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Nonequilibrium Quantum Condensation in an Incoherently Pumped Dissipative System
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We study spontaneous quantum coherence in an out of an equilibrium system, coupled to multiple baths
describing pumping and decay. For a range of parameters describing coupling to, and occupation of the
baths, a stable steady-state condensed solution exists. The presence of pumping and decay significantly
modifies the spectra of phase fluctuations, leading to correlation functions that differ both from an isolated
condensate and from a laser.
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The phenomenon of condensation, i.e., macroscopic
occupation of a single quantum mode, has attracted much
attention in recent years. It has been studied in systems
such as atomic gases and superconductors [1], and ranges
from the Bose-Einstein condensate (BEC) of structureless
bosons, to the BCS type collective state of fermions, and
intermediate states [2]. The next challenge is to control and
study condensed states in solid state. Current candidates
here include excitons in coupled quantum wells [3], micro-
cavity polaritons [4–6], quantum Hall bilayers [7], and
Josephson junction arrays in microwave cavities [8].

Unlike atomic gases, solid-state systems face dephasing
and decay, as (with the special exception of superconduc-
tors) the condensate cannot usually be isolated from the
environment: Phonons and impurities lead to dephasing,
and due to imperfect trapping, particles escape, requiring
external pumping to sustain a steady state. If such pro-
cesses are faster than thermalization the system remains
out of thermal equilibrium. Dissipation and decay not only
present experimental obstacles, but also pose fundamental
questions about the robustness of a condensate: Is a steady-
state condensate possible with incoherent pumping and
decay, if so, how does it differ from thermal equilibrium?
Condensation in dissipative systems also provides a con-
nection to the laser [9]. The relation between lasing and
BEC is particularly relevant for polariton BEC, where the
experimental distinction between the two is not simple
[10].

Models that combine potentially strong nonequilibrium
pumping with spontaneous symmetry breaking are not well
studied, motivating study of simple models to extract the
principal features. We study spontaneous condensation in a
system coupled to independent baths, not in thermal or
chemical equilibria with each other, providing incoherent
pumping and decay. We focus on a Bose-Fermi system
with disorder localized fermions; this is a model for
exciton-polaritons [4–6] or Josephson junctions in micro-
cavities [8]. However, many of our conclusions apply more
generally to condensation with pumping and decay. We
show that, despite changes to the excitation spectrum, and
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dephasing induced by pumping and decay, steady-state
spontaneous condensation can occur in such systems, and
can be distinct from lasing: The condensate can exist at low
densities, far below inversion and lasing.

We study fluctuations about a steady-state condensate
and find that the collective modes are qualitatively differ-
ent from the modes found in thermal equilibrium [11]:
Because of pumping and decay, the low energy phase
mode (Goldstone, Bogoliubov mode) becomes diffusive
at small momenta. By considering the effect of phase
fluctuations, we find the decay of correlations, which at
large times and distances differs both from that for a
thermal equilibrium condensate and from a laser.

Our Hamiltonian is Ĥ� Ĥsys�Ĥsys;bath�Ĥbath, where,
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describes two fermionic species b� and a�, interacting
with bosonic modes  p normalized in a 2D box of area
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k�yk�k. A single two-level system coupled to mul-

tiple baths has been recently studied in the context of the
Kondo problem [12]. Condensed solutions of Eq. (1) have
been studied in the context of atomic Fermi gases [13] and
microcavity polaritons [11,14]. In this Letter we focus on
microcavity polaritons, so by�; a� describe an electron and
hole within a disorder-localized exciton state of energy ��.
This can also be a fermionic representation of a hard-core
boson or of a spin. These are dipole coupled to cavity pho-
ton modes p, with low p dispersion,!p ’ !0 � p2=2mph,
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where mph � �@=c��2�=w� is the photon mass in a 2D
microcavity of width w. Because of the finite reflectivity
of the cavity mirrors, photons escape, and so pumping
(exciton injected) is required. Incoherent fermionic pump-
ing and photon decay are described by (2), where Ak; Bk
are fermionic annihilation operators for the pump baths,
while �k are bosonic annihilation operators for photon
modes outside the cavity.

