
Search Based Software Project
Management

Jian Ren

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

June 24, 2013

Abstract

This thesis investigates the application of Search Based Software Engineering (SBSE)

approach in the field of Software Project Management (SPM). With SBSE ap-

proaches, a pool of candidate solutions to an SPM problem is automatically gen-

erated and gradually evolved to be increasingly more desirable. The thesis is mo-

tivated by the observation from industrial practice that it is much more helpful to

the project manager to provide insightful knowledge than exact solutions. We inves-

tigate whether SBSE approaches can aid the project managers in decision making

by not only providing them with desirable solutions, but also illustrating insightful

“what-if” scenarios during the phases of project initiation, planning and enactment.

SBSE techniques can automatically “evolve” solutions to software requirement

elicitation, project staffing and scheduling problems. However, the current state-of-

the-art computer-aided software project management tools remain limited in several

aspects. First, software requirement engineering is plagued by problems associated

with unreliable estimates. The estimations made early are assumed to be accurate,

but the projects are estimated and executed in an environment filled with uncertain-

ties that may lead to delay or disruptions. Second, software project scheduling and

staffing are two closely related problems that have been studied separately by most

published research in the field of computer aided software project management, but

software project managers are usually confronted with the complex trade-off and

correlations of scheduling and staffing. Last, full attendance of required staff is usu-

ally assumed after the staff have been assigned to the project, but the execution of

a project is subject to staff absences because of sickness and turnover, for example.

This thesis makes the following main contributions: (1) Introducing an au-

tomated SBSE approach to Sensitivity Analysis for requirement elicitation, which

helps to achieve more accurate estimations by directing extra estimation effort to-

wards those error-sensitive requirements and budgets. (2) Demonstrating that Co-

evolutionary approaches can simultaneously co-evolve solutions for both work pack-

age sequencing and project team sizing. The proposed approach to these two inter-

related problems yields better results than random and single-population evolution-

ary algorithms. (3) Presenting co-evolutionary approaches that can guide the project

manager to anticipate and ameliorate the impact of staff absence. (4) The investiga-

tions of seven sets of real world data on software requirement and software project

plans reveal general insights as well as exceptions of our approach in practise. (5)

The establishment of a tool that implements the above concepts. These contribu-

tions support the thesis that automated SBSE tools can be beneficial to solution

generation, and most importantly, insightful knowledge for decision making in the

practise of software project management.

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Mark Harman. He is

the best supervisor one could ever expect for.

I would also like to thank my second supervisor Dr. Jens Krinke, my early PhD

mentor Prof. Zheng Li, and my previous external advisor Prof. Anthony Finkelstein.

I am grateful to the following external personnel for their generous help and

valuable expertises on some specific topics: Prof. Xin Yao at University of Birming-

ham, Prof. Massimiliano Di Penta at University of Sannio, Prof. Giuliano Antoniol

at École Polytechnique de Montréal, Prof. Francisco Palomo Lozano and Prof. In-

maculada Medina Bulo at University of Cádiz, Prof. Günther Ruhe at University

of Calgary, and Prof. Filomena Ferrucci and Dr. Federica Sarro at University of

Salerno.

My greatest gratitude is reserved for all my fellow colleagues in CREST (Centre

for Research on Evolution, Search and Testing) whose advice, help and support are

always available at those critical moments, especially to Dr. William Langdon, Dr.

David Clark, Dr. Afshin Mansouri, Dr. Shin Yoo, and Dr. Yuanyuan Zhang. Finally

and very importantly, I would like to thank the CREST admin, Ms. Lena Hierl, for

the kindest and most professional administrative support.

This thesis is dedicated to my inspiring grandparents, my beloved parents, and

my supportive family and friends.

List of Publications

Chapters 4 and 5 of this thesis have been published as:

• J. Ren, S. Yoo, M. Harman and J. Krinke, Search Based Data Sensitivity

Analysis Applied to Requirement Engineering, Proceedings of the 11th Genetic

and Evolutionary Computation Conference (GECCO 2009), pages 1681-1688.

Cited by 171.

• J. Ren, M. Harman and M. Di Penta, Cooperative Co-evolutionary Optimiza-

tion of Software Project Staff Assignments and Job Scheduling, Proceedings of

the 3rd International Symposium of Search Based Software Engineering (SS-

BSE 2011), pages 127-141. Cited by 91.

The following papers have been published or submitted during the course of this

PhD programme, although they do not form a part of this thesis:

• F. Ferrucci, M. Harman, J. Ren and F. Sarro, Not Going to Take this Anymore:

Multi-Objective Overtime Planning for Software Engineering Projects, Pro-

ceedings of the 35th International Conference on Software Engineering (ICSE

2013), accepted on 20 November 2012.

• M. Harman, J. Krinke, I. M. Bulo, F. P. Lozano, J. Ren and S. Yoo, Empirical

Evaluation of Exact Sensitivity Analysis for the Next Release Problem, ACM

Transactions on Software Engineering and Methodology, under revision.

• A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren and Y. Zhang, A Search

Based Approach to Fairness Analysis in Requirement Assignments to Aid Ne-

gotiation, Mediation and Decision Making, Requirements Engineering Journal,

14(4):231-245, December 2009. Cited by 241.

• J. Ren, Y. Zhang, A. Finkelstein, M. Harman and S. A. Mansouri, . “Fairness

Analysis” in Requirements Assignments, Proceedings of the 16th International

Requirements Engineering Conference (RE’08), pages 115-124. Cited by 281.

1 The citation counts are estimated by Google Scholar Citations. Accessed on May 2013.

http://scholar.google.com/citations?user=BX_2SMsAAAAJ

Contents

Abstract . 2

Acknowledgements . 3

List of Publications . 4

List of Figures . 10

List of Tables . 15

List of Algorithms . 17

1 Introduction 18

1.1 Search-based Software Engineering 18

1.2 Software Project Management . 20

1.3 Contributions of this Work . 21

1.4 Research Methodology . 22

1.5 Layout of the Thesis . 23

2 Literature Review 26

2.1 Software Project Management . 26

2.1.1 Software Life Cycle Process Models 27

2.1.2 Challenges in Software Project Management 29

2.1.3 Industry Standards and Practices for PM 31

2.1.4 Risk Management in Software Development 32

2.2 Software Cost Estimation . 35

2.3 Sensitivity Analysis . 37

2.4 Evolutionary Computation . 40

2.4.1 Evolutionary Algorithm . 42

2.4.1.1 Genetic Algorithm 42

Contents 6

2.4.1.2 Genetic Programming 42

2.4.1.3 Evolutionary Strategy 42

2.4.1.4 Evolutionary Programming 43

2.4.1.5 Co–evolutionary Genetic Algorithm 43

2.4.2 Competitive Co–evolutionary Algorithm 43

2.4.3 Cooperative Co-evolutionary Algorithm 44

2.5 Search Based Software Engineering 44

2.5.1 Origins and Applications . 44

2.5.2 Software Project Management with Meta-heuristics 45

2.5.2.1 Project Scheduling Problem with Meta-heuristics . 46

2.5.2.2 Project Resource Allocation with Meta-heuristics . 47

3 Industrial Data for Evaluation 50

3.1 Industrial Requirement Data . 50

3.2 Industrial Project Plan Data . 51

3.2.1 Industrial Contexts of Real Software Projects 51

3.2.2 Features and Characteristics of Projects and Visualisations . 53

3.3 Limitations of Data Usage . 54

4 Sensitivity Analysis on Cost Estimation of Requirements Selection 61

4.1 Introduction . 61

4.2 Background . 63

4.2.1 Single-objective Next Release Problem 63

4.2.2 Multi-objective Next Release Problem 65

4.3 Sensitivity Analysis in NRP . 65

4.4 SA Experimental Set Up . 68

4.4.1 Greedy Algorithm . 69

4.4.2 NSGA-II . 70

4.4.3 Requirement Data . 70

4.4.4 Evaluation . 71

4.4.5 Research Questions . 71

4.5 SA Results and Analysis . 72

Contents 7

4.5.1 Result From Single-Objective Formulation 72

4.5.2 Result From Multi-Objective Formulation 75

4.5.3 Statistical Analysis . 79

4.5.4 Answers to the Research Questions 81

4.6 Related work . 82

4.7 Summary . 82

5 Cooperative Co-evolutionary Job Sequencing and Team Sizing 84

5.1 Introduction . 84

5.2 Problem Statement and Definitions 85

5.2.1 Ordering/Sequence of Work Packages 86

5.2.2 Staff Assignments to Teams 87

5.2.3 Scheduling Simulation . 87

5.3 Optimisation Method: Cooperative Co-evolutionary Algorithm . . . 88

5.3.1 Solution Representations and Genetic Operators 88

5.3.2 Initial Populations . 89

5.3.3 Termination Condition . 89

5.4 Empirical Study . 90

5.5 Empirical Study Results . 92

5.5.1 Analysis of the Cooperative Co-Evolutionary Progress 92

5.5.2 Results on Effectiveness . 97

5.5.3 Results on Efficiency . 99

5.5.4 Threats to Validity . 100

5.6 Related Work . 101

5.7 Summary . 102

6 Co-evolutionary Project Planning Optimisation under Staff Ab-

sence 104

6.1 Introduction . 104

6.1.1 Research Questions . 107

6.2 Problem Statement . 107

6.2.1 Work Package Ordering (WPO) 108

Contents 8

6.2.2 Staff Availability Calendar (STCAL) 108

6.3 Co-evolution . 109

6.3.1 Genetic Representations . 109

6.3.1.1 Array of WP’s IDs representing Work Package Or-

dering . 109

6.3.1.2 Boolean matrix representing Staff Availability Calendar109

6.3.2 Genetic Operators . 110

6.3.2.1 Order Crossover on WPO 110

6.3.2.2 Mutation on WPO 110

6.3.2.3 Dependency and Duplication Verification on “new-

born” WPO . 111

6.3.2.4 Uniform Crossover on Staff Availability Calendar . . 111

6.3.2.5 Mutation on Staff Availability Calendar 111

6.3.3 Fitness Evaluation and Selection of Candidate Solutions . . . 112

6.3.3.1 Scheduling Simulation 112

6.3.4 Overall Co-evolution Procedure 115

6.4 Empirical Study . 116

6.4.1 Parameter Setting . 116

6.4.2 Four Configurations of Co-evolutionary Optimisation 118

6.5 Results Analysis . 119

6.5.1 Running Time . 120

6.5.2 Average External Assessment of the Solutions Found 122

6.5.3 Trend of Improvement on Solutions in the Process of Searching 125

6.5.4 Detailed Case Analysis on Configuration BWBS 126

6.5.5 Answers to the Research Questions and Proposals to the PM 131

6.6 Measuring the Absence Rate . 133

6.7 Summary . 134

7 Conclusions and Future Works 135

7.1 Summary of Contributions . 136

7.2 Summary of Future Work . 137

Contents 9

7.3 Closing Remark . 138

Appendices 139

A Results of Co-evolutionary Project Management Optimisation on

Four Real–world Projects 139

A.1 Competitive Searching for Better WPOs and Worse STCALs 139

A.2 Competitive Searching for Worse WPOs and Better STCALs 144

A.3 Cooperative Searching for Worse WPOs and Worse STCALs 149

A.4 Cooperative Searching for Better WPOs and Better STCALs 154

Bibliography 159

List of Figures

1.1 GA crossover for reproduction . 19

1.2 Simplified flow chart of a genetic algorithm 19

2.1 Breakdown of topics covered in the Software Engineering Management

KA. Figure adapted from [Abran et al., 2004]. 27

3.1 Work Package Dependency Graph of Project B. It shows the work

packages, the normalised efforts (degree of greyness), dependency re-

lationship among WPs (black lines), and the critical path (WPs that

marked with red tags: W[id] and UID [uid]). 56

3.2 Work Package Dependency Graph and Resource Allocation Graph of

Project C. In addition, it shows the resources (coloured ellipsis), and

the corresponding WPs require such resources (coloured lines). . . . 57

3.3 Work Package Dependency Graph and Resource Allocation Graph of

Project D . 58

3.4 Work Package Dependency Graph and Resource Allocation Graph of

Project E . 59

3.5 Work Package Dependency Graph and Resource Allocation Graph of

Project F . 60

4.1 Sensitivity Analysis Flow Chart . 66

4.2 Hamming distance from the original solution to the solution obtained

by the greedy algorithm with PIAC value of ±25%. 73

4.3 Hamming distance from the original solution to the solution obtained

by the greedy algorithm with PIAC value of ±50%. 74

List of Figures 11

4.4 Euclidean distance between original estimated Pareto-front and actual

Pareto-front by different PIAC values. 76

4.5 Boxplots of Euclidean distances between Pareto-fronts for different

costs of requirements . 77

4.6 Boxplots of Euclidean distances between Pareto-fronts for different

PIAC values . 78

5.1 WPO Chromosome: The gray area is the representation of the so-

lutions for the ordering for distributing a set of l work packages. A

solution is represented by a string of length l, each gene correspond-

ing to the distributing order of the WPs and the alleles, drawn from

{1, ..., l}, representing an individual WP. 86

5.2 TC Chromosome: The gray area is the representation of the solutions

for Team Construction or the assignments of a set of n staff to a set of

m teams. A solution is represented by a string of length n, with each

gene corresponding to a staff and the alleles, drawn from {1, ...,m},

representing assignment of the staff. 87

5.3 Crossover for Team Construction solutions: Single Point Crossover . 89

5.4 Mutation on Work Package Ordering solution: Randomly Swap WPs’

Positions . 89

5.5 Projects A: Boxplots of completion times for all solutions found by

different CCEAs configurations . 93

5.6 Projects B: Boxplots of completion times for all solutions found by

different CCEAs configurations . 94

5.7 Projects C: Boxplots of completion times for all solutions found by

different CCEAs configurations . 95

5.8 Projects D: Boxplots of completion times for all solutions found by

different CCEAs configurations . 96

5.9 Boxplots of all the best solutions found in 30 runs of the three CCEA

configurations, and in random search runs 98

5.10 Efficiency Comparison of the Random Search and CCEAs 100

List of Figures 12

6.1 Sickness absence as a proportion of working time. Figure adapted

from [Black, 2008] . 106

6.2 WPO Chromosome: The gray area is the representation of one spe-

cific ordering for distributing a set of l work packages. As shown the

solution is represented by a string of length l, each gene correspond-

ing to the distributing order of the WPs and the alleles, drawn from

{1, ..., l}, representing one WP’s ID. 109

6.3 The representation of Staff Availability Calendar with “1” indicating

the day a member of staff is not available 110

6.4 WPO Crossover: Order Crossover . 110

6.5 WPO Mutation: Randomly Swap WPs’ Positions 110

6.6 Uniform Crossover on Staff Availability Calendar: offspring inherit

availabilities of one specific member of staff as for the whole period

of the project (a whole row on the chromosome) from either of the

parents with equal probability. 112

6.7 Mutation on Staff Availability Calendar: for each member of staff,

the positions of a ’1’ and a random ’0’ are swapped with a defined

probability. 112

6.8 Scheduling simulation with Work Package Ordering and Staff Avail-

ability Calendar. The scheduling simulator takes one WPO solution

and one STCAL solution as its inputs. The simulation result illus-

trates the process of a corresponding project being executed, such as:

project completion time, staff-to-WP allocation. 113

6.9 Program flowchart of the scheduling simulation. 114

List of Figures 13

6.10 External fitness of solutions by Configuration BWBS on Project C.

The solutions for two species are plotted separately in two side-by-side

sub-figures, with the WPOs on the left and STCALs on the right. The

sub-figures are arranged in three rows according to their levels of the

absence rate equal to 0.001, 0.1, and 0.25 respectively. The finish

time of the entire population is plotted for each generation along the

co-evolutionary process. A solid line on the boxes is the mean value

of each generation. The duration of executing the critical path for

each project is plotted accordingly as a dashed line near the bottom

of each sub-figure. 127

6.11 External fitness of solutions by Configuration BWBS on Project D . 128

6.12 External fitness of solutions by Configuration BWBS on Project E . 129

6.13 External fitness of solutions by Configuration BWBS on Project F . 130

A.1 C – BWWS – Internal Fitness . 140

A.2 C – BWWS – External Fitness . 140

A.3 D – BWWS – Internal Fitness . 141

A.4 D – BWWS – External Fitness . 141

A.5 E – BWWS – Internal Fitness . 142

A.6 E – BWWS – External Fitness . 142

A.7 F – BWWS – Internal Fitness . 143

A.8 F – BWWS – External Fitness . 143

A.9 C – WWBS – Internal Fitness . 145

A.10 C – WWBS – External Fitness . 145

A.11 D – WWBS – Internal Fitness . 146

A.12 D – WWBS – External Fitness . 146

A.13 E – WWBS – Internal Fitness . 147

A.14 E – WWBS – External Fitness . 147

A.15 F – WWBS – Internal Fitness . 148

A.16 F – WWBS – Internal Fitness . 148

A.17 C – WWWS – Internal Fitness . 150

List of Figures 14

A.18 C – WWWS – External Fitness . 150

A.19 D – WWWS – Internal Fitness . 151

A.20 D – WWWS – External Fitness . 151

A.21 E – WWWS – Internal Fitness . 152

A.22 E – WWWS – External Fitness . 152

A.23 F – WWWS – Internal Fitness . 153

A.24 F – WWWS – External Fitness . 153

A.25 C – BWBS – Internal Fitness . 155

A.26 C – BWBS – External Fitness . 155

A.27 D – BWBS – Internal Fitness . 156

A.28 D – BWBS – External Fitness . 156

A.29 E – BWBS – Internal Fitness . 157

A.30 E – BWBS – External Fitness . 157

A.31 F – BWBS – Internal Fitness . 158

A.32 F – BWBS – External Fitness . 158

List of Tables

3.1 Data of thirty five software features for a future model of a mobile

phone from Motorola Inc.. Adapted from [Baker et al., 2006]. 51

3.2 Features of all six software projects 53

4.1 Spearman’s rank correlation coefficient between PICA value and Eu-

clidean distance. For all requirements, the observed ρ values are sta-

tistically significant at the confidence level of 95%. 80

4.2 Spearman’s rank correlation coefficient between cost and Euclidean

distance. For all PICA values, the observed ρ values are statistically

significant at the confidence level of 95%. 80

5.1 Three sets of configurations for CCEA each of which requires the same

total number of evaluations before it is terminated. F represents the

number of evaluation required in one generation, and it is fixed for all

configurations in this empirical study. 90

5.2 Characteristics of the four industrial projects 91

5.3 Wilcoxon Rank Sum Test (unpaired) test adjusted p-values for the

pairwise comparison of the three configurations 98

List of Tables 16

6.1 The table shows the average fitness of the solutions found by algo-

rithms in terms of their externally assessed project finish time (Days).

This reveals the quality of the solutions found in the last generation

of the co-evolutionary process. The maximum and minimum values

in each row are highlighted in bold font. Extrema tend to be found in

cooperative search, especially in the solutions of WPO in cooperative

search. In competitive search, optimisation on WPO dominates the

competition on complex projects (C and E), whilst optimisation on

STCAL dominates the competition on simpler projects (D and F). . 121

6.2 The Spearman’s rank correlation coefficient table indicates the trend

in the improvements of average external fitness values of the entire

population as the co-evolutionary progress proceeds over generations.

