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Abstract 

The velocity potential theory has been adopted to describe the inviscid flow around 

the marine structures. The two-dimensional vortex shedding problems in marine 

hydrodynamics such as a hydrofoil advancing near the free surface, the flow passing 

through an orifice of a damaged compartment are studied in the present work. 

As the steady motion and small amplitude unsteady motion of a hydrofoil advancing 

near free surface is considered, a flat vortex sheet is introduced and imposed behind 

the trailing edge. Free surface Green functions, which satisfy the free surface boundary 

conditions, are adopted to account for the free surface effects. The effects of wave 

radiation and diffraction are investigated. 

To study the nonlinear effect of vortex wake and body surface boundary condition of 

a foil with thickness or a plate structure, we introduce a time stepping scheme to 

simulate the continuous vortex shedding. The functional motion modes of a foil or 

plate, including propulsion, energy harvesting and flying, have been simulated. The 

damping effect of vortices on the heave motion of a compartment with bottom 

opening in unbounded flow is analysed. 

The free surface effect on the steady and unsteady motions on a foil is further 

studied through the time stepping methodology. The force history at different forward 

speeds and submergences is investigated and discussed. The simulations on the free 

surface effect on the propulsion, energy harvesting and flying modes are carried out. 

Further efforts are made to investigate the forced heave motion of a flooded floating 

compartment. The non-linear free surface and non-linear vortex wake are tracked in 

the framework of Lagrangian. The ingress and egress fluid flow together with vortices 

and their effect on the hydrodynamic force are investigated.  
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Th  the submergence from the trailing edge to still water line 

Ch  the submergence from mean rotational center to still water line 

0k  incident wave number 
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 coordinate system refers to Earth. 
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 coordinate system travels with forward speed U  
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Abbreviation 

BVP    boundary value problem 

LEV    leading edge vortex shedding 

MTF    multiple transition function 

NACA    national advisory committee on aeronautics 

CPU    computer processing unit 

CFD    computational fluid dynamics 
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Chapter 1 Introduction and background 

1.1 Introduction 

Lifting bodies have been widely used in marine structures. Those include hydrofoils 

for supporting hydrofoil boats, screw propellers and sails for propulsion, rudders for 

the manoeuvring and anti-roll fins etc. Fluid dynamics used for these bodies can help 

the understanding of their lifting generation mechanism, which can lead to the 

optimization of the design of these structures. Research on these problems can 

improve their hydrodynamic performance and structural reliability, and enhance 

efficiency if applicable. Among the issues, understanding of the hydrodynamic 

performance of these marine structures is one of the most important aspects in naval 

architecture. Some other related problems involving separation effects include the 

damaged ship hydrodynamics and biomimetics. To model these problems is actually an 

issue related to vortex shedding or flow separation. 

Vortex shedding or flow separation usually refers to the breakaway of the body 

surface streamline or separation of the boundary layer at sides of structures (Bachelor 

1967, p326). This can be observed when a flow passes around a wedge shaped 

structure or a foil as shown in figure 1.1. Figure 1.1(a) shows the separated flow of a 

rigid wedge; the vortex wake forms and sheds away from the edge tip when the wedge 

moves towards the left hand side. Figure 1.1(b) presents an image of the flow around a 

foil with a small attack angle. On the upper surface of the foil, the boundary layer and 

vorticity are more visible due to thicker boundary layer in an adverse pressure gradient. 

From figure 1.1, we notice that the boundary layer is thin when compared with the 

scale of the structure; the viscous effect is mainly confined within the thin boundary 
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layer; along the body surface, there is no flow separation apart from at the sharp 

trailing edge; the wake flow leaves the sharp edge more or less tangentially to the body 

surface. Consequently, as discussed in the classic book entitled “marine 

hydrodynamics” (Newman, 1977), with the assumption that the fluid is incompressible, 

velocity potential theory can be adopted to describe the irrotational flow outside of 

the boundary layer. 

 

(a)     (b)  

Figure 1.1 Vortex shedding of (a) a wedge (Pullin & Perry, 1980) and (b) a foil, 

http://www. youtube.com/watch?v=ki-CxkRuAxY 

Since potential flow theory is considered, the Reynolds number has no effect on the 

outer flow. However, for the theory to be applicable to a real problem, the Reynolds 

number shall be reasonably high (Newman, 1977). High Reynolds number is usually 

related to a thin boundary layer. For approximation, it would be appropriate to ignore 

the thickness of the boundary layer and extend the velocity potential theory into whole 

fluid domain. 

The hydrodynamic problems concerned here are limited to vortex shedding at the 

sharp edges of structures with a smooth surface. It is assumed that vortices only shed 

from the tip of the sharp edge. The problem with flow separation along a smooth 

surface, usually with its separation point unknown, is beyond the scope of the present 
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study. However, many flow separation problems, including the lifting body problems 

and damaged compartment with an orifice, can be simulated using velocity potential 

flow theory with the sharp edge vortex shedding model. 

In the framework of velocity potential flow theory, the potential flow around the 

structure is simulated through the boundary element method plus vorticity or dipole 

distribution for the vortex sheet. The velocity potential satisfies the Laplace equation in 

the fluid domain, the non-penetrating body surface condition, the proper Kutta 

condition, and the kinematic and dynamic free surface conditions when the body is 

near the water surface. The boundary in the integral equation is discretized and the 

algebraic equations are established based on Green’s third identity. The boundary 

value problem (BVP) is solved numerically. 

The simulation of lifting bodies with a sharp edge still has many challenges. 

Especially for marine structures when the free surface waves are present, the wave and 

the vortex shedding will affect the flow and hydrodynamic force significantly. The 

combined and coupled effects of the free surface and vortex on the marine structure 

can be highly complex. We shall track the motion of the free vortex and the free 

surface. Since viscosity has been ignored, the damping or dissipation of the vortices 

becomes a problem. However, for specific models, artificial treatments can be 

introduced. 

When the motion of a foil near the free surface, which is related to high-speed-

vehicle such as a hydrofoil, is considered, the problems of the dynamic stability and the 

sea-keeping performance of the boat becomes an important issue. In spite of the 

assumption that the speed is constant, the foil will experience oscillations induced by 

the waves. The problem is then decomposed into the steady motion problem (with 
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constant forward speed) and wave radiation and diffraction problems. The study on the 

steady motion of a thin foil at small attack angle in unbounded flow has been 

presented by Bachelor (1967), Newman (1977), Katz & Plotkin (1991). Giesing & Smith 

(1967), Yeung & Bouger (1979), Bal (1999) further studied the linear free surface effect 

on the steady motion of the foil with thickness. Grue, Mo & Palm (1988) investigated 

the linear surface wave effects of an oscillatory plate. However, the overall 

hydrodynamics of a foil with thickness in waves, as described above, seems absent. We 

attempt to investigate this specific problem with linearized free surface conditions. A 

flat dipole stretching from the trailing edge has been used to approximate the vortex 

wake. The body surface condition of wave radiation problem, which contains the well-

known second order derivatives jm terms, is imposed on the mean position. An 

efficient finite difference method is proposed to calculate the jm  terms. The 

appropriate free surface Green functions are adopted to solve the problems. 

The shed vortex sheet of a foil with larger amplitudes of vertical and/or rotational 

oscillatory motions would move up and down; the body surface condition can no 

longer be imposed on its mean position. Therefore the nonlinear continuous vortex 

shedding shall be tracked through the time stepping scheme. Anderson et al (1998), 

Mantia & Dabnichki (2011) have investigated the oscillatory foil using inviscid flow 

theory, the former adopt complex potential theory and the latter used the boundary 

element method. Their results showed highly efficient combined vertical and rotational 

motions for propulsion. This was further supported by Ashraf et al (2011) based on 

Navier-Stokes (N-S) equations at higher Reynolds number. To study the nonlinear 

vortex shedding of a foil extensively, we develop a numerical scheme. The Kutta 

condition for the unsteady flow is proposed and the Kelvin theorem is imposed to 



 
 

5 
 

determine the strength of the newly shed vortex element. To avoid numerical difficulty 

due to the bundle of the vortex sheet, the continuous vortex sheet is replaced by point 

vortex after the vortex leaving the sharp edge. We extended the numerical scheme to 

simulate the motion of thin structures such as a plate. A similar time stepping scheme 

is applied to study the vortex shedding of an oscillatory plate and a compartment 

which consists of two curved plates. The damping effect due to vortex is analysed.  

It is known that the free surface has significant effect on the hydrodynamics of a foil 

when it approaches the water surface. The nonlinear free surface effect has been 

studied by Faltinsen & Semenov (2008); the solutions were achieved through iteration. 

There are only a few studies adopting the nonlinear free surface and nonlinear vortex 

shedding scheme for the transient motion of a foil. Landrini, Lugni, & Bertram (1999) 

studied the steady motion of a foil near the water surface; however, the adopted Kutta 

condition would be problematic. In the present study, the developed nonlinear vortex 

shedding scheme is used. A foil with an impulsive motion of constant speed under the 

free surface is simulated in the Lagrangian framework. Simulations on the oscillatory 

vertical and rotational motions under the free surface are carried out.  

 

 

(a)      (b) 

Figure 1.2 Experiment on the vortex shedding at the orifice of a damaged compartment 

(Smith 2009), (a) egress (b) ingress 
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The vortex shedding at the orifice of a floating flooded compartment is similar to that 

of a foil near free surface. When a flooded compartment with an orifice is considered, 

the fluid inside and outside of the compartment is linked. Fluid will ingress/egress the 

compartment when it is in oscillatory motion. The shed vortices will move up and 

down along with the ingress/egress flow (see figure 1.2). Smith (2009) studied the 

forced motion of a compartment through a multi-pole expansion method; the vortex 

shedding has been ignored. Here the time stepping scheme is applied to study the 

heave motion of a compartment.  

Since the viscosity of the fluid is not involved in the simulation, the dissipation of 

vortices does not exist. It is one of the major challenges in the present numerical study. 

Artificial dissipation function is introduced to damp the vortices. However, the 

treatment of the vortex damping is more or less arbitrary. For a foil advancing in the 

unbounded flow, a damping function based on time can be used as the vortices move 

far away enough from the body where the vortices have very little effect on the flow 

around the foil. The artificial damping function based on time is used for a flooded 

compartment with a symmetric orifice. The treatment of vortex wake is introduced as 

the artificial damping procedure does not affect the flow and the hydrodynamic force 

significantly.  

1.2 Literature review 

There is a large body of work on vortex shedding and the interaction of bodies and 

waves. Their success and ideas are extremely valuable to the present study. Those 

typical works are reviewed first below. 

As vortex shedding at a sharp edge is considered, theories based on the potential 

flow can be categorized based on the ways to impose boundary conditions and the 
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ways to treat the vortex wake. The body surface condition can be satisfied either on its 

mean plane as an approximation if the body is thin, or on the exact body surface; the 

free surface boundary conditions can be linear or nonlinear; and the wake can be 

treated as a fixed plane or a free vortex sheet. The applicability of these theories 

mainly depends on their compatibility with the physical reality concerned. 

The theory with its body surface condition satisfied on the centre plane and a flat 

vortex dipole imposed on the mean plane behind the trailing edge is the feature of the 

linear theory for a thin foil at small attack angle. Its solution is well established which 

can be found in many text books, including those by Batchelor (1967), Newman (1977), 

Katz & Plotkin(1991) etc. Analytical solution of the steady motion of a plate can be 

obtained from an integral equation. When the unsteady motion of a thin foil is of small 

amplitude and with low attack angle, one can also find the analytical solution without 

much additional effort (Newman, 1977). An integral term regarding the wake is 

introduced, which reflects the motion history. If the motion is harmonic or sinusoidal in 

time, the effect of wake is frequency-dependent after a sufficiently long period of time, 

which can be written in terms of the Hankel function, or the Theodorsen function. 

Lighthill (1960, 1970a, 1970b, 1971), Wu (1961, 1971a, 1971b) presented their studies 

on the swimming of a plate based on this method. There are practical limitations on 

the applications of such a theory: the body should be thin, the mean attack angle 

should be small and the oscillatory motion should be of small amplitude. 

When the free surface exists nearby, free surface boundary conditions have to be 

imposed. Wu (1972) considered the incoming free surface wave. Its effect was however 

included only in the boundary condition on the foil surface and the BVP was still solved 

in the unbounded fluid domain. The frequency domain free surface Green function is 
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an effective tool to study the free surface effect of steady motion and harmonic 

oscillatory unsteady motion. The wave effects can be automatically included since the 

Green function satisfies free surface boundary conditions. Grue, Mo & Palm (1988) 

considered the full effects of the linear surface wave on an oscillatory plate without 

thickness through the appropriate Green function, in the context of propulsion of a 

ship, in the sense that energy can be extracted from waves as the hydrofoil moves 

forward with heave and pitch motions. Wu (1994a) also solved the unsteady motion of 

a three dimensional vertical plate piercing the water surface. A panel method over the 

plate surface was introduced to solve the BVP. We notice that the frequency domain 

Green function is valid for steady motion with harmonic motion. For general transient 

motion, the time domain free surface Green function should be adopted. However, the 

calculation of the integral involving the memory effect could be very time consuming 

because of the convolution term. Nevertheless, the free surface Green function 

method is convenient to find good results for linear problems with small attack angle 

and small amplitude oscillation. 

As the ratio of thickness-chord becomes larger, the thickness effect cannot be 

ignored. The panel method over the real surface of the body, proposed by Smith & 

Pierce (1958) and Hess & Smith (1964), can be used to simulate the flow passing 

around a foil with thickness. For a lifting body, source, dipole and vortex wake can be 

adopted on and behind the foil; the solution can be obtained by solving the boundary 

integral equations, which are established based on the non-penetrating body surface 

condition (eg. Bristow, 1980, Katz & Plotkin, 1991) and the Kutta condition. Giesing & 

Smith (1967) developed a method to calculate the lifting force of a single or multi 

lifting bodies moving near the water surface. The sources and sinks were distributed 
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over the body surface together with a vorticity to satisfy the Kutta condition at the 

trailing edge. The adopted Green function satisfies the linear free surface boundary 

conditions and the radiation condition. Similar work based on the panel method for a 

hydrofoil at steady forward speed includes those by Yeung & Bouger(1979), Bal (1999) 

for two-dimensional foil and Xie & Vasselos (2007) for a three-dimensional foil. Zhu, Liu 

& Yue (2006) studied the propulsion of an oscillatory three-dimensional foil near the 

free surface, where linear free surface conditions are satisfied.  

The frequency domain and time domain free surface Green functions both satisfy 

linear free surface boundary conditions. When the body is moving close to the free 

surface, the non-linearity of the water surface may become important. As a result, 

nonlinear free surface boundary conditions have to be imposed. Detailed discussions 

on this can be found in Giesing & Smith (1967). However, there are only a few works, 

including Faltinsen & Semenov (2008), which adopt fully non-linear free surface 

boundary conditions for foils. Their solution was obtained through iterations. Landrini, 

Lugni, & Bertram (1999) adopted the fully nonlinear free surface boundary condition, 

and the time stepping method was used. However, their implementation of vortex 

shedding scheme was problematic; the adopted Kutta condition was the same as those 

that have been criticized by Jones (2003). 

Most of the theories discussed above adopted linear wake; the vortex wake dipole, 

which is the difference of the velocity potential of upper and lower sides at the trailing 

edge, is imposed on the mean plane stretching from the trailing edge. It is appropriate 

when the attack angle and the motion amplitude are small. When the attack angle or 

the amplitude of the oscillatory motion increases, the vortex wake behind the trailing 

edge would move up and down. The free vortex wake shed from the edges of the 
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structures can no longer be represented by a flat vortex sheet. In this case, a non-linear 

wake model should be used and body surface boundary conditions shall be satisfied at 

its instantaneous position. 

Apart from the vortex wake, the well-known Kutta condition has to be imposed 

properly. Mathematically, the Kutta condition can be expressed in the form of the 

continuity of pressure or finite velocity. This is achieved through including the effect of 

flow circulation. When the nonlinear wake is involved, it is usually unsteady. In this 

sense, the corresponding Kutta condition is named the unsteady Kutta condition. The 

unsteady Kutta condition is one of the key issues when simulating the vortex shedding 

problem. 

Early works treated the nonlinear wake using lump point vortices. Researchers have 

developed several methods to determine the strength and position of the newly shed 

vortex. Different schemes for the Kutta condition have been introduced and imposed 

either numerically or through conformal mapping. However, as mentioned by Sarpkaya 

(1989) and Jones (2003), most of the methods for the unsteady flow were achieved 

numerically, which might not have the full mathematical rigor. As commented by Jones 

(2003), several unsteady Kutta conditions  were introduced and implemented 

numerically, including those by Maskell (1972), Kuwahara (1973), Clements (1973), 

Sarpkaya (1975), Katz (1981), and Cortelezzi et al (1997). The strength, position, and 

velocity of the newly introduced vortex element are chosen principally as a numerical 

treatment, in some of which, the rate of shed vorticity is given based on the velocity of 

a point near the sharp edge. The newly shed vortices are introduced either at fixed 

points or released at a variable position near the sharp edge. However, the results with 

these unsteady Kutta condition have large discrepancies when compared with the 
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experimental data of Keulegan& Carpenter (1958) and Pullin & Perry (1980). 

To avoid the discontinuity of lump point vortices, a continuous vortex sheet or dipole 

was adopted to simulate the separated flow through conformal mapping in the work of 

Pullin & Perry (1980) and Graham (1980); although the averaged point vortex array, 

which is reduced from the continuous vortex sheet, was used to represent the vortex 

sheet released from the sharp edge. It seems that continuous vortex shedding at the 

sharp edge can give more accurate results than those by discrete lump point vortex 

when compared with experiment data (Nitsche & Krasny 1994).  