With pumping and decay, the systems distribution must
be obtained self consistently with the excitation spectrum.
This prevents the use of imaginary time path integrals (e.g.,
[15]), as previously used to study the equilibrium proper-
ties of this model [10,11,14]. Instead, we use nonequilib-
rium Keldysh field theory, in a path-integral formulation
[16]. Within this formalism, we integrate out the bath
degrees of freedom and fermion fields to yield an effective
description in terms of the photon field, parallel to that in
[10,11,14]. The bath properties appear in this description
via the functions ��!�, ��!�, FA;B�!�, and F��!�. The
cavity decay rate ��!� � ��2�!�N� �!�, where � is the
coupling of the cavity photons to the bosonic modes in
Eq. (2) and N� is the density of states of these modes.
Similarly ��!� � ��2�!�N��!� where � and N� are,
respectively, coupling to, and the density of states of, the
fermionic pumping baths. We assume a flat spectrum for
the baths, so � and � are frequency independent. Fre-
quency dependence is however present in the bath distri-
bution functions; FA;B�!� � 1� 2nA;B�!�, and F��!� �
1� 2n��!�, where nA;B; n� are occupations of the baths.

We proceed by looking for self-consistent solutions with
a steady state, uniform, photon field of the form,  �t� �
 0e�i�St, giving a nonequilibrium generalization of the
usual gap equation (e.g., [11,15]):
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and f and b are the forward and backward
branches of the Keldysh time contour [16], and is given by:
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, ~�� � �� ��S=2, and the
arguments of FB;A�!� are shifted by ��S=2 while ! is a
real frequency. Note that we find that the bosonic bath’s
distribution F� does not enter the mean-field gap equation,
as the mean field does not consider the incoherent photons.
In the limit �; �! 0 with the bath distributions FA;B being
thermal, Eq. (3) reduces to its equilibrium form [11,14]; for
finite � and � it is significantly altered.

As in thermal equilibrium, the normal state  0 � 0 is
always a solution of Eq. (3), but for some range of parame-
ters there is also a condensed  0 � 0 solution. When a
solution  0 � 0 exists, the solution  0 � 0 becomes un-
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stable. To understand this instability, we consider small
fluctuations about the mean field,  �  0 � � . The ef-
fective action for these fluctuations � has a part from the
free photon action, and a part from interactions with fer-
mions, 1

2 Tr�G�G�1G�G�1�, where the fermionic Green’s
functionsG are 4	 4 matrices in the Keldysh and particle-
hole (a; b) spaces. Inverting the effective action for fluctu-
ations gives the photon Green’s functions, DK;R;A. The
retarded and advanced Green’s functions DR;A give the
excitation spectrum. The distribution function FS, defined
by DK �DRFS � FSDA, determines how the spectrum
is occupied. As the system need not be in thermal or chemi-
cal equilibria with the baths, FS is in general not thermal,
and differs from the bath distributions, FA;B and F�.

The instability of the normal state when a condensed
solutions exists is analogous to thermal equilibrium. Even
when the distribution FS is far from thermal, as the sys-
tem approaches the phase transition, FS diverges at a
frequency which we define as an effective chemical poten-
tial, where Im�DR�1��eff�� � 0. Taking the zeros of
Re�DR�1�!
; q�� as defining the normal modes of the
system, condensation occurs when �eff reaches the bottom
of the band of excitations, as in equilibrium. This condi-
tion, that a solution to DR�1��eff ; q � 0� � 0 exists, is
equivalent to the gap equation, Eq. (3), at  0 � 0, �eff �
�S, since DR describes a susceptibility which diverges at
the transition. Beyond this point, the normal state is un-
stable, as �eff would lie in a bosonic band. This idea of
instability can be directly connected to another: Beyond
this point, the poles of the DR have positive imaginary
parts, fluctuations grow (rather than decay) in time. To see
this, consider the imaginary parts of the poles of DR as a
function of momentum, q. At large q, these poles describe
bare photons, and so are stable. By the previous definitions,
above the transition, there is a q at which the normal state
Green’s function has a real pole, DR�1�!
; q� � 0. The
sign of the imaginary part of the pole changes at this point,
so the low q poles are unstable. Thus, a condensed solution
to the gap equation implies instability of the  0 � 0.

Unlike thermal equilibrium, there is however a range of
parameters for which neither the normal state nor con-
densed steady-state solutions of the form  �t� �
 0e

�i�St, are stable. This is not too surprising as systems
similar to (1) are known to follow a complicated or even
chaotic dynamics [17]. Although such anharmonic solu-
tions would be of great interest, we focus here on steady-
state condensed solutions of the usual form.