The values highlighted in bold font indicate the cases in which there

is no statistically significant overall trend of improvement. 124

7.1 Thesis Summary . 135

List of Algorithms

1 Greedy Algorithm . 69

2 NSGA-II Algorithm . 70

3 2-Population Cooperative Co-evolutionary Algorithm 117

Chapter 1

Introduction

This thesis addresses the study of applying the Search Based Software Engineering

(SBSE) approach to several software project management problems. In this chapter,

introductions of the SBSE as well as the problems to be tackled are presented, the

major contributions of this work are highlighted, and the layout of this thesis is

presented.

1.1 Search-based Software Engineering

As a set of techniques to apply meta-heuristic algorithms to software engineering

problems, Search Based Software Engineering (SBSE) [Harman and Jones, 2001]

is becoming an increasingly popular paradigm for the study and implementation of

solving software engineering problems that are highly complex and dynamic [Harman

et al., 2012]. It works by using search-based algorithms to automatically generate

solutions, and “evolving” them gradually to optimal or near optimal solutions.

Genetic Algorithms (GAs) [Holland, 1992] have been identified as one of the

most widely used search-based algorithms for SBSE [Harman, 2007]. Genetic algo-

rithms maintain one population of individual solutions to a specific problem. Each

individual solution is represented as a chromosome that carries its genetic informa-

tion (DNA) which defines how such an individual plans to solve the corresponding

problem. Depending on how well one individual solves the underlining problem, a

value is assigned to represent such individual’s “fitness”. Naturally, GA repeatedly

chooses those “fitter” solutions to reproduce (Figure 1.1) new individuals. The new

individuals then compete with their parent populations as well as their siblings. The

“fitter” individuals survive, form the population in the current generation, and re-

1.1. Search-based Software Engineering 19

produce the next generation. When this iteration of selection and reproduction ends,

the individuals in the last generation are expected to be the optimal or near optimal

solutions. The sequence of these operations is given in Figure 1.2.

Parent A: 1 2 3 4 5 6 7

�� �� ��

Offspring: 1 2 3 6 4 7 5
44 OO OO OO

Parent B: 6 2 3 1 4 7 5

Figure 1.1: GA crossover for reproduction

Initial Population

Fittness Evaluation

Selection

Reproduction

Mutation

Stop?

end

F

T

Figure 1.2: Simplified flow chart of a genetic algorithm

1.2. Software Project Management 20

Co-evolutionary genetic algorithm [Hillis, 1990, Potter and Jong, 1994] is very

important extension of standard GA that allows the optimisation process to “evolve”

more than one population of solutions, among which they are inter-related with

those in the other population. According to how the fitness of one individual might

affect the fitness evaluation of other individuals, the relationship across co-evolving

population can be competitive [Hillis, 1990] or cooperative [Potter and Jong, 1994].

1.2 Software Project Management

Software project scheduling and staffing problems have been tackled by heuristic

algorithm by Chang et al. [Chang et al., 2001,Chang et al., 2008,Ge and Chang, 2006,

Chang et al., 1998], Alba et al. [Alba and Chicano, 2005, Alba and Chicano, 2007],

and many other researchers [Gueorguiev et al., 2009, Antoniol et al., 2005, Alvarez-

Valdes et al., 2006,Chan et al., 1996,Hindi et al., 2002]. In fact, GA has been widely

studied in tackling software project management as a project scheduling problem.

However, the current state-of-the-art research demonstrate a lack of flexibility to

effectively cope with the dynamic of modern software projects, such as, changing

staff during the project is not allowed in the models.

From all those previous studies on software project scheduling and staffing, we

have known how to optimise the schedule of a software project under ideal condi-

tions such as accurate estimations given on: 1) accurate estimations on the effort of

each individual work packages, and 2) comprehensive knowledge of resources, e.g.:

provision for individual project staff.

However, in the practices of software project engineering management, the

project team is assembled and staff is allocated to work packages according to a

given “optimised” project schedule. This given schedule can no longer be considered

to be “optimised” once the staff information become fully available, because the

hired staff’s skills, efficiencies and availabilities are often guaranteed to be different

from the ones that were used to optimise the schedule.

Therefore, there is a need to simultaneously optimise these two closely related

problems together, and we decided to investigate the co-evolutionary algorithm’s ad-

vantage that enables us to study the impact of the interconnections between multiple

1.3. Contributions of this Work 21

subproblems.

In fact, unlike the work in this thesis, none of the previous work on project

scheduling and staffing has used a co-evolutionary optimisation approach. More

importantly, our co-evolutionary model allows us to investigate uncertainties caused

by unplanned changes such as changing requirements and staff absence which can

not be easily coped with by traditional standard GA.

1.3 Contributions of this Work

This thesis makes a main contribution of demonstrating that advanced SBSE tech-

niques can be beneficial in solving software project management problems at the

stages of project initiation (Chapter 4), planning (Chapter 5) and enactment (Chap-

ter 6). The contributions of this thesis are elaborated as follows::

1. It presents an automated Sensitivity Analysis approach to identify sensitive

requirements and budgets with respect to inaccurate cost estimation. The

approach is based on SBSE for both single-and-multi-objective Next Release

Problem formulations.

2. It introduces Cooperative Co-Evolutionary Algorithms to the software project

staffing and scheduling problems for the first time. A Cooperative Co-

evolutionary Algorithm is able to outperform random search and single popu-

lation genetic algorithm on software project staffing and scheduling problems.

3. It presents empirical studies of four real world software projects planning data

that demonstrate co-evolutionary optimisation techniques that can, not only

find solutions to compensate the impact of staff absence during the project

execution, but also provide various insightful knowledge that can aid project

manager in making better and safer decisions.

4. It presents the establishment of a tool called Amphisbaena 1 (AMPHI- Search

Based manAgEmeNt Approach). Currently, Amphisbaena provides intuitive

1 Amphisbaena noun [­am(p)-f@s-"bē-n@] from: merriam-webster.com
Definition: a serpent in classical mythology having a head at each end and capable of moving in
either direction
Origin: Latin, from Greek ‘amphisbaina’, from ‘amphis’ on both sides (from ‘amphi’ around) +
‘bainein’ to walk, go

1.4. Research Methodology 22

visualisations for sensitivity analysis on requirement estimation, and it also

provides solutions and insights of staffing and scheduling via the automated

analysing process that is operated directly on the Microsoft R© Project Plan

(*.mpp) file.

In summary, the thesis proposes the following three main steps in software project

management process: 1) the SBSE sensitive analysis to help on achieving more

accurate estimations during requirement selection, 2) the cooperative co-evolutionary

approach to help on attaining more effective project staffing and scheduling, and 3)

the co-evolutionary approach to help on compensate the impact of staff absence.

These contributions support the thesis that automated SBSE assistance can provide

both solutions and insightful knowledge to a software project management problems

across the entire software development life cycle from the project’s initiation, through

planing to its enactment.

1.4 Research Methodology

This research adopts the quantitative research method to systematically and empir-

ically investigate three software project management problems. In particular, this

thesis tackles the problems which cause software project managers: 1) suffering from

unreliable estimations during requirement selection, 2) not being able to co-optimise

staffing and scheduling when they are planning the project, and 3) being difficult to

management staff absence during the enactment of a project.

In essence, the empirical experimentations are designed in answering the follow-

ing three sets of research questions: 1) How does SBSE sensitivity analysis help in

understanding the correlation of the key factors (i.e., cost and inaccuracy) and the

revenue of the final solution, and how to understand the exceptions to the general

trends? 2) Can cooperative co-evolutionary algorithm outperforms random search

and conventional genetic algorithm in co-optimising the staffing and scheduling prob-

lems, and how effective and efficient? 3) How do co-evolutionary optimisation tech-

niques reveal and compensate the impact of staff absence?

The research questions are answered by the empirical studies based on the quan-

titative data and statistical analysis on the result. The first set of quantitative re-

1.5. Layout of the Thesis 23

search questions mainly ask for the significance of the correlation between two pairs

of variables: {cost and impact} and {inaccuracy and impact}. Positive correlation

assumptions are statistically tested against both synthetic and real-world require-

ment data. Spearman’s rank correlation coefficient shows that strong positive corre-

lations exist at the confidence level of 95%. The second set of quantitative research

questions focus on the comparisons of the performance of random algorithm, conven-

tional evolutionary algorithm and the cooperative co-evolutionary algorithms. The

empirical studies on different algorithms are conducted on four real world software

projects. The Wilcoxon Rank Sum Test on the results found that the cooperative

co-evolutionary algorithm performs better than the conventional 1-population evo-

lutionary algorithm with great statistical significance (p ≤ 1.28E − 06). The third

set of quantitative research questions mainly ask to identify the configurations of co-

evolutionary algorithm that are able to find more extreme solutions than the others

under the combined influence of staff absence and project complexity.

During the course of answering the research questions, a set of automated tools

simulating project enactment are developed. Seven sets of real world requirement

and project planning data are used to perform empirical experiments. Statistical

tools are utilised to analyse the correlations between variables and the comparison

of different optimisation techniques.

1.5 Layout of the Thesis

This thesis is organised as follows:

Chapter 2 - Literature Review summarises the literature in the fields of software

project management, techniques for sensitivity analysis, evolutionary optimisation,

search based software engineering and its applications in software project manage-

ment.

Chapter 3 - Industrial Data for Evaluation describes the real world data sets

used for the empirical studies in this thesis. The chapter begins by describing a set of

software requirements from Motorola Inc.. The cost and revenue of each requirement

are listed. The chapter then introduces each of the six sets of real world software

1.5. Layout of the Thesis 24

projects’ plans by: describing the industrial context, summarising the key features,

and visualising the key information.

Chapter 4 - Sensitivity Analysis on Cost Estimation of Requirements

Selection presents an approach to sensitivity analysis in a requirement selection

problem. The approach uses search based software engineering to aid the decision

maker to explore sensitivity of the cost estimates of requirements for the Next Release

Problem (NRP). The chapter presents both single- and multi-objective formulation of

NRP with empirical sensitivity analysis on synthetic and real-world data. Then the

chapter moves on to the analysis of the empirical study in which the some intuitive

assumptions are confirmed. A heat-map style visualisation tool is presented to reveal

those counter-intuitive exceptions which require careful consideration.

Chapter 5 - Cooperative Co-evolutionary Job Sequencing and Team Siz-

ing introduces an new approach to search based software project management based

on Cooperative Co-evolution. The approach aims to “co-optimise” both work pack-

age scheduling and developers’ team staffing problems simultaneously by applying co-

operative co-evolutionary techniques to achieve early overall finish time. The chapter

first introduces the models of the problems to apply the cooperative co-evolutionary

approach in generating, reproducing, and eliciting desirable solutions. The solution

evaluation is based on the simulation of executing such a project plan which consists

of two solutions to each of the two problems. The chapter then presents the results

of the empirical study using real world projects data from four different software

companies. The cooperative co-evolution is demonstrated to be more efficient and

effective than single population evolution and random search.

Chapter 6 - Co-evolutionary Project Planning Optimisation under Staff

Absence extends the work in Chapter 5 to consider how to fully utilise advantage of

co-evolutionary project planning technique to help the project manager to mitigate

possible impact of staff absence. The key to analysing the impact of staff absence is

first to be able to distinguish the staff by their skill, and then to simulate the absence

at different stages of a project. The chapter extends the design of the problem model

of staffing, as introduced in Chapter 5, to allow the representation of staff’s absence

1.5. Layout of the Thesis 25

in a staff availability calendar. The scheduler simulating the execution of project

plan is completely redesigned to accommodate the new job assignment rules that

are associated with the skills. This chapter then presents four new configurations of

co-evolutionary optimisation techniques and their empirical studies on four real world

software project data. The result demonstrates the co-evolutionary software project

planning technique is able to provide lower and upper bound of current project’s

finish time, identify the dominating problem during the execution of current project,

and provide useful insights on the correlations among staff absence rate, the delay

caused, and the complexity of a project.

Chapter 7 - Conclusions concludes the thesis with a summary of its major con-

tributions and proposals of future work.

Chapter 2

Literature Review

2.1 Software Project Management

Project management is a broad subject, and all of its subtopics cannot be covered

in this thesis. Therefore, the thesis is focused on Software Project Management,

including cost and scheduling estimation, risk management, and staff assignment

optimisation.

In general, a project can be defined as a series of activities that are conducted

to achieve one or more specific objectives at a specified cost and within a specified

time [Hughes et al., 2004]. Essentially, a management method is a set of processes

used to run a project in a controlled and, therefore, predictable fashion. In the con-

text of software engineering, we focus on projects that develop new software, and

the management activities including: planning, coordinating, measuring, monitor-

ing, controlling, and reporting, which collectively ensure that the development and

maintenance of the software is systematic, disciplined, and quantified [Abran et al.,

2004, IEEE610.12-1990, 1990].

The Software Engineering Coordinating Committee, which is sponsored by the

IEEE Computer Society, has developed an all–inclusive collection of knowledge

within the profession of software engineering that is known as the Software En-

gineering Body of Knowledge (SWEBOK) [Abran et al., 2004]. SWEBOK suggests

the 10 Knowledge Areas (KAs) that form the classification of the scheme of the

field, i.e., Software Requirements, Software Design, Software Construction, Software

Testing, Software Maintenance, Software Configuration Management, Software En-

gineering Management, Software Engineering Process, Software Engineering Tools

2.1. Software Project Management 27

and Methods, and Software Quality.

With regard to the software project management, SWEBOK specifically in-

cludes a breakdown that allows the Software Engineering Management KA to be

viewed as an organisational process. As shown in Figure 2.1, the primary basis for

the top-level breakdown is the process of managing a software engineering project.

The software project management process is addressed in its first five subareas, and

software engineering measurement is addressed in the last sub–area.

Figure 2.1: Breakdown of topics covered in the Software Engineering Management
KA. Figure adapted from [Abran et al., 2004].

2.1.1 Software Life Cycle Process Models

Waterfall Model: The Waterfall model is the oldest and most well known software

development model. Published by Royce in 1970 [Royce, 1970], it models the software

2.1. Software Project Management 28

development process in sequential phases and suggests that the current phase should

be completed and checked for accuracy before proceeding to the next phase. By

using the Waterfall model, the software project manager expects each task to be

completed properly the first time it is done. However, for most software projects, the

developers’ knowledge and understanding of the information related to the project

become clearer as the processing proceeds. Therefore, if some important details

are discovered that were unknown at the beginning of the project, the Waterfall

developing model requires the process to be restarted. So, the Waterfall model

works best for projects for which the required information is known and static, the

objectives of project are clearly defined, and there is a very low probability of any

surprise.

Spiral Model: The Spiral model, which was developed by Boehm in 1988 [Boehm,

1988], was designed to overcome the Waterfall model’s major weaknesses. In the

Spiral model, a project starts with the development of a small set of requirements

to guide the developers’ effects through the whole process. Then, in each of the fol-

lowing iterations, the development team add additional requirements to the product

based on the experience gained from the previous iterations and any new, available

external knowledge that may be available about the product. This iterative approach

results in a more flexible development process to that is able to adapt to changing

requirements. It also reduces the risks by providing opportunities for the objectives

to be refined and for the risks to be reassessed at the end of each iteration.

V–Model: The V–model was first introduced for use in Germany’s federal IT

projects [Sommerville, 1992]. It pays special attention to improving the commu-

nication between the developer and the customer by associating the analysis and

development phases with the corresponding testing processes. This approach allows

the provisions of guidelines so that both developers and customers can contribute

cooperatively to the project.

Agile Methods: New software is integrated seamlessly into people’s every day lives,

and software development is no longer viewed as a technically demanding activity

that only serious scientists can do. Quite often, the software engineers begin coding

when only a small fraction of the requirements are clearly defined and well before the

2.1. Software Project Management 29

overall design structure of the software has been finalised. Since even the customers

might not have a clear idea of what all their needs are at the beginning of the software

development process, the early finalisation of the overall structure of software that

is being developed is very difficult. Most importantly, the requirements often change

during the course of the development process. Therefore, it is unrealistic to enforce

an exact “plan” for the software when its development has just begun.

In a traditional “Plan Driven” development process, an attempt is made to plan

all the requirements and changes upfront. At the beginning of the process, efforts

are made to anticipate any changes in the requirements that may be needed, and,

subsequently, the goal of the following management activities is to try to ensure that

the project is developed according to plan, hoping that nothing goes wrong.

Agile “spirit” guides the project management to attempt to achieve “working

software” in very short periods of an incremental development cycle. The “plan” is

to develop the software along with its overall structure until the customer is satisfied

or the resources are used up. The goal is the development of functional software that

satisfies the customer, and Agile methods attempt to achieve this by emphasising

the role of the day-to-day input of customers in keeping the process moving in the

right direction. In general, the software system and the requirements are developed

gradually as the development activities take place.

In February 2001, the Agile Manifesto [Beck et al., 2001] was published and the

Agile Alliance was found to promote Agile methods including SCRUM and Extreme

Programming. SCRUM [Schwaber and Beedle, 2001] is one of the earliest Agile soft-

ware project management methods while Extreme Programming [Beck and Andres,

2004] is one of the most widely used software development methods [Boehm, 2006].

2.1.2 Challenges in Software Project Management

The Software Engineering Management KA [Abran et al., 2004] addresses the man-

agement of software engineering project and the measurement of software. It also

identifies some of the key aspects that are specific to a software project and that

complicate the effective management of such projects. Harman et al. [Harman et al.,

2009b] identified a number of unresolved challenges in software project planning,

including: lack of robustness in planning, poor estimates and lack of appropriate

2.1. Software Project Management 30

integration of the various processes. These problems that are specific to software

project management are summarised below in items 1 through 6 and the remaining

unresolved challenges are summarised in item 7 through 9:

1. Lack of appreciation for the complexity inherent in Software Engineering, par-

ticularly in relation to the impact of changing requirements.

2. Changing requirements that might be generated by the clients (customers) or

by the software engineering processes themselves.

3. Iterative Developing Process: software is often built in an iterative process

rather than a sequence of closed tasks.

4. Software engineering necessarily incorporates aspects of creativity and disci-

pline, and maintaining an appropriate balance between the two is often difficult.

5. The degree of novelty and complexity of software is often extremely high.

6. There is a rapid rate of change in the underlying technology.

7. Often, the importance of robustness in planning is overlooked; it may be more

important to develop plans that are robust and can accommodate changes than

to develop plans that lead to early completion.

8. The unreliability of price and schedule estimates is problem that constantly

plagues software project development activities— [Jø rgensen and Shepperd,

2007].

9. Appropriate integration of the process steps is often overlooked: software

project management is not an activity that can be optimised in isolation. It is

necessary to develop techniques to integrate management activities with other

activities, such as design, testing, maintenance, or even with other engineering,

such as requirement engineering.