The discussion of the vortex shedding at a wedge shaped trailing edge has been 

discussed by Giesing (1968) and Katz & Plotkin (1991, p245). The effect of the direction 

of vortex wake has significant effect on the lifting force and the drag. Kristiansen & 

Faltinsen (2008, 2010) adopted dipole segments to simulate the vortex shedding; the 

dipole was released continuously from the sharp edge. However, the Kutta condition is 

implemented by introducing extrapolation; two additional equations are established 

through the extrapolation of the local potential on the two sides of the sharp edge. The 

strength of the shed vortex dipole and its shed velocity are obtained based on an 

artificial treatment. Although continuous distribution of vortex dipole is used, the 

direction of the shed vortex is based on observation. However, their numerical results 

avoid large discrepancy when compared with the experimental data. 

Rigorous imposition of the unsteady Kutta condition has been presented by Jones 

(2003) and Jones & Shelly (2005). The proposed mathematical procedure satisfied the 

Kutta condition analytically through asymptotic expansions. To circumvent the velocity 

singularity, the continual vortex sheet is required to be tangential at the edge of a 

moving plate. Similar to Jones, Alben (2009) adopted a continuous vortex shedding 
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model, in which the vortex sheet shed tangentially from the trailing edge. Jones’ 

tangential vortex shedding model did avoid the singularity mathematically, which 

justified its validity itself. However, his tangential vortex shedding method would be 

problematic when a body with non-zero angled corner such as a wedge is considered.  

In general, it is not possible to let the shed vortex wake be tangential to both sides of 

a wedge. However, we can seek new schemes for the simulation of vortex shedding at 

the edge. One possible method is to continue the mathematical procedure by 

modifying the local shape of the wedge tip, let its two sides be tangential to each 

other. Another possibility is to adopt a numerical unsteady Kutta condition which can 

lead to a good approximation to the fluid flow. 

Let us go back to the physical essence of the Kutta condition. Observation from 

experiment shows that the vortex wake is formed in the vicinity of the area at the back 

side (view from the coming flow) of the edge, as shown in Figure 1.1(a). It is not shed 

from a single point, but a small region. Strictly speaking, the models to simulate the 

vortex shedding using vortex sheet or point vortex are an approximation technique for 

such a case. As the wedge tip vortex shedding is considered, it is difficult to impose the 

tangential Kutta condition to a body whose two sides are not joined tangentially. 

However, the Kutta condition is required to circumvent the singularity in the velocity 

field of the ideal flow. In the framework of potential flow, we shall choose a Kutta 

condition which can ensure the velocity field to be finite at the trailing edge. Since the 

sharp edge is considered, the vortex wake released from the tip of the wedge shall be 

treated as a continuous distribution of dipoles. 

Apart from the unsteady Kutta condition and the treatment of the vortex sheet, the 

interaction of vortices and the free surface or surface waves is the interest of present 
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study. Simulation of floating bodies near a free surface by pure potential flow cannot 

include the damping effect due to vortex shedding. It is known that the sea-keeping 

theory based on the potential theory over-predicts the roll motion of a ship as the 

damping effect due to viscosity and the vortex shedding at the bilge is ignored in the 

motion equation. Therefore, a reliable and accurate procedure or method that can 

estimate the damping of vortex shedding becomes most valuable.  

As the floating body with sharp edges, like the bilge keel or the orifice of a damaged 

ship, is considered, the shed vortices, surface wave and the structure shall be tracked 

simultaneously. Figure 1.2 shows the vortex shedding at the sharp edge of the orifice of 

a flooded compartment in oscillation (Smith, 2009). As the flow ingresses or egresses 

the orifice, vortices are shed up and down. When studying the oscillatory damaged 

compartment, the sea-keeping theory based on pure velocity potential theory without 

vorticity cannot capture the phenomena of vortex shedding and its effects. The 

discrepancy, especially at lower frequency, between the predicted hydrodynamic force 

and the experimental data has been found (Smith 2009). Work by Downie, Bearman & 

Graham (1988) included the vortex damping effect from the sharp corner of a floating 

rectangular barge in waves; the sharp edge was mapped to an infinite wedge, the shed 

vortex was then matched with the main flow; the predicted response avoided the 

excessive roll motion. Kristiansen & Faltinsen (2008, 2009) revealed that the 

discrepancy of the wave response of a rectangular barge predicted by linear potential 

theory and the experiment data and the simulation results which included the vortex 

shedding explained the discrepancy quite well. Gaillard, Xu & Wu (2011) simulated the 

motion of a damaged barge in waves using software WAMIT which is based on pure 

linear potential flow theory. They introduced an additional damping coefficient which 
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was obtained from the harmonic motion of a damaged compartment in the 

unbounded flow. The introduced damping coefficient reduces the discrepancy of the 

results from pure potential flow and the experimental data. It is still a challenge to 

model the motion of a damaged barge directly. Different from the sloshing problem, 

the free surfaces inside and outside of the compartment are linked. The coupled 

motion, which involves vortex shedding, motion of the floating body and waves, makes 

the problem extremely complicated. 

Since the surface wave is involved, the far field wave radiation condition has to be 

addressed properly. The far field condition is satisfied automatically when the free 

surface Green function is applicable in the linear case. In general case, the computation 

domain is always finite for time stepping simulation. As the wave propagates outward, 

it has to either pass through the truncated boundary with no reflection or be absorbed 

using a damping zone. There are several methods that are useful for linear free surface 

problems, including the Sommerfeld condition (Sommerfeld, 1949), Multiple transition 

function (MTF) (Liao, et al 1984) and damping zone method. For nonlinear problems, 

the damping zone is more effective and practical; it can absorb the wave energy 

without significant reflection (e.g. Tanizawa & Swada 1996, Wang & Wu 2006). 

1.3 Context of present study 

The purpose of our study is to develop a faster and more accurate tool to study the 

hydrodynamic characteristics of structures with sharp corners. The integral equation is 

applied on the boundary which is divided into small elements, and the matrix 

equations are established based on the boundary conditions. Those existing methods 

or schemes may have difficulties in treating the problem concerned here. However, the 

success of those mathematicians and hydrodynamicists gives a great amount of 
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valuable information and their ideas inspire us to push into new territories.  

We first consider the linear wave radiation and diffraction of a foil near the free 

surface in chapter 3 after the basic theory and equations are presented in chapter 2. 

The non-penetration body surface condition for the steady motion and diffraction 

problem is satisfied on the exact foil surface other than its centre plane. The linearized 

body surface condition is imposed on its mean position. The jm terms are calculated 

through finite difference. The effects of submergence, attack angle and frequency 

together with various reciprocity relationships are investigated. 

We introduce a time stepping vortex shedding scheme to approximate the 

continuous vortex shedding. The nonlinear vortex shedding of a foil with large 

amplitudes of vertical and rotational motions for the purpose of propulsion, energy 

harvesting and flying is investigated in chapter 4. Extensive studies on the effects of 

oscillation amplitudes, frequency, the effective attack angle, and phase differences of 

vertical and rotational motions are carried out for different motion modes. When the 

thickness of the foil is reduced to zero, the foil can then be replaced by a plate. The 

fluid flow is then described using a vortex distribution. The time stepping scheme is 

again applied to simulate the vortex shedding of a plate with minor modification. 

Numerical results on small amplitude oscillation and large amplitude motion are 

investigated. Further application is applied to an opening semi-column compartment 

with symmetric orifice at the bottom. The damping effect due to the vortices is 

investigated. 

The transient motion of a foil near non-linear free surface is studied in chapter 5. The 

simulations involve the interaction of foil, free vortices and free surface. A foil with an 

impulsive motion of constant speed and/or the oscillatory vertical and rotational 
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motions under the free surface is studied. The transient wave effect at different 

velocities and submergences is investigated; the performance for the purpose of 

propulsion, energy harvesting and flying are discussed.  

Chapter 6 moves to the simulation of the vortex shedding of a floating flooded 

compartment in oscillatory motion. An orifice at the bottom represents the damaged 

structure. The thickness of the compartment is included and the sharp edge of the 

orifice is modified like the trailing edge of a foil. The numerical scheme for the vortex 

shedding would then be applied to model the damaged compartment. As the 

compartment moves up and down, the ingress and egress flow through the orifice of 

the compartment makes the problem differ from the sloshing problem. There are very 

strong interactions between the structure, waves and free vortices. Simulations are 

carried out to investigate the effects of motion amplitude, frequency and damaged 

orifice size. Apart from the hydrodynamic force, the flow rate through the orifice is 

examined. 
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Chapter 2 The mathematic equations for vortex shedding 

problems 

Throughout the studies in the present thesis, there are some important definitions 

of coordinate systems, governing differential equations and integral equations that 

shall be outlined here. 

2.1 Coordinate systems 

First of all, we shall introduce the coordinate systems. We define three different 

coordinate systems similar to those in the sea-keeping theory (Newman 1977, Wu 

1986): 

(1) ),,( 000 zyxX


 is fixed referring to the Earth, in which 00oyx  is along the 

undisturbed water surface and 0z  points upwards if applicable. 

(2) ),,( zyxX


 travels with the structure with the forward speed U in the direction of

x  axis. xoy is on the mean water surface if applicable; it is originated at the mean 

position of the  rotation centre of the body when it is in the unbounded flow. 

(3) )',','(' zyxX


 is a coordinate system fixed on the structure. 

These three coordinate systems can be transformed from one to the other. We have 

)0,0,(),,(),,( 000  UdtzyxXzyxX


      (2-1) 

and for small amplitude oscillatory motion 

)'(),,()',','(' XAAzyxXzyxX RT


      (2-2) 

where ),,( 321 AAAAT 


, ),,( 654 AAAAR 


are the translational and rotational 

displacements of the structure relative to ),,( zyxX


. 

In the case of large amplitude oscillation, Eq.(2-2) should be replaced by  

)'(),,()',','(' XMAzyxXzyxX T


      (2-3) 
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where
 























56665

546465465446

546446564564

cossincossinsin

sincossinsincoscoscossincoscossincos

sinsinsincossincoscossinsincoscoscos







M  

),,( 654  are the Euler angles  

Here we consider the two-dimensional problem and variations in y  axis are 

eliminated. The translational and rotational velocities become ),0,( 31 AAAT


 , 

)0,,0( 5AAR


 , and 



















5

55

cos00

sincos0

001



M  

where the over-dot implies the temporal derivative. 

2.2 Some basic equations for vortex shedding 

Under the assumption that the fluid is ideal and incompressible and its density is 

constant, the velocity potential   satisfies the Laplace equation 

0
2

2

2

2
2 











zx


          (2-4) 

in the fluid domain. 

The non-penetrating boundary condition on the body surface gives  

nXAAZAAnU
n

x

 



),( 5351


      (2-5) 

where ),( zx nnn 


 is the inward normal vector of the body surface, 

),(),( cc zzxxZX  , and ),( cc zx is denoted as the rotation centre. 

In the Eulerian system, the free surface FS can be written as 

),( txz            (2-6) 
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The dynamic and kinematic free surface boundary conditions on ),( txz  are  

0
2

1





gzU

t
x 


        (2-7) 

xxzxU
t








         (2-8) 

where g  is the acceleration due to gravity. 

When the free surface boundary condition is linearized, on 0z  we have  

0



gzU

t
x


         (2-9) 

zxU
t








          (2-10) 

Combining Eqs.(2-6)(2-9) & (2-10), we have 

0)( 2 














z
g

x
U

t


         (2-11) 

While in the Lagrangian framework, the nonlinear free surface boundary conditions 

can be written as 

gz
dt

d
 



2

1

 
        (2-12) 

zdt

dz

x
U

dt

dx












,         (2-13) 

Once the solution is found, we have the pressure 

)
2

1
( gzUp xtre           (2-14) 

where  is the density of the fluid. 

When Eq.(2-14) is linearized, we have 

)( gzUp xtre           (2-15) 

The hydrodynamic force can be obtained through pressure integration over the body 



 
 

20 
 

surface. We have 

dSnpF i

S

rei 
0

, 5,3,1i         (2-16) 

where    nXnnnnn zx


 ,,,, 531 , ),( cc zzxxX 


. 

The Kutta condition requires the velocity to be finite at the sharp trailing edge of the 

structure, or 

finite           (2-17) 

at ),( TTT zxx 


 which are the coordinates of the trailing edge. 

If the body is in the unbounded flow, the perturbed velocity by the body in the far 

field disappears, or 

0  as x          (2-18) 

When the free surface is present, the perturbed velocity far away from the body shall 

be finite or 

finite  as x         (2-19) 

The potential is discontinuous across the vortex sheet. The difference is usually 

defined as a dipole, or  

  ww            (2-20) 

Here when one walks along the wake starting from the trailing edge, w and w in 

Eq.(2-20) are the potentials on the right and left hand sides respectively. The normal 

velocity across the wake is continuous, or 

nn

ww








  
         (2-21) 

where the negative sign is because of the change in direction of the normal from one 

side of the wake to the other side. 
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Figure 2.1 The integral boundary of a foil in steady motion near free surface  

2.3 The integral boundary equation 

The problem can be solved through the boundary integral equation. For a point 

),( zxp  in the fluid field the potential can be given by Green’s third identity  

q

SSSS qq

ds
n

q
qpGq

n

qpG
p

CwF














0

]
)(

),()(
),(

[)(2


     (2-22) 

where ),( qpG  is the Green function, ),( q is the point along the integral boundary, 

qn  is the normal at point q , 0S  and CS  are the foil surface and control surface, and wS  

indicates the wake surface as shown in figure 2.1. 

Substituting Eqs.(2-20) & (2-21) into Eq.(2-22), we have 

w

S q

q

SSS qq

dSq
n

qpG
dS

n

q
qpGq

n

qpG
p

WCF

)(
),(

]
)(

),()(
),(

[)(2

0

 



















   (2-23) 

Eq.(2-23) will be modified for specific problems and will be used to solve the BVP 

throughout the thesis. 

With above equations, we will study the linear and nonlinear vortex shedding of 

marine structures in the following chapters.  
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Chapter 3 Linear theory for a submerged hydrofoil advancing in 

waves 

3.1 Description of the overall problem 

We consider a hydrofoil advancing in water waves with small attack angle. This is one 

of the major concerns of high speed vehicles such as hydrofoil craft. It shall provide a 

steady lifting force to balance the weight of the ship. As it encounters incoming waves, 

the hydrofoil moving along with the craft would experience an oscillatory flow field 

induced by the waves, leading to a combined wave radiation and diffraction. The 

overall motion is decomposed into the steady forward speed problem and periodic 

wave radiation and diffraction problem. The linearized free surface and body surface 

boundary conditions are imposed. The free surface boundary conditions are accounted 

for through the Green function. The integral equation involves only the body surface 

since the Green function satisfies the free surface boundary conditions. As the 

hydrofoil thickness is considered, the body surface condition is no longer satisfied on 

the axis line of the foil, but on the mean position of the foil surface. In this sense, for 

the forward steady problem and wave diffraction problem without body oscillation, the 

boundary condition on the body surface is satisfied on its exact location. When there is 

a body oscillation, the body surface condition is satisfied on its mean position. A flat 

dipole imposed behind the trailing edge is used to approximate the steady and 

unsteady vortex wake, as shown in figure 3.1. 

As the overall hydrodynamic behaviour of a hydrofoil advancing in periodic waves is 

considered, the total potential can be written as 

]),(
~

Re[),(),,( ti

p ezxzxUtzx         (3-1) 

where ),( zx  and ),(
~

zxp  are the potential due to steady motion and the combined 

incident, radiation and diffraction potentials, respectively. The latter are based on the 
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assumption that the problem is already sinusoidal temporally, U
g

2

0
0


  is the 

encounter frequency, + and – correspond to waves from the right and left hand sides 

respectively, 0  is the wave frequency.  

The potential 
p

~
 related to the periodic motion can be written as 

7755331100

~
 AAAAAp 

      (3-2) 

where 0  is the potential due to the incident wave and 7  is due to its diffraction by 

the hydrofoil; 0A  is the incoming wave amplitude, and 07 AA  ; )5,3,1( jj  are 

the potentials due to surge, heave and pitch motions respectively; )5,3,1( iAi  are 

the corresponding amplitudes of these motions.  

The potentials due to steady motion in calm water and the radiation and diffraction 

are calculated separately. Once the steady motion and the unsteady motions are 

solved, the complete hydrodynamics of the foil can be obtained through superposition. 

3.2 Steady motion of a hydrofoil under the free surface 

3.2.1 Equations for the steady motion 
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Figure 3.1 Sketch of a submerged hydrofoil advancing near the water surface 
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The sketch of a hydrofoil moving near the free surface at constant forward speed U

is shown in figure 3.1. The distance of the trailing edge and the rotation centre to the 

mean water line are Th  and Ch  respectively. In this chapter the rotation centre 

),( cc zx  is at the centre of the chord. We define the Froude number as 
gC

U
Fn  , 

and denote C  as the chord length, and   as the mean attack angle. 

The potential   due to the steady forward motion satisfies the Laplace equation 

02             (3-3) 

in the fluid domain. 

The boundary conditions for the steady problem, given in Eqs.(2-5) & (2-11) become 

xn
n





          (3-4) 

on the foil surface, and 

0 xxz            (3-5) 

on the free surface, where 2/Ug .In the far field, we have 

0 ,  x          (3-6) 

and  

finite ,  x .         (3-7) 

Once the potential is solved, the steady hydrodynamic force sjF  is obtained from the 

full Bernoulli equation since the product term may be more significant near the body. 

We have  

 

00

)
2

1
(2

S

jx

S

jresj dSnUdSnpF  , 5,3,1j     (3-8) 

where the gravity term is not included, as it contributes a buoyancy force. 
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Here we defined the non-dimensional pressure Pc and non-dimensional resistance 

Rc , lift Lc  and moment Mc  as 

2

2

U

p
c re

p


           (3-9) 

dSnc
CCU

F
c

S

xp
s

R 

0

12
2

1


        (3-10) 

dSnc
CCU

F
c

S

zp
s

L 

0

12
2

3


        (3-11) 

dSZnXnc
CCU

F
c

S

xzp
s

M  

0

)(
24

222

5


      (3-12) 

Since the free surface Green function satisfies the free surface boundary conditions 

automatically, the boundary integral equation in Eq.(2-23) only involves the foil surface 

and the wake. The Green function can be written as (Wehausen & Laitone 1960) 

)(sin2)(cos..2'lnln),( )(

0

)(










 

 

 xedkxk
k

e
vprrqpG z

zk

  (3-13) 

where 22 )()(   zxr , 22 )()('   zxr , and ..vp indicates the 

Cauchy principal integral. 