Understanding stability, we next solve the gap Eq. (3) to
find the nonequilibrium phase diagram. Since Eq. (3) is
complex it gives two equations for two unknowns: the
order parameter  0 and the frequency �S. The common
oscillation frequency �S would in thermal equilibrium be
the system’s chemical potential, considered as a control
parameter, adjusted to match the required density, and the
(real) gap equation determines only  0. Here, as different
baths have different chemical potentials, the system is not
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in chemical equilibrium with either bath, so both �S and
 0 must be found from the gap equation. The density,
which can be found given  0 and �S, is set by the relative
pump and decay strength.

Although the formalism would allow any distribution,
from here, the baths are taken to be thermal, but not in
equilibrium with each other, so the system may be far from
thermal equilibrium. For simplicity, the figures are for the
baths at zero temperature, so the bath distributions are
defined by their chemical potentials, and the limit of a
narrow bandwidth [14], �� � �, g� � g is taken. To en-
sure that on average only one of the two fermionic levels
a; b is occupied, the chemical potentials of baths A;B are
related by�A � ��B. Since the bottom of the bulk photon
band is far below the energy of the cavity photon modes,
we take the chemical potential of the decay bath to be large
and negative, measured from the bottom of the cavity
photon band. Thus, the baths are described by three pa-
rameters, the couplings �; � and �B parameterizing the
occupation of the pumping baths.

Figure 1 shows a phase diagram in terms of �; �;�B. It
shows both where a condensed solution to the gap equation
exists, and where the solution is stable. At a given � there is
a minimum � (as pumping is proportional to �) and a
maximum � (as dephasing is proportional to �) required
for condensation. Stable condensed solutions exist only for
� smaller than about 0:2g. In the region in Fig. 1 the
condensed solutions are all below population inversion.
However for � > g, when in a weak-coupling regime,
only laserlike solutions with population inversion are pos-
sible. For large � and �B (large pumping), our theory
recovers the regular laser limit.

We now discuss the collective modes, considering fluc-
tuations about the steady state. Motivated by microcavity
polaritons, we study these collective modes by calculating
the photoluminescence (PL) spectra: iD<
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FIG. 1 (color online). Mean-field phase diagrams. Left:
Critical � vs decay rate �, for two different pumping bath
chemical potentials, �B. Right: Critical � vs �B (measured
with respect to �) for � � 0:038 g as in experiment [6]. Solid
lines show where a solution of the gap equation exists, dashed
lines show where that solution is stable. The region where a
stable condensed solution exists is shaded. Stars mark the choice
of parameters shown in Fig. 2.
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h yf �t� b�t
0�i. In the normal state, as expected, one finds

homogeneously broadened upper and lower polariton
modes. This homogeneous broadening depends on all of
�, �, �B; it arises from the dephasing due to pumping and
decay, and so appears naturally only in a nonequilibrium
treatment. Approaching the phase boundary from the nor-
mal side, the lower polariton linewidth reduces to zero.
This can be understood by identifying the zeros of the real
part of the inverse Green’s function as the polariton ener-
gies, Re�DR�1�!
; q�� � 0, and the imaginary part as
giving the linewidth, 1=	p � Im�DR�1�!
; q��. The ear-
lier discussion relating the gap equation to DR�1��S; q �
0� implies that 1=	p vanishes at the transition.

When condensed, as in equilibrium [11], the spectrum
changes. This leads to a soft mode, describing phase fluc-
tuations, as global phase rotation symmetry is broken. As
phase fluctuations may be large, one must include them to
all orders [15] to find the field-field correlations; amplitude
fluctuations remain small, as they have a restoring force.
Writing,  �t� �

���������������������

0 � ��t�

p
ei��t�, where 
0 is the mean-

field condensate density, the PL spectrum is thus

iD<
 y 
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0�� exp��f�t; r��; (4)
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Z
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Z
�dq�2�1� ei��t�q�r��iD<

����; q�: (5)