Herroelen [Herroelen, 2005] provided a list of the 12 reasons that are often cited

for the escalation of project costs and schedules. In examining that list, it is apparent

that none of them is related to the technology used in the project; rather, they are

2.1. Software Project Management 31

more related to human factors in the project management process. Keil [Keil et al.,

2003] gathered data for an information system based on a survey of 376 information

system audit and control professionals in the U.S. Bryde [Bryde, 2003] conducted

an empirical study of project management practices in projects in the UK. The

tools that are used in project management are project tracking, time analysis, cost

analysis, and resource analysis. Herroelen suggested that “proper use of project

management software may well not be considered the most important driving force

behind project success.”

2.1.3 Industry Standards and Practices for PM

Major project management practices in the real–world are listed below:

Critical Path Method (CPM) [Kelley Jr and Walker, 1959]: Developed by

DuPont Corporation, CPM is a scheduling algorithm to analyse the ordering of

work packages.

Program Evaluation Review Technique (PERT) [Malcolm et al., 1959]: In-

vented by US Department of Defense for a US Navy Project, PERT is a method to

calculate the total completion time of a project by analysing the completion time of

each task involved in the project.

Work Breakdown Structure (WBS) [Jø rgensen, 2004b, Tausworthe, 1980]:

Also invented by US Department of Defense, WBS is a hierarchical tree structure

that contains all the subtasks that need to be done to complete the whole project.

SCRUM [Schwaber and Beedle, 2001]: Scrum is an agile software development

model based on multiple small teams working in an intensive and interdependent

manner.

A Guide to the Project Management Body of Knowledge (PMBOK

Guide) [PMI, 2004]: Published by Project Management Institute, PMBOK is an

standard of accepted project management information and practices. The latest

(4th) edition was released in 2008.

Earned Value Management (EVM) : EVM is a set of techniques for measuring

the project progress.

2.1. Software Project Management 32

Total Cost Management (TCM) : TCM is a process for applying the skills and

knowledge of cost engineering.

PRojects IN Controlled Environments (PRINCE, PRINCE2) : It provides

a method for managing projects within a clearly defined framework.

Theory of Constraints (TOC), Critical Chain Project Management

(CCPM) : CCPM is developed from TOC. It aims to analyse constraints on the

project and manage the resources to keep the whole project on schedule.

2.1.4 Risk Management in Software Development

Boehm [Boehm, 1991, Boehm and Ross, 1989] introduced the concept of Software

Risk Management into the field of Software Engineering in the 1980s. He summarised

four types of sources of software risk addressed by risk management techniques:

• Potential software errors

• Overruns of budget and schedule

• Not satisfying functionality or performance requirements

• Developing a product which is hard to modify or use in other situations

Boehm offered a six–step risk management process to assess and control these sources

of risk. The six steps are grouped into two categories called assessment and control

as follows:

• Risk Assessment

1. Risk Identification

2. Risk Analysis

3. Risk Prioritisation

• Risk Control

4. Risk Management Planning

5. Risk Resolution

6. Risk Monitoring

With regards to the risk caused by software errors, an example of the Risk

Reduction Leverage calculation is given in Boehm’s paper [Boehm and Ross, 1989]

to confirm that the investments in risk management with verification and validation

(V&V) in the early stages of a software project have a higher pay-off ratio than

investments that are made in testing later on. For the sake of easy identification,

2.1. Software Project Management 33

the most common risk items on a software project, i.e., a checklist of the “Top 10

Primary Sources of Risk on Software Projects,” are summarised based on their survey

of a number of experienced project managers. He identified the difficulty of making

accurate estimations of the possibility of the occurrence of a risk and the associated

loss identified by the checklist. This leads to an inaccurate risk assessment and,

consequently, to poor risk control. Boehm mentioned some techniques to improve

the estimation of the probability of the occurrence of a risk. For simplicity, the risk

probabilities and losses are assessed on a relative scale of 0 to 10.

Fairley [Fairley, 1994] provided a design of the process that was more practical

than Boehm’s. He created a seven-step process for risk management was based on

several years of work with numerous organisations to identify and overcome risk

factors in software projects:

1. Identify risk factors

2. Assess risk probabilities and effects on the project

3. Develop strategies to mitigate identified risks

4. Monitor risk factors

5. Invoke a contingency plan

6. Manage the crisis

7. Recover from the crisis

An example of risk management for a project to implement a telecommunications

protocol for a network gateway was proposed to demonstrate his mathematical model

of the assessment of risk probabilities and effects. However, unlike Boehm, he sug-

gested no additional tools or methods.

In the practice of Software Project Risk Management, different project man-

agers tend to focus on different aspects of risk analysis. Moynihan [Moynihan, 1997]

confirmed this even with his survey of only 14 experienced application systems de-

velopers in Ireland on the topic of “How experienced project managers assess risk.”

More importantly, he analysed the risk factors summarised from the survey and

2.1. Software Project Management 34

compared them with those risk factors identified in the software project manage-

ment literature, such as Barki’s Risk Variable [Barki et al., 1993] and SEI Risk

Question [Carr et al., 1993]. The analysis suggested that it is unrealistic to build a

single, universal risk taxonomy for use by all software development projects, which

means a universal “checklist” for software project risk management does not exist.

Project risk management has different taxonomies within different project contexts,

just as we might expect.

Before a meaningful risk management plan can be developed, risks must be

identified in advance. Despite the different aspects of the risk management process,

both Boehm and Fairley started their risk management process by Risk Factors

Identification. However, since a universal “checklist” does not exist and experts’ risk

management is highly dependent on their experience, researchers tend to seek out

and use the tools or models that will help the experts analyse risks that have specific

characteristics to determine their impacts on the project.

Keil et al. [Keil et al., 1998] proposed a risk categorisation framework for iden-

tifying software project risk based on two dimensions, i.e., perceived level of control,

and perceived relative importance of the risk. They assembled three panels of more

than 40 software project managers from all over the world to rank the importance of

a common set of 11 risk factors. The project managers had little or no input concern-

ing the risk factors that were considered to be the most important. Subsequently, the

study results suggested that the software project manager should expand her or his

risk assessment to include the factors over which project managers have relatively

little control, such as risks relative to customer mandates, which were identified

among the most important risks but which were missing entirely from Boehm’s top

10 checklist of possible risk sources [Boehm and Ross, 1989].

With the help of their risk framework, Wallace and Keil subsequently investi-

gated [Wallace and Keil, 2004] how different types of risk influence project outcomes

by collecting and analysing input from more than 500 software project managers.

The study showed that managing the risks related to a project’s execution, scope,

and requirements is critical. Project management almost always requires tradeoffs

to deal with the triple constraints of scope, cost, and schedule.

2.2. Software Cost Estimation 35

A recent empirical study by Odzaly et al. [Odzaly and Des Greer, 2009] indicated

that a sample of 18 experienced software project managers had good awareness of

risk management but a low usage of the tools required to perform risk management

on projects. The authors also sought to develop an agent-based, automatic tool to

bypass the perception that the risk management process is costly, which has been

confirmed as a major barrier that prevents or reduces its application in software

project management practice. Gueorguiev et al. [Gueorguiev et al., 2009] introduced

a search-based approach to identify and quantitatively analyse the risk associated

with project scheduling.

To summarise, many research and standardisation efforts have been attempted

in the field of risk analysis for software project management, but, in practice, prac-

titioners still tend to avoid using the recommended approaches based on the facts

that 1) a set of “standard” risk management processes is generally unacceptable to

software project managers and 2) it is costly to do so.

Automated or semi–automated tools have become important in advancing the

practice of risk management to a new level. As indicated in Section 2.5 of this

review, Search Based Software Engineering (SBSE) techniques are the ideal tool to

automate the risk analysis process in software project management. Within the

context of SBSE, project managers have the choice of defining the objectives that

they think are more important for successful completion of the current project or

using the SBSE tool to determine the optimal or near–optimal candidate solutions.

2.2 Software Cost Estimation

Software cost estimation is critical for the success of software projects management.

Depending on whether the final step of the estimation is a mechanical quantification

step, such as a formula, there are two ways to estimate costs during the software

project planning phase, as indicated in Expert Judgment–Based Estimations and

Formal Model–Based Methods [Jø rgensen et al., 2009].

According to an extensive review of software estimation models and techniques

conducted by Boehm in 2000 [Boehm et al., 2000], these methods can be classi-

fied into six major categories: 1) parametric models that use specific mathemat-

2.2. Software Cost Estimation 36

ical models to measure and calculate estimates for the development efforts, such

as COCOMO and COCOMO II [Boehm, 1984, Boehm et al., 1995], SLIM [Put-

nam and Myers, 1992], and Check Point [Jones, 1997]; 2) expertise–based techniques

that help practitioners provide estimates based on their knowledge and experiences,

such as the Delphi method [Boehm, 1984,Helmer et al., 1966] and Work Breakdown

Structure-based methods [Jø rgensen, 2004b,Tausworthe, 1980]; 3) learning–oriented

techniques that perform the estimation by “learning” from previous experience. The

“learning” process can be done manually, such as the Case Based Reasoning (CBR)

approach [Aamodt and Plaza, 1994], or automatically, such as the Machine Learn-

ing approach [Goldberg, 1989]; 4) dynamics–based models developed by Jay For-

rester [Forrester and Wright, 1961] that acknowledge the change of software project

efforts or cost over the duration of the development of the system; 5) regression–

based models that include the “Standard” regression – Ordinary Least Squares (OLS)

method [Griffiths et al., 1993] and the “Robust” regression (e.g., Least–squares of In-

verted balanced Relative errors (LIRS)) [Miyazaki et al., 1994], which is an improved

version of OLS that alleviates the common problem of outliers in observed software

engineering data and 6) composite methods that combine two or more techniques to

accommodate the needs of different project situations.

Researchers have a strong inclination to combining their expert judgment with

the results of formal methods for developing estimates of software development ef-

forts. In a recent debate [Jø rgensen et al., 2009] with Boehm on “which is better for

software development estimation: formal models or expert judgement?” Jorgensen

claimed that the most important advantage of the judgment-based method is that

the experts’ highly specific knowledge is difficult to include in the formal models.

Boehm argued that parametric models contain a significant amount of information

on which factors cause software costs to change and by how much. He also argued

that organisations are performing extensive sensitivity, risk, and trade–off analyses to

narrow the cone of uncertainty, but these analyses are complex and time consuming.

On the other hand, industrial surveys have indicated that formal models-based

methods are seldom used by software practitioners, mainly because of the high cost

of implementing formal models and the insignificant benefits that result from their

2.3. Sensitivity Analysis 37

use [Yang et al., 2008a]. Due to the people–centric nature of software engineering,

an accurate cost estimation system has yet to be developed and remains as one of

the unachieved challenges in Software Engineering [Shepperd, 2007].

In addition to the nature of the “high cost” and inaccuracies of estimation

techniques, project uncertainties are also of considerable importance [Jø rgensen,

2004a]. Large differences between estimated and actual effort do not necessarily

indicate poor estimation skills. While it is important to analyse the degree of the

uncertainties of the estimate, it might be more helpful for the decision maker to

gain insight into the effects caused by the uncertainties during the cost estimation

phase [Gueorguiev et al., 2009,Harman et al., 2009a].

2.3 Sensitivity Analysis

As discussed in Sections 2.1.4 and 2.2 concerning risk analysis and cost estimation,

it was indicated that, due to variables that are unpredictable, software engineers

are not able to predict accurately actual risks or cost. While various models and

procedures have been developed in attempts to achieve more accurate predictions of

the parameters, some researchers have been attempting to prevent failures in projects

with a slightly different approach; they have tried to identify the parameters that

are more sensitive to inaccurate estimations.

Sensitivity Analysis (SA) refers to “the determination of the contribution of

individual, uncertain analysis inputs to the uncertainty in analysis results” [Helton

et al., 2006]. Usually, when a system becomes increasingly complex, it becomes

increasingly difficult or even impossible to derive and summarise the relationship be-

tween the inputs and outputs of the system using a mathematical model. Sensitivity

analysis is a set of techniques used to analyse the relationship between the inputs

and outputs of a complex system based on the input parameters and the observed

outputs produced by the system. Generally, sensitivity analysis is used to identify

the input parameters that most significantly influence the system’s outputs.

Applications of SA are widely found in the literature for various areas, such as

chemical kinetics [Sandu et al., 2003], physical science [Newman et al., 1999], en-

vironmental modelling [Hamby, 1994], telecommunications engineering [Racu et al.,

2.3. Sensitivity Analysis 38

2005], and financial analysis [Levine and Renelt, 1992]. A few typical usages of SA

techniques have been selected and classified into the following categories for experi-

mentations of evolutionary computation:

One–At–a–Time (OAT) methods [Saltelli et al., 2000] are the simplest of the

various methods, and they are also referred to as Local Sensitivity Analysis [Saltelli

et al., 2008] or Nominal Range Sensitivity Analysis [Christopher Frey and Patil,

2002]. Conceptually, these methods vary one parameter at a time repeatedly, while

all of the other parameters are maintained at their fixed, baseline values. The major

drawback of OAT methods is that the interactions between parameters are not taken

into account in the analysis. Therefore, results from OAT methods and global sen-

sitivity analyses can be contradictory [Thogmartin, 2010]. Several possible ways for

correcting OAT methods have been proposed recently by Saltelli et al., including full

factorial design methods, the regression effects method, and the elementary effects

method, which they note can be used “...at no extra cost.” [Saltelli and Annoni,

2010].

Factorial Design (FD) [Box et al., 1978] overcomes the major drawback of the

OAT methods by selecting a given number of samples for each parameter and running

the model for all combinations of the samples. In this case, the interactions between

parameters are considered. However, it is not feasible to use this method to perform

SA on a model with a large number of parameters because of the tremendous number

of runs required. In 2006, Helton et al. [Helton et al., 2006] conducted a comprehen-

sive survey of uncertainty and sensitivity analysis techniques using sampling-based

(e.g., Monte Carlo (MC)) methods.

The Elementary Effects (EE) [Morris, 1991] Method was first introduced by

Morris in 1991 to accommodate the needs for SA from models that are deterministic

and complicated with a large number of input parameters, which makes “classical”

SA methods impractical. The elementary effect of the ith input xi is defined below

for a given set of k inputs whose values are denoted by vector X :

di(X) = [y(x1, x2, . . . , xi +∆, . . . , xk)− y(X)]/∆ (2.1)

2.3. Sensitivity Analysis 39

where y is the output of the model, and ∆ is the simulated “error” on xi. (Note:

X here is not the basic line.) Suppose r sample values for xi are selected; for each

sample value, we have an elementary effect value for this particular input. Then the

mean and standard deviation are calculated for the elementary effects for this input

as follows:

µi =
1

r

r∑
1

di(X) (2.2)

σi =

√√√√ 1

r − 1

r∑
1

{di(X)− µi}2 (2.3)

A large measure of mean value, µ, indicates xi has a large “overall” influence, while

a high value of standard deviation, σ, indicates non-linear effects or that xi interacts

with other inputs. Obviously, low values of both variables indicates that input is

non-influential. EE methods are considered to be a very good compromise between

accuracy and efficiency, especially for sensitivity analysis of large models [Campo-

longo and Braddock, 1999]. Aiming at improving Morris’ strategy on randomly

sampling the input space, Campolongo et al. recently enhanced the strategy to

gain a better spread of the input domain without increasing the number of model

executions needed [Campolongo et al., 2007].

Box and Wilson (1951) first developed the Response Surface Methodology

(RSM) for determining optimum conditions in a chemical investigation [Box and Wil-

son, 1951]. Since that time, RSM has been of value for many other fields [Bucher,

1990, Carley et al., 2004, Hill and Hunter, 1966, Isukapalli et al., 2000, Khuri and

Mukhopadhyay, 2010]. The underlying idea of RSM is to try to reduce the num-

ber of computational experiments necessary to explore the input/output relationship

space. It provides a way to develop and/or simplify the model itself by rigorously

choosing a few points on the response surface to effectively represent all the possi-

ble points. Then, the sensitivity analysis can be determined by investigation of the

response surface, i.e., inspection of the functional form of the response surface.

In summary, OAT methods and FD can be considered as “brute force” strategies

for tuning the input parameters to determine the features of the output results, while

the EE method attempts to sample the parameters with care. Furthermore, other

2.4. Evolutionary Computation 40

methods, such as RSM, simplify the model and subsequently prioritise the input

parameters. Practitioners are more likely to use the combinations of these methods

mentioned above [Saltelli, 2004,Saltelli, 2005,Saltelli et al., 2004,Saltelli et al., 2008].

It is worth mentioning that Uncertainty Analysis (UA) and Sensitivity Analysis

are often coupled in practice [Saltelli and Annoni, 2010]. However, the objectives of

UA and SA are different. Uncertainty analysis refers to “the determination of the

uncertainty in analysis results that derives from uncertainty in analysis inputs” [Hel-

ton et al., 2006] and answers the question, “How uncertain is this inference?” On

the other hand, sensitivity analysis aims to answer the question, “Where is this

uncertainty coming from?” [Saltelli and Annoni, 2010].

2.4 Evolutionary Computation

The inspiration for using Evolutionary Computation (EC) to solve engineering or

science problems came from the model of Darwinian evolution and biological the-

ory [Darwin, 1859]. EC uses the Darwinian concepts of evolution and the principles

of natural selection to automate the process of solving problems. Possible solutions

for an underlying problem are considered as “individuals”. The evaluation of each

individual is calculated by the fitness function. Higher fitness values indicate bet-

ter quality solutions for the given problem. Each individual is encoded with the

“chromosomes” on which the genetic operations (i.e., crossover and mutation) are

conducted. Finally, the candidate solutions with higher fitness values survive dur-

ing the process of “selection” and produce their “offspring” by means of crossover

and mutation. The new population, which consists of the candidate solutions that

survived and their offspring, is called a new generation. As such, under the force of

evolutionary pressure, the whole population evolves better solutions gradually over

generations. A brief introduction to each step of this evolutionary process is provided

below.

Representation: The representation of solutions reflects how the designer under-

stands the problem domain and the solution domain. There are two representations

that are most frequently used, i.e., individuals could represent the solution for a real

world optimisation problem as a binary string (GA) or individuals could represent

2.4. Evolutionary Computation 41

the solution in the form of a vector of real numbers (ES). In both cases, the evalu-

ation process is based on extracting information from these representations, which

will be given to an objective function to calculate the fitness.

Initialisation: Random is most frequently used for initialisation. Because the first

generation of individuals is generated randomly, all the individuals of the first gen-

eration are distributed randomly in the search space, providing diverse information

about the search space. It is the easiest way to initially randomise the population,

because the knowledge of search space is not necessary in the procedure of random

initialisation.

Evaluation: The evaluation process is to determine the fitness value of the individ-

uals. The objective function(s) used to calculate the fitness value represent(s) the

ultimate goal of the optimisation, which should be clearly defined by the designer.

The algorithm should conduct the evaluation methods, which could then be used

to direct the algorithm to identify the “fittest” solution(s), subject to constraints of

resources.

