear vortex shedding problem, a flat dipole vortex sheet stretching from the
trailing edge of the foil is used to impose the circulation. To study a foil advancing in
waves, the linear free surface boundary conditions are satisfied through the free
surface Green function. The wave radiation and diffraction of a foil have been
investigated. The theory adopted is quite similar to the work of Grue et al (1988);
however the thickness and the initial attack angle would result the second order

derivative problem of m;terms. An effective finite difference method has been

proposed to calculate the value of these terms. The attack angle, forward speed,
submergence and the oscillation frequency are analyzed. The free surface affects the

steady and unsteady hydrodynamic force significantly. There is a sudden variation of

1
the radiation and diffraction wave force near the critical frequency when 7 :Z. The

linear theory is applicable for a foil with smaller attack angle with small amplitude
motions.

A numerical vortex shedding scheme has been developed to simulate the nonlinear
continuous vortex shedding of a foil when the attack angle or oscillatory motion
amplitude become large. An unsteady Kutta condition for numerical simulation is
proposed and imposed on the vortex sheet element connecting with the trailing edge.

The Kelvin theorem is used to determine the strength of the shed vortices. The shed
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vortex sheet is replaced by point vortex to avoid bundle of vortex. The vortex sheet
element connecting to the trailing edge is like the tail of the foil; and the vortex
shedding scheme is an ‘egg-laying’ like procedure (see Fig. 4.18). The simulation goes
well for an oscillatory foil with large amplitude motions. The results for propulsion have
been verified by the experimental data by Triantafyllou et al (2005). The propulsion,
energy harvesting and flying modes are investigated extensively. The effect of

parameters such as St,h,/C, a, and & on the performance of an oscillatory foil are

investigated. A reversed Karman vortex street has been observed as shown in figures
4.1 and 4.21. Although the friction resistance has been ignored, the developed
numerical scheme is a fast tool to find out the performance of different combinations
of vertical and rotational motions.

When the thickness of the foil approaches zero, the numerical scheme is applied to a
plate with minor changes. Numerical results of a plate at small attack angle
with/without small amplitude oscillation agree well with the analytical solution. The
numerical scheme of vortex shedding is extended to large amplitude oscillatory
motion. When compared with the results of a thin foil, discrepancy has been found.
This would be due to the fact of the sharp edge of the plate. Theoretically, the flow
near the leading edge of the plate shall be singular; however, the present numerical
solution at the leading edge of large value affected by the element size. The numerical
scheme is further applied to study the vortex shedding of a compartment consisting of
two curved plates. The effect of heave amplitude, orifice size and frequency are
studied. The damping effect is more significant with medium orifice size and smaller

h,/ B, and it is proportional to the square of the frequency. The damping coefficient
can be used to help the prediction of the motion of damaged ship in waves (Gaillard et
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al 2011).

The transient nonlinear free surface effect and the coupled motion of shed vortices
are studied through the time stepping method. The nonlinear free surface boundary
conditions are imposed and the free surface is updated in the framework of
Lagrangian. The steady motion of NACA0012 under a free surface with various Froude
numbers is investigated. The nonlinear free surface effect and fluctuation of the force
curves have been observed, which is mainly due to the free surface wave and
fluctuating vortex sheet. For oscillatory foil under a free surface, the performance of
the selected vertical and rotational motions for propulsion and energy harvesting
modes are not affected significantly. Slight difference can be observed in the force time
histories. The thrust force is slightly smaller when the foil is leaving its mean position
upwards and slightly larger when it moves downwards. While for the selected
oscillatory motion in flying mode, the wave effect becomes significant, the simulated
case has a much higher propulsive efficiency when compared with the foil in the
unbounded flow.

The vortex shedding of a floating damaged compartment has been modeled by
structure with an orifice. The edge of the orifice is modified to fit the time stepping
scheme. Compared with the results of pure potential flow, the damping effect due to
vortex shedding is significant when the force is decomposed into components of
sinusoidal functions. The effects of orifice size, heave amplitude and the frequency are
investigated. Larger damping coefficient is found with medium orifice size, which is

consistent with the results in the unbounded flow. However, the damping effect
increases with the heave amplitude hy/B, which is different from that in the

unbounded flow. The frequency affects the vortex shedding significantly; the
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coefficients of first order components divided by the square of the frequency, which
refer to added mass and damping force, increase at higher frequencies. However, the
value of these first order components at lower frequency decreases significantly; the
fluid flow would be dominated by the gravity.

One of the aims of present study is to develop a fast tool to simulate the inviscid flow
around structure with sharp edge. The simulations are run on a laptop with an Intel i5
CPU of 2.3G Hz. The accuracy of the results of present method is acceptable,
verifications have been shown in chapter 3, 4 and 6. For linear theory in chapter 3, the
hydrodynamics force of a foil at specific conditions (with submergence, Froude
number, with or without motion frequency) can be obtained in a few seconds. While
for the nonlinear vortex shedding of a foil in unbounded flow, the time stepping
scheme would take a few minutes to obtain the hydrodynamic force of 5 oscillatory
cycles. When the free surface is concerned, the computation would take a few hours
since approximately 2000 meshes on the free surface are used. To my own knowledge,
the computation using commercial software (eg. Anysys CFX) would take several days

or several weeks. Generally, the objective of the study has been satisfied.

7.2 limitations and suggestions for further development

In general, the developed numerical vortex shedding scheme together with the
unsteady Kutta condition is successful. The numerical simulations of the vortex
shedding of a foil and the damaged compartment with orifice are carried out
continuously. However, the present numerical scheme has its limitation and shortfalls.
(a) The proposed Kutta condition is suitable for sharp edges like the trailing edge of a
foil. However, the application to a large angle structure could be inaccurate since the

method approximates tangential flow leaving a sharp edge. Vortex shedding at the
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leading edge or from a smooth surface is beyond the proposed scheme. (b) Long time
simulation on the damaged compartment model would be difficult when the free
surface is presented. When the vortices nearly contact or penetrate the free surface,
the simulation would break down. The shed vortex might also cause instability when
updating the free surface. (c) The point vortices do not damp automatically; the
introduced artificial damping function is chosen more or less arbitrarily, justification of
the damping for non-symmetric vortex shedding would be a problem.

For future development, there are several topics that need intensive investigations:
(1) The nonlinear wave diffraction of a foil; (2) the self-propulsion of a foil and (3) the
wave effect on the three dimensional foil; (4) the coupled motion of the damaged ship
structure and waves; (5) the vortex shedding of a flexible foil (Xiao et al 2012). The
present work can be extended to practical engineering problems such as biomimetic
study of three dimensional flying bird (Ellington et al 1996) or swimming fish and (6)
three dimensional vortex shedding at the orifice of a damaged ship. Some of these

problems will be very challenging.
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