To solve the steady potential  , the Constant Boundary Element Method (CBEM) is 

adopted. The boundary of the foil surface is divided into N  segments. Thus Eq.(2-23) 

can be written as 

 
 











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j
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qq
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       (3-14) 

where 

q

S q

ij dS
n

qpG
a

j

 




),(
, q

S

ij dSqpGb

j

 ),( , and ji,  are the numbers of the segments 
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corresponding to qp,  respectively. More details on the discretization and collocation 

of the foil can be found in the book of Katz & Plotkin (1991). 

Since the attack angle is small, the linearized vortex sheet is adopted to approximate 

the wake flow. Physically, the pressure on the two sides of the vortex wake shall be 

equal. From the linear Bernoulli equation we have 

x
U

tx
U

t

wwww


















  
        (3-15) 

Noting that 0







 

tt

ww 
 in the steady flow, we then have 

0




x


 or .const           (3-16) 

The dipole )(q  in Eq.(3-14) is constant. This is then obtained by the difference of the 

potentials on the two elements attached to the trailing edge of the foil. As a result, 

Eq.(3-14) has N  unknowns which are obtained from the N  conditions imposed at the 

centres of N segments.  

3.2.2 Pressure distribution and steady force on the foil 
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Figure 3.2 Pressure distribution on a symmetric Joukowsky foil with %78.11/ Ctck
, 

0.1/ ChT
 at 0.1Fn , 05  

To verify the present method though convergence study and comparison, 
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simulations are made for a symmetric Joukowsky foil with the ratio of thickness 
ckt  to 

chord C  equals to %78.11 at mean attack angle 05 , with the number of 

elements on the body 80N ,120  and 200  respectively. Figure 3.2 presents the 

non-dimensionalized pressure distribution over the foil surface. It can be seen that the 

results from these three meshes are graphically indistinguishable. Table 3.1 gives 

further results for non-dimensionalized resistance, lift and pitch moment. The table 

shows that these meshes have given the converged results. 

 

Table 3.1 The resistance, lift and pitch moment on a symmetric Joukowsky foil with 

%78.11/ Ctck
, 0.1/ ChT

 at 0.1Fn , 05 . 

 N=80 N=120 N=200 

Rc  0.02182 0.02194 0.02207 

Lc  0.34116 0.34267 0.34399 

Mc  0.15297 0.15275 0.15275 
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(a)      (b) 

Figure 3.3 Pressure distribution on the NACA4412 foil at 03.1Fn and 05  (a) 

94.0/ ChT  (b) 6.0/ ChT  
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(c) 

Figure 3.4 Resistance, lift, and moment on a symmetric Joukowsky foil of 

%78.11/ Ctck
 at 05  and different submergence. (a) resistance (b) lift (c) pitch 

moment 

 

We now use the present method to consider the NACA4412 foil. The pressure 

distributions over the body surface are presented in Figure 3.3. They are compared 

with the experimental data of Ausman (1954), taken manually from the paper of 

Giesing & Smith (1967), and very good agreement can be found. The numerical results 

of Giesing & Smith (1967) are also included in the figure, which are slightly different on 

the upper surface. They adopted source distribution and an additional vortex to 

account for the flow with circulation, and the Kutta condition is satisfied when the 
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velocities at the elements of the trailing edge are equal. This treatment is right for 

steady motion. The results of Giesing & Smith (1967) shall be the same as present 

results; however, discrepancies can be observed. This could be caused by fewer 

elements they used or the accuracy of the computer in 1960s. 

Having verified the method, figure 3.4 gives the resistance, lifting force and moment 

on a symmetric Joukowsky foil with %78.11/ Ctck
 against forward speed at 

different submergence. As can be seen in figure 3.4(a), the resistance coefficients 

increase with Fn initially. They reach a peak at 8.0Fn , 5.1Fn , 4.2Fn  for 

0.1/ ChT , 0.2/ ChT , 0.4/ ChT  respectively and then decrease gradually at 

larger Fn . We notice that the resistance decreases significantly as the submergence 

ChT /  becomes larger. In the perspective of energy, the energy of the wave comes 

from the work done to water by the foil. Hence the increase of resistance usually refers 

to the wave making resistance. Figure 3.4(b) gives the lifting forces which increase as 

the speed increases and after the curves reach their peaks they decrease. These curves 

for the lifting force then go up gradually and tend to a finite limit. There is a similar 

trend in the curves for the moment. We may also notice that the resistance is one 

magnitude smaller than the lift. The presence of free surface has a significant effect on 

the hydrodynamic force due to the induced surface waves. The forward speed in 

2/Ug in Eqs.(3-5) or (3-13) indicates the characteristic of the induced wave. Larger 

U  means smaller   and longer wavelength. When the submergence is fixed, the 

variation of the lifting force is mainly due to the changes of the local flow induced by 

surface wave. When U  is small, there would be more than one wavelength above the 

foil; as U  increases, the wavelength increases as well. The foil can be beneath the 

crest of the wave which is followed by a trough. This can explain the changes of the 
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lifting force corresponding to the forward speed. When the submergence increases, 

the free surface will have less effect as shown in the figure.  

3.3 Hydrofoil with small amplitude harmonic oscillation in waves 

3.3.1 Mathematic equations on the radiation and diffraction problems 
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Figure 3.5 Sketch of a hydrofoil advancing in waves 

Let us consider an oscillatory foil travelling in waves with constant forward speed. 

The incoming wave is assumed sinusoidal both temporally and spatially and the 

hydrofoil is in harmonic surge, heave and pitch motions. The potentials due to wave 

radiation and diffraction satisfy Laplace equation 

02  j , 7,5,3,1j         (3-17) 

in the fluid domain. 

The body surface condition can be written as (Newman 1978) 
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where 
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Its boundary condition on the free surface can be written as (Wehausen & Laitone, 

1960; Wu & Eatock Taylor 1987) 

02
2

 jjxjxxjz i 
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
        (3-20) 

where 
g

U
  , 

g

2
         

The potential due to the incident wave can be written as 

)(

0
00 wxkizk
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          (3-21) 

where 
g

k
2

0
0


  is the wave number and w  is the phase of the incoming wave with 

respect to the foil centre. 

Once the BVP is solved, the force and moment on the foil can be obtained from the 

integration of pressure. We have (Newman 1978, Wu & Eatock Taylor 1987) 

])Re[( 7055331100

ti

ujujujujujuj eFAFAFAFAFAF      (3-22) 

where ujiF  is the complex amplitude of the unsteady force. 

The force due to wave radiation and diffraction is obtained from the linear Bernoulli 

equation as the body surface condition is linear. We have the radiation wave force 
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where )( xUW  
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, which has included the effect of steady potential. 

The non-dimensionalized force can be written as 
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The combined incident wave force and diffraction wave force can be written as 

 

0

70
)]()([)( 7070

S

juuw dSnWiFFF
jjj




, 5,3,1j  (3-25) 

Similar to Eq.(3-24), we have 
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One may notice that the linear unsteady body surface boundary condition Eq.(3-18) 

contains the second order derivatives of the steady potential. This is usually 

problematic in numerical calculation. The accuracy of this term is a major challenge in 

this type of numerical solution. Zhao & Faltinsen (1989) attempted to calculate the jm  

term directly. The second order derivatives of the potential near the body surface were 

calculated and the jm  terms on the body surface were obtained through 

extrapolation. Wu (1991) proposed a numerical scheme to calculate the jm  term by 

solving the boundary integral equation of the first order derivatives of the steady 

potential. Here an efficient numerical scheme based on the finite difference method is 

proposed. The jm  terms are calculated through the finite difference of the potential 

derivative x  and z  along the foil surface. We have  
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where ),(),( xzzx nnsss 


 is the vector in the tangential direction of the body 

surface. From 1m , 3m , we have 

315 )1( XmZmnnm zxxz          (3-29) 
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For the potential related to the harmonic motion, the Green function can be written 

as (Wehausen & Laitone 1960, Wu & Eatock Taylor 1987) 
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and the  sign in the last term is taken positive when 2,1j , and negative when 

4,3j ; 
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This indicates that there would be four waves of different wave number when 
4

1
 , 

two travelling before the foil and two behind; there are two waves propagating behind 
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the foil, when 
4

1
 . It is a critical point when 4/1 . We also notice that when 

0 , the wave radiation problem becomes the steady motion problem. 

For the periodic motion, the pressure at the wake is obtained through the linear 

Bernoulli equation 

ixire Uip            (3-32) 

which ignores the effect of the steady disturbed potential. As in Newman (1977), its 

continuity across the wake means that   in Eq.(2-19) satisfies 

0 xUi           (3-33) 

This gives 

xikwex 0)(             (3-34) 

where Ukw / , and the value of )( Tx


  can be obtained from the difference 

between the potentials on the two elements attached to the trailing edge, as in the 

steady potential. 

3.2.2 Numerical results on the radiation and diffraction forces 

We shall first calculate the jm  terms. To obtain the jm  terms through Eqs.(3-27) & 

(3-28), there are a few steps to follow: (1) calculate the potential on the nodes of each 

element through fourth-order Lagrangian interpolation formula (see Abramowitz & 

Stegun, 1965, p878); (2) the tangential derivative s  at the middle of the element is 

calculated through finite difference of the potentials at the nodes of the element. (3) 

x  and z  are obtained through the known s  and n  at the middle of the elements; (4) 

the values of x  and z  at the nodes of each element are again obtained through the 

fourth-order Lagrangian interpolation; (5) the jm  is then obtained at the middle of the 



 
 

35 
 

element through the finite difference of x  and z  at the nodes of each element. 

To test the convergence of the above procedures, we calculate the jm  terms with 3 

sets of meshes. Figure 3.6 shows that the present scheme can give very good results 

for these second derivatives. However, compared with the pressure in figure 3.2 and 

steady force in table 3.1, a finer mesh is needed to give converged results, especially at 

places where the curvature is high. We also notice that jm  is quite large especially near 

the leading edge. We further notice that jn  in Eq.(3-18) are the components of the 

normal and thus their magnitudes are always less than one. As a result, the second 

term could play an important role, which reflects the significance of the effect of the 

steady potential on the unsteady potential. 
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Figure 3.6 jm  term for the symmetric Joukowsky foil with %78.11/ Ctck
, 0.1/ ChT

 

at 0.1Fn , 05  (a) 1m  (b) 3m  

We consider the hydrofoil advancing in a regular wave and with small amplitude 

harmonic heave and pitch motions. Figure 3.7 gives the heave force and pitch moment 

on the symmetric Joukowsky foil of %78.11/ Ctck , with Froude number 6.0Fn  and 

submergence 0.1/ ChT . The figure shows that the attack angle has significant effect 
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on the vertical force and rotational moment, especially at smaller C . One of the 

reasons is that the mean position of the body changes when the attack angle changes. 

In this sense, the body becomes different. More importantly, the circulation around the 

foil changes as the attack angle changes. This will significantly affect the steady 

potential  . As it has been seen in figure 3.6, the 
jm term can be very large. When it 

varies, its effect on the radiation potential can be very significant, as can be seen in 

Eq.(3-18), especially at lower frequency. We notice in figure 3.7 that there is a sharp 

discontinuity at 17.0C . This in fact corresponds to 25.0 . The data closest to 

this point used to plot these curves are at 168.0C  corresponding to 

25.0246.0   and 2.0C  corresponding to 25.0268.0  , respectively. The 

reason for the sharp variation at this point can be explained by the wave structure 

discussed after Eqs.(3-30) &(3-31). Further discussions could be found in the work of 

Grue & Palm (1985) and Wu & Eatock Taylor (1987). Figure 3.8 presents the force and 

moment of Joukowsky foil of %78.11/ Ctck , with 05 , 6.0Fn  at different 

submergence ChT / . The hydrodynamic force varies significantly when 2.0C due to 

different submergence. 
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Figure 3.7 to be continued on next page 
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(g)                                                                        (h) 

Figure 3.7 Hydrodynamic force on a symmetric Joukowsky foil with %78.11/ Ctck , at

6.0Fn , 0.1/ ChT  
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Figure 3.8 to be continued on next page 
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(g)                                                                         (h) 

Figure 3.8 Hydrodynamic force on a symmetric Joukowsky foil with %78.11/ Ctck , at

6.0Fn , 05  

 

For a submerged body, Timman & Newman (1962) have shown that the 

hydrodynamic forces associated with the wave radiation )5,3,1,( jifuij
 satisfy 

)()( UfUf ujiuij           (3-35) 

which was further confirmed by Wu & Eatock Taylor (1990) at low forward speed. For a 

two dimensional body with fore/aft symmetry, Eq.(3-35) means that 

ujiuij ff            (3-36) 

except that 

5115 uu ff            (3-37) 

due to anti-symmetry of the rotational motion when view from the fore/aft body. 

It was, however, found by Wu & Eatock Taylor (1988) that this relationship is valid 

only at low forward speed. At large forward speed, Wu & Eatcok Taylor (1988) have 

shown that 

)Re()Re( ujiuij ff  , )Im()Im( ujiuij ff        (3-38) 

which do not require the body to have fore/aft symmetry. 
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We consider an example at 012.2C  or    and plot
uijf  and 

ujif  against 

Froude number in figure 3.9. The data plot in figure 3.9 starts from 25.0Fn  with an 

increment of 25.0 . The results do not satisfy the Timman & Newman relation at low 

Froude number. This is in fact not a surprise, because the hydrofoil does not have 

fore/aft symmetry and because of the presence of the wake effect here. One can also 

see in the figure that Eq.(3-36) is not satisfied either in most cases. This is again due to 

the effect of the wake, as the relationship does not require fore/aft symmetry of the 

body. There are in fact further relationships to link these hydrodynamic forces with the 

radiated wave at infinity for a non-lifting body (Wu 1991b). However because of the 

wake effect, such a relationship may not be relevant here. 
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Figure 3.9 
uijf and

ujif of a symmetric Joukowsky foil with %78.11/ Ctck , 05 , 

012.2C . 
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Figure 3.10 The hydrodynamic force due to the incident wave, with 6.0Fn , 

0.1/ ChT , %78.11/ Ctck , and 0w . (a)(b) vertical force and (c)(d) moment  

 

Figure 3.10 presents the wave excitation force and moment due to incident potential 

and diffracted potential when the wave is from the right hand side, or the head sea. 

For the diffraction problems, there is also a relationship linking the force with the 

amplitude of the diffracted wave at infinity (Wu, 1991b) and a relationship linking the 

amplitudes of the reflected and transmitted waves themselves (Wu 1993). The wake 

here however has changed the validity of these relationships. In particular, for a non-

lifting body the wave structure is that discussed after Eq.(3-31). For a hydrofoil in 

waves, however, because the vortex sheet in Eq.(3-34) extends to infinity, the waves 
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will become more complicated. The curves show the force, including contribution from 

both the incoming wave and diffracted wave. The differences due to the attack angle 

become significant when C increases. These curves increase when C becomes larger 

and then decrease after they reach their peaks. It is expected that these curves 

approaching zero when C be very large because of the 
hk

e 0
 term in the incident 

wave. 
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Chapter 4 Nonlinear vortex shedding of an oscillatory foil or plate 

in unbounded flow 

4.1 Introduction 

When the attack angle and/or the amplitude of oscillation becomes large, or there is 

oscillation without forward speed, the shed vortex can no longer be approximated 

using the flat vortex sheet behind the trailing edge. The vortices would tend to move 

out of the centre plane, and the flow near or behind the trailing edge would be 

affected. Figure 4.1 shows the snapshots of these kinds of vortices behind a foil. The 

non-linear vortex shedding of a foil or plate shall be investigated in this chapter. 

 

 

Figure 4.1 the visualization of vortex snapshots behind a foil (Lai et al 2002) 

 

The nonlinear vortex shedding is prevailing in the scope of biomimetics. Swimming 

fish and flying birds are experts in fluid mechanics. Their tails or wings appear to be 

highly efficient. Man-made robots to fully mimic fast moving fish/cetaceans are still in 

progress. The manipulation of the shed vortices is a high technology and the motion of 

a flexible body has a great number of degrees of freedom. Review of oscillatory foil and 

biomimetic studies have been presented by Triantafyllou et al (2000, 2005). Among a 

large volume of theoretical and experimental studies, the foil is one of the most 
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popular geometries. For propulsive foils, Anderson et al (1998), Read et al (2003) 

presented their experimental data, and the thrust, input power and the efficiency of 

foil NACA0012 at various oscillatory frequencies was extensively investigated. High 

propulsive efficiency was observed in both works, although there were some 

differences in the exact results. 

To simulate continuous vortex shedding, a numerical time stepping scheme is 

developed. The boundary element method through distribution of singularities over 

the body surface and over the vortex sheet is used. The unsteady Kutta condition is 

imposed at the trailing edge. The summation of tangential velocities on the upper and 

lower surfaces of the sharp edge of the foil equals the tangential derivative of the wake 

dipole attached to the trailing edge. The boundary integral equation is solved through 

linear elements on the body surface and on the newly shed vortex dipole element, 

together with point vortex in the wake which is tracked as part of the solution. 

The numerical method is verified through a convergence study. Extensive simulations 

are made for the foil NACA0012. The results are first compared for the lifting force with 

the experimental data for the steady motion of the foil at various Reynolds numbers. 

Further comparison is made for the propulsive mode of the foil with the experimental 

data presented by Triantafyllou et al (2005). After these verifications, simulations are 

carried out to investigate the motion modes for propulsion/swimming, energy 

harvesting and flying. For propulsion and flying, the foil advances with constant 

forwards speed; while for energy harvesting, a foil with zero forward speed in current is 

studied. The kinematic energy of the flow is extracted by manipulating the motion of 

the foil. The effects of oscillatory frequency, effective attack angle, vertical motion 

amplitude, and phase difference of the motions on the performance of propulsive 
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efficiency or power coefficient are analysed.  