Selection: The selection procedure is based mainly (but not necessarily fully) on

the fitness value of each individual. The individuals with higher fitness values will

be more likely to survive and produce offspring. On the other hand, the individuals

with less fitness values could also be selected when they have, for instance, high

potentials to contribute to the diversity of the population and produce high-fitness-

value offspring. The ultimate goal of selection is to maintain a population of high

fitness individuals and provide an optimal set of solutions.

Genetic Operators: Mutation and Crossover (Recombination) are the two methods

used to generate offspring from the current population with the hope of producing

better individuals in the offspring. The process of mutation is to alter a small portion

of an individual’s chromosome, hoping to introduce more fit genes. The process of

crossover (recombination) involves mixing the genes from two selected individuals

(chromosomes), hoping to combine the best genes to produce stronger offspring.

Termination: The process of evolution could be endless iterations of “survival of

the fittest”. The designer must decide when to terminate the iterations and achieve

the final survivals. This decision could be made based on the evaluation of the

2.4. Evolutionary Computation 42

population (how good the population is) or based on the constraint of the resources

that run the algorithms, i.e., the amounts of time and money that can be spent on

it.

2.4.1 Evolutionary Algorithm

The Evolutionary Algorithm (EA) is a sub-set of EC. There are two prominent fea-

tures that distinguish EAs from other search algorithms: 1) EAs are all population-

based and 2) there are communications and information exchange among individuals

or between populations [Yao, 1996]. Due to the different configuration in the im-

plementations, four major EAs have been developed under the same concepts of

evolution that were aforementioned.

2.4.1.1 Genetic Algorithm

The Genetic Algorithm (GA) refers to a model introduced and investigated by John

Holland in 1975 [Holland, 1992]. GA is one of the most popular types of EAs.

The representation of the individuals in a GA is normally in the form of strings of

numbers. It has been used mostly to evolve solutions in the parameterised problem

domain [Goldberg, 1989,Kicinger et al., 2005].

2.4.1.2 Genetic Programming

Genetic Programming (GP) [Koza and Poli, 2005, Koza, 1992] has a tree structure

to represent individual candidate solutions, while it is attempting to evolve actual

computer programs. With the tree-structure chromosome representation, a complex

mathematical model or a program can be expressed well, and, then, the genetic

operations can perform the evolution process accordingly. GP has been used to evolve

actual computer programs for solving a number of computational tasks [Langdon and

Poli, 2002].

2.4.1.3 Evolutionary Strategy

The Evolutionary Strategy (ES) approach was first introduced by Rechen-

berg [Rechenberg, 1964] and Schwefel [Schwefel, 1965]. One genetic operator,

Crossover (recombination), is less commonly used in ES. On the other hand, mu-

tation operator on each individual is guided by parameters that evolves along with

individuals themselves. In such cases, the genetic operation process is able to adapt

2.4. Evolutionary Computation 43

to the given problem automatically.

2.4.1.4 Evolutionary Programming

Evolutionary Programming (EP) was pioneered by L. Fogel, A. Owens, and M. Walsh

in 1966 [Fogel et al., 1966] and recently refined by D. Fogel [Fogel, 1991]. There is no

fixed representation or structure to distinguish EP from the other EAs. Therefore,

researchers found it hard to distinguish EP from the other EAs on the theoretical

level [Weise, 2009]. Detailed elaborations of the mechanism and comparisons of ES,

GA, and EP can be found in the literature [Bäck and Schwefel, 1993].

2.4.1.5 Co–evolutionary Genetic Algorithm

Co-evolutionary computation research is another very important extension of stan-

dard GA. Axelord was one of the first to introduce ideas of modelling the behaviour

of natural co-evolution in game theory [Axelrod and Dion, 1988,Axelrod and Hamil-

ton, 1981]. Hills [Hillis, 1990], Husbands and Mill [Husbands and Mill, 1991], and

Paredis [Paredis, 1994] were the earliest researchers to implement Co-evolutionary

GA (CGA). Hills used two populations to evolve the sorting networks and test cases

simultaneously. Husbands and Mill applied two populations to evolve two fractions

of solutions independently for a job-shop scheduling problem. Paredis evolved the

constraints and solutions in two different populations for an “n-queen” problem.

In the context of evolutionary computation, co-evolution refers to evolving more

than one independent population. The feature that distinguishes the co-evolutionary

GA from the standard GA is that the evaluation of individuals is based on the

interactions with other individuals instead of being conducted alone. Depending

on the nature of these interactions, CGAs are further classified into two types, i.e.,

Competitive CGA and Cooperative CGA.

2.4.2 Competitive Co–evolutionary Algorithm

Competitive CGA maintains different candidate solutions in multiple populations

that simulate competing relationships, such as predator-pray. For example, in Hills’

early implementation [Hillis, 1990], the objective of one population is to evolve in-

creasingly better sorting networks, while the objective of the other population is to

evolve increasingly difficult test cases for the sorting network. In such a case, in-

2.5. Search Based Software Engineering 44

creasingly better solutions for both sorting networks and test cases are found under

the pressure of selection. Most work with co-evolutionary algorithms are this type

of so-called Competitive CGAs [Wiegand, 2003].

2.4.3 Cooperative Co-evolutionary Algorithm

Cooperative co-evolution [Potter, 1997,Potter and Jong, 1994] was proposed to solve

large and complex problems by implementing the divide–and–conquer strategy. In

the model of cooperative CGAs, the individuals from each population represent a

fraction of the solution to the given problem. Candidate solutions in each population

are evolved independently. The interactions only occur to obtain fitness. It was orig-

inally designed to decompose a high-dimensional problem into smaller sub-problems

that could be handled by conventional evolutionary algorithms [Wiegand, 2003,Yang

et al., 2008b].

2.5 Search Based Software Engineering

Meta-heuristic search techniques, such as Genetic Algorithm (GA), Simulated An-

nealing (SA), and Hill Climbing (HC), have proven to be good at providing “good-

enough” solutions for complex problems within a reasonable time. On the other

hand, the nature of software engineering makes it the ideal application for search-

based optimisation [Harman, 2010b]. For these reasons, the application of search-

based techniques to software engineering problems has become a burgeoning interest

to many researchers in recent years.

2.5.1 Origins and Applications

One of the earliest publications concerning the use of search-based techniques to

solve software engineering problems was in 1976 by Miller and Spooner [Miller and

Spooner, 1976]. In 2001, Harman and Jones [Harman and Jones, 2001] coined the

term “Search-Based Software Engineering” (SBSE). Since then, research on SBSE

has been developed widely in various areas for solving software engineering prob-

lems. Recently, in 2009, Harman et al. also conducted an extensive survey [Harman

et al., 2009b] on the application of search based techniques to problems throughout

the software engineering lifecycle, such as requirement selection problems [Finkel-

stein et al., 2008, Finkelstein et al., 2009, Harman et al., 2009a, Zhang et al., 2007],

2.5. Search Based Software Engineering 45

cost estimation problems [Harman et al., 2009a], software project scheduling prob-

lems [Alba and Chicano, 2007,Di Penta et al., 2011,Di Penta et al., 2007,Herroelen,

2005], and testing [Harman and McMinn, 2010, McMinn, 2005]. It is interesting to

see that, even though search-based techniques have existed for decades, research on

SBSE did not gain significant attention until the last decade. The number of pub-

lications on SBSE has increased every year since 2000. The number of publications

on SBSE in 2008 was about 10 times greater than it was in 2000 [Harman et al.,

2009b].

The survey by Harman et al. [Harman et al., 2009b] indicated that 54% of the

overall SBSE literature is concerned with applications related to software testing.

Several important surveys specific to search based testing can be found in the liter-

ature [Afzal et al., 2009, Ali et al., 2010, McMinn, 2004]. On the other hand, GA,

SA, and HC have been identified as the most widely used search-based algorithms

for SBSE.

2.5.2 Software Project Management with Meta-heuristics

Software projects always demand a large amount of management effort for planning,

scheduling, risk estimation, and monitoring. The project manager usually conducts

these management activities in order to achieve specific objectives and satisfy various

constraints. The highly-complex nature of these management activities justifies the

need for computer-aided tools for finding the best solutions. Such tools are used

for activities such as requirement selection, project scheduling, resource allocation,

and cost estimation, which are difficult tasks because there are too many potential

solutions to be searched exhaustively without computer assistance. On the other

hand, the decisions made by project managers are unlikely to be guaranteed to be the

best decisions, because the project managers have different backgrounds, training,

and experience.

Existing tools, such as the Project Evaluation and Review Technique, the Crit-

ical Path Method, Gantt diagrams, and Earned Value Analysis, can be used in

planning and tracking project milestones. However, the scheduling problem with

recourse constraints is indeed strongly NP-hard problem, which implies that the

computation time for the exact algorithms is excessive even for moderately-sized

2.5. Search Based Software Engineering 46

applications.

The application of search-based techniques for solving software project schedul-

ing and staffing problems has been developed over the past decade or so [Hart et al.,

2005, Kolisch and Hartmann, 2006], although the studies of these techniques were

not entirely focused on software engineering. Search-based software project plan-

ning (SBSPP) may benefit from the results that are provided by the more general

literature on project scheduling. Antoniol et al. [Antoniol et al., 2004] proposed

an approach to help assess staffing needs based on queuing theory and stochas-

tic simulation. Di Penta et al.. [Di Penta et al., 2011, Di Penta et al., 2007] used

a search–based project staffing and scheduling approach to address the scheduling

problems in the context of software projects. None of the previous works on project

scheduling and staff allocation has used a cooperative co-evolutionary optimisation

approach. However, the cooperative CGA additionally allows the researcher to in-

vestigate the impact of the interconnections between multiple sub-problems on the

overall optimisation goal, such as the project completion time, as we are attempting

to do in this thesis. More work is required to integrate other aspects of the software

development process into an optimised software project management activity.

2.5.2.1 Project Scheduling Problem with Meta-heuristics

Project management techniques like Project Evaluation and Review (PERT) [Mal-

colm et al., 1959], and Critical Path Method (CPM) [Kelley Jr and Walker, 1959]

were developed in the 1950s. These tools allow projects to be planned and anal-

ysed by networks in which major project events, denoted by nodes, are connected

by project activities that denoted by arcs, so that the interrelationship between

project events and activities can be visualised and then further analysed in either

a probabilistic way (PERT), or deterministic way (CPM). However, these diagram–

based techniques aim at analysing the time flow of the project, but they do not take

into account the cost and resource constraints. This is the Resource–Constrained

Project Scheduling Problem (RCPSP). The RCPSP is known as an NP–hard prob-

lem [Blazewicz et al., 1983]. The objective of RCPSP is to minimise the overall du-

ration of the project while subject to various constraints such as resource constraints

and interdependencies constraints. Various forms of RCPSPs have been intensively

2.5. Search Based Software Engineering 47

studied for decades. A comprehensive survey on parallel machine scheduling prob-

lems can be found here [Mokotoff, 2001].

Software project management problems are generalised as a project scheduling

problem and tackled by heuristic algorithm by Chang et al. [Chang et al., 2001,

Chang et al., 2008, Ge and Chang, 2006, Chang et al., 1998], Alba et al. [Alba and

Chicano, 2005, Alba and Chicano, 2007], and many others researchers [Gueorguiev

et al., 2009, Antoniol et al., 2005, Alvarez-Valdes et al., 2006]. In 1996, Chan et al.

proposed using genetic algorithms to solve RCPSP [Chan et al., 1996] by treating the

problem as one of determining the optimal ordering of scheduling activities through

selection pressure and recombination. They noticed the interaction between resource

availability profiles and the quality of schedule produced. Hindi et al. [Hindi et al.,

2002] performed an empirical study of 2370 instances. The result showed that GA is

effective of finding near–optimal solutions for RCPSP. GA has been widely studied

in tackling software project management as a project scheduling problem. However,

the current state–of–art researches demonstrate a lack of flexibility to effectively cope

with the dynamic of modern software projects, such as, changing staff during the

project is not allowed, skill set for each individual staff is normally fixed which does

not consider the employees’ abilities of learning new skills.

2.5.2.2 Project Resource Allocation with Meta-heuristics

The Generalised Assignment Problem (GAP) is a well–known NP–hard problem of

finding the optimal assignment of n jobs to m servers in a manner that the overall

cost is minimised and constraints is not violated. It can be stated as follows. Let

I = {1, 2, ..., n} be the set of jobs to be processed on servers J = {1, 2, ...,m}. For

each server j, aij is the capacity absorption when job i is assigned to server j, and

bj is the available capacity of server j. Furthermore, there is a assignment cost for

assigning job i to server j, which is denoted by cij . The formulation of the GAP is

to minimise the total cost of the process:

Minimise :
n∑

i=1

m∑
j=1

cijxij (2.4)

2.5. Search Based Software Engineering 48

subject to
n∑

i=1

aijxij ≤ bj , ∀j ∈ J (2.5)

m∑
j=1

xij = 1, ∀i ∈ I (2.6)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (2.7)

where xij = 1 when job i is assigned to server j, otherwise xij = 0. The

constraint (2.5) ensures that the servers are not overloaded, while constraint (2.6)

ensures that a job is only assigned to one server. Let’s define the assignment matrix

X as:

X = { xij | ∀i ∈ I, ∀j ∈ J }

An early survey of the techniques of solving GAP can be found in [Cattrysse

and Wassenhove, 1992], which was conducted by Cattrysse and Wassenhove in 1992.

Ross and Soland [Ross and Soland, 1975] and Fisher et al. [Fisher et al., 1986]

devised exact algorithms based on branch-and-bound techniques. Guignard and

Rosenwein [Guignard and Rosenwein, 1989] proposed a method that included an

improved Lagrangian dual-ascent procedure that solved GAP with more than 500

variables for the first time.

The essential objective of GAP is to find an optimal assignment matrix X, and

the minimisation of total cost can be considered as the evaluation of the fitness of

the candidate matrix. It is quite straightforward to apply the GAs. Wilson [Wilson,

1997] and Chu and Beasley [Chu and Beasley, 1997] published some of the earliest

works on using GAs for the GAP at almost the same time. Both previous papers

used simple GAs to develop a solution matrix for the GAP in two similar ways, and,

because of that, it was apparent that both of these works were stimulated by Beasley

and Chu’s previous work on using GA for the set-covering problem [Beasley and

Chu, 1996]. Wilson attempted to improve the feasibility of optimal, but infeasible,

candidate solutions during the evolution process, while Chu and Beasley attempted

to improve the optimality of feasible candidate solutions.

Recent applications of GA for solving GAP can be found in various areas, such

2.5. Search Based Software Engineering 49

as airline-crew scheduling [Levine, 1996], nurse scheduling [Aickelin and Dowsland,

2004], and scheduling students’ project assignments [Harper et al., 2005]. Hajri-

Gabouj [Hajri-Gabouj, 2003] developed a fuzzy, multi-objective GA to solve a multi-

level GAP that is usually encountered in the clothing industry. In 2007, Majumdar

and Bhunia [Majumdar and Bhunia, 2007] used interval values in the representation

of an assignment matrix. They compared two forms of crossover schemes for the

matrix representation of chromosomes: 1) a modified form of whole arithmetical

crossover and 2) matrix binary crossover (MBX). The performance of the latter was

found to be better. In 2008, Garrett and Dasgupta [Garrett and Dasgupta, 2008]

proposed tools for examining the multi-objective landscape of a number of instances

of the GAP using tabu search.

In summary, search based techniques have been studied as a means of solving

software project management problems. However, there are still some unexplored

areas, such as software project staff absenteeism. In the meantime, new techniques

have been developed by evolutionary optimisation researchers. Theses new opti-

misation techniques, such as the cooperative co-evolutionary algorithm, have great

potential to solve more complex and larger software project management problems.

Chapter 3

Industrial Data for Evaluation

A total number of seven sets of industrial data have been used in the empirical

studies for this thesis. These data come from real world projects including one set of

requirement data from Motorola that is studied in Chapter 4, and six sets of software

project planning data that are studiedin Chapters 5 and 6. The data was previously

collected by third parties’ research efforts conducted in [Baker et al., 2006,Di Penta

et al., 2011,Gueorguiev et al., 2009]. This chapter explains the origins and structure

of the data and the method used to adapt them to assist the studies of this thesis.

3.1 Industrial Requirement Data

In the empirical studies conducted in this thesis, a set of real data from Motorola

Inc. was adapted from [Baker et al., 2006]. The author did not participate in the

process of collecting the data. The requirement data was available to the author in

the form of a table as shown in Table 3.1. It contains 35 software features that can

be implemented into the future model of a mobile phone. Each feature has its own

Cost, which represents the amount of the effort and resource it takes to implement

the feature. Expected revenue represents the possible revenue that each feature is

expected to bring to the company. It ranges from 1 to 3, with 3 being the biggest

revenue and 1 the smallest. Dependency relations between the these 35 features were

very sparse, so the issue of the feature dependency was ignored in current stage of

the project.

3.2. Industrial Project Plan Data 51

Table 3.1: Data of thirty five software features for a future model of a mobile
phone from Motorola Inc.. Adapted from [Baker et al., 2006].

Feature ID Cost Revenue

Feature 1 100 3
Feature 2 50 3
Feature 3 300 3
Feature 4 80 3
Feature 5 70 3
Feature 6 100 3
Feature 7 1000 3
Feature 8 40 3
Feature 9 200 3
Feature 10 20 1
Feature 11 1100 3
Feature 12 10 3
Feature 13 500 3
Feature 14 10 1
Feature 15 10 3
Feature 16 10 2
Feature 17 20 1
Feature 18 200 1

Feature ID Cost Revenue

Feature 19 1000 3
Feature 20 120 3
Feature 21 300 3
Feature 22 50 3
Feature 23 10 3
Feature 24 30 3
Feature 25 110 3
Feature 26 230 3
Feature 27 40 3
Feature 28 180 1
Feature 29 20 3
Feature 30 150 3
Feature 31 60 3
Feature 32 100 1
Feature 33 400 3
Feature 34 80 2
Feature 35 40 1

3.2 Industrial Project Plan Data

There is a total number of six sets of real world software project planning data

available to us. This section aims to describe the fundamental details of each of the

six projects as the followings: 1) industrial context of each project; 2) a table of

summary of key features such as: number of Work Packages (WPs), required skills

and staff; and 3) dependency graph that visualises the interdependency among WPs,

resource and efforts required by each WP, and critical path of each project.

3.2.1 Industrial Contexts of Real Software Projects

Project A (Y2K) is a massive maintenance project for fixing the Y2K problem

in a large financial computing system from a European organisation. According to

its work breakdown structure, the application was decomposed into WPs loosely

coupled, elementary units subject to maintenance activities. The entire system was

decomposed into 84 WPs, each one composing, on average, of 300 COBOL and JCL

files. Each WP was managed by a WP leader and assigned to a maintenance team.

No WP dependency was documented, and thus, no constraint had to be satisfied in

3.2. Industrial Project Plan Data 52

its scheduling. Project A can be considered as representative of massive maintenance

projects related to highly-standardized tasks such as currency conversion, change of

social security numbering, etc.