The phase-phase Green’s function D<
�� is found by invert-

ing the action expanded to quadratic order.
The O�1=
0� terms in Eq. (4), due to amplitude-

amplitude and phase-amplitude Green’s functions, are in-
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FIG. 2 (color online). Photoluminescence iD<
 y 
��; q� of a

condensed system, where q is shown by angle of emission
tan�1�cq=!0�. Top: Strong coupling, Bottom: weak coupling,
exact parameters marked by stars on Fig. 1. Main figures show
PL from small �; q region, to all orders in phase fluctuations. In-
sets show a larger range of �; q for the same parameters. (Dotted
lines have been added to show the faint amplitude mode).
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cluded when plotting Fig. 2, but their forms are complex,
so not reproduced here. In the limit of small v and q, D<

��

takes a simple form:

iD<
����; q� � C��c2q2 � �2�2 � 4�2x2��1; (6)

where C, c, and x can be found from the full expressions.
Without pumping and decay, x � 0. Nonzero x means that
rather than a linear dispersion at low q, as in a closed
system in thermal equilibrium [11,15], the poles of the

Green’s function have the form � � �ix� i
���������������������
x2 � c2q2

p
.

For jqj< x=c, these modes are diffusive; the poles are
imaginary, only for jqj> x=c, do they acquire a real part.
This behavior is apparent in the PL spectrum in Fig. 2. The
diffusive behavior at small q is not limited to Bose-Fermi
systems; it should also be present in other condensed
systems with pumping and decay. Note that at q � 0 and
� � 0, D<

�� has a real pole; a manifestation of broken
symmetry in the infinite system.

As given by Eq. (4), the PL spectrum does not depend
linearly on D<

��. If D<
�� were small, the exponential in

Eq. (4) could be expanded, giving PL divided between a
condensate term 
0������q�, and a part from fluctuations.
However, at �; q! 0, D�� is not small, and so phase
fluctuations give a line shape to the condensate and deter-
mine long-time field-field correlations. In two dimensions,
inserting Eq. (6) in Eq. (5), the main dependence of f�t; r�
on t; r comes from a logarithmic divergence,

R
dq=q, cut at

large momenta by terms beyond those in Eq. (6), and at
small momenta by one of 1=r; 1=ct; 1=c

�������
t	g
p

or 1=c	g,
where 	g � 1=x is the lifetime of the phase mode. This
logarithmic form leads to power law field-field correla-
tions. [As in thermal equilibrium [15], where, f�t; r� �
 ln�

�������������������
c2t2 � r2
p

=�c�, with  / kBT=
0.] According to
the relative values of r; t; 	g, different lower cutoffs apply,
and so the power law differs at different places in the r; t
plane. For small r; t we recover the equilibrium power
laws; but when t 	g, and c

�������
t	g
p

 r, then 	g becomes
important, and f�t� / ln�c

�������
t	g
p

�, giving a condensate line
shape that differs from a nondissipative, thermal equilib-
rium 2D system. Power law field correlations at long times
lead to a power law divergence of their Fourier transform
as �; q! 0, so the linewidth is not well defined. This
differs from phase diffusion for a single mode in laser
theory [9], where phase correlations grow linearly in
time, giving exponential decay of field correlations.

At higher q and � (Fig. 2 Insets) the difference between
linearized in Green’s functions and keeping all orders of
phase fluctuations is not visible. The strong coupling spec-
trum has the usual phase and amplitude modes (marked
a; b) emerging from the lower and upper polariton
branches. One can also see an occupation edge (c), and
above that the lower polariton following the exciton
dispersion (d). These higher q features are analogous to
thermal equilibrium nondissipative polariton condensation
in strong coupling regime [11] but with nonthermal occu-
23060
pations. Increasing pumping, dephasing increases, and the
system crosses to weak coupling (lower panels of Fig. 2),
the polariton splitting is suppressed, and the spectrum
follows the photon dispersion. The diffusive region at small
momentum occurs both in strong and weak coupling and is
a sign of condensation in the dissipative system.

To conclude, we have studied how steady-state sponta-
neous condensation emerges in nonequilibrium systems
with pumping and decay. This condensation is distinct
from lasing: It can occur at densities much lower than
the population inversion and the decay of correlations,
and thus condensate line shape, differ from that for phase
diffusion of a single laser mode. However, this condensa-
tion also differs qualitatively from thermal equilibrium:
Dissipation changes the spectrum, at low momenta, the
phase mode is diffusive, changing the power-laws control-
ling long time decay of field-field correlations, and is
expected to modify superfluidity. These conclusions,
although studied here for microcavity polaritons, apply
also to other Bose and Bose-Fermi condensates subject to
pumping and decay.
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