When the foil thickness approaches zero, the implementation of this form of the 

integral equation becomes difficult. The body is then replaced by a plate. The 

numerical vortex shedding scheme is applied with minor changes. The unsteady Kutta 

condition is implemented by the continuous distribution of dipoles. The boundary 

integral equation is solved based on the non-penetration condition and the linear 

vortex element is used. The steady and unsteady oscillatory motion is studied. The 

numerical scheme is further applied to study the vortex shedding of a compartment 

with a bottom orifice. The damping effect due to the vortices is analysed. 

4.2 The nonlinear vortex shedding of a foil 

4.2.1 Description of numerical scheme  
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Figure 4.2 The sketch of the problem, vertical and rotational motion of a foil 

 

We consider a foil moving forward at translational speed U or in the uniform coming 

flow with harmonic vertical and rotational motions with their motion amplitudes 0h  

and 0 respectively. They are referred to heave and pitch motions, respectively, in 
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some publications. We do not adopt the terms here to avoid the confusions with the 

terms used in naval architecture. The Cartesian coordinate system oxz , as shown in 

figure 4.2, originates at the mean position of the rotation centre. The governing 

equations and the boundary conditions are the same as those in chapter 2. The 

perturbed potential   satisfies the Laplace equation; the body surface condition on 0S  

is the same as that in Eq.(2-5), and 53, AA   in Eq(2-5) shall be replaced by ,h , we 

have 

zx nXhnZU
n

)()( 
  



       (4-1) 

on the body surface 0S , the dot over h,  means the time derivative, and 

)(),( cc zzZxxX 
 
with 3/1/ Clc  for the cases in this chapter, cl  is denoted as 

the distance from leading edge to ),( cc zx . 
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(a)      (b) 

Figure 4.3 Illustration of vortex wake at the trailing edge (a) shed vortex and (b) Kutta 

condition 

 

Vortices will be shed from the trailing edge to form a wake sheet. For a linearized 

problem, it is usually assumed that the shape of the wake is a straight line in the 
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direction of incoming flow behind the trailing edge. When the attack angle and/or 

amplitude motion becomes larger, the shape and location of the wake will be part of 

the solution, which becomes one of the main challenges in the present work. As shown 

in Fig.(4.3a), the element in the wake attached to the trailing edge is denoted as 1wS , 

where the Kutta condition and vortex shedding scheme will be imposed, and the rest 

of the wake is denoted as 2wS . 

To improve the computational performance, the differential Eq.(2-23) can be 

modified. We notice that 

s

qpH

n

qpG








 ),(),(
         (4-2) 

where 









z

x
qpH arctan),( , ),( zx sss 


 is the tangential vector along the integral 

boundary, and when one walks along the s


 direction, n


 points to the right hand side. 

It is common that when there is a discontinuity between tangential velocities across a 

sheet, their difference is defined as vorticity  . As a result, from Eq.(2-20) we have 









s
          (4-3) 

Substituting Eqs.(4-2) & (4-3) into Eq.(2-23) and using integration by parts over 2wS , we 

have 
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where ),( TTT zxx 


 is the starting point of the 1wS , or the trailing edge and 

)','(' TTT zxx 


 is the finishing point of 1wS , as shown in Fig.4.3(a). It should be noticed 

that the fact that the dipole strength is zero at the end of the wake has been used in 
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Eq.(4-4). 

We then discretize the integral boundary. The foil surface is divided into N elements, 

and in the wake there are one dipole element 1wS  and m  vortex elements at thm )1( 

time step. We have  

 
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   (4-5) 

For a non-lifting body, the boundary integral equation in Eq.(4-5) will have the term 

over the body surface only. The existence of the wake distinguishes a foil from a 

smooth body and therefore presents the major computational challenges. The choice 

of a right scheme for the vortex shed from the trailing edge, the suitable form of the 

Kutta condition and the appropriate method to track the wake are essential 

components in a successful solution technique. We may use linear distribution of   

over the body surface. At 0t , we impose the body surface boundary condition at the 

nodes of the each element on the body. Since no circulation has yet developed around 

the foil, Eq.(4-4) can be solved without the wake and 
   is used at the trailing 

edge. At the next time step dtt  , 1wS  will be formed and )','(' TTT zxx 


 is obtained 

from 

dtuUxx
TxTT )('          (4-6) 

dtwzz
TxTT
'          (4-7) 

where  
Txu   and  

Txw  are the average horizontal and vertical velocities obtained by  , 

when approaching the trailing edge from the upper and lower sides of the foil. From 

the continuity of the pressure rep  across 
1wS , or 


 rere pp , we shall have 
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0
tD

D
 or 0






s
U

dt

d
Ts


        (4-8) 

where ),(
TTT xxs wuUU  . In the discretised form, this can be written as  

),(),'( txdttx TT


          (4-9) 

which means the dipole strength at )','(' TTT zxx 


 can be obtained from the dipole 

strength at ),( TTT zxx 


 at the previous time step. However, at dtt  , 
   at the 

trailing edge and therefore ),( dttxT 


  in Eq.(4-5) is unknown although ),'( dttx T 


  

is known from Eq.(4-9), and there is still no 2wS  at this stage. This means that when we 

impose the body surface boundary condition at element nodes, there will be one 

equation short. This shortfall is met by the Kutta condition at the trailing edge in the 

following form 

TTT
xxx

sss  











  
        (4-10) 

where
TTT

xxx
sss  









  
,,  denote the tangential derivatives based on the 

definition of the direction of s


 after Eq.(4-2). 

We then have the right number of equations for the unknowns in Eq.(4-4) which can 

now be solved. At the next time, the dipole in 1wS  moves downstream and the first 

element in 2wS  will be formed. The strength of the vortex in this element can be 

obtained from 

0
tD

D
          (4-11) 

in the Lagrangian sense. This means that the vortex strength in the first element at this 

time step can be obtained from its strength in 1wS  at the previous time step, which is 
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in fact 
s



 
and is therefore known. In particular, we shall use point vortex 1  to 

replace the distributed   in the element. Its total strength will be clearly the 

integration of 
s


 over 1wS  at the previous time step, or 

),'(),()(1 txtxdtt TT


         (4-12) 

The position of 1  can be obtained by following the movement of the fluid particle at 

middle of 1wS  at time t  to its new location at dtt   using the average velocity on both 

sides of 1wS . Eq.(4-5) can then be solved again. In the next time step, the strength 1  

will not change and its position can be obtained by following the fluid particle in the 

Lagrangian sense. A new point vortex 2  formed from 1wS  will be obtained. 1wS will be 

updated using Eqs.(4-6) & (4-7) and Kutta condition will be imposed through Eq.(4-10). 

In the following steps, the above procedure can be repeated and the position of i  

mi ...3,2,1  can be updated using the Lagrangian method. The calculation can continue 

until the desired time step. The vortex wake 1wS is like the tail of the foil, and there will 

be a newly shed point vortex behind the trailing edge at each time step. The vortex 

shedding scheme is an ‘egg-laying’ procedure. 

The force and moment on the foil can be obtained through the integration of 

pressure, which is calculated using Bernoulli equation, or 

]
2

1
),([ 


  XhZU

Dt

D
pre

      (4-13) 

where 
Dt

D
 is the derivative with respect to time for a point fixed on the body. 

Consequently, the horizontal, vertical force and moment can be obtained through 

pressure integration in Eq.(2-16). We have 
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 

00

]
2

1
),([

S

j

S

jrej dSnXhZU
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D
dSnpF 


  , 5,3,1j  (4-14) 

4.2.2 Numerical results of different motion modes 

4.2.2.1 Steady motion of a foil 

We first consider the foil at steady forward motion only. In this case, it is possible that 

one could introduce 

 UC           (4-15) 

Boundary conditions can then be applied to   together with the treatment at the 

trailing edge. The forward speed U  has no explicit effect on the non-dimensional 

results. This means that when the problem is solved using  , the results normalized by 

U  should be independent of forward speed. To investigate the convergence of the 

results with respect to time step, we use 
TSUCdt /1 , where 

TSU is the shedding 

velocity of the vortex elements attached to the trailing edge, 
1  is a parameter that 

can be chosen from 0.01-0.05 and a variable time step has been used. In the case of 

every 
TSU , a large value of allowed dt  can also be specified. For periodic motion, the 

time step Tdt 2  is also required, where parameter 2  shall be chosen smaller than 

0.02. We consider a case in which the foil starts moving at a given forward speed 

suddenly with 50 angle of attack. Foil NACA 0012 is used as an example to study the 

vortex shedding problem. Figure 4.4 presents the lifting force. The results from 

different time steps agree well and there is no graphically visible difference in the 

curves. Here we have to state that all the force history curves have a very big value at 

the first and/or second time step, the spike of the curve has been ignored here and 

throughout the thesis. 
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Figure 4.4 The lifting force history of NACA0012 foil with an impulsive constant motion 

at 05  

 

To validate the present results, comparison is made with the experimental data. In 

figure 4.5, the calculated lifting force is taken at the time when the foil has travelled a 

distance equal to 50 chords. The experimental data is taken from Sheldahl et al (1981). 

The experiment was conducted in the Walter H. Beech Memorial Wind Tunnel, Wichita 

State University. The wind tunnel has a 2.13mx3.05m test section fitted with floor to 

ceiling two-dimensional inserts for testing two-dimensional airfoil sections. A balance 

system is used to obtain the lift, drag and moment data. All the data were corrected for 

wake and solid blockage, buoyancy, upwash and wind tunnel factor. The published data 

can be used for the comparison of present study. As shown in the figure, the 

agreement is quite good when the attack angle is small. Discrepancy appears as the 

attack angle increases. However, the discrepancy at higher Reynolds number is reduced 

due to the reduced flow separation. 
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Figure 4.5 The lifting force of NACA0012 foil with various attack angle at 50/ CUt . 

4.2.2.2 Propulsion / swimming mode 
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Figure 4.6 The forces history under 3.0St 75.0/0 Ch , 0

0 15 , 090  
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It has been found that generally, when  is close to 090 , an oscillatory foil can 

produce thrust when 0
0arctan 




U

h
, or 00  (Anderson et al 1998). We shall use the 

present methodology to investigate such a case. Convergence study on the oscillatory 

motion has been carried out similar to that for the case of steady forward speed; the 

forces history are in good agreement when 01.01  , 02.01  , 05.01   are used for 

01 / SUCdt  , as shown in figure 4.6. In the figure, we can observe that the thrust is 

always above the zero line. It is interesting to see that the period of the thrust is half of 

the motion period or it has two cycles for each oscillation period; while the periods of 

vertical force and rotational moment are the same as that of motion. This is in fact 

similar to the behaviour of the force on a floating body undergoing periodic horizontal 

oscillation perpendicular to its vertical symmetry plane (Wu 1994, 2000). As the foil is 

symmetric and in the periodic motion, the body and flow pattern at t  and 2/Tt   form 

the mirror images about 0z . Using this fact and following the procedures of Wu 

(1994, 2000), it can be shown that the force in the x  direction will have only 

components of frequencies n2 , 2,1,0n  and the force in the z  direction and 

rotational moment have only components of )12( n . This is what is reflected in 

Fig.4.6. 

If we use the definition in Eq.(4-15) again, the boundary condition in Eq.(4-1) in the 

non-dimensional coordinate system Czxzx /),()ˆ,ˆ(   becomes 

zx n
T

t
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t
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)]

2
cos(ˆ2
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where 
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StD   

This shows that in addition to St , the results normalised by U will depend on the 

vertical amplitude Ch /0 , nominal maximum effective attack angle 0 and phase 

difference of vertical and rotational motion . Their effects are now investigated.  
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(a)      (b) 

Figure 4.7 (a) Thrust coefficient Tc  , (b) input power coefficient in

Pc  with 75.0/0 Ch , 

0

0 15 , 090 at various St . 

We consider the foil motion with 75.0/0 Ch , 0

0 15 , 090 at various St . As 

shown in figure 4.7, the present results agree well with the experimental data and the 

nonlinear numerical solution presented by Triantafyllou et al (2005), which is obtained 

using a complex potential method. The experiment was carried out by Anderson et al 

(1998) at MIT tank; the data was obtained from a NACA0012 foil with 10cm chord and 

60cm span. The submergence of the foil is 60cm. Since the side plate had been used 

and the chord-span-ratio and chord-submergence-ratio are as large as 6, the three-

dimensional effect and free surface effect would be insignificant. As St  increases, 

thrust coefficient Tc  and the input power in

Pc  increase rapidly. However, we can see 

that the thrust curves from the calculation are slightly higher than the experimental 

data in figure 4.7(a). As commented by Triantafyllou et al (2005), this might be due to 
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the frictional resistance, which would be 05.0 approximately. We notice that the 

discrepancy is larger when St is near 1.0 . A leading edge vortex shedding (LEV) might 

appear and a larger discrepancy between experimental data and inviscid flow theory 

results can be observed at lower St . When St  becomes larger, the oscillatory 

frequency increases, and the LEV would be reduced or eliminated (Maresca et al 1979, 

Ellington 1984, Ellington et al 1996, and Dickinson et al, 1999). However, as St  keeps 

increasing, for example when 4.0St , the maximum of the varying attack angle )(t  

can be very large and excessively large attack angles may cause LEV (Pan et al 2012) or 

‘stall’ phenomena. As a result, larger discrepancy of Tc  can be found when 4.0St . 
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(a)      (b) 

Figure 4.8 The effects of (a) heave amplitude Ch /0  at 2.0St , 0

0 15 , 090  and 

(b) nominal maximum attack angle 0 , at 2.0St , 0.1/0 Ch , 090 . 

 

Figure 4.8(a) presents the effect of vertical motion amplitude Ch /0  on the 

propulsive foil at 2.0St , 0

0 15 , 090 . The data in the figure show that the 

thrust, input power and propulsion efficiency all increase with the vertical motion 

amplitude. The effect of nominal maximum effective attack angle 0 is shown in figure 

4.8(b), at 2.0St , 0.1/0 Ch ,
090 . When 0  increases, both the thrust and input 
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power increase rapidly; but the rate of input power increase is higher than the 

propulsion power. As a result, the efficiency decreases. 

We further study the effect of the phase difference of the vertical and rotational 

motion on the thrust and propulsive efficiency. From their experimental data, 

Anderson et al (1998) stated that the highest efficiency can be achieved when   is 

around 070 , while Read et al (2003) reported that the highest efficiency is found when 

  is around 0110 . The experiments were carried out by Anderson et al (1998) and 

Read et al (2003) using the same equipment. However, it is really unusual that their 

data are different. Here we simulate the specific oscillatory motion with 22.0St ,

75.0/ Ch , 0

0 15 , which are the same as one set of data in their experiment. 

varies from 045 to 0135 . The thrust coefficient, power coefficient and the propulsive 

efficiency are presented in figure 4.9. We notice that the lowest thrust coefficient 
Tc

and power coefficient 
in

Pc  are achieved when 075 , and the highest propulsive 

efficiency appears when 070 . The numerical results of present simulation support 

the data of Anderson et al (1998). 
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Figure 4.9 The effect of the phase difference between vertical and rotational motions, 

with 22.0St , 75.0/0 Ch , 0

0 15  
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4.2.2.3 Energy harvesting mode  

When the foil has no forward speed but in a uniform incoming flow, the foil can 

absorb energy from the current through its vertical and/or rotational motion. This is 

usually defined as energy harvesting mode and can be achieved if the oscillatory 

motion of a foil is adjusted properly. The foil in a current with velocity U  is 

equivalent to the foil with forward speed U . Therefore the boundary conditions and 

the vortex shedding scheme are the same. In fact it has been found from the extensive 

simulations that the vertical motion is likely to become energy harvesting mode when

00  and 090 .  
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Figure 4.10 Effects of (a) St  (b) Ch /0 , (c) 0  and (d)   
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Here the effects of St , Ch /0
, 0 , on the performance of an oscillatory foil are 

investigated, which are given in figures 4.10 (a) (b) (c) & (d) respectively. When one 

parameter varies in each of these figures, the other three will be fixed at 3.0St ,

0.1/0 Ch , 0

0 15 , 090 . As can been seen in figure 4.10(a), the power coefficient 

PLc  due to vertical motion and the input power 
in

PMc  due to rotational motion are both 

positive and increase with St . The total power coefficient can be obtained as 

in

PMPLPO ccc  . Here we adopt the assumption that the total fluid energy which can be 

absorbed is within the span of the vertical motion at the rotation centre, which differs 

from that based on the motion amplitude of the leading or trailing edge. Thus we have 

the fluid energy as 
0

32

0)2(
2

1
hUUUh   and the harvest energy efficiency can be 

written as 
00

3 h

C
c

hU

P
POE 


 . We notice that 

E  is proportional to 
POc .for fixed 

0/ hC , and for this reason the curve for POc  is not presented in figures 4.10(a) (c) & (d) 

but only in figure 4.10(b) where Ch /0  varies. As can been seen in figure 4.10(a), 
E  

increases with St  within the region given. Figure 4.10(b) shows that the net power 

coefficient POc increases with Ch /0 . This is because although the reduction of power 

coefficient PLc can be observed at smaller St , the input power coefficient 
in

PMc

decreases more rapidly. The power coefficient POc of an oscillatory foil increases with 

Ch /0
 but the power efficiency E , which is normalized by vertical motion amplitude, 

decreases. Figure 4.10(c) shows an almost linear increase of PLc , 
in

PMc  and 
E  with 0 . 

A higher increase rate of PLc can be observed, and thus results in the increase of E . 

Figure 4.10(d) gives results for  varying from 00 110~70 . It can be seen that the 
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highest value of E is achieved when 090 . 
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Figure 4.11 Force history with 3.0St , 0.1/0 Ch , 0

0 15 , 090  

 

Figure 4.11 further presents the force history for the case at 3.0St . Similar to 

figure 4.6, the frequency of the horizontal force is double that of motion. In this case 

however, the most part of the horizontal force is below the zero line, which means that 

the force is a drag. It suggests that the foil is no longer in the propulsive mode. Since 

the drag is produced in the energy harvesting mode, it can also be called the braking 

mode when in comparison of the propulsion mode. 