Project B (Data-intensive System) aimed at delivering the next release of a

large data-intensive, multi-platform software system, written in several languages,

including DB II, SQL, and .NET. The project is composed of 108 WPs for which WP

inter-dependence information is available. Though a little smaller (in terms of total

effort required) than Project A, the presence of a total of 102 dependences between

the project’s WPs considerably complicates the problem of project management.

Project C (SoftChoice) aimed at delivering an online selling system to provide

North American businesses of all sizes with a fast and flexible way to select, ac-

quire and manage all their hardware and software needs. The system includes the

development and testing of website, search engine, and order management, etc.

Project D (QuoteToOrder) is a medium-sized project implemented in a large

Canadian sales company. This project aims to add new enhancements to the sup-

ply chain of the company by allowing instant and on-demand conversion of quotes

to orders. This change is both internal and customer facing, ultimately affecting

every level of the organization (Web, internal development, database, sales, and

customers). Most of the employees were involved eventually in training sessions.

Project E (Database) is a database upgrade procedure. It consisted of a migra-

tion from the Oracle version 9g to 10g. In addition, the upgrade affected 70% of the

internal applications, since a considerable number of them relied on Oracle Forms.

There were different layers of the organisation involved including DBAs, BSAs, de-

velopers and users. Furthermore, the project also included the training of the staff

for the new features of the system.

Project F (SmartPrice) consists of a supply chain enhancement of medium size

affecting mostly the website as well as a few internal applications. It is a customer-

facing enhancement to the sales process of the same sales organisation. This fea-

ture provided more adequate pricing mechanism as well as a method for discounts,

voucher use, pricing conversion, etc. The enhancement influences directly all of the

revenue stream of the company and as such, extensive QA was involved. This fea-

3.2. Industrial Project Plan Data 53

ture affected mostly the web portion of the company’s infrastructure with smaller

impact on the underlying database and other internal software. The project ended

with adequate employee training to ensure that the features were used properly by

everyone.

3.2.2 Features and Characteristics of Projects and Visualisations

Table 3.2: Features of all six software projects

Code
#WPs #Dep.

#Required
#Staff

Total Effort
Note

Name Skills (person-days)

A 84 N/A N/A 80 4287 No Dep., No Skills.

B 120 102 N/A N/A 594 No Skills.

C 253 226 10 18 833 SoftChoice

D 60 57 7 9 68 QuoteToOrder

E 106 105 5 7 674 Database

F 72 71 6 13 196 SmartPrice

The data was initially provided in the format of Microsoft Project (*.mpp) files.

The adaptation process includes the following steps: 1) an automated Transitive

Reduction [Aho et al., 1972] is implemented to reduce the redundant dependency

information, 2) the original data contains workpackages that require zero effort to

represent milestones, these workpackages are eliminated, 3) those ‘parental’ work-

packages that act as a summary of several sub-workpackages are also eliminated

to ensure the accuracy on total efforts, and 4) because the eliminations of certain

workpackages cause potential lost of dependency information, the dependency graph

is reconstructed accordingly to ensure the same precedence of executing workpack-

ages. This adaptation process are automated and performed by scripts mainly for

the purpose of avoiding inaccuracy caused by manual processing.

The key features of these software project, posterior to the adaptation process,

are summarised in Table 3.2. Two most distinguishable differences among these six

industrial projects are the availabilities of the information on: 1) dependency among

a project’s WPs, and 2) the skills and staff required by individual WPs. Previous

related research on Project A and B can be found in [Antoniol et al., 2004,Antoniol

3.3. Limitations of Data Usage 54

et al., 2005,Di Penta et al., 2007,Di Penta et al., 2011], and related work with Project

C to F can be found in [Jose, 2008,Gueorguiev, 2008]. This thesis is the first research

to utilise the information on Required Skills and Staff for each WP of Project C to

F.

The dependency information among a project’s WPs defines the precedence of

which WPs can be executed. Without dependency information, all WPs in a project

are considered to be independent WPs that can be executed in parallel. For example,

WPs in Project A can be distributed to different centres without the consideration

of where and when the other WPs is executed. On the other hand, for Project

B to F, each project has a set of explicit dependency constraints that need to be

satisfied to fulfil interdependency requirement among WPs. The explicit dependency

information for five projects are illustrated as solid black lines in Figure 3.1 to 3.5

respectively for Project B to F.

The information of skills required by each individual WP allows us to investigate

the allocations of staff and resources with the help of simulating scenarios that are

more closed to the real–world case. It prevents the simulation model from becoming

over-simplified. The requirement of resources for each WPs in four projects (Project

C to F) are represented by coloured lines in Figure 3.2 to 3.5 respectively.

Furthermore, the degree of normalised efforts required of each WP is also re-

flected by the level of grey of each WP shown on the figure, and those WPs on

critical path are marked with labels in red.

3.3 Limitations of Data Usage

In this thesis, all real data is secondary data collected by third parties. This section

lists the key points which could lead to threats to the data validity of this thesis:

• The author did not participate in the process of collecting the data, neither

had the opportunity to discuss the quality of the data in particular with the

data collectors. However, the lack of knowledge on data collecting methods

can be assumed to have trivial impact on the research because the research

utilised only the quantitative parts of the data which were estimated by either

the experts or project managers from industry.

3.3. Limitations of Data Usage 55

• The studies utilise only the quantitative parts of the data, i.e.: the cost and

revenue of the requirements, the duration and dependency of the WPs. These

variables were estimated by either experts or project managers. There are

problems caused by the potential inaccuracy on estimations.

• There is only one set of requirement dataset and six sets of project plans. It

may not be valid to generalise all the observations and findings from such a

relatively small number of sample.

• This thesis presents the results based on the data from real world projects.

The author did not elicit contributions from the experts and managers who

may provide quite different explanations on the results from the perspective of

participators of the projects. It would be worthwhile to further validate the

result of this research, although it is not possible to arrange such event.

• The project plans were initially provided in a form that contains redundant

information to provide easier accessibility to human. Data transformation is

necessary in the data adaptation process to reduce the redundant information.

Although the data transformation process is repeatable via the automated

scripts, the original data is not available to the public due to the prior Non-

Disclosure Agreement between the CREST centre (Centre for Research on

Evolution, Search and Testing) and the third parties who collected the data.

3.3. Limitations of Data Usage 56

Work Packages

W120
UID_120

W119
UID_119

W118
UID_118

W117
UID_117

W116
UID_116

W115
UID_115

W114
UID_114

W113
UID_113

W112
UID_112

W111
UID_111

W110
UID_110

W109
UID_109

W108
UID_108

W107
UID_107

W106
UID_106

W105
UID_105

W104
UID_104

W103
UID_103

W102
UID_102

W101
UID_101

W100
UID_100

W99
UID_99

W98
UID_98

W97
UID_97

W96
UID_96

W95
UID_95

W94
UID_94

W93
UID_93

W92
UID_92

W91
UID_91

W90
UID_90

W89
UID_89

W88
UID_88

W87
UID_87

W86
UID_86

W85
UID_85

W84
UID_84

W83
UID_83

W82
UID_82

W81
UID_81

W80
UID_80

W79
UID_79

W78
UID_78

W77
UID_77

W76
UID_76

W75
UID_75

W74
UID_74

W73
UID_73

W72
UID_72

W71
UID_71

W70
UID_70

W69
UID_69

W68
UID_68

W67
UID_67

W66
UID_66

W65
UID_65

W64
UID_64

W63
UID_63

W62
UID_62

W61
UID_61

W60
UID_60

W59
UID_59

W58
UID_58

W57
UID_57

W56
UID_56

W55
UID_55

W54
UID_54

W53
UID_53

W52
UID_52

W51
UID_51

W50
UID_50

W49
UID_49

W48
UID_48

W47
UID_47

W46
UID_46

W45
UID_45

W44
UID_44

W43
UID_43

W42
UID_42

W41
UID_41

W40
UID_40

W39
UID_39

W38
UID_38

W37
UID_37

W36
UID_36

W35
UID_35

W34
UID_34

W33
UID_33

W32
UID_32

W31
UID_31

W30
UID_30

W29
UID_29

W28
UID_28

W27
UID_27

W26
UID_26

W25
UID_25

W24
UID_24

W23
UID_23

W22
UID_22

W21
UID_21

W20
UID_20

W19
UID_19

W18
UID_18

W17
UID_17

W16
UID_16

W15
UID_15

W14
UID_14

W13
UID_13

W12
UID_12

W11
UID_11

W10
UID_10

W9
UID_9

W8
UID_8

W7
UID_7

W6
UID_6

W5
UID_5

W4
UID_4

W3
UID_3

W2
UID_2

W1
UID_1

Figure 3.1: Work Package Dependency Graph of Project B. It shows the work
packages, the normalised efforts (degree of greyness), dependency relationship
among WPs (black lines), and the critical path (WPs that marked with red tags:
W[id] and UID [uid]).

3.3. Limitations of Data Usage 57

R
e
so

u
rc

e
s

W
o

rk
 P

a
c
k

a
g

e
s

R
2

1
D

e
s
ig

n
e

r

W
1

8
5

U
ID

_
8

1
6

W
1

8
4

U
ID

_
8

1
7

W
1

8
3

U
ID

_
8

1
8

W
1

8
2

U
ID

_
8

1
9

R
2

0
Q

A
 T

e
s
te

r
2

R
1

9
Q

A
 T

e
s
te

r
3

R
1

8
M

K
T

G
 C

o
o

rd
in

a
to

r

W
1

8
1

U
ID

_
9

0
8

W
1

8
0

U
ID

_
9

1
0

W
1

7
9

U
ID

_
9

0
9

W
1

7
8

U
ID

_
7

9
9

W
1

7
7

U
ID

_
7

9
4

W
1

7
6

U
ID

_
7

9
8

W
1

7
5

U
ID

_
7

9
5

W
1

7
4

U
ID

_
7

9
7

W
8

8
U

ID
_

7
0

2

R
1

7
A

p
p

 D
e

v
 2

W
1

4
4

U
ID

_
8

7
7

W
1

4
3

U
ID

_
8

7
6

W
1

4
2

U
ID

_
7

6
6

W
1

4
1

U
ID

_
7

6
0

W
1

4
0

U
ID

_
7

6
1

W
0

R
1

6
A

p
p

 D
e

v
 1

W
8

0
U

ID
_

8
7

4

W
6

2
U

ID
_

7
3

8

R
1

5
D

e
v
 2

W
2

4
4

U
ID

_
8

0
4

W
2

3
0

U
ID

_
4

3
5

W
1

6
3

U
ID

_
5

8
9

W
1

5
9

U
ID

_
1

6
2

W
1

5
8

U
ID

_
1

6
1

W
1

5
7

U
ID

_
1

6
0

W
1

5
5

U
ID

_
1

9
1

W
1

5
4

U
ID

_
1

8
8

W
1

5
3

U
ID

_
7

8
2

W
1

5
2

U
ID

_
1

8
5

W
1

5
1

U
ID

_
1

8
4

W
1

5
0

U
ID

_
7

8
6

W
1

4
9

U
ID

_
7

8
1

W
1

4
8

U
ID

_
1

5
7

W
1

4
7

U
ID

_
1

5
6

W
6

6
U

ID
_

5
9

0

W
6

3
U

ID
_

1
4

7

W
6

1
U

ID
_

1
5

2

R
1

4
V

e
n

d
o

r

W
1

0
0

U
ID

_
7

7
5

W
9

6
U

ID
_

6
0

7

R
1

3
H

T
M

L
 2

W
2

4
1

U
ID

_
6

6
6

W
2

4
0

U
ID

_
6

6
8

W
2

3
9

U
ID

_
6

7
0

W
2

3
8

U
ID

_
6

7
2

W
2

3
7

U
ID

_
6

7
4

W
2

3
6

U
ID

_
6
7
6

W
2

3
5

U
ID

_
6

8
0

W
2

3
4

U
ID

_
6

8
2

W
2

3
3

U
ID

_
4

8
0

W
2

2
3

U
ID

_
6

4
1

W
2

1
6

U
ID

_
8

9
0

W
2

1
3

U
ID

_
8

8
7

W
2

0
6

U
ID

_
8

4
2

W
2

0
4

U
ID

_
6

3
1

W
1

9
5

U
ID

_
6

3
5

W
1

9
4

U
ID

_
8

3
6

W
1

9
2

U
ID

_
6

3
4

W
1

9
1

U
ID

_
8

3
4

W
1

8
9

U
ID

_
6

3
3

W
1

3
7

U
ID

_
7

2
7

W
1

3
6

U
ID

_
6

0
1

W
1

3
3

U
ID

_
5
9
1

R
1

2
H

T
M

L
 3

W
2

1
8

U
ID

_
8

9
2

W
2

1
5

U
ID

_
8

8
9

W
2

1
2

U
ID

_
8

4
9

W
2

1
0

U
ID

_
6

2
9

W
2

0
9

U
ID

_
8

4
4

W
2

0
3

U
ID

_
8

4
0

W
2

0
1

U
ID

_
6

3
2

W
1

3
8

U
ID

_
7

2
5

R
1

1
Q

A
 T

e
s
te

r
1

W
2

4
3

U
ID

_
7

1
2

W
2

3
2

U
ID

_
6

2
0

W
2

3
1

U
ID

_
8

0
1

W
2

2
5

U
ID

_
6

4
9

W
2

2
0

U
ID

_
6

4
5

W
2

1
7

U
ID

_
8

9
1

W
2

1
4

U
ID

_
8

8
8

W
2

1
1

U
ID

_
8

4
8

W
2

0
8

U
ID

_
8

4
5

W
2

0
5

U
ID

_
8

4
3

W
2

0
2

U
ID

_
8

4
1

W
1

9
9

U
ID

_
8

3
9

W
1

9
6

U
ID

_
8

3
2

W
1

9
3

U
ID

_
8

3
7

W
1

9
0

U
ID

_
8

3
5

W
1

8
7

U
ID

_
8

5
2

W
1

7
1

U
ID

_
7

9
1

W
1

7
0

U
ID

_
6

5
3

W
1

6
2

U
ID

_
6

1
8

W
1

6
1

U
ID

_
7

8
8

W
1

3
2

U
ID

_
6
1
4

W
1

1
1

U
ID

_
6

0
2

W
9

9
U

ID
_

7
7

3

W
9

8
U

ID
_

7
7

4

W
9

7
U

ID
_

7
7

2

W
6

5
U

ID
_

6
0

5

R
1

0
H

T
M

L
 1

W
2

4
2

U
ID

_
2
3
4

W
2

2
8

U
ID

_
6

2
4

W
2

0
7

U
ID

_
6

3
0

W
2

0
0

U
ID

_
8

3
8

W
1

9
8

U
ID

_
6

5
4

W
1

9
7

U
ID

_
8

3
1

W
1

8
8

U
ID

_
8

5
3

W
1

8
6

U
ID

_
7

0
6

W
1

6
6

U
ID

_
7

2
8

W
1

1
6

U
ID

_
5
9
7

W
1

1
2

U
ID

_
2

0
6

W
1

0
8

U
ID

_
8

9
7

W
1

0
7

U
ID

_
9

0
0

W
1

0
6

U
ID

_
9

0
1

W
1

0
5

U
ID

_
9

0
3

W
1

0
4

U
ID

_
9

0
4

W
1

0
3

U
ID

_
9

0
5

W
1

0
2

U
ID

_
5

9
5

W
1

0
1

U
ID

_
5

9
4

W
9

5
U

ID
_

4
7

0

R
9

D
e

v
 3

W
1

7
2

U
ID

_
7

9
0

W
1

6
9

U
ID

_
2

4
1

W
1

6
8

U
ID

_
2

2
2

W
1

6
7

U
ID

_
2

1
6

W
1

3
0

U
ID

_
3
6
5

W
1

1
9

U
ID

_
3
7
5

W
1

1
8

U
ID

_
1
7
7

W
1

1
7

U
ID

_
3
5
5

W
5

1
U

ID
_

1
2

1

W
4

6
U

ID
_

1
1

3

W
3

6
U

ID
_

9
4

W
3

1
U

ID
_

7
1

W
2

4
U

ID
_

5
1

W
1

7
U

ID
_

4
4

W
5

U
ID

_
1

4

R
8

D
e

v
 4

W
5

5
U

ID
_

9
9

W
4

9
U

ID
_

9
0

W
2

5
U

ID
_

5
6W

2
2

U
ID

_
6

3

W
1

4
U

ID
_

3
9

R
7

S
ix

 S
ig

m
a

W
2

2
1

U
ID

_
5

5
8

W
8

9
U

ID
_

7
7

1
W

8
7

U
ID

_
8

6
8

W
8

6
U

ID
_

8
6

7

W
8

4
U

ID
_

6
8

6

W
8

3
U

ID
_

8
7

1

W
8

2
U

ID
_

8
7

0

W
7

9
U

ID
_

6
8

3

W
7

8
U

ID
_

8
6

3

W
7

7
U

ID
_

8
6

2

W
7

5
U

ID
_

6
8

9

W
7

4
U

ID
_

8
5

7

W
7

3
U

ID
_

7
6

7

W
7

1
U

ID
_

6
9

2
R

6
In

fo
 A

rc
h

W
2

2
7

U
ID

_
5

8
6

W
2

2
2

U
ID

_
5

6
0

W
1

7
3

U
ID

_
6

3
7

W
1

6
5

U
ID

_
5

1
4

W
1

3
5

U
ID

_
4

9
0

W
1

1
5

U
ID

_
5
5
1

W
9

4
U

ID
_

4
4

8

W
9

3
U

ID
_

4
5

0

W
9

2
U

ID
_

4
5

3

W
9

1
U

ID
_

4
5

6

W
6

0
U

ID
_

4
8

5

W
4

U
ID

_
1

3
1

R
5

D
e

v
 4

W
2

2
4

U
ID

_
4

0
8

W
1

6
0

U
ID

_
7

2
2

W
1

5
6

U
ID

_
1

9
6

W
1

4
6

U
ID

_
8

0
9

W
1

4
5

U
ID

_
8

1
0

W
1

3
9

U
ID

_
8

7
5

W
1

1
0

U
ID

_
2

6
4

W
9

0
U

ID
_

8
7

9

W
8

5
U

ID
_

8
6

6

W
8

1
U

ID
_

8
6

9

W
7

6
U

ID
_

8
6

1

W
7

2
U

ID
_

8
5

6

W
7

U
ID

_
2

8

R
4

B
S

A
 2

W
2

2
6

U
ID

_
5

8
2

W
1

3
4

U
ID

_
4

9
2

W
1

3
1

U
ID

_
7

7
9

W
7

0
U

ID
_

5
3

9

W
6

8
U

ID
_

5
3

5

W
6

7
U

ID
_

5
3

3 W
6

4
U

ID
_

7
7

7

R
3

B
S

A
 1

W
1

6
4

U
ID

_
5

1
2

W
1

1
4

U
ID

_
5
4
9

W
1

1
3

U
ID

_
4

7
8

W
6

9
U

ID
_

5
3

7

W
5

9
U

ID
_
2
0
4

W
3

U
ID

_
4
8
4

R
2

D
e

v
 1

W
2

4
5

U
ID

_
2

5
7

W
2

2
9

U
ID

_
4

3
2

W
2

1
9

U
ID

_
7

3
2

W
1

0
9

U
ID

_
2

6
0

W
4

3
U

ID
_

1
0

5

W
3

9
U

ID
_

8
3

W
3

4
U

ID
_

7
7

W
2

9
U

ID
_

6
7

W
2

3
U

ID
_

1
1

8
W

1
1

U
ID

_
3

4
W

2
U

ID
_

9
W

1
U

ID
_

4

R
1

W
1

2
9

U
ID

_
3
6
8

W
1

2
8

U
ID

_
3
6
9

W
1

2
7

U
ID

_
3
7
0

W
1

2
6

U
ID

_
3
7
1

W
1

2
5

U
ID

_
7
5
6

W
1

2
4

U
ID

_
3
7
2

W
1

2
3

U
ID

_
3
7
3W

1
2

2
U

ID
_
7
4
5

W
1

2
1

U
ID

_
7
4
4

W
1

2
0

U
ID

_
3
7
4

W
5

8
U

ID
_

1
0

2
W

5
7

U
ID

_
1

0
1

W
5

6
U

ID
_

1
0

0

W
5

4
U

ID
_

1
2

4
W

5
3

U
ID

_
1

2
3

W
5

2
U

ID
_

1
2

2

W
5

0
U

ID
_

9
1

W
4

8
U

ID
_

1
1

5
W

4
7

U
ID

_
1

1
4

W
4

5
U

ID
_

1
0

7
W

4
4

U
ID

_
1

0
6

W
4

2
U

ID
_

8
6

W
4

1
U

ID
_

8
5

W
4

0
U

ID
_

8
4

W
3

8
U

ID
_

9
6

W
3

7
U

ID
_

9
5

W
3

5
U

ID
_

7
8

W
3

3
U

ID
_

7
3

W
3

2
U

ID
_

7
2

W
3

0
U

ID
_

6
8

W
2

8
U

ID
_

5
9

W
2

7
U

ID
_

5
8

W
2

6
U

ID
_

5
7

W
2

1
U

ID
_

4
8

W
2

0
U

ID
_

4
7

W
1

9
U

ID
_

4
6

W
1

8
U

ID
_

4
5

W
1

6
U

ID
_

4
1

W
1

5
U

ID
_

4
0

W
1

3
U

ID
_

3
6

W
1

2
U

ID
_

3
5

W
1

0
U

ID
_

3
1

W
9

U
ID

_
3

0
W

8
U

ID
_

2
9

W
6

U
ID

_
2

0

Figure 3.2: Work Package Dependency Graph and Resource Allocation Graph of
Project C. In addition, it shows the resources (coloured ellipsis), and the corre-
sponding WPs require such resources (coloured lines).

3.3. Limitations of Data Usage 58

Resources

Work Packages

R10
HTML 1

W53
UID_32

W52
UID_26

W46
UID_52

W44
UID_54

W17
UID_98

W16
UID_102

W15
UID_103

W14
UID_104

W13
UID_105

W12
UID_106

W11
UID_107

W10
UID_108

R9
App Dev 2

W60
UID_45

W59
UID_44

W58
UID_41

W57
UID_40

W56
UID_39

W50
UID_83

W49
UID_84

W48
UID_85

W47
UID_86

R8
App Dev 1

W21
UID_87

W20
UID_90

W19
UID_89

W7
UID_112

W4
UID_15

R7
Dev 2

W43
UID_55

W42
UID_57

W41
UID_58

W40
UID_59

W39
UID_60

W38
UID_61

W37
UID_62

W36
UID_63

W35
UID_64

W34
UID_65

W33
UID_66

W32
UID_67

W31
UID_74

W30
UID_75

W29
UID_76

W28
UID_77

W27
UID_73

W26
UID_78

W25
UID_79

W24
UID_80

W23
UID_81

W22
UID_82

W18
UID_56

R6
Dev 1

W8
UID_111

R5
Project Manager

W9
UID_20

R4
IA

W45
UID_53

W5
UID_17

R3
BSA

W55
UID_35

W54
UID_37

R2
Designer

W6
UID_16

R1

W1
UID_8

W51
UID_48

W3
UID_10

W2
UID_9

Figure 3.3: Work Package Dependency Graph and Resource Allocation Graph of
Project D

3.3. Limitations of Data Usage 59

R
e
so

u
rc

e
s

W
o

rk
 P

a
c
k

a
g

e
s

R
8

U
s
e

rs

W
7

0
U

ID
_

1
1

8

W
6

9
U

ID
_

1
1

7

W
4

7
U

ID
_

9
6

W
4

6
U

ID
_

9
5

W
2

7
U

ID
_

7
4

W
2

0
U

ID
_

5
9

W
1

9
U

ID
_

5
8

W
1

8
U

ID
_

5
7

W
1

7
U

ID
_

5
6

W
1

6
U

ID
_

5
5

R
7

B
u
s
in

e
s
s
 O

w
n
e
r

2
W

8
2

U
ID

_
1
7
6

W
5

8
U

ID
_

1
3

1

W
5

7
U

ID
_

1
3

0

W
5

6
U

ID
_

1
2

9

W
5

5
U

ID
_

1
2

8

W
5

4
U

ID
_

1
2

6

W
5

3
U

ID
_

1
2

5

W
5

2
U

ID
_

1
2

4

W
5

1
U

ID
_

1
2

3

W
5

0
U

ID
_

1
2

1

W
4

9
U

ID
_

2
0

5

W
1

0
U

ID
_
4
8

W
9

U
ID

_
4
7

R
6

B
u
s
in

e
s
s
 O

w
n
e
r

1

W
1

0
6

U
ID

_
1

9
8

W
1

0
5

U
ID

_
1
9
7

W
1

0
4

U
ID

_
1
9
6

W
1

0
3

U
ID

_
1
9
5

W
1

0
2

U
ID

_
1
9
4

W
1

0
0

U
ID

_
1
9
2

W
9

9
U

ID
_
1
9
1

W
9

7
U

ID
_
1
8
9

W
9

6
U

ID
_

2
1

1

W
9

4
U

ID
_

2
0

8

W
9

3
U

ID
_

1
8

8

W
9

2
U

ID
_

1
8

4

W
9

1
U

ID
_
1
8
3

W
9

0
U

ID
_
2
0
0

W
8

9
U

ID
_
2
0
1

W
8

7
U

ID
_
1
9
9W

8
6

U
ID

_
1
8
1W

8
4

U
ID

_
1
7
9

W
6

4
U

ID
_

1
1

1

W
5

9
U

ID
_

9
9

W
4

1
U

ID
_

8
9

W
3

6
U

ID
_

7
7

W
3

0
U

ID
_

1
6

8

W
2

1
U

ID
_

6
7

W
1

4
U

ID
_

2
0

4

W
1

3
U

ID
_

5
1

R
5

D
B

A
 1

W
1

0
1

U
ID

_
1
9
3

W
9

8
U

ID
_
1
9
0

W
9

5
U

ID
_

1
8

7

W
8

8
U

ID
_
1
8
2

W
8

5
U

ID
_
1
8
0

W
8

3
U

ID
_

1
7

8

W
7

9
U

ID
_

1
4

3
W

7
8

U
ID

_
1

4
2

W
7

7
U

ID
_

1
4

0

W
7

6
U

ID
_

1
3

9

W
7

5
U

ID
_

1
3

8
W

7
4

U
ID

_
1

3
7

W
7

3
U

ID
_

1
3

6
W

7
1

U
ID

_
1

3
4

W
4

8
U

ID
_

2
7

W
3

5
U

ID
_

2
0

W
2

8
U

ID
_

1
6

6

W
1

5
U

ID
_

1
2

R
4

D
e

v
 2

W
3

2
U

ID
_

2
0

3

W
3

1
U

ID
_

1
7

0

R
3

D
e

v
 1

W
8

1
U

ID
_

1
4

5
W

8
0

U
ID

_
1

4
4

W
7

2
U

ID
_

1
3

5

W
6

8
U

ID
_

1
1

5

W
6

7
U

ID
_

1
1

4

W
6

6
U

ID
_

1
1

3

W
6

5
U

ID
_

1
1

2

W
6

3
U

ID
_

1
0

3

W
6

2
U

ID
_

1
0

2

W
6

1
U

ID
_

1
0

1W
6

0
U

ID
_

1
0

0

W
4

5
U

ID
_

9
3

W
4

4
U

ID
_

9
2

W
4

3
U

ID
_

1
4

7

W
4

2
U

ID
_

9
0

W
4

0
U

ID
_

8
1

W
3

9
U

ID
_

8
0

W
3

8
U

ID
_

7
9

W
3

7
U

ID
_

7
8

W
3

4
U

ID
_

1
7

2

W
3

3
U

ID
_

1
7

1

W
2

9
U

ID
_

1
6

7

W
2

6
U

ID
_

7
3

W
2

5
U

ID
_

7
1

W
2

4
U

ID
_

7
0

W
2

3
U

ID
_

6
9

W
2

2
U

ID
_

6
8

W
1

2
U

ID
_

3
9

W
1

1
U

ID
_

3
8

W
7

U
ID

_
3

7

W
6

U
ID

_
3

6

W
5

U
ID

_
3

5

R
2

P
ro

je
c
t
M

a
n
a
g
e
r

W
8

U
ID

_
2
1
2

W
4

U
ID

_
9

W
3

U
ID

_
8

W
2

U
ID

_
5

2W
1

U
ID

_
4

R
1

Figure 3.4: Work Package Dependency Graph and Resource Allocation Graph of
Project E

3.3. Limitations of Data Usage 60

Resources

Work Packages

R14
App Dev 5

W12
UID_38

R13
BSA

W37
UID_591

W36
UID_82

R12
DBA 1

W65
UID_139

W64
UID_138

W63
UID_116

W62
UID_115

W61
UID_114

W60
UID_113

W59
UID_112

W58
UID_110

W57
UID_109

W26
UID_590

R11
QA 2

W72
UID_587

W70
UID_583

W56
UID_106

W54
UID_104

W53
UID_103

W52
UID_102

W51
UID_99

W49
UID_97

W48
UID_95

W46
UID_93

W45
UID_91

W43
UID_89

W42
UID_88

W41
UID_87

W40
UID_86

W39
UID_85

W38
UID_84

R10
Web Dev 2

W71
UID_586

W50
UID_98

W35
UID_76

W34
UID_75

W33
UID_74

W32
UID_73

R9
Web Dev 1

W67
UID_120

W66
UID_118

W31
UID_71

W23
UID_132

R8
project Manger

W20
UID_124

R7
Business Owner

R6
App Dev 4

W6
UID_31

R5
App Dev 3

W11
UID_592

W5
UID_41

R4
QA 1

W69
UID_584

W68
UID_121

W25
UID_128

W24
UID_46

W22
UID_131

W21
UID_126

W19
UID_123

R3
App Dev 1

W55
UID_105

W47
UID_94

W29
UID_63

W28
UID_62

W27
UID_61

W3
UID_25

W2
UID_24

W1
UID_7

R2
App Dev 1

W44
UID_90

W18
UID_19

W9
UID_34

W8
UID_32

W7
UID_33

W4
UID_39

R1
BSA

W30
UID_67

W17
UID_17

W16
UID_12

W15
UID_11

W14
UID_10

W13
UID_9

W10
UID_35

Figure 3.5: Work Package Dependency Graph and Resource Allocation Graph of
Project F

Chapter 4

Sensitivity Analysis on Cost

Estimation of Requirements Selection

4.1 Introduction

One of the common problems in requirements engineering is caused by the uncer-

tainties that are inherent in the decisions made by the requirements engineer. Most

of the data needed by the requirement engineer, such as expected revenue, develop-

ment cost or duration, is inherently unknown at the time of requirement planning

stage. The clients of the product also contribute to these uncertainties because often

they do not possess clear idea about which features they want before actually see it.

Naturally, the requirement engineer has to balance many complex criteria based on

estimated data.

It is a well-known fact that cost estimation is a difficult and demanding activ-

ity [Armour, 2002, Boehm, 1984]. It is also widely believed that the cost estimates

produced by software engineers tend to include a great degree of inaccuracy [Fly-

vbjerg et al., 2002, Flyvbjerg et al., 2005]. This is not due to the ineptness of the

requirements engineer; it is rather because of the astonishingly wide variety of the

problems that software engineering faces. Unlike other engineering disciplines, there

are fewer well-understood construction approaches, which consequently causes the

inaccuracy.

This work does not attempt to resolve the inaccurate cost estimate problem;

it seems that the problem will remain unsolved for the foreseeable future of soft-

ware engineering. Rather, the work seeks to introduce an approach to provide the

4.1. Introduction 62

requirements engineer with a decision support system guided by Search-Based Soft-

ware Engineering (SBSE). The approach assesses the impact of inaccuracies of the

cost estimation of each requirement on the solutions to the requirements alloca-

tion problem, known as the Next Release Problem [Bagnall et al., 2001]. The Next

Release Problem is the problem of selecting the software requirements to be imple-

mented in the next release of a product so that benefits such as customer satisfaction

or revenue is maximised while all the constraints such as budget are satisfied. The

decision support system aids the requirements engineer by identifying the sensitive

regions in the estimated data which will lead to relatively higher impact on the se-

lection of the requirements. This information then can be used to focus the effort

on obtaining more accurate estimation of those requirements.

Each set of estimates and customer choices denotes a separate and unique opti-

misation problem. The structure of the data and the relationships between estimated

data may create unexpected interactions between requirement estimates, which can

yield a butterfly effect; a small inaccuracy in a low cost requirement can have an

unexpectedly large effect of the overall decision. Because of the size of the data

sets involved and the inherent complexity of the interactions between estimates, it

is nearly impossible for an engineer to fully comprehend these hidden relationships

without automated decision support.

The intuitive answer to the sensitivity of cost estimation problem is that, the

more expensive the requirement is, the greater impact it will have on the result when

estimated inaccurately. Also, similarly, we expect that higher levels of inaccuracies

are most likely to cause greater impacts. This thesis indeed statistically confirms

these intuitive assumptions. However, there are exceptions to these trends. These

exceptions require careful cost estimation, because they can have unexpectedly high

impacts on the selection of requirements. A heat-map style visualisation is generated

using a search-based approach, to identify these sensitive exceptions in the data. The

hot-spots on the heat map will indicate areas where a particular inaccuracy level for

a particular requirement estimate can lead to high impact. The heat-map provides

an intuitive visual aid to comprehend the complex interaction in the data set.

The chapter presents two different formulations of the problem. With the single-

4.2. Background 63

objective formulation, the requirements engineer assesses the impact of inaccuracy

at a specific level on weighted customer satisfaction values. In this model, the re-

quirements engineer knows the expected inaccuracy and seeks to identify overall

budget levels and particular requirements that are sensitive to this. The second

formulation is the multi-objective formulation in which the requirements engineer

simply seeks to reduce estimated cost and increase estimated revenue, but does not

know how inaccurate the estimates are likely to be. The single objective formulation

is more appropriate for a mature organisation with a history of development and

a consequent knowledge of likely levels of estimate inaccuracy. The multi objective

formulation has the advantage that it can be applied without any knowledge of likely

estimate inaccuracy levels.

Both formulations are applied to both synthetic and real world data. The pri-

mary contributions of the chapter are as follows:

1. To show how SBSE can be used as a technique for sensitivity analysis in re-

quirements engineering.

2. To present two formulations of the NRP of requirements engineering and shows

how SBSE can be used for both formulations, presenting an evaluation using

real world data and synthetic data.

3. To show how heat-maps can be used to intuitively identify unexpectedly sensi-

tive requirements estimates to guide the decision maker, providing insight into

the structure of their estimate data.

4.2 Background

The work presents a sensitivity analysis for two different formulations of the Next

Release Problem (NRP): single-objective version and multi-objective version.

4.2.1 Single-objective Next Release Problem

The single-objective formulation follows the definition of NRP by Bagnall et al. [Bag-

nall et al., 2001]. First, it is assumed that for an existing software system, there is

4.2. Background 64

a set of possible software requirements, denoted by:

R = {r1, . . . , rn}

For the sake of simplicity, it is also assumed that there is no dependency relation

between those requirements. Bagnall et al. note that any instance of NRP with

dependency relation can be converted to a basic NRP by merging the requirements

that belong to dependency chains [Bagnall et al., 2001].

The cost of fulfilling this set of requirements ri(1 ≤ i ≤ n) is denoted by:

Cost = {cost1, . . . , costn}

The expected revenue of every possible requirement is denoted by:

Revenue = {revenue1, . . . , revenuen}

The decision problem form of NRP is the question of finding the optimal sub-

set(s) of requirements to maximise the total revenue and minimise the cost of devel-

opment. The decision vector,
−→
X , is represented by:

−→
X =< x1, . . . , xn >

where ith element of
−→
X is 1 if the ith requirement is to be implemented and 0

if it is not. Now, given an instance of the decision vector,
−→
X1, its fitness, F (

−→
X1), is

the sum of expected revenues for the requirements to be implemented by
−→
X1:

F (
−→
X1) =

n∑
i=1

revenuei · xi

Similarly, the cost of implementing a set of requirements represented by
−→
X1 is:

cost(
−→
X1) =

n∑
i=1

cost i · xi

Given a budget of b, the single-objective NRP is a problem of finding a decision

4.3. Sensitivity Analysis in NRP 65

vector
−→
X such that F (

−→
X) is maximised while satisfying F (

−→
X) ≤ b:

Maximise
n∑

i=1

revenuei · xi

while subject to

n∑
i=1

cost i · xi ≤ b

4.2.2 Multi-objective Next Release Problem

The multi-objective Next Release Problem (MONRP) is a multi-objective optimi-

sation version of NRP. In multi-objective optimisation problems, there are multi-

ple objectives expressed in fitness functions, which are often in conflict with each

other [Coello, 2000]. In case of MONRP, it can be said that the expected revenue

and the development cost of a product are in conflict with each other.

The multi-objective formulation is defined following Zhang et al. [Zhang et al.,

2007]. Unlike the single-objective formulation, the cost is no longer a constraint. In

multi-objective formulation, the development cost is minimised while the expected

revenue is maximised.

Maximise
n∑

i=1

revenuei · xi, and

Minimise

n∑
i=1

cost i · xi

In multi-objective optimisation, a solution A is said to dominate a solution B if

and only if A is at least equal to B in all objectives, and excels B in at least one ob-

jective. This is called Pareto-optimality. As a result, a solution of a multi-objective

optimisation problem is expressed in a Pareto-front, which is a set of multiple solu-

tions that do not dominate each other.

4.3 Sensitivity Analysis in NRP

Since the models used in the empirical studies are small enough to be solved quickly,

a brute force approach is implemented for sensitivity analysis: simply modify the

initial input data and run the algorithm repeatedly to see how the result changes.

Figure 4.1 illustrates the difference between general optimisation process and sensi-

4.3. Sensitivity Analysis in NRP 66

tivity analysis. The cost of each requirement is modified to simulate the inaccurate

estimation. This data is then fed into a meta-heuristic optimisation algorithm de-

signed for NRP, which will produce an alternative solution. The impact is then

evaluated by measuring the distance between the original solution and the alterna-

tive solution.