4.2.2.4 Flying mode 

One major difference between a flying bird and swimming fish is that the former 

needs constant lifting force to support its weight while fishes can balance themselves 

principally with the help of their buoyancy. A flying mode is therefore defined as the 

motion which will create lifting force and propulsive force. For an oscillatory foil it is 

observed that with a mean upward attack angle or a biased rotational angle, it will 

normally be in a flying mode. We investigate this mode under 75.0/0 Ch , 0

0 10 , 

2/  . The results are provided in figure 4.12. It can be seen in Figs.4.12(a) (c) & (d) 
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that results for the thrust, input power coefficient and propulsive efficiency from the 

two cases of 05 and 010 are close to each other, although the former is slightly 

higher than the latter. However, the lifting force almost doubled when the bias angle 

doubled for same St , as shown in figure 4.12(b). It suggests that there is a linear 

relationship between mean lifting force and   , as in the case of pure steady motion at 

small attack angle. The average lifting forces for zero mean attack angle in figures 4.6 & 

4.11 are expected to be zero, while for biased rotational motion, apart from increasing 

 , higher lifting force can also be obtained by increasing St  as expected. 
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Figure 4.12 the performance with 75.0/0 Ch , 0

0 10 , 090 . (a) thrust (b) lifting 

force (c) input power (d) propulsive efficiency. 
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Figure 4.13 The forces histories with 3.0St , 75.0/0 Ch , 0

0 10 , 090 . (a) 
1f  (b) 

3f  (c) 5f  

 

We further present the forces histories with 3.0St , 75.0/0 Ch , 0

0 10 , 090

in figure 4.13. The amplitude of the horizontal force curve with 010 is larger than 

that of 
05 , although their mean values are close. The lifting forces, as shown in 

figure 4.13(b), are periodical and have a non-zero mean line, which explains the mean 

lifting force in figure 4.13(b). The moment curves also have similar non-zero offsets as 

shown in figure 4.13(c). There are troughs and peaks in each motion cycle, which differ 

from these curves in figures 4.11. The curves do not show the simple superposition of 
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those induced by the steady motion and the oscillatory motion. They are then 

decomposed into components of frequencies n . We have similar to Hu et al (2002) 

and Wang & Wu (2006) 

)cossin(
1

0 





n

nni tnbtnabf  , 5,3,1i , 3,2,1n .     (4-17) 

The least square method has been used to obtain the coefficients na and nb , by 

truncating the expansion at 4n . Table 4.1 shows the details of the coefficients of 

each component. Unlike the case of 0  in above sections, the force and moment at 

0  have all the components n , 2,1,0n  It is evident that the argument of 

Wu (1994, 2000) is no longer valid in this case and this kind of behaviour of the force 

and moment there can no longer be expected here. As   doubles its value from 50 to 

100, the components of the horizontal force at 3,1n  and the components of the 

lifting force and moment at 4,2,0n  are also approximately doubled. These 

components are in fact zero when 0 , as discussed previously. It is therefore not too 

surprising to see they vary approximately linearly with   when  is small. The peaks 

and troughs in figure 4.13(c) are the results of first, second and third order terms, since 

the coefficients of the second and third order terms are %30~%20 of the first order 

terms. 

Table 4.1 decomposition of the forces with 3.0St , 75.0/0 Ch , 0

0 10 , 090  

 0b  1a  1b  2a  2b  3a  3b  4a  4b  

1f , 05  0.285 0.068 -0.614 0.491 0.243 0.032 -0.032 0.065 -0.040 

1f , 010  0.270 0.133 -1.229 0.500 0.220 0.061 -0.063 0.062 -0.038 
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3f , 05  0.798 -1.184 -0.802 -0.027 0.078 -0.201 0.120 0.013 -0.003 

3f , 010  1.590 -1.161 -0.774 -0.052 0.154 -0.192 0.112 0.025 -0.006 

5f , 05  0.118 0.278 -0.051 0.017 0.026 0.084 -0.001 -0.002 0.001 

5f , 010  0.233 0.274 -0.037 0.033 0.051 0.083 -0.002 -0.004 0.003 
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(c)      (d) 

Figure 4.14 the performance with 75.0/0 Ch , 
05 , 090 . (a) thrust (b) lifting 

force (c) input power (d) propulsive efficiency. 

 

Figure 4.14 gives the performance of the foil with 75.0/0 Ch , 
05 , 090 at 

different 0 against St . We can see in figures 4.14(a) & (c) that the thrust coefficient 
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and input power increase with St . Generally, the thrust, shown in figure 4.14(a), is 

linearly proportional to 0  at smaller St number. As St increases, the thrust force with 

00

0 15,10  keep increasing, but the curve with 0

0 5 decreases. Figure 4.14(b) 

shows that the average lifting force increases with St . However it is not strongly 

affected by 0 . Figure 4.14(d) shows that the propulsive efficiency decreases as St

increases. To give some insight into the effect of 0 , figure 4.15 gives the forces history 

at 3.0St , 75.0/0 Ch , 
05 , 090 . We further give the coefficients of the force 

components in Table 4.2, decomposed using Eq.(4-17). The whole horizontal force 

curve, as shown in figure 4.15(a), moves up as 0 increases. As expected then, the 

mean value term 0b  for thrust increases in table 4.2. For the second order terms, 2a

decreases and 2b increases as 0 increases, which result in a slight change of the phase 

of troughs and peaks. In addition, the third and fourth order terms have some non 

negligible effects. Figures 4.15(b) & (c) present the lifting force and moment. Their 

decomposed coefficients in table 4.2 show that the constant term 0b  changes slightly 

and first order terms 1a  and 1b  decrease and increase respectively, as 0 increases. 

This means that there is a change of location of the peak. 

3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

1.5

f 1

t/T

 

=5

0

 

=10

0

 

=15

0

 

Figure 4.15(a) To be continued on next page 
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(b)      (c) 

Figure 4.15 The force history with 3.0St , 75.0/0 Ch , 
05 , 090  (a) 1f  (b) 3f  

(c) 5f  

 

Table 4.2 Decomposition of the forces in figure 4.15. 

 
0b  1a  1b  2a  2b  

3a  3b  4a  4b  

1f , 0

0 5  0.110 0.112 -0.656 0.623 0.054 0.033 -0.038 0.082 -0.058 

1f , 0

0 10  0.285 0.068 -0.614 0.491 0.243 0.032 -0.032 0.065 -0.040 

1f ,
0

0 15  0.442 0.022 -0.568 0.399 0.409 0.028 -0.025 0.048 -0.023 

3f , 0

0 5  0.802 -1.420 -0.314 -0.004 0.076 -0.198 0.161 0.017 -0.007 

3f , 0

0 10  0.798 -1.184 -0.802 -0.027 0.078 -0.201 0.120 0.013 -0.003 

3f , 0

0 15  0.788 -0.950 -1.292 -0.044 0.075 -0.185 0.074 0.009 0.000 

5f , 0

0 5  0.122 0.425 0.066 0.014 0.030 0.097 0.007 -0.003 0.002 

5f , 0

0 10  0.118 0.278 -0.051 0.017 0.026 0.084 -0.001 -0.002 0.001 

5f , 0

0 15  0.112 0.136 -0.161 0.018 0.020 0.069 -0.007 -0.001 0.001 
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Figure 4.16 The effect of Ch /0 to the flying mode under 3.0St , 
05 , 0

0 10 ,

090  

 

As discussed in section 4.2.2.2, the increase of vertical motion amplitude would 

result in the increase of the thrust and propulsive efficiency. Here we study its effect on 

the flying mode. The simulations are carried out at 3.0St , 
05 , 0

0 10 , 090 , 

with Ch /0 varying from 0.5 to 2.5. The thrust coefficient increases with Ch /0 ; and the 

input power and mean lifting force decrease and then increase, as shown in figure 

4.16. However, the propulsive efficiency increases as Ch /0  becomes larger. 
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Figure 4.17 The effect of  on the flying mode under 3.0St , 
05 , 0

0 10 ,

0.1/0 Ch  
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The effect of phase difference  on vertical and rotational motion is also 

investigated. We choose
05 , 3.0St , 0.1/0 Ch , 0

0 10 , and increases from 

600 to 1100. We plot the thrust, mean lifting force, input power and propulsive 

efficiency in figure 4.17. The lowest value of Tc , 
in

Pc  appear when 090  and 075  

respectively. The highest efficiency of propulsion %84T when 070 . 

4.3 The vortex shedding of a thin plate 

When the thickness of the foil approaches zero, the foil becomes a plate. The 

continuous vortex shedding from the plate is similar to that of a foil. To solve the BVP, 

the body surface boundary condition and Kelvin vortices conservation condition are 

satisfied. Comparing the vortex shedding scheme for a foil, the time stepping 

procedures have minor changes when imposing the Kutta condition. 

4.3.1 Equations and time stepping scheme for a plate  

We consider a plate advancing forward with/without harmonic vertical and 

rotational motions. The governing equation and the body surface boundary condition 

are the same as those in chapter 2. As the plate is concerned, the normal velocities on 

the two sides of the plate have same magnitude and direction but opposite in sign with 

respect to n


. We have 

nn 






  

          
(4-18) 

where   , are the potential on the right and left hand sides of the plate when one 

walks along the plate towards trailing edge. 

We define  



 
 

69 
 

              (4-19) 

on the body surface. As p approaches the plate, the coefficient on the left hand side of 

Eq(2-23) remains 2 . Using Eqs.(4-18) & (4-19), the boundary integral equation (2-23) 

can then be written as  

w

S q

q

S q
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Substituting Eqs.(4-2) & (4-3) into Eq.(4-20), we have 
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     (4-21) 

in which integration by parts and zero )(q  value at the leading edge and at the end of 

the vortex ending have been applied. 

Applying the body surface condition Eq.(4-1) to Eq.(4-21), we have 

dSq
n
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    (4-22) 

To solve the BVP through boundary elements, the plate is divided into N  segments. 

Linear distribution of vortex on each segment is assumed and the non-penetration 

boundary condition is imposed at the middle of each segment. At 0t , there is no 

vortex wake. There are N  equations based on Eq.(4-22). To solve the 1N  unknowns 

on the segment nodes, one complementary equation is required. Kelvin theorem 

requires the total circulation to be zero, we have 

0)(

0

 dSq
S

           (4-23)
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Figure 4.18 Scheme of the vortex shedding of a plate 

 

Figure 4.18 presents an illustration for the scheme. At dtt  , there will be one free 

vortex segment connected to the trailing edge. Eqs.(4-6) & (4-7) are adopted to update 

the position of the end node of 1wS . The vortex strength is updated similar to Eq.(4-9), 

we have 

),(),'( txdttx TT


           (4-24) 

The unsteady Kutta condition is circumvented by the assumption of continuous 

distribution of vortex over the plate and free vortex sheet. The Kelvin theorem in Eq.(4-

23) at dtt   becomes 

0)()(

10

  dSqdSq

WSS

         (4-25) 

which means that the total circulation of the plate and the newly shed vortex wake is 

zero. There are 1N  unknowns (the vortex strength at the end node of 1wS is known) 

and the algebraic equation can then be solved. 

As the time step advances forward, the wake segment of 1wS  will move downstream 

and is approximated by a point vortex at the middle of the segment. We have the 
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strength of the point vortex 

dSq
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1
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The strength of the point vortex is known and will remain unchanged subsequently and 

new 1wS  will form. At dtt 2  , The new vortex segment, which is shed from the 

trailing edge, is developed and its end node position is calculated by Eqs.(4-6) & (4-7). 

Eq.(4-22) can then be rewritten as 
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The Kelvin theorem gives an additional equation 
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Repeat the scheme and the simulation continues. 

In the present simulation, the shedding velocity of the new point vortex in Eqs.(4-6) 

& (4-7) is replaced by the velocity of the newly shed vortex sheet at the middle point of 

1wS  for approximation. This treatment is not mathematically rigorous. However, 

numerical tests show a convergent solution and this will be verified. 

The pressure difference over the plate can be written as 
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where sXhZUUs

  ),(0   is the tangential velocity of the plate. 

The force on the plate is obtained from pressure integration, we have 
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We notice that the integration is performed numerically and the ‘suction force’ at the 

leading edge has been ignored. 

4.3.2 Simulation of vortex shedding of plate 

4.3.2.1 Numerical results for a flat plate  
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Figure 4.19 The lifting force and moment of a plate start with constantU ,
05 . 
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Figure 4.20 The pressure distribution over a plate at 80/ CUt  

 

The numerical scheme is first verified through a plate in steady motion. We consider 

a plate travelling at constant speed with small attack angle. The node of the element is 

based on equal spaced cosine function with 100~1),100/cos(5.0  iiCxi  . The 

result in figure 4.19 shows the force history on the plate against travelled distance. The 
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curves are ratios of the calculated results to the steady linear analytical lifting force 

coefficient 2LAc  and moment coefficient MAc  (Newman, 1977). The lifting 

force and moment approach the analytical solution of a steady plate. However, the gap 

between the numerical results and the analytical solution can be observed, even when

80/ CUt , we have 985.0/ LAL cc  and 988.0/ MAM cc . The discrepancy would be 

further reduced if the plate travels a longer distance. However, we notice that the 

analytical solution of the vortex strength at the leading edge is infinite and will result a 

suction force (Newman, 1977, Grue et al 1988); while the present numerical solution is 

from a nonlinear vortex shedding method and the results at the leading edge are finite. 

Therefore, there is small discrepancy. We further present the pressure distribution over 

the plate, as shown in figure 4.20. Comparing the pressure of a thin foil with thickness

003.0/ Ctck  and the plate, the overall pressure is very close except at the leading 

edge. The pressure on the lower surface of the thin foil is much smaller than that of a 

plate. This indicates that using a plate to replace the thin foil will bring in inaccuracy 

due to the difference at the leading edge (Giesing & Smith 1967). 

We then consider the problem of a plate travelling at constant forward speed with 

oscillatory vertical and rotational harmonic motions. Small amplitude vertical motion is 

simulated first. Figure 4.21 presents the shed vortex structure and the lifting force 

history on the plate under 0.1U ,   , 025.0/0 Ch , 0  or the Strouhal 

number 05.0St . The shed vortices move up and down with the oscillatory motion. 

There are two rows of vortices close to the centre line, which resemble the Kármán 

Vortex Street. However, the vortices strength is reversed. This is referred to the 

reversed Kármán Vortex Street (Lighthill 1975, Anderson et al 1998). The vertical force 

is shown in figure 4.21(b). When compared with the linear analytical solution (Newman 
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1977), they are in good agreement although the amplitude of present result is a bit 

smaller. 
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Figure 4.21 Vertical motion of a plate in the unbounded flow, with 0.1U , 

025.0/0 Ch ,    or 05.0St  (a) vortex structure (b) vertical force history 
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Figure 4.22 To be continued on next page 
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Figure 4.22 The force history under 2.0St , 0.1/0 Ch , 0

0 10 , 090 , 0  (a) 

1f  (b) 3f  (c) 5f  

 

Table 4.3 The performance of the plate under 2.0St , 0.1/0 Ch ,  0

0 10 , 090 ,

0  

 
Tc  in

Pc  T  

plate 0.175 0.274 0.637 

003.0/ Ctck  0.197 0.266 0.738 

 

We further study a plate with larger amplitude motion. The force histories under

2.0St , 0.1/0 Ch , 0

0 10 , 090 , 0  are shown in figure 4.22. Similar to 

figure 4.6, most of 1f  is above the zero line; the period of the horizontal force is half of 

the motion period due to the ‘mirror effect’ of the motions and flow at t  and 2/Tt   

about 0z (Wu 1994, 2000). Comparing the force history of the plate and thin foil with 

0015.0/ Ctck , the peak of the horizontal force is slightly smaller; and the vertical 

forces are close although minor difference can be observed; the amplitude of the 
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moment is slightly smaller. As discussed above, the flow near the leading edge would 

be singular although numerical results give a finite value. The leading edge suction 

force has been ignored. The overall propulsive performance is shown in table 4.3. 

Comparing with the results from the thin foil, the thrust Tc  is slightly smaller and input 

power in

Pc  is slightly larger; therefore the propulsive efficiency is lower. 
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Figure 4.23 The force history under 2.0St , 0.1/0 Ch , 0

0 10 , 090 ,
05  

(a) 1f  (b) 3f  (c) 5f  

When the flying mode is considered, a non-zero mean attack angle 
05 is 

introduced. The force histories under 2.0St , 0.1/0 Ch , 0

0 10 , 090  are 

shown in figure 4.23. Similar to figures 4.13 & 4.15, peaks and troughs in each period 
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can be observed and most of these curves are above the zero line. Comparing the 

results with that of thin foil with 0015.0/ Ctck , the peak of the horizontal force is 

slightly smaller; and the vertical force amplitude is slightly larger; while the moment of 

the plate has smaller amplitude. The overall performance of the plate is presented in 

table 4.4. The thrust coefficient is smaller and the input power is slightly larger than 

that of the thin foil, which results a lower propulsive efficiency. 

 

Table 4.4 The performance of the plate under 2.0St , 0.1/0 Ch ,  0

0 10 , 090 ,

05  

 
Tc  in

Pc  T  

plate 0.117 0.274 0.430 

thin foil 0.144 0.267 0.542 

 

When a thin foil is replaced by a plate with zero thickness, the pressure distribution 

near the leading edge is no longer smooth but sharp (Giesing & Smith 1967). The 

velocity at the leading edge shall be infinite in the analytical solution. Grue & Palm 

(1988) treated the leading edge as a point with suction force by applying Blasius 

formula to a small circle of radius surrounding the leading edge. In the present study, 

the velocity at the leading edge is large and finite since the element size at the leading 

edge shall be finite; the contribution of the ‘suction force’ at the leading edge has been 

ignored. This could be the reason for the discrepancy when compared with thin foil. 

4.3.2.2 Application to a compartment with bottom opening 

Here we attempt to simulate the vortex shedding of a two dimensional compartment 
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with a bottom orifice/opening in heave motion. A semi-circular cylinder with bottom 

orifice/opening, which consists of two curved plates, as shown in figure 4.24, is 

adopted to approximate a damaged ship structure. The vortex shedding scheme for the 

plate is applied at the edge of the orifice at the bottom. 

R

d

h(t)

x

z

B

 

Figure 4.24 The sketch of a semi-circular column model with orifice 

 

To avoid the impulsive motion or acceleration, the vertical motion of the 

compartment is then given by  
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where an initial phase angle  is added, i  is the number of the smoothing period. 

Unlike the vortex shedding of a foil the vortices will not move away the structures. 

When longer time simulations are considered, one key numerical problem is the 

damping of vortices. The vortices will not dissipate since viscosity has been ignored in 

the framework of potential flow. Kristiansen & Faltinsen (2008, 2010) attempted to 
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‘dump’ the vortex sheet when the dipole strength equals zero after it shed a short 

time. However, the ‘dumping’ of the vortex sheet would cause a sudden variation of 

the local flow; the discontinuity of the flow field would cause a large impulse force 

when the Bernoulli equation was used to calculate the pressure. For a compartment 

with symmetric orifice, the vortices appear in pairs. Consider the mixing and cancelling 

of the vortices, a smooth artificial dissipative function is introduce to damp the 

vortices. Here we assume that the strength of the vortices decreases gradually through 

a dissipative function based on time. We have 
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      (4-32) 

where tempi ttt  is the existing time of the point vortex from the moment the point 

vortex is generated, startt , endt are the start and end time of the damping. 

Parameters startt , endt  used in the present simulation are usually chosen between 

],
4

1
[ TT  as long as the chosen parameters have no significant effect on the main flow 

and hydrodynamic force. 

Figures 4.25(a)&(b) show the vortices moving along with the ingress and egress flow 

near the orifice of the compartment under 1.0/0 Bh , 0.1f , 1.0/ Bd . Here the 

frequency f  is used to describe the motion instead of St  in this section since the 

forward speed 0U . In the simulation, 1i  is used in Eq.(4-31) and Ttstart 25.0 ,

Ttend 5.0 are used in Eq.(4-32). The shed vortex from the orifice always appears in 

pairs. Its motion mainly depends on the velocity of the motion and the flow through 
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the orifice. The pattern of those vortices is quite similar although the vortices strength 

and mean velocity are different. It is expected that the flow and hydrodynamic force 

would be affected by the orifice size, motion amplitude and frequency. These 

parameters will be investigated. When one parameter varies, the others will be fixed at 

1.0/0 Bh , 0.1f , 1.0/ Bd . 

 

(a)       (b) 

Figure 4.25 The vortex structure near the orifice with 1.0/0 Bh , 0.1f ,

1.0/ Bd   (a) ingress and (b) egress of the flow  
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Figure 4.26 The effect of orifice size Bd /  

 

The effect of orifice size is investigated first. As shown in figure 4.26, the vertical 

force decreases as the orifice size increases. When the orifice size increases, it is 

expected that more fluid flow can ingress/egress the compartment and less fluid 
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moves along with the compartment. Table 4.5 shows the decomposed force obtained 

through Eq.(4-17). The constant term 0b  increases slightly; and the first order 

component 1a , which is referred to the ‘added mass’ term, decreases as Bd /  increases; 

while the value of 1b  , which is referred to the ‘damping’ term, increases and then 

decreases. This indicates that the most significant damping effect appears with 

medium size orifice. Comparing with the first order terms, those higher order terms are 

less important. 

 

Table 4.5 Decomposition of the vertical forces with different Bd /  under 0.1f ,

1.0/0 Bh  

 
0b  1a  1b  2a  2b  

3a  3b  4a  4b  

05.0/ Bd  0.40 11.52 -2.70 -0.04 0.42 -0.85 0.60 0.04 -0.04 

10.0/ Bd  0.35 9.65 -4.23 0.02 0.70 0.37 1.07 -0.08 -0.05 

15.0/ Bd  0.28 7.14 -4.80 0.37 0.63 0.72 0.18 -0.03 -0.02 

20.0/ Bd  0.19 5.04 -4.17 0.49 0.37 0.46 -0.15 -0.02 0.01 

 

Table 4.6 Decomposition of the vertical forces with different Bh /0 under 0.1f ,

1.0/ Bd  

 
0b  1a  1b  2a  2b  

3a  3b  4a  4b  

05.0/0 Bh  0.12 7.03 -4.58 0.27 0.25 0.69 0.02 0.01 0.02 

10.0/0 Bh  0.35 9.65 -4.23 0.02 0.70 0.37 1.07 -0.08 -0.05 

15.0/0 Bh  0.56 10.5 -3.46 -0.21 0.69 -0.31 1.15 -0.01 -0.11 

20.0/0 Bh  0.78 10.8 -2.90 -0.22 0.68 -0.72 1.0 0.05 -0.16 
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Figure 4.27 The effect of vertical motion amplitude Bh /0  with 0.1f , 1.0/ Bd  

 

The effect of motion amplitude Bh /0  under 0.1f , 1.0/ Bd is studied. The 

overall vertical force increases as Bh /0 , as shown in figure 4.27. In table 4.6, the value 

of 0b  and 1a  increases and 1b  decreases as Bh /0 increases, and the increment of 1a  is 

larger than the decrement of 1b . This results in the increase of the overall force 

amplitude. 

 

Table 4.7 Decomposition of the vertical forces with different f under 1.0/0 Bh ,

1.0/ Bd  

 2

0 / fb  2

1 / fa  
2

1 / fb  
2

2 / fa  
2

2 / fb  
2

3 / fa  2

3 / fb  2

4 / fa  
2

4 / fb  

5.0f  0.35 9.66 -4.20 0.01 0.70 0.36 1.07 -0.07 -0.05 

0.1f  0.35 9.65 -4.23 0.02 0.70 0.37 1.07 -0.08 -0.05 

5.1f  0.36 9.67 -4.23 0.04 0.68 0.37 1.10 -0.07 -0.03 
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The effect of frequency is considered next. A increase of vertical force amplitude is 

expected as the frequency increases. The force history is not plotted here as the 

periods of different frequency are very different. However, table 4.7 shows the 

decomposed force components over the square of the frequency. The value of 0b , 1a , 

1b  and most of these higher order components over the square of the frequency are 

very close. This indicates that the motion and vortex shedding can be non-

dimensionalized with the square of the frequency in the unbounded flow when Bh /0  

and Bd / are fixed. This indicates that the effect of damping force in the unbounded 

flow is quadratic to the motion frequency. 
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Chapter 5 The nonlinear free surface effect on a hydrofoil 

5.1 Introduction 

Many previous works on 2D and 3D foils with steady or periodic motion, including 

Giesing & Smith (1967), Bal (1999), and Zhu, Liu & Yue(2006), adopted linear free 

surface conditions. The free surface effect, which has been studied in chapter 3, varies 

significantly under different submergence and Froude number. When the foil is close to 

the surface, the nonlinear effect of the free surface and free vortex wake would 

become important. The free vortices shed from the trailing edge interact with the free 

surface, and in return affect the flow around the foil. Faltinsen & Semenov (2008) 

adopted the nonlinear free surface boundary condition in their studies and the wave 

profile was achieved through iteration. However, there are only a few works that focus 

on the transient motion of an arbitrary foil. The nonlinear free surface effect on a foil in 

steady motion at small attack angle has been studied by Landrini, Lugni & Bertram 

(1999), the free surface was tracked using the time stepping method. However, large 

amplitude motion of a foil near the water surface seems absent, where the cross-

coupling effect of foil, wave motion and vortex wake shall be investigated. 

Here we consider a foil traveling under the water surface with constant forward 

speed and harmonic vertical and rotational motions; the vortex shedding and wave 

motion are tracked through the time stepping scheme. Nonlinear free surface 

boundary conditions are used when updating the free surface. The nonlinear vortex 

shedding scheme, which is outlined in chapter 4, is adopted to track the free vortices. 

As the free surface effects are included, the hydrodynamic performances of a hydrofoil 

travelling at different Froude number and submergence are studied. NACA 0012 is used 

for the simulation. The oscillatory vertical and rotational motion for propulsion, energy 

harvesting and flying are simulated under a few selected submergence and Froude 
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number. 

When the foil is very close to the free surface, the nonlinear effect of the surface 

wave becomes important; the wave may break and cause difficulties in the simulation. 

One of the challenges is the instability caused by the vortex wake when the vortices 

nearly touch the free surface. The free surface may distort or break. Therefore, the 

simulation has been made with certain limits of the submergence of the foil. The 

present work is for non-breaking wave. To avoid the breaking of the free surface, the 

foil cannot penetrate the free surface. The amplitude of the vertical motion shall be 

much smaller than the submergence. There shall be a sufficient gap between the water 

surface and the top position of the foil. 

5.2 Description of the free surface 

Apart from the nonlinear vortex shedding behind a hydrofoil, the transient nonlinear 

free surface effect on the foil is the concern of this chapter. A moving coordinate 

system oxz , with origin on the mean free surface, is adopted (see figures 3.1 and 5.1). 

The fluid flow satisfies the Laplace equation, the body surface boundary condition, 

Kutta condition as those in chapter 4. The Lagrangian form of the non-linear free 

surface boundary conditions are used in this chapter. The boundary integral equation, 

therefore, includes the foil surface 0S , vortex wake wS , free surface FS and control 

surface CS , as shown in figure 5.1. Once the BVP is solved, the free surface is updated 

and the simulation continues. This is actually the procedures of the well-known Mixed-

Eular-Lagrangian method proposed by Longuet-Higgins & Cokelet (1976). The pressure 

and force on the foil can be obtained using Eq.(4-13). 
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Figure 5.1 The sketch of the foil under free surface  

 

The free surface is discretized by small elements, the size of the elements on the free 

surface near the foil (say Cx 2  ) is of the similar order of those on the foil surface. 

The element size on the free surface increases gradually when approaching the far 

field. We also notice that the element would be very large when large computational 

area is considered. Therefore, 20 to 30 elements in each wavelength are required. To 

save the computational effort without losing accuracy, the size of the elements is set as 

elemtf  times its basic element size 0l  based on the coordinates system in x  axis. We 

have 
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           (5-1) 

where w  is the typical wave length, the parameter elemts  is chosen within ]5.0,2.0[ .  
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To update the free surface, free surface boundary conditions in Eqs.(2-11) & (2-12) 

will be imposed. The constant forward velocity is incorporated since we use a moving 

coordinate system. As the oscillation is considered, the radiation wave propagates 

outside to the far field. A wave absorbing zone / damping zone is introduced. Here we 

adopted the damping zone used by Tanizawa & Swada (1996) and Wang & Wu (2006). 

The free surface boundary condition can be written as 



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1
xcgz

dt
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zxc
zdt

dz

xdt

dx
)(, 












        (5-3) 

where 














wb

w

a cxxx
xx

c

xx

xc



 11

21

1

,)(

,0

)(  

As suggested by Tanizawa & Swada(1996), 1ac  and 1bc  can be used and the wave 

would be absorbed; there would not be a significant reflecting wave. The wave motion 

near the control surface is very limited and therefore can be treated as a solid 

boundary (Wang & Wu 2006). We have 

0




n


          (5-4) 

on CS . 

When updating the free surface, the time step is chosen to make sure that the 

displacement of each element is less than or equal to one quarter of the basic element. 

The time step dt is chosen based on the maximum velocity of free surface and vortex 

wake, we have 
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where Tdt 005.00  is the time step base on the oscillation period if applicable; wdt  is 

the time step based on the shed vortex, details have been discussed in chapter 4; 

max_fV is the maximum velocity of the free surface. 

The re-meshing procedures are followed since the element sizes on the free surface 

are not even. Here the re-meshing is achieved through interpolation. The original x

coordinate of each element is used during the interpolation; the value of z  coordinate 

and the potential   at each time step are obtained through four-point-Lagrangian 

interpolation equation. For the normal interpolation point, two points before and two 

points after it are used, as shown in figure 5.2(a); while for the point near the fore/aft 

control surface, the first or last four points are used, as shown in figure 5.2(b). The 

procedures can give good results for the present simulations. When the free surface 

becomes steep or the overturning wave appears, the interpolation procedures would 

be a problem; a re-meshing procedure based on the arc length shall be used (Wang & 

Wu 2006). 

 

(a)      (b) 

Figure 5.2 Illustration of the interpolation, i  is the interpolation point. (a) two before 

and two after the interpolation point (b) interpolation near the control surface 
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For longer time simulations, smoothing technique becomes necessary since the free 

surface profile would have saw-tooth behaviour due to numerical instability. The five 

point algorithms, which were used by Longet-Higgins & Cokelet (1976), Maruo & Song 

(1994), Xu, Duan & Wu (2010), can be adopted to smooth the wave elevation and the 

potential. Here we adopt what has been used by Maruo & Song (1994), Xu, Duan & Wu 

(2010). If the element nodes are numbered sequentially from 1 to m , we then have 

)46469(
70

1
543211 xxxxxf         (5-6) 

)2812272(
35

1
543212 xxxxxf        (5-7) 

)31217123(
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2112   iiiiii xxxxxf      (5-8) 

)2271282(
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12341 mmmmmm xxxxxf        (5-9) 

)69464(
70

1
1234 mmmmmm xxxxxf        (5-10) 

The coordinate z  or potential   can also be smoothed using the above equations 

after x  is replaced by z or  . 

5.3 Results on the transient free surface effect and discussion  

5.3.1 Steady motion near free surface 

The transient motion of a foil beneath the free surface at constant forward speed is 

considered. The transient force on a foil in unbounded flow has been studied in 

chapter 4. Before the steady force on the foil is achieved, the lifting force on the foil 

increases rapidly when the foil starts to move at constant speed. Here we attempt to 

study the transient surface wave effect on a foil in steady motion. The simultaneous 

interaction of foil, nonlinear wave and vortex wake are simulated through the time 
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stepping method. The hydrodynamics of a foil travelling at different speed and 

different submergences are investigated. 
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Fig. 5.3 To be continued on next page 
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Figure 5.3 The free surface profile and wake of NACA 0012 with 0.1/ ChC , 05  (a)

4.0Fn , 23/ CUt  (b)  8.0Fn , 80/ CUt  (c) 2.1Fn , 140/ CUt  

 

First of all, the simulations on NACA0012 at different forward speed are undertaken. 

Figure 5.3 shows the vortex wake behind the foil and the wave profile of different 

velocities under 0.1/ ChC , 05 . Comparing the curves in figures 5.3(a) (b) & (c), 

the wave amplitude and wave length increase with Fn . According to the linear steady 

theory, we have the wave number of the induced wave 2/Ug . As Fn  increases at 

given C , the wave number becomes smaller, which means the induced wave has a 

longer wave length in space or larger period. This can explain figure 5.3 in spite of the 

fact that nonlinear free surface conditions are imposed. We also notice that the surface 

wave profile in figure 5.3(b) & (c) is similar to the nonlinear Stokes wave with steeper 

wave crests and flatter troughs. There is an obvious downwash of flow above the foil in 

figures 5.3(b) & (c) which would decrease the effective attack angle. While in figure 
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5.3(a), there is a small downwash and a following wave crest above the foil; this would 

increase the effective attack angle. Due to the induced waves, the lifting force 

coefficient shall be different. We notice that there is a small wave before the foil in 

figure 5.3(c), while in figures 5.3(a) & (b) there is no significant wave before the foil. 

This could be caused by the cross-coupling effect of the foil motion and the oscillatory 

vortex wake. It is expected that the induced wave would affect the vortex shedding. 

The vortex wake fluctuates with the surface wave and there is a downwash near the 

trailing edge in figures 5.3(b) & (c); the amplitude of the vortex wake increases when 

the wave amplitude becomes larger. Therefore the local flow around the foil is the 

coupled interaction of foil, surface wave and vortex wake. As expected, the circulation 

around the foil fluctuates due to the fully coupled motion of wave, body and vortex 

wake.  

The time history of resistance, lifting force and moment under 0.1/ ChC , 05  

are shown in figure 5.4. When the foil starts moving at constant speed, the forces, 

including resistance, lift and moment, increase rapidly. Different from those lifting force 

in the unbounded flow in figure 4.4, these curves approaching their steady state with 

fluctuation with reduced amplitude as shown in figure 5.4. The surface wave due to 

impulsive motion of the foil affects the hydrodynamic force significantly. Comparing 

the lifting force of linear theory in chapter 3, the lifting force from the present study is 

larger at 4.0Fn  and 2.1Fn , but smaller at 8.0Fn , as shown in figure 5.4(b). The 

discrepancy could be caused by the nonlinear free surface effect and nonlinear vortex 

shedding. In figure 5.3(b) (c), the downwash of the free surface and the vortex wake 

change the effective attack angle and affect the circulation of the foil. As discussed in 

the book of Katz & Plotkin (1991), the influence of the shed vortex sheet has a 
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significant effect on the lifting force. The force history is the history of the coupled 

motion of foil, nonlinear free surface and vortex wake. 

Figure 5.5 gives the pressure distribution on the foil in figure 5.4 at 2.1,8.0,4.0Fn  

when the foil travels 140,80,23/ CUt  respectively. As expected, the pressure 

coefficient difference of the upper and lower surface decreases as the velocity 

increases.  
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Figure 5.4 to be continued on next page 
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Figure 5.4 The (a) resistance, (b) lifting force and (c) moment on NACA 0012 at different 

velocity with 0.1/ ChC , 05 . 
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Figure 5.5 Pressure distribution on the foil under 0.1/ ChC , 05 with 

2.1,8.0,4.0Fn and 140,80,23/ CUt  respectively. 