Simulated

Inaccuracy

Meta-Heuristic

NRP Solver

Measure the Distances

& Statistic Analysis

Fixing the

Seed for PRN

Solution

Revenue of each

Requirement

Cost of each

RequirementGeneral

Process

Sensitivity

Analysis

Figure 4.1: Sensitivity Analysis Flow Chart

There are two critical elements that are required in order to simulate what-

if scenarios in which a particular estimation is inaccurate. First, the algorithm

used to solve NRP has to be deterministic, otherwise it is impossible to determine

whether the observed change in the result is due to the inaccurate estimation or the

randomness of the algorithm.

In most (if not all) multi-objective evolutionary algorithms, Pseudo Random

Number(PRN) are used in the procedure of evolutionary calculation. For instance,

pseudo random number is used in generating the initial population, selecting the bits

in candidates to perform mutation and crossover. Due to the inherent randomness

of those evolutionary algorithms, and the fact that it can not guarantee the global

optimum, every ‘run’ of the implementation would provide a different result even if

the input data are identical. In order to perform the sensitivity analysis, we need to

distinguish the difference between the indeterminacy of the algorithm itself and the

changes caused by the modification on the input data.

4.3. Sensitivity Analysis in NRP 67

We introduce fixed seed for PRN to provide a identical sequence of PRN for

each execution of the implementation. With the identical sequence of PRN, we can

ensure that the change on the result is caused by the change on the input data only.

The second element required by sensitivity analysis is a method that can measure

the changes brought in by the error in a quantitative manner. If it is not possible to

express the changes in quantitative forms, it would also be impossible to compare the

criticality of errors. The actual method of measurement is specific to the definition

and representation of the problem.

With the single-objective formulation, we evaluate the difference between two

decision vectors by their Hamming distance. This is possible because the greedy algo-

rithm produces a single solution to an instance of NRP problem. However, NSGA-II

produces not a single solution, but a set of solutions that form Pareto Frontier.

Therefore, the difference should be measured between two sets of solutions (two

Pareto fronts), not two different solutions. In order to measure the distance between

two sets of solutions, the Generation Distance is used [Van Veldhuizen, 1999]. It is

based on the calculations of Euclidean Distance of the solutions on two fronts.

To calculate the distance between two fronts (fa, fb) of two different executions

of optimisation, we define (A1, A2, ..., An) to denote the n solutions belonging to

front fa, while (B1, B2, ..., Bm) denote the m solutions belonging to front fb, where

n and m are the numbers of solutions contained by each front respectively.

First, we need to calculate the distance from one solution Ai on front fa to

front fb.

The distance from solution Ai(xi, yi) to solution Bj(xj , yj) is the Euclidean

distance between coordinate values normalised to [0,1]. Distance between Ai and Bj

is defined as:

Dis(Ai,Bj) = ±
√

(xi − xj)2 + (yi − yj)2

The distance from one particular point Ai to fb is considered as the same dis-

tance from Ai to its geometrically closest point on front fb. Distance between Ai

and front fb is defined as:

Dis(Ai, fb) = Dis(Ai,Bj)

4.4. SA Experimental Set Up 68

where Bj is the closest point to Ai on front fb.

The distance from front fa to fb is then calculated as the mean value of the

distance from every point on fa to fb.

Dis∗(fa, fb) =

∑n
i=1 Dis(Ai, fb)

n

where n is the number of optimal solutions on front fa.

Finally, in order to achieve fair contributions from both fronts to the distance

calculation, we develop the formulation to calculate the distance between two Pareto

fronts fa and fb as below:

Distance(fa, fb) =
Dis∗(fa, fb) + Dis∗(fb, fa)

2

4.4 SA Experimental Set Up

The argument of data sensitivity problem is based on the assumption that some

of the estimated quantitative data may contain some errors. The amount of the

actual error will be known only afterwards. However, it is possible to measure the

repercussions of the potential errors by trying out various what-if scenarios. If an

introduction of a certain deliberate error to a specific part of data creates large

amount of change in the final solution, it would be safe to say that the specific part

of data is highly sensitive to an error. With this knowledge, the decision maker can

manage the potential risks more efficiently, as well as focusing on elaborating the

estimation of more sensitive data.

In case of NRP, the most important scenarios are the cases when the costs of

some requirements are based on wrong estimation. The decision maker would want to

know which requirement will create the most significant change in the final solution

if there is an error in the estimation of its development cost. Therefore, the scenarios

in this case will be different versions of the data, each containing a requirement with

modified development cost. The alternative solution will be a subset of requirements

selected based on the modified data. If the alternative solution is radically different

from the original solution, it indicates that the introduced error brings in a significant

4.4. SA Experimental Set Up 69

change. If this process is repeated for each requirement with the same margin of

error, it is possible to identify the requirement that is most sensitive to the same

level of inaccuracy.

The intuitive answer to the cost sensitivity analysis problem is that the more

expensive a requirement is, the bigger impact it will have if its cost is estimated

inaccurately. Similarly, it can be said that the more inaccurate the estimation is,

the bigger impact it will have on the result of NRP. We hereby call this the Positive

Correlation Assumption, (PCA). More specifically, we denote the first assumption

(between cost and impact) by PCA-1, and the second assumption (between inaccu-

racy and impact) by PCA-2. These assumptions are statistically tested against both

synthetic and real-world requirement data. For this, the empirical studies utilise the

greedy algorithm and NSGA-II to single- and multi-objective formulations of NRP

with deliberate errors in the data set.

4.4.1 Greedy Algorithm

Greedy algorithm is known to be efficient and effective for 0-1 knapsack problem,

which is the basis of NRP. It is constructive in nature and start with an empty set

of selected requirement. At each iteration, a requirement is added to the set until

no further additions can be made without exceeding the given budget. The choice

of which requirement to select at each iteration is guided by the fitness value.

First of all, all the requirements are sorted according their fitness value (expected

revenue). All those requirements with the highest fitness value will then be selected

into the solution vector until the budget bound has been reached. Algorithm 1 shows

the pseudo-code of the greedy algorithm used.

input : N:number of requirements; cost; budget
output: solution; currentCost

Sort the requirements in the order of descending revenue
for i← 1 to N do

if currentCost + cost(i) ≤ budget then
currentCost ← currentCost + cost(i);
solution(i)← 1;

end

end
Algorithm 1: Greedy Algorithm

4.4. SA Experimental Set Up 70

4.4.2 NSGA-II

The recent implementation of NSGA-II [Deb et al., 2002] from Zhang et al. [Zhang

et al., 2007] is modified to be applied to Motorola’s data set. Initially, a random

parent population P0 is created. The population size is N . The population is sorted

using the non-dominated relations. Each solution is assigned a fitness value equal

to its non-domination level. Binary tournament selection, crossover, and mutation

operators are used to create the offspring population Q0 of size N . Then the NSGA-

II procedure goes to the main loop which is described in Algorithm 2. Maximising

the overall revenue and minimising the overall cost of each solution are considered

as the two objectives for NSGA-II.

while not stopping rule do
Let Rt = Pt ∪ Qt;
Let F = fast-non-dominated-sort(Rt);
Let Pt+1 = ∅ and i = 1;
while |Pt+1| + |Fi| 6 N do

Apply crowding-distance-assignment(Fi);
Let Pt+1 = Pt+1 ∪ Fi;
Let i = i + 1;

end
Sort(Fi,≺ n);
Let Pt+1 = Pt+1 ∪ Fi[1 : (N -|Pt+1|)];
Let Qt+1 = make-new-pop(Pt+1);
Let t = t + 1;

end
Algorithm 2: NSGA-II Algorithm

4.4.3 Requirement Data

We used two sets of synthetically generated data as well as a set of real-world require-

ments data obtained from a large telecommunications company. The first synthetic

data is generated purely randomly, i.e. there is no correlation between the cost of a

requirement and its expected revenue, which is connected to its fitness value in the

optimisation problem. The second set is generated so that the cost of a requirement

has a positive correlation with its expected revenue. Both of the two sets of syn-

thetic data contain 30 requirements. The cost and revenue for each requirement are

4.4. SA Experimental Set Up 71

generated using the uniform distribution over the interval of (1, 1500) and (1, 10)

respectively. Comparing the results from these two synthetic data set allows us to

test the statistical significance of PCA.

The real-world requirement data is obtained from a large telecommunications

company. It originally contained 40 different features that are interference-free, i.e.

any combination of which can be implemented into a single product. However, 5

features that represent the core functionality of the product were woven by depen-

dencies between themselves, and it was decided that they will always be included in

the final selection of requirements. This left us 35 features with so sparse dependency

relationship that it could be ignored.

4.4.4 Evaluation

We modify the cost of each requirement using 21 different Percentage Increase in

Actual Cost (PIAC) values ranging from −50% to 50% with steps of 5%. A positive

PIAC value means that the actual cost has increased compared to the estimated cost,

which means an underestimation. A negative PIAC value means that the actual cost

has decreased compared to the estimated cost, which means an overestimation. The

Euclidean distance between result from modified data and the original data is used

to quantify the difference observed in these multiple executions. Spearman’s rank

correlation coefficient is used to test PCA and analyse how the changes on result

relates to the modifications of initial data.

4.4.5 Research Questions

We present the following research questions. RQ1 and RQ2 concern the statistical

significance of PCA.

RQ1: Does the sensitivity analysis confirm PCA-1, i.e. the correlation between

the cost of a requirement and its impact on NRP with statistical significance?

RQ2: Does the sensitivity analysis confirm PCA-2, i.e. the correlation between

the level of inaccuracy and its impact on NRP with statistical significance?

RQ1 and RQ2 is quantitatively answered using Spearman’s rank correlation

analysis in Section 4.5. The third research question inherently requires qualitative

analysis.

4.5. SA Results and Analysis 72

RQ3: Is there any exception to the general trend observed by PCA?

RQ3 is answered by analysing the heat-map visualisation in Section 4.5.

4.5 SA Results and Analysis

4.5.1 Result From Single-Objective Formulation

Figure 4.2 and 4.3 shows four heat-map visualisations from the results of sensitivity

analysis on Motorola’s data set, using single-objective formulation of NRP. The x-

axis corresponds to different instances of NRP, sorted in the ascending order of the

budget assigned to each instance. The y-axis corresponds to different requirements,

sorted in the ascending order of their estimated cost. The two heat-maps on Fig-

ure 4.2 show the Hamming distance between the original greedy algorithm solutions

and the alternative solutions with PIAC value of ±25%, i.e. the underestimate or

overestimate error by 25% margin. Similarly, the two on Figure 4.3 show the results

with PIAC value of ±50%, i.e. the underestimate overestimate error by 50% margin.

The darker the colour presented, the bigger hamming distance is represented.

The heat-map reveals the complex interaction between the budget and the rev-

enue and cost of each requirement. A single requirement shows varying levels of

sensitiveness depending on the combination of the budget and the margin of error.

However, some straightforward patterns can be easily observed. First, errors on

expensive requirements do not have any impact on smaller budgets if the original

estimated cost and modified cost are both larger than the given budget, of which

the fact is reflected by the white area in the left lower corner of all four heat-maps.

Second, when comparing the PIAC value of four heat-maps, the bigger PIAC value

tend to bring more impact on the results. Third, when comparing the cost of each

requirement, more expensive requirements tend to have bigger impact on the results.

On the other hand, some cheaper requirements do not have any impact on the result

if and only if their cost is overestimated (with PIAC=−25%,−50%), in which cases

the amount of errors is relatively too small to free enough space on given budget for

a more expensive requirement to be filled in. Another interesting observation is that

some requirements do not have any impact on Hamming distance across all budget

values.

4.5. SA Results and Analysis 73

Budgets

C
o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Hamming Distance (+25%)

1
0
0

1
5
0

4
5
0

5
3
0

6
0
0

7
0
0

1
7
0
0

1
7
4
0

1
9
4
0

1
9
6
0

3
0
6
0

3
0
7
0

3
5
7
0

3
5
8
0

3
5
9
0

3
6
0
0

3
6
2
0

3
8
2
0

4
8
2
0

4
9
4
0

5
2
4
0

5
2
9
0

5
3
0
0

5
3
3
0

5
4
4
0

5
6
7
0

5
7
1
0

5
8
9
0

5
9
1
0

6
0
6
0

6
1
2
0

6
2
2
0

6
6
2
0

6
7
0
0

6
7
4
0

10
10
10
10
10
20
20
20
20
30
40
40
50
50
60
70
80
80

100
100
100
110
120
150
180
200
200
230
300
300
400
500

1000
1000
1100

0

0.05

0.1

0.15

0.2

0.25

Budgets

C
o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Hamming Distance (−25%)

1
0
0

1
5
0

4
5
0

5
3
0

6
0
0

7
0
0

1
7
0
0

1
7
4
0

1
9
4
0

1
9
6
0

3
0
6
0

3
0
7
0

3
5
7
0

3
5
8
0

3
5
9
0

3
6
0
0

3
6
2
0

3
8
2
0

4
8
2
0

4
9
4
0

5
2
4
0

5
2
9
0

5
3
0
0

5
3
3
0

5
4
4
0

5
6
7
0

5
7
1
0

5
8
9
0

5
9
1
0

6
0
6
0

6
1
2
0

6
2
2
0

6
6
2
0

6
7
0
0

6
7
4
0

10
10
10
10
10
20
20
20
20
30
40
40
50
50
60
70
80
80

100
100
100
110
120
150
180
200
200
230
300
300
400
500

1000
1000
1100

0

0.05

0.1

0.15

0.2

0.25

Figure 4.2: Hamming distance from the original solution to the solution obtained
by the greedy algorithm with PIAC value of ±25%.

4.5. SA Results and Analysis 74

Budgets

C
o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Hamming Distance (+50%)

1
0
0

1
5
0

4
5
0

5
3
0

6
0
0

7
0
0

1
7
0
0

1
7
4
0

1
9
4
0

1
9
6
0

3
0
6
0

3
0
7
0

3
5
7
0

3
5
8
0

3
5
9
0

3
6
0
0

3
6
2
0

3
8
2
0

4
8
2
0

4
9
4
0

5
2
4
0

5
2
9
0

5
3
0
0

5
3
3
0

5
4
4
0

5
6
7
0

5
7
1
0

5
8
9
0

5
9
1
0

6
0
6
0

6
1
2
0

6
2
2
0

6
6
2
0

6
7
0
0

6
7
4
0

10
10
10
10
10
20
20
20
20
30
40
40
50
50
60
70
80
80

100
100
100
110
120
150
180
200
200
230
300
300
400
500

1000
1000
1100

0

0.05

0.1

0.15

0.2

0.25

Budgets

C
o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Hamming Distance (−50%)

1
0
0

1
5
0

4
5
0

5
3
0

6
0
0

7
0
0

1
7
0
0

1
7
4
0

1
9
4
0

1
9
6
0

3
0
6
0

3
0
7
0

3
5
7
0

3
5
8
0

3
5
9
0

3
6
0
0

3
6
2
0

3
8
2
0

4
8
2
0

4
9
4
0

5
2
4
0

5
2
9
0

5
3
0
0

5
3
3
0

5
4
4
0

5
6
7
0

5
7
1
0

5
8
9
0

5
9
1
0

6
0
6
0

6
1
2
0

6
2
2
0

6
6
2
0

6
7
0
0

6
7
4
0

10
10
10
10
10
20
20
20
20
30
40
40
50
50
60
70
80
80

100
100
100
110
120
150
180
200
200
230
300
300
400
500

1000
1000
1100

0

0.05

0.1

0.15

0.2

0.25

Figure 4.3: Hamming distance from the original solution to the solution obtained
by the greedy algorithm with PIAC value of ±50%.

4.5. SA Results and Analysis 75

However, due to the existence of budget constraints, it is not possible to visualise

the trend with respect to the cost, the expected revenue, and the PIAC value at the

same time. For this, we turn to the multi-objective formulation; since the Euclidean

distance between two Pareto fronts incorporate differences in both the revenue and

the cost, we can observe the trend between PIAC value and its impact.

4.5.2 Result From Multi-Objective Formulation

Figure 4.4 shows the heat-map visualisation generated from the sensitivity analysis

for the MONRP formulation. The x-axis represents different PIAC values, ranging

from −50% (overestimation) to 50% (underestimation). The y-axis represents dif-

ferent requirements, sorted by their development cost. By cross-referencing x-axis

and y-axis, it is possible to observe how much impact it makes to underestimate or

overestimate the cost of a specific requirement by the given degree of error. The

darker the colour is, the bigger impact the particular error has.

A few trends can be easily observed. First, one of the dominant trends across

all three data sets is that the distance between the original and inaccurate Pareto

front increases as PIAC value increases. Second, when comparing the cost of those

requirements, more expensive requirements tend to have bigger impact on the results.

These two observations are statistically tested in Section 4.5.3.

However, there are a few exceptions to the general trend. Certain requirements

almost consistently have significant impacts on the result. For example, the second

requirement in the real-world data set consistently produces Euclidean distance of

0.026 from PIAC value of −5% to −50%. This consistency provides two interesting

insights into the real-world data set. First, this particular requirement brings about

significant impact on the result even when its cost is reduced only by 5% (PIAC =

−5%). Second, and more interestingly, further reduction in its cost still produces

the same level of impact up to reduction of 50% (PIAC = −50%). This is due to the

fact that the particular requirement has the lowest cost and lowest expected revenue

among the requirements in the data set. It is possible to conclude that the threshold

for overestimation of this particular requirement is 5%. Any overestimation that is

larger than the threshold value would mean that the final solution will be different

from the original solution.

4.5. SA Results and Analysis 76

Underestimated Overestimated

E
s
ti
m

a
te

d
 C

o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Random Data with no correlation

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

18
51
118
130
144
175
218
261
289
341
351
506
527
542
555
591
649
652
670
692
708
763
770
793
860
994
1065
1078
1208
1402

0

0.002

0.004

0.006

0.008

0.01

0.012

0.0141
2
2
2
3
3
3
4
4
4
5
5
5
6
7
7
7
7
8
9
9
9
9
9
9
10
10
10
10
10

R
e
v
e
n
u
e
 o

f
R

e
q
u
ir
e
m

e
n
ts

Underestimated Overestimated

E
s
ti
m

a
te

d
 C

o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Random Data with correlation

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

20
50
70
100
120
130
150
180
210
270
290
320
340
340
380
390
430
460
470
490
580
590
600
640
650
760
780
800
890
1090

0

0.002

0.004

0.006

0.008

0.01

0.012

0.0141
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6

R
e
v
e
n
u
e
 o

f
R

e
q
u
ir
e
m

e
n
ts

Underestimated Overestimated

E
s
ti
m

a
te

d
 C

o
s
t
o
f
R

e
q
u
ir
e
m

e
n
t

Real−world Data

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

10
10
10
10
10
20
20
20
30
40
40
40
50
50
60
70
80
80
100
100
100
110
120
150
180
200
200
230
300
300
400
500
1000
1000
1100

0

1

2

3

4

5

6

7

8

9

x 10
−3

1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

R
e
v
e
n
u
e
 o

f
R

e
q
u
ir
e
m

e
n
ts

Figure 4.4: Euclidean distance between original estimated Pareto-front and actual
Pareto-front by different PIAC values.