 



 
 

95 
 

0 20 40 60 80 100 120
-0.08

-0.06

-0.04

-0.02

0.00

f 1

Ut/C

 Fn=0.4

 Fn=0.6

 Fn=0.8

 Fn=1.2

 

(a) 

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

Fn=1.2

Fn=0.8

Fn=0.4

 Fn=0.4

 Fn=0.6

 Fn=0.8

 Fn=1.2

f 3

Ut/C

Fn=0.6

 

(b) 

Figure 5.6 Continued on next page 
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Figure 5.6 The resistance, lifting force and moment on NACA 0012 at different velocity 

with 5.0/ ChC , 05 , the flat straight line in (b) is from the linear theory. (a) 1F  (b) 

3F  (c) 5F  
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Figure 5.7 Highlight of the local free surface profile 
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We further reduce the submergence to 5.0/ ChC . The simulation on the transient 

fully coupled problem of foil, free surface and vortex wake is carried out. The transient 

forces on the foil at 2.1,8.0,6.0,4.0Fn  are shown in figure 5.6. The resistance and 

the moment decrease as Fn  increases; the lifting force decreases when Fn  increases 

from 0.4 to 0.8. However, the lifting force at 2.1Fn  increases. We also notice that 

the lifting force by the present method is very different with that based on the linear 

free surface theory in chapter 3. The lifting force coefficient of the present simulation 

at 6.0Fn  is around 0.27, which is almost half of that from linear free surface theory. 

While the lifting force coefficient at 4.0Fn is around 0.85, which is much higher than 

that from the linear free surface theory. This would again be due to the coupled effect 

of the nonlinear free surface and vortex wake. More details on the nonlinear wave 

effect will be investigated. 

Figure 5.7, shows the local wave profiles at 2.1,8.0,6.0,4.0Fn  when the foil 

travels a distance at 120,88,63,45/ CUt  respectively. There is a leading wave 

starting with a downwash of the free surface above the foil, which is followed by a 

smaller amplitude wave. When 4.0Fn  is considered, the downwash of the first wave 

is significantly larger than the following wave, and the wave profile rises up to its crest 

just above the foil. The downwash free surface flow at 4.0Fn  is actually confined to 

a small area near the leading edge; and it becomes an uprising flow above the trailing 

edge of the foil. The surface flow actually increases the effective attack angle when 

4.0Fn . This explains the higher lifting force. Linear free surface theory is valid when 

the ratio of wave amplitude and wave length are small, or 05.00 
w

A


. As shown in 

Fig.5.7, 
w

A


0  is not a small value and the linear free surface green function may give 
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inaccurate results. The free surface profile is definitely nonlinear and its full effect 

cannot be included by the linear free surface theory. The downwash of wave profile at 

2.1,8.0,6.0Fn  affect the lifting forces in a different way as the wave length 

becomes longer. When 8.0Fn , for example, the effective attack angle decreases due 

to the downwash of the free surface. Generally the overall hydrodynamic force on the 

foil is significantly affected by the free surface flow. 
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Figure 5.8 Pressure distribution on the foil under 5.0/ ChC , 05 , (a) 
4.0Fn , 

45/ CUt  (b) 6.0Fn , 63/ CUt  (c) 8.0Fn , 88/ CUt  (d) 2.1Fn , 120/ CUt  

 
The pressure distributions on the foil provide further details, as shown in figure 5.8. 

The pressures on the lower surface are similar as shown in figure 5.8 (a) (b) (c) & (d). 
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However, the upper surface pressure decreases as the Froude number increases. 

Therefore the difference of the pressure coefficient on the upper and lower surface 

becomes smaller. We notice that the pressure of the upper and lower surface are 

almost the same on the aft body at 2.1Fn . The pressure distribution gives good 

explanation of the overall force in figure 5.6. 

5.2.2 Nonlinear free surface effect on an oscillatory foil 

We consider the wave effect on the oscillatory foil. The transient free surface effect 

on the hydrodynamics of a foil in steady motion is significant. However the nonlinear 

free surface effect for a foil with small or large amplitude oscillatory motion is not clear 

enough. Would the wave effect improve the propulsive efficiency sometimes? Will the 

‘mirror effect’ (Wu 1994, 2000) remain the same as for those in the unbounded flow? 

Here we will first simulate the small amplitude oscillatory motion, and then the 

simulations are carried out at various submergences and Froude number with large 

amplitude oscillatory motion. The free surface effect on the propulsion, energy 

harvesting and flying modes will be investigated. 
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Figure 5.9 To be continued on next page 
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Figure 5.9 The shed vortices and the force history under 0.1/ ChC , 05.0St , 

05.0/0 Ch , 00  , 22576.0Fn  

We first study the wave effect on the small amplitude vertical motion with 

submergence 0.1/ ChC under 22576.0Fn , 05.0St , 05.0/0 Ch , 00   0 . 

The vortex structure behind the foil at 0.4/ Tt  is shown in figure 5.9(a). The vortices 

move up and down as the vertical oscillatory motion. The horizontal force history, as 

shown in figure 5.9(b), has two peaks and troughs in each period. However, compared 

with the results in the unbounded flow in each period, the peaks are higher; and the 

first trough is higher and the other, corresponding to the top position of the foil, is 

lower. This indicates that the procedures of Wu (1994, 2000) would not be applicable 

here due to asymmetry of the flow about its mean position due to the wave effect. The 

surface wave radiation would induce downwash or uprising of the flow. Compared with 

the result in unbounded flow, the vertical force has smaller amplitude, however the 

moment is very close, as shown in figure 5.9(c) & (d). The peak value of the vertical 

force is slightly higher than the absolute value of troughs, which means there is a small 

steady suction force. The overall performance of the foil is shown in table 5.1. 

Compared with the results in unbounded flow, the thrust coefficient is slightly higher 

and the input power is slightly lower, therefore lead to a higher propulsive efficiency. 
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We shall note that the propulsive efficiency may decrease when different 

submergences and frequencies are considered.  

Table 5.1 The performance of the foil under 05.0St , 05.0/0 Ch , 00  ,  0  

 
Tc  Pc  T  

0.1/ ChC  0.0178 0.0418 0.426 

ChC /  0.0157 0.0437 0.359 
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Figure 5.10 Vortex structure and the force histories on the foil at various 

submergence under 0.1/0 Ch , 3.0St 0

0 15 , 8.0Fn , 075 , 0  (a) vortex 

structure at 0.4/ Tt with 0.2/ ChC (b) 1F  (c) 3F  (d) 5F  

Let us consider larger amplitude vertical and rotational oscillatory motion of the foil 
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near the water surface. The propulsive mode with various submergences 0.2/ ChC , 

0.3/ ChC  and 0.4/ ChC  at 8.0Fn under 0.1/0 Ch , 3.0St 0

0 15  0  

are considered first. As shown in figure 5.10(a), the vortices are very close to the free 

surface after the vortices move a distance behind the foil. The simulation may break 

down if the vortices penetrate the free surface due to numerical instability. This is the 

limitation of the present simulation. Therefore the submergence of the foil cannot be 

too small; and the gap between the mean free surface and the top position of the foil 

shall be large enough. The horizontal force, as shown in figure 5.10(b), is not a 

sinusoidal function of double frequency of the motion; the two peaks in each period 

are slightly different. When the foil is leaving the mean position upwards when iTt  , 

the peak value of the horizontal force is a bit smaller when compared with the peak 

value when it is leaving the mean position downwards when Tit )5.0(  , where i  is a 

positive integer number. When the submergence increases, the higher peak decreases 

and the lower peak increases slightly, which results in a smaller difference of the two 

peaks in one period. It is expected that when the submergence of the foil becomes 

very large, the value of these two peaks shall be equal. We also notice that the troughs 

of the horizontal force are not significantly affected by the submergence. As shown in 

figures 5.10 (b) & (c), the absolute value of the peak is larger than the absolute value of 

the troughs, which means the mean value is larger than zero. There would be a 

constant lifting force and moment on the foil when it is decomposed by Eq.(4-17). 

Table 5.2 gives the coefficients of these decomposed forces for 0.2/ ChC . Generally, 

the coefficients are very close to those in the unbounded flow. We have 0894.00 b  

for the mean vertical force, which is the mean value of the ‘suction force’ due to the 

free surface effect. There is a constant term for the moment too. The overall 
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performance in terms of propulsion is given in table 5.3. The mean thrust and input 

power at 0.2/ ChC  is slightly smaller when compared with those in the unbounded 

fluid. However the propulsive efficiency is very close to that in the unbounded fluid. 

The effect of free surface is insignificant against submergence at 8.0Fn , 0.2/ ChC .  

 

Table 5.2 The decomposition of the forces with 0.2/ ChC , 3.0St , 0.1/0 Ch , 

0

0 15 , 075 , 0   

 0b  
1a  1b  2a  2b  3a  3b  

4a  4b  

1f , 2
C

hC  0.486 -0.007 -0.093 0.141 0.446 -0.003 -0.003 0.012 -0.031 

1f , 
C

hC  0.499 0.000 0.001 0.1550 0.463 0.000 0.000 0.012 -0.031 

3f , 2
C

hC  0.089 -0.214 -1.169 0.001 0.009 -0.079 0.082 0.001 -0.002 

3f , 
C

hC  -0.001 -0.217 -1.218 0.000 0.000 -0.080 0.082 0.000 0.000 

5f , 2
C

hC  0.016 0.179 -0.421 0.001 0.000 0.058 0.030 0.001 0.001 

5f , 
C

hC  0.000 0.167 -0.403 0.000 0.000 0.056 -0.027 0.000 0.000 

 

Table 5.3 The performance of the hydrofoil under 0.2/ ChC , 3.0St , 0.1/0 Ch , 

0

0 15 , 075 , 0   

 
Tc  Pc  T  

0.2/ ChC  0.486 0.584 0.832 

ChC /  0.501 0.606 0.826 
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(c) 

Figure 5.11 The forces histories of the foil with different Fn  under 2/ ChC , 

0.1/0 Ch , 3.0St 0

0 15 , 075 , 0  

 

Table 5.4 The overall performance of the foil with different Fn  under 2/ ChC , 

0.1/0 Ch , 3.0St 0

0 15 , 075 , 0  

 
Tc  Pc  T  

4.0Fn  0.481 0.581 0.8282 

8.0Fn  0.486 0.584 0.8323 

2.1Fn  0.481 0.582 0.8270 

 



 
 

105 
 

We then study the propulsion of this foil at different Froude number Fn . We run the 

simulation with 0.2/ ChC , 0.1/0 Ch , 3.0St , 0

0 15/ C , 075 , 0 at 

4.0Fn , 8.0Fn , 2.1Fn  respectively. The force history is shown in figure 5.11. 

Again, we can see from the figure that the absolute values of the two peaks in each 

period are slightly different when the foil is moving away from the mean position 

upwards and downwards. When the Froude number increases, an increase of the 

higher peak and decrease of the lower peak can be observed. We note that the 

frequency of the oscillatory motion increases with Fn  when St  is fixed. The free 

surface effect becomes more obvious when Fn  increases. Figures 5.11 (b) & (c) show 

the vertical force and moment; these curves are slightly affected as Fn  increases. It 

can be observed that the troughs of the vertical force move up slightly when the foil is 

leaving its mean position upwards. Table 5.4 gives the overall performance of the foil at 

different Fn . The thrust coefficient, input power and the propulsive efficiency are very 

close when different Fn  are considered, although there are slight differences in the 

force histories in figure 5.11. This means that Fn has limited influence to the 

propulsion of an oscillatory foil at 0.2/ ChC . 
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Figure 5.12 To be continued on next page 
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Figure 5.12 Force history under 4.0Fn , 0.2/ ChC , 0.1/0 Ch , 2.0St , 

0

0 10 , 090 , 0  

 

Table 5.5 The performance of the foil with 4.0Fn , under 0.2/ ChC , 0.1/0 Ch , 

2.0St , 0

0 10 , 090 , 0  

 
Dc  PLc  POc  

0.2/ ChC  0.326 0.316 0.279 

ChC /  0.319 0.305 0.269 

 

The energy harvesting mode under the free surface is simulated next. Computation 

is carried out at 0.2/ ChC under 0.1/0 Ch , 2.0St 0

0 10 , 090 , 0 . 

Figure 5.12 shows the time history of the foil, which is very close to that when 

ChC / . However, there is a visible difference when the foil is moving away from 

the mean position and approaching the water surface in figures 5.12(a) & (b). Table 5.5 

shows the resistance coefficient Dc , power coefficient from lifting force PLc  and the 

total power coefficient POc . The free surface effect makes very small difference as 

shown in the table. 
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Figure 5.13 Force history with 4.0Fn , 0.2/ ChC , under 0.1/0 Ch , 3.0St ,

0

0 10 , 010 , 075 , 0 . 

We further simulate the flying mode. The Froude number Fn  is found to have 

important effect on the hydrodynamic force as the foil is in steady motion, especially 

when 4.0Fn . Then simulation for the flying mode is carried out with 4.0Fn , 

0.2/ ChC under 0.1/0 Ch , 3.0St , 05 , 0

0 10 , 075 . Figure 5.13 

presents the force histories. Compared with the results in the unbounded flow, the 

amplitude of the horizontal force is larger; and the overall lifting force is larger, the 

amplitude of the moment is slightly higher too. It is expected that the increase of lifting 

force is mainly due to the free surface wave of certain wavelength, similar to that in 

section 5.3.1. The overall performance for propulsion, which is measured from Tt 3
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till Tt 4 , is presented in table 5.6. Compared with that in the unbounded flow, the 

thrust coefficient is higher; however the input power coefficients are similar. The 

propulsive efficiency, therefore, is higher than that in unbounded flow. The reason 

would be very complicated since the free surface flow, vortex wake are involved. 

Although only one case of flying mode is studied here, we can expect that the 

propulsive efficiency will vary due to the wave effect when different forward speed and 

submergence are considered. 

 

Table 5.6 The performance of the foil with 4.0Fn , 0.2/ ChC , under 0.1/0 Ch , 

3.0St , 010 , 0

0 10 , 075 , 05  

 
Tc  Pc  T  

0.2/ ChC  0.3164 0.3932 0.805 

ChC /  0.2625 0.4083 0.643 
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Chapter 6 The vortex shedding at the orifice of a floating 

compartment 

6.1 Introduction 

Ships can be damaged by an accident (collision, grounding, structural failure, fire). In 

most cases, the orifice caused by damage is either at the bottom or on the side of the 

ship. If the damage is below the waterline, the compartment is then flooded. The static 

and dynamic stabilities will be very different from those of the intact ship, because the 

meta-centre and the floating centre will change. An understanding of the 

hydrodynamics of the damaged ship will be highly important to the emergency 

response system (ERS) and salvage, as well as in the assessment of its capability of 

remaining operation. Guidelines for design and ERS planning and decision support 

systems, which will avoid risky operation and help the survival of the passengers, crew 

and ship will be based on the study of hydrodynamic loads. The present study focuses 

on the wave radiation of a flooded compartment with a bottom orifice. The 

hydrodynamic force and ingress/egress flow will be investigated. 

Vortices shed at the orifice of a flooded compartment can be expected and have 

been observed (Smith 2009). The vortices move in and out along with the ingress and 

egress flow when the compartment is in forced heave motion. The vortex shedding at 

the orifice in the unbounded flow has been studied in chapter 4, as an example of 

using the developed methodology. The shed vortices significantly affect the local flow 

near the orifice. Damping effect due to vortices has been documented. Pure potential 

flow, which does not include the vortex shedding, cannot capture the characteristics of 

the flow with vortices. Discrepancy between the experimental data and the simulation 

results from pure potential flow theory for a flooded damaged compartment at lower 
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frequency has been reported by Smith (2009). The typical inviscid flow around a plate 

is inaccurate without vortex shedding (Lamb, 1932). When the flow around an orifice 

of a floating body is considered, besides the tracking of free surface, the shed vortices 

shall be incorporated properly. 

We focus on the vortex shedding at the orifice of a floating oscillatory compartment 

in this chapter. A compartment with bottom orifice in initially calm water, which is to 

model a section of a damaged ship, is simulated. Harmonic vertical (heave) motion is 

prescribed. The free surface deformation together with vortex shedding at the orifice is 

tracked using the time stepping method. The numerical vortex shedding scheme, which 

has been used in the last two chapters, is applied. As the radiated wave propagates 

towards the control surface, a damping zone the same as that in chapter 5 is used to 

absorb the wave; the velocity and wave elevation are reduced through artificial 

damping parameters. The hydrodynamic force and the flow through the orifice will be 

analysed and discussed. 

6.2 Description of the simulation for a flooded compartment 
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Figure 6.1 The sketch of a damaged compartment 



 
 

111 
 

The governing equation and the boundary conditions are the same as those in 

chapter 2 and chapter 5, when the forward speed is taken as zero. To simulate the 

vortex shedding of a flooded compartment, a few numerical treatments are required, 

such as the geometrical modelling of the compartment and damping of vortices. 

Following the successful simulations on the vortex shedding of the submerged foil 

near the free surface in chapter 5, the continuous vortex shedding procedures from the 

sharp edge will be again applied to the problem of an oscillatory surface piercing 

floating structure here. Figure 6.1 shows the sketch of the problem of a damaged 

compartment with a bottom orifice. The thickness of the structure is included in the 

model. As shown in the figure, the geometry of the compartment in this example is 

constructed by a semi-circular cylinder and vertical side walls. The thickness of the side 

wall is the difference between the outer surface with radius 1R and inner surface with 

radius 2R of the circular column. To adapt to the vortex shedding scheme, we shall 

make the edge of the orifice a thin sharp corner. A linear function is introduced to let 

the inner and outer surface of the compartment join to form a sharp angle. Thus the 

thickness of the structure decreases gradually and becomes zero at the orifice edge. 

Mathematically, we can write the modified radius as  
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where startend  0 , start  and end  is the angle at the orifice edge. 

We choose 
36

0





 ; if it is not specified, 

4
0


   is used.  
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The size of the element is chosen at B02.0 on the free surface; it increases with the 

distance to the compartment, and the maximum element shall be less than w05.0 . 

Eq.(5-1) is used and C  in the equation is replaced by the breadth of the compartment 

B . As the radiated wave propagates to the far field, the damping zone is adopted; 

Eqs.(5-2) & (5-3) are used and the control surface is chosen at )10,10max( wBx  . 

6.3 Numerical results and discussions 

6.3.1 Comparison with experiment data 
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Figure 6.2 Vertical force on the compartment, Hzf 333.1 , mR 1575.01  ,

mR 1495.02  , md 07.0 , 0/ Bswall , mh 04.00   

We simulate a compartment with bottom orifice with 27.0/ Bd , Hzf 333.1 . 

Eq.(4-31) is used to prescribe the motion of the compartment and 2i  is used. To 

damp the vortices, Eq.(4-32) is adopted. The force history is compared with the 

experimental data provided by Daniel Fone through personal communication. The 

model is the same one used by Smith (2009), as shown in Fig. 2. Compared with the 

experimental data, the peak value and the trough value of present simulation are lower 

than that of the experimental data, as shown in figure 6.2. However the elevation from 
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the trough to peak is close. The present numerical simulation results ignore the gravity 

of the fluid. In the experimental data, the mean hydrostatic force has been excluded 

while the effect due to the change of the free surface inside and outside the 

compartment is not excluded from the original data; we also notice that the thickness 

of the sidewall above the mean free surface is 20 millimetre, which is much larger than 

the circular column part. Considering this fact, the simulation result is acceptable. The 

simulation result without vortex shedding is shown in the figure as well. The force 

amplitude is smaller than the results including vortex shedding. We will adopt the 

numerical scheme to study the characteristic of the damaged compartment. 

6.3.2 Characteristics of vortex shedding at the orifice 

 

(a)       (b) 

 

(c)       (d) 

Figure 6.3 The vortices under 2.0/ Bd , 4.0/ Bswall , Hzf 0.1 , and 05.0/0 Bh  (a) 

25.3/ Tt , (b) 5.3/ Tt ,(c) 75.3/ Tt ,(d) 0.4/ Tt  
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Figure 6.4 The vertical force on the compartment under 2.0/ Bd , 4.0/ Bswall , 

Hzf 0.1 , and 05.0/0 Bh  

Table 6.1 The coefficient of decomposed force of figure 6.4 

 
0b  1a  1b  2a  2b  3a  3b  4a  4b  

Vortex -0.0330 -1.0314 0.4430 0.0088 0.0012 -0.0351 0.0348 0.0010 -0.0005 

No vortex 0.0037 -0.9473 0.0069 0.0007 0.0299 0.0003 -0.0005 0.0001 -0.0003 

 

To study the vortex shedding effect, simulations are carried out in sinusoidal motion 

with heave amplitude 05.0/0 Bh  and frequency Hzf 0.1 . Here we choose the orifice 

size 2.0/ Bd , side wall 4.0/ Bswall . Figure 6.3 shows the vortices at different times 

with a step of 4/T  from Tt 25.3 to Tt 4 . The vortices pairs move up / down along 

with the ingress / egress flow can be observed. The mean free surface inside the 

compartment is lower than that outside when the compartment passes its mean 

position and moves down; and the internal free surface is higher when the 

compartment moves upwards after passing its mean position, corresponding to the 

typical moment at 25.3/ Tt and 75.3/ Tt , as shown in figures 6.3(a) & (c). The 

strength of the vortices and the flow through the orifice would not be as strong as 

those in unbounded flow when there is free surface; however, it is expected that the 
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vortex structure is quite similar although the orifice size, motion frequency and 

frequency are different. The time history of the vertical force, as shown in figure 6.4, is 

periodical after two cycles since 2i  has been used in Eq.(4-31). The amplitude of the 

force predicted by the present vortex shedding scheme is larger than that of the pure 

potential theory, and phase difference between them can be observed. We further 

decomposed the force using Eq.(4-17) and the coefficients are given in table 6.1. The 

leading term is the first order force; the values of 1a  from these two curves, which are 

related to the acceleration or the added mass, are similar. However the value of 1b , 

which is related to the velocity of the compartment or the damping coefficient, from 

vortex shedding model is larger than that from pure potential flow. This is consistent 

with the fact that vortex shedding mainly affects the velocity or damping term. 

The ingress/egress flow is the concern of the present study. The volume of the flow 

and the flow rate through the orifice are shown in figure 6.5. The non-dimensional flow 

rate is defined as 

dh

B

dt

dV
q e

e

0
 , 

B

V
V in

e          (6-3) 

where inV is the volume of ingress water. 

The ingress/egress volume eV  predicted by models with/without vortex shedding has 

an obvious discrepancy at the starting period, when the compartment starts to move 

with smaller amplitude motion as described in Eq.(4-31). During the following periods, 

the flow rates eq  predicted by these two models are close although an obvious 

difference at the starting period can be seen. Generally, their phases are close to the 

phase of the motion; the variations of volume eV  and flow rate eq follow the variation 

of acceleration and velocity of the compartment respectively.  
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Figure 6.5 The ingress/egress volume and the flow rate at the orifice with 2.0/ Bd , 

4.0/ Bswall , Hzf 0.1 , and 05.0/0 Bh  
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Figure 6.6 The effect of the heave amplitude on the vertical force with 2.0/ Bd , 

4.0/ Bswall , Hzf 0.1  

 

Table 6.2 The decomposed force for various Bh /0  with 2.0/ Bd , 4.0/ Bswall , 

0.1f  

 
0b  1a  1b  2a  2b  3a  3b  4a  4b  

02.00 
B

h
 -0.013 -1.057 0.196 0.003 0.007 -0.032 0.007 0.003 0.002 

05.00 
B

h
 -0.033 -1.031 0.443 0.009 0.001 -0.035 0.035 0.001 -0.001 

1.00 
B

h
 -0.028 -1.096 0.794 0.018 0.031 -0.079 0.057 0.004 0.004 
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The heave amplitude, size of the orifice, and the frequency would have a significant 

effect on the vortex shedding and the hydrodynamic force. Simulations are carried out 

by varying one parameter and others are fixed. The heave amplitude is considered first. 

We simulate the same compartment with different heave amplitudes 02.0/0 Bh , 

05.0/0 Bh  and 1.0/0 Bh  under 2.0/ Bd , 4.0/ Bswall , Hzf 0.1 . The vertical 

force histories are shown in figure 6.6. The non-dimensionalized force amplitude 

increases slightly as the heave amplitude. As these curves are decomposed using Eq.(4-

17), the coefficients in table 6.2 show that the leading term is the first order 

components. The value of 1a  does not change much, while 1b  increases as the heave 

amplitude. 1b  is nearly proportional to the heave amplitude, which is different to that 

in the unbounded flow in section 4.3.2. It is expected that the increase of the heave 

amplitude results in larger relative motion of the fluid inside and outside of the 

compartment, therefore inducing stronger vortices and damping effect. The damping 

effect is the cross effect of wave radiation and vortex shedding. 
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Figure 6.7 The force history on the compartment of various orifice size Bd / with 

Hzf 0.1 , 1.0/0 Bh , 4.0/ Bswall . 
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Table 6.3 Decomposition of force of various orifice size in figure 6.7 

 
0b  1a  1b  2a  2b  3a  3b  4a  4b  

05.0
B

d
 -0.063 -2.839 0.703 -0.058 0.102 0.138 -0.243 -0.026 -0.000 

1.0
B

d
 -0.065 -2.396 1.013 -0.023 0.154 -0.141 -0.220 -0.021 0.015 

15.0
B

d
 -0.050 -1.829 1.139 0.056 0.130 -0.170 -0.039 -0.001 0.020 

2.0
B

d
 -0.003 -1.095 0.794 0.017 0.031 -0.079 0.056 0.004 0.004 
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(a)       (b) 

Figure 6.8 (a) the ingress/egress volume and (b) the flow rate across the orifice 

Hzf 0.1 , 1.0/0 Bh , 4.0/ Bswall  

Simulations with different sizes of the orifice are carried out under Hzf 0.1 , 

1.0/0 Bh , 4.0/ Bswall . As shown in figure 6.7, the non-dimensionalized vertical 

force decreases when the orifice size increases. The decomposed component 

coefficients of the vertical force are shown in table 6.3. The term 0b , which refers to 

the mean force, and term 1a  decrease as Bd /  increases. As expected, a larger orifice 
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means that the fluid can ingress/egress more easily. Consequently, there would be less 

fluid moving along with the compartment and the ‘added mass’ of the compartment 

decreases. 1b  , which refers to the damping term, increases with Bd /  and then 

decreases when the orifice size becomes larger. The damping effect due to vortex 

shedding becomes more significant with medium orifice size, which is consistent with 

that in section 4.3.2. In the table, we also notice the value of 2a , 2b , 3a , 3b  appears as a 

secondary important component, especially at smaller Bd / . Figure 6.8 gives the 

volume of the ingress/egress fluid and the flow rate across the orifice. As expected, the 

amplitude of eV  becomes larger when Bd / increases. However, the amplitude of the 

flow rate eq
 decreases. This indicates that the pressure difference of the inner and 

outer flow decreases when the orifice becomes larger. The equations to predict the 

flow rate based on the hydraulic model would be inaccurate based on the present 

simulation. 

 

Table 6.4 The decomposed force for various frequency under 1.0/ Bd , 1.0/0 Bh . 

 2

0 / fb  
2

1 / fa  
2

1 / fb  
2

2 / fa  
2

2 / fb  
2

3 / fa  
2

3 / fb  
2

4 / fa  
2

4 / fb  

5.0f
 

-0.083 -0.161 0.463 0.014 0.022 -0.032 0.026 0.006 0.001 

75.0f  
-0.096     -1.793 0.803 0.019 0.124 -0.140 -0.154 -0.015 0.018 

0.1f
 

-0.051 -2.268 1.161 0.041 0.084 -0.213 -0.211 -0.009 0.023 

5.1f
 

-0.044 -2.673 1.318 0.015 0.168 -0.171 -0.284 -0.022 0.014 

0.2f
 

-0.040 -2.872 1.304 -0.043 0.174 -0.164 -0.271 -0.021 0.016 

 

We further study the effect of frequency under 1.0/ Bd , 1.0/0 Bh , 4.0/ Bswall . 

It is expected that the vertical force would increase with the frequency like that in 
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section 4.3.2. The force history is not plotted here. The decomposed coefficients of the 

force are divided by the square of the frequency. As shown in table 6.4, the value of 

2

1 / fa increases rapidly as the frequency; 2

1 / fb  increases at lower frequencies and 

remains the same level when 5.1f  and 0.2f . Compared with those of higher 

frequencies, the value of 2

1 / fa  and 2

1 / fb  at 5.0f  are very small. The underlying 

reason could be the flow due to gravity and the free surface. When the compartment 

moves up and down slowly, the ingress and egress flow is driven by the hydrostatic 

force at lower frequencies. Therefore the damping force is dominated by the flow due 

to free surface and the gravity at low frequency; it is quadratic at higher frequencies. 

We notice that the terms 2/ fai , 2/ fbi  )2( i  are very small when compared with the 

first order terms.  
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Chapter 7 Concluding remarks 

7.1 Conclusions 

The present study focuses on the simulation of vortex shedding from the sharp edge 

of marine structures. The potential flow theory and boundary element method are 

adopted to describe the inviscid flow around the marine structures. 

For the linear vortex shedding problem, a flat dipole vortex sheet stretching from the 

trailing edge of the foil is used to impose the circulation. To study a foil advancing in 

waves, the linear free surface boundary conditions are satisfied through the free 

surface Green function. The wave radiation and diffraction of a foil have been 

investigated. The theory adopted is quite similar to the work of Grue et al (1988); 

however the thickness and the initial attack angle would result the second order 

derivative problem of jm terms. An effective finite difference method has been 

proposed to calculate the value of these terms. The attack angle, forward speed, 

submergence and the oscillation frequency are analyzed. The free surface affects the 

steady and unsteady hydrodynamic force significantly. There is a sudden variation of 

the radiation and diffraction wave force near the critical frequency when 
4

1
 . The 

linear theory is applicable for a foil with smaller attack angle with small amplitude 

motions. 

A numerical vortex shedding scheme has been developed to simulate the nonlinear 

continuous vortex shedding of a foil when the attack angle or oscillatory motion 

amplitude become large. An unsteady Kutta condition for numerical simulation is 

proposed and imposed on the vortex sheet element connecting with the trailing edge. 

The Kelvin theorem is used to determine the strength of the shed vortices. The shed 
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vortex sheet is replaced by point vortex to avoid bundle of vortex. The vortex sheet 

element connecting to the trailing edge is like the tail of the foil; and the vortex 

shedding scheme is an ‘egg-laying’ like procedure (see Fig. 4.18). The simulation goes 

well for an oscillatory foil with large amplitude motions. The results for propulsion have 

been verified by the experimental data by Triantafyllou et al (2005). The propulsion, 

energy harvesting and flying modes are investigated extensively. The effect of 

parameters such as St , Ch /0 , 0  and   on the performance of an oscillatory foil are 

investigated. A reversed Karman vortex street has been observed as shown in figures 

4.1 and 4.21. Although the friction resistance has been ignored, the developed 

numerical scheme is a fast tool to find out the performance of different combinations 

of vertical and rotational motions. 

When the thickness of the foil approaches zero, the numerical scheme is applied to a 

plate with minor changes. Numerical results of a plate at small attack angle 

with/without small amplitude oscillation agree well with the analytical solution. The 

numerical scheme of vortex shedding is extended to large amplitude oscillatory 

motion. When compared with the results of a thin foil, discrepancy has been found. 

This would be due to the fact of the sharp edge of the plate. Theoretically, the flow 

near the leading edge of the plate shall be singular; however, the present numerical 

solution at the leading edge of large value affected by the element size. The numerical 

scheme is further applied to study the vortex shedding of a compartment consisting of 

two curved plates. The effect of heave amplitude, orifice size and frequency are 

studied. The damping effect is more significant with medium orifice size and smaller

Bh /0 , and it is proportional to the square of the frequency. The damping coefficient 

can be used to help the prediction of the motion of damaged ship in waves (Gaillard et 
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al 2011 ). 

The transient nonlinear free surface effect and the coupled motion of shed vortices 

are studied through the time stepping method. The nonlinear free surface boundary 

conditions are imposed and the free surface is updated in the framework of 

Lagrangian. The steady motion of NACA0012 under a free surface with various Froude 

numbers is investigated. The nonlinear free surface effect and fluctuation of the force 

curves have been observed, which is mainly due to the free surface wave and 

fluctuating vortex sheet. For oscillatory foil under a free surface, the performance of 

the selected vertical and rotational motions for propulsion and energy harvesting 

modes are not affected significantly. Slight difference can be observed in the force time 

histories. The thrust force is slightly smaller when the foil is leaving its mean position 

upwards and slightly larger when it moves downwards. While for the selected 

oscillatory motion in flying mode, the wave effect becomes significant, the simulated 

case has a much higher propulsive efficiency when compared with the foil in the 

unbounded flow. 

The vortex shedding of a floating damaged compartment has been modeled by 

structure with an orifice. The edge of the orifice is modified to fit the time stepping 

scheme. Compared with the results of pure potential flow, the damping effect due to 

vortex shedding is significant when the force is decomposed into components of 

sinusoidal functions. The effects of orifice size, heave amplitude and the frequency are 

investigated. Larger damping coefficient is found with medium orifice size, which is 

consistent with the results in the unbounded flow. However, the damping effect 

increases with the heave amplitude Bh /0 , which is different from that in the 

unbounded flow. The frequency affects the vortex shedding significantly; the 
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coefficients of first order components divided by the square of the frequency, which 

refer to added mass and damping force, increase at higher frequencies. However, the 

value of these first order components at lower frequency decreases significantly; the 

fluid flow would be dominated by the gravity. 

One of the aims of present study is to develop a fast tool to simulate the inviscid flow 

around structure with sharp edge. The simulations are run on a laptop with an Intel i5 

CPU of 2.3G Hz. The accuracy of the results of present method is acceptable, 

verifications have been shown in chapter 3, 4 and 6. For linear theory in chapter 3, the 

hydrodynamics force of a foil at specific conditions (with submergence, Froude 

number, with or without motion frequency) can be obtained in a few seconds. While 

for the nonlinear vortex shedding of a foil in unbounded flow, the time stepping 

scheme would take a few minutes to obtain the hydrodynamic force of 5 oscillatory 

cycles. When the free surface is concerned, the computation would take a few hours 

since approximately 2000 meshes on the free surface are used. To my own knowledge, 

the computation using commercial software (eg. Anysys CFX) would take several days 

or several weeks. Generally, the objective of the study has been satisfied. 

7.2 limitations and suggestions for further development 

In general, the developed numerical vortex shedding scheme together with the 

unsteady Kutta condition is successful. The numerical simulations of the vortex 

shedding of a foil and the damaged compartment with orifice are carried out 

continuously. However, the present numerical scheme has its limitation and shortfalls. 

(a) The proposed Kutta condition is suitable for sharp edges like the trailing edge of a 

foil. However, the application to a large angle structure could be inaccurate since the 

method approximates tangential flow leaving a sharp edge. Vortex shedding at the 
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leading edge or from a smooth surface is beyond the proposed scheme. (b) Long time 

simulation on the damaged compartment model would be difficult when the free 

surface is presented. When the vortices nearly contact or penetrate the free surface, 

the simulation would break down. The shed vortex might also cause instability when 

updating the free surface. (c) The point vortices do not damp automatically; the 

introduced artificial damping function is chosen more or less arbitrarily, justification of 

the damping for non-symmetric vortex shedding would be a problem. 

For future development, there are several topics that need intensive investigations: 

(1) The nonlinear wave diffraction of a foil; (2) the self-propulsion of a foil and (3) the 

wave effect on the three dimensional foil; (4) the coupled motion of the damaged ship 

structure and waves; (5) the vortex shedding of a flexible foil (Xiao et al 2012). The 

present work can be extended to practical engineering problems such as biomimetic 

study of three dimensional flying bird (Ellington et al 1996) or swimming fish and (6) 

three dimensional vortex shedding at the orifice of a damaged ship. Some of these 

problems will be very challenging. 
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