4.5. SA Results and Analysis 77

0

2

4

6

8

10

x 10
−3

D
is

ta
n
c
e

Random Data with no correlation

Estimated Cost of Requirements

1
8

5
1

1
1

8
1

3
0

1
4

4
1

7
5

2
1

8
2

6
1

2
8

9
3

4
1

3
5

1
5

0
6

5
2

7
5

4
2

5
5

5

5
9

1
6

4
9

6
5

2
6

7
0

6
9

2
7

0
8

7
6

3
7

7
0

7
9

3
8

6
0

9
9

4
1

0
6

5
1

0
7

8
1

2
0

8
1

4
0

2

0

5

10

15
x 10

−3

D
is

ta
n
c
e

Random Data with correlation

Estimated Cost of Requirements

2
0

5
0

7
0

1
0

0
1

2
0

1
3

0
1

5
0

1
8

0
2

1
0

2
7

0
2

9
0

3
2

0
3

4
0

3
4

0
3

8
0

3
9

0
4

3
0

4
6

0
4

7
0

4
9

0
5

8
0

5
9

0
6

0
0

6
4

0
6

5
0

7
6

0
7

8
0

8
0

0
8

9
0

1
0

9
0

0

1

2

3

4

5

6

7

8

9

10
x 10

−3

D
is

ta
n
c
e

Real−world Data

Estimated Cost of Requirements

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

1
0

0

1
1

0

1
2

0

1
5

0

1
8

0

2
0

0

2
3

0

3
0

0

4
0

0

5
0

0

1
0

0
0

1
1

0
0

Figure 4.5: Boxplots of Euclidean distances between Pareto-fronts for different
costs of requirements

4.5. SA Results and Analysis 78

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

0

2

4

6

8

10

x 10
−3

D
is

ta
n
c
e

Random Data with no correlation

Underestimated Overestimated

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

0

5

10

15

x 10
−3

D
is

ta
n
c
e

Random Data with Correlation

Underestimated Overestimated

+50% +40% +30% +20% +10% 0 −10% −20% −30% −40% −50%

0

1

2

3

4

5

6

7

8

9

10
x 10

−3

D
is

ta
n
c
e

Real−world Data

Underestimated Overestimated

Figure 4.6: Boxplots of Euclidean distances between Pareto-fronts for different
PIAC values

4.5. SA Results and Analysis 79

4.5.3 Statistical Analysis

Figure 4.5 and Figure 4.6 show the boxplots of Euclidean distances measured with

different sets of data. Each boxplot in Figure 4.5 represents the Euclidean distances

measured from all requirements that share the same value of development cost.

Each boxplot in Figure 4.6 represents the Euclidean distances measured from all

requirements in the data set for a specific PICA value. In both figures, the general

trend is a positive correlation between Euclidean distance and PICA or cost, meaning

that larger PICA values and larger development cost will have a greater impact on

the result.

The random data set with no correlation between cost and revenue shows several

unique data points that do not follow the overall trend. The position and number of

these exceptions correspond to the exceptions observed in the corresponding heat-

map in Figure 4.4. This implies that if the data set contains requirements that

do not fit the Positive Correlation Assumption, there are likely to exist exceptional

requirements. With the random data set with positive correlation between cost and

revenue, the PCA trend is more consistent and smooth.

To test PCA statistically, Figure 4.5 and Figure 4.6 are statistically analysed

using Spearman’s rank correlation analysis. Spearman’s rank correlation coefficient

is used to quantitatively describe the relationship between two pairs of separate

variables, without assuming any linear relation between them. First, correlation

coefficient ρ is calculated using the Spearman’s formula. Secondly, we compare the

calculated ρ value with the critical value of ρ at the 0.05 significant level. If the

calculated value exceeds the critical value, we can conclude that there is a strong

correlation between the pair of variables, in which case it indicates that 95 times

in 100, the monotonic relationship between two sets of variables occurred because a

correlation exists, and not because of pure chance. Furthermore, the calculated p-

value can also reflect the significance of the correlation. It represents the probability

of there is no correlation between the two variables.

Table 4.1 shows the Spearman’s rank correlation coefficient values between cost

of requirements and Euclidean distance for the real-world data set for each PICA

value. The observed ρ values show strong monotonic correlation between cost and

4.5. SA Results and Analysis 80

Table 4.1: Spearman’s rank correlation coefficient between PICA value and Eu-
clidean distance. For all requirements, the observed ρ values are statistically
significant at the confidence level of 95%.

Req. ρPIAC p Req. ρPIAC p

1 0.9474 0.0000 19 0.7318 0.0002
2 0.8591 0.0000 20 0.8929 0.0000
3 0.8825 0.0000 21 0.7188 0.0002
4 0.8591 0.0000 22 0.8591 0.0000
5 0.9604 0.0000 23 0.7786 0.0000
6 0.9630 0.0000 24 0.7890 0.0000
7 0.7942 0.0000 25 0.8721 0.0000
8 0.7890 0.0000 26 0.9136 0.0000
9 0.9032 0.0000 27 0.6929 0.0005
10 0.4487 0.0413 28 0.8617 0.0000
11 0.8643 0.0000 29 0.2071 0.3676
12 0.8773 0.0000 30 0.8877 0.0000
13 0.9266 0.0000 31 0.9578 0.0000
14 0.3188 0.1589 32 0.8123 0.0000
15 0.6305 0.0022 33 0.9162 0.0000
16 0.8981 0.0000 34 0.8331 0.0000
17 0.2461 0.2822 35 0.7838 0.0000
18 0.6929 0.0005

Table 4.2: Spearman’s rank correlation coefficient between cost and Euclidean
distance. For all PICA values, the observed ρ values are statistically significant
at the confidence level of 95%.

PICA ρcost pcost PICA ρcost pcost
+50% 0.6648 0.0000 −50% 0.9246 0.0000
+45% 0.8204 0.0000 −45% 0.8918 0.0000
+40% 0.7386 0.0000 −40% 0.8912 0.0000
+35% 0.8093 0.0000 −35% 0.8940 0.0000
+30% 0.7104 0.0000 −30% 0.8646 0.0000
+25% 0.6194 0.0001 −25% 0.8520 0.0000
+20% 0.5704 0.0003 −20% 0.7560 0.0000
+15% 0.8155 0.0000 −15% 0.6370 0.0000
+10% 0.6256 0.0001 −10% 0.4645 0.0049
+5% 0.4239 0.0112 −5% 0.3600 0.0336
0% 0.5026 0.0021

Euclidean distance, exceeding the critical value 0.008 at the significance level of 0.05

for sample size of 500. Again, this confirms the general trend predicted by PCA-1.

Similarly, Table 4.2 shows the correlation coefficient calculated for the relation

between PICA values and Euclidean distance between two Pareto fronts for the real-

4.5. SA Results and Analysis 81

world data set. The average coefficient, ρ, is 0.5871, which comfortably exceeds the

critical value of 0.334 at the significance level of 0.05 for sample size of 35. This

confirms the general trend predicted by PCA-2.

4.5.4 Answers to the Research Questions

RQ1 and RQ2 are answered by the statistical analysis shown in Table 4.2 and

Table 4.1. The Spearman’s rank correlation coefficient confirms that there exists

a positive correlation between the cost of each requirement and the impact, and

between the level of inaccuracy and the impact. The correlation is statistically

significant with confidence level of 95%.

However, it is the overall trends and the exceptions observed in Figure 4.4,

Figure 4.5 and Figure 4.6 that would be of particular interest to the decision maker.

First, while the PCA is statistically confirmed in general, there are exceptions to

the trends. In Figure 4.4, the heat-map for the random data set with no correlation

shows that the requirements that have relatively high and low impact factor form

distinct horizontal bands. This phenomenon is weakened in the second heat-map for

the random data set with correlation. Finally, the real world data shows much more

complex patterns with very few distinct horizontal bands.

Comparing the first and the second heat-map, it can be said that the correlation

between the cost and the expected revenue of requirements is an important factor in

sensitivity analysis. More specifically, if it is likely that some requirements have high

cost and low revenue, or vice versa, these requirements are more likely to contribute

to create the sensitive region in NRP solution.

Figure 4.5 and Figure 4.6 also visually confirm PCA-1 and PCA-2 respectively.

In Figure 4.5, we can observe unique boxplots with very small variance which cor-

respond to the low-impact horizontal bands observed in the first heat-map in Fig-

ure 4.4. Another interesting observation found in Figure 4.6 is that overestimation

tends to have a bigger impact on the solutions of NRP than underestimation; box-

plots on the right side of Figure 4.6 shows steeper increase in mean values than

those on the left side. This trend has a very interesting implication to practitioners,

because under uncertainties, a human decision maker is more likely to overestimate

than underestimate. This qualitative assessment of the statistical analysis forms the

4.6. Related work 82

answer to RQ3.

4.6 Related work

In the Next Release Problem (NRP), the goal is to select an optimal subset of

requirements for the next release of a product. Bagnall et al. first suggested the

term NRP and applied various modern heuristics including greedy, hill climbers and

simulated annealing algorithm [Bagnall et al., 2001]. Baker et al. [Baker et al.,

2006] applied Search-Based Software Engineering approach to NRP by using single

objective optimisation algorithms: the greedy algorithm and the simulated annealing

algorithm. A variation of the problem using integer linear programming is studied

in Van den Akker’s work [van den Akker et al., 2008], to find exact solutions within

budgetary constraints.

Zhang et al. [Zhang et al., 2007] introduced new formulations of Multi-objective

Next Release Problem (MONRP). In Zhang’s MO-NRP formulations, at least two

parameters (possibly conflicting) are considered as two optimisation objectives si-

multaneously.

Sensitivity analysis has been widely applied in various areas including complex

engineering system, environmental studies, economics, health care, etc. [Baniotopou-

los, 1991,Christopher Frey and Patil, 2002,Gunawan et al., 2005,Levine and Renelt,

1992] It has been used as one of the principal quantitative techniques in risk manage-

ment [Boehm et al., 2000]. It can be used to provide an insight into the reliability

and robustness of a problem model result when making decisions [Saltelli et al.,

2000]. However, the present work is the first to introduce Sensitivity Analysis in

multi-objective optimisation problems in the area of software engineering.

The proof-of-principle study by Deb et al. [Deb and Gupta, 2005] introduced

robust optimisation procedures to multi-objective optimisation problems for the pur-

pose of searching for robust Pareto-optimal solutions in multi-objective optimisation

problems.

4.7 Summary

The work introduces an SBSE approach to identify requirements that are anomaly

sensitive to inaccurate cost estimation. Sensitive requirements are those that have

4.7. Summary 83

significant impact on the final solution of NRP when their cost estimates are inaccu-

rate. The work presents an automated sensitivity analysis approach based on SBSE

for both single- and multi-objective NRP formulations. The results of the sensitivity

analysis is summarised in an intuitive heat-map style visualisation to aid the decision

maker in identifying sensitive regions in the data.

Through the empirical studies of both synthetic and real-world requirement

data, the work presents a statistical analysis that confirms the Positive Correlation

Assumption, that more expensive requirements and higher level of inaccuracies tend

to have greater impact on NRP. However, the heat-map visualisation also reveals that

there exist exceptions to this assumption. Identifying these exceptions can guide the

decision maker towards more accurate estimation and safer decision making.

Chapter 5

Cooperative Co-evolutionary Job

Sequencing and Team Sizing

5.1 Introduction

Software project management has been the subject of much recent work in the SBSE

literature. Previous work has investigated the project staffing and planning problem

either as a single-objective problem, or as a multi-objective problem in which the

multiple objectives are, to some degree, conflicting objectives [Alba and Chicano,

2005, Alba and Chicano, 2007, Di Penta et al., 2011]. In this chapter we introduce

an alternative approach based on the use of a Cooperative Co-Evolutionary Algo-

rithm (CCEA). We believe that a Cooperative Co-Evolutionary approach to project

management is attractive because it allows us to model a problem in terms of sub

problems (e.g., in project scheduling and staffing, the allocation of work packages

to teams and allocation of staff to teams). These subproblems can be inter-related,

but separate problems, for which the overall solution depends on the identification

of suitable sympathetic sub-solutions to each of the subproblems.

We show how the two primary features of a project plan—the allocation of staff

to teams and the allocation of teams to work packages—can be formulated as two

populations in a Cooperative Co-evolutionary search. Co-evolution has been previ-

ously used in SBSE work [Adamopoulos et al., 2004, Arcuri and Yao, 2008, Arcuri

and Yao, 2010], but all previous approaches have used competing subpopulations;

the so-called predator–prey model of Co-evolution. In this chapter, we adopt the

alternative approach to co-evolution, Cooperative Co-evolution, in which the sub-

5.2. Problem Statement and Definitions 85

populations work symbiotically rather than in conflict with one another. We believe

that this form of co-evolution may also find many other applications in SBSE work,

since many Software Engineering problems are characterized by a need to find coop-

erating subsystems that are evolved specifically to work together symbiotically.

We implemented our approach and evaluated it on data from four real world

software projects from four different companies, ranging in sizes form 60 to 253

individual work packages. We reported the results on the efficiency and effectiveness

of our approach, compared to a random search and to a single population approach.

Our results indicate that the co-evolutionary approach has great promise; over 30

runs for each approach, co-evolution significantly outperforms both random and

single population approaches for the effectiveness of the project plans found, while

it also appears to be at least as efficient as a single population approach.

The work makes two primary contributions: (1) The work introduces a novel for-

mulation of the Software Project Planning Problem using Cooperative Co-evolution

and, to the best of our knowledge, this is the first work in the SBSE literature to use

cooperative co-evolution. (2) The work reports the results of an empirical study with

an implementation of our co-evolutionary approach, compared to random and single

population evolution. The obtained results provide evidence to support the claim

that cooperative co-evolution is more efficient and effective than single population

evolution and random search.

5.2 Problem Statement and Definitions

This section describes the problem model for the work packages scheduling and staff

assignment problem in detail and addresses the use of the CCEA.

Finding an optimal work package scheduling for a large project is difficult due

to the large search space and many different considerations that need to be balanced.

Also, finding an optimal way to construct its project teams is crucial as well. In this

chapter, we focus on team construction with regards to team size.

In order to formulate this problem into a model, we make the following assump-

tions to simplify the problem: (1) staff members are identical in terms of skills and

expertise, and staff only work on one team during the whole project, (2) WPs are

5.2. Problem Statement and Definitions 86

sequentially distributed to teams, but they may still be processed at the same time,

and (3) only one kind of dependency is considered: Finish-to-Start (FS). All three

assumptions were found to be applicable to the four projects studied, all of which

are real world software projects and therefore, though limiting, our assumptions do

not preclude real world application.

5.2.1 Ordering/Sequence of Work Packages

To model the work needed to complete a project, we decompose the project ac-

cording to its Work Breakdown Structure (WBS). WBS is widely used as a method

of project decomposition. In a given WBS, the whole project is divided into a

number of l small Work Packages (WPs): WP = {wp1, wp2, · · · , wpl}. Two at-

tributes of a WP, wpi, are considered: (1) the estimated effort, ei, required to

complete wpi, and (2) the WP predecessor(s), depi, which need to be completed

before wpi can start to be processed. The estimated efforts for all WPs are repre-

sented as a vector: E = {e1, e2, · · · , el}, e.g.: wpi requires ei person-days to com-

plete; and dependence information is represented as a two-dimensional vector as:

Dep = {dep1, dep2, · · · , depl} where depi = {wpj , · · · , wpk} if the predecessors of

wpi are wpj , · · · , and wpk.

The order in which the WPs are considered is represented as a string, shown

in Figure 6.2, where the WP ordering in the string indicates a specific sequence for

distributing the WPs to project teams. Constraints of precedence relationships are

satisfied as each is processed, with the effect that a project cannot start until its

dependent WPs have been completed.

Work Package Distributing Order: 1st 2nd 3rd · · · (l − 1)th l-th

Work Package ID: 3 2 6 · · · l l − 4

Figure 5.1: WPO Chromosome: The gray area is the representation of the so-
lutions for the ordering for distributing a set of l work packages. A solution is
represented by a string of length l, each gene corresponding to the distributing
order of the WPs and the alleles, drawn from {1, ..., l}, representing an individual
WP.

5.2. Problem Statement and Definitions 87

5.2.2 Staff Assignments to Teams

A total of n staff are assigned to m teams to execute the WPs. The size of each

team (their ‘capacity’) is denoted by a sequence C = {c1, c2, · · · , cm}.

Staff: S1 S2 S3 · · · Sn−1 Sn
Assigned To Team No.: 2 4 3 · · · m 3

Figure 5.2: TC Chromosome: The gray area is the representation of the solutions
for Team Construction or the assignments of a set of n staff to a set of m teams.
A solution is represented by a string of length n, with each gene corresponding to
a staff and the alleles, drawn from {1, ...,m}, representing assignment of the staff.

5.2.3 Scheduling Simulation

We use a single objective fitness evaluation for both populations in our co-

evolutionary approach, i.e., the project completion time. The processing of the WPs

by the teams is simulated by a simple queuing simulation as described in previous

work [Di Penta et al., 2011, Di Penta et al., 2007]. In this approach, the WP de-

pendence constraints are satisfied by arranging the order in which WPs are assigned

to teams. However, we want to avoid the order in which the successor wpi is right

after its predecessor wpj . In such a case, wpi has to wait until wpj is finished before

it can be distributed to an available team. There are two ways for the managers to

minimize the team’s unused available time: 1) interlacing: managers can choose to

insert one or more WPs between wpi and wpj so when wpi is waiting for wpj those

inserted WPs can keep all the teams functioning, or 2) using mitigation: distribute

the predecessor wpj to a team with the highest possible capacity, so that the com-

pletion time of the predecessor is the shortest, and therefore, the waiting time of wpi

is mitigated to be the shortest one. In our case, we simply rely on the search based

algorithm that, by producing different WP orderings, can enact both interlacing or

mitigation. Further details about the simulation of WP scheduling can be found in

a previous work [Di Penta et al., 2011].

5.3. Optimisation Method: Cooperative Co-evolutionary Algorithm 88

5.3 Optimisation Method: Cooperative Co-evolutionary

Algorithm

The Cooperative Co-Evolution Algorithm (CCEA) [Potter and Jong, 1994] was pro-

posed to solve large and complex problems by implementing a divide-and-conquer

strategy. CCEA was originally designed to decompose a high-dimensional problem

into smaller sub-problems that could be handled by conventional evolutionary al-

gorithms [Yang et al., 2008b]. Using CCEA, the individuals from each population

represent a sub-solution to the given problem. To search for a solution, the members

of each population are evolved independently, and interactions between populations

only occur to obtain fitness.

5.3.1 Solution Representations and Genetic Operators

There are two species of solutions in this evolutionary process: One (WPO) contains

solutions representing the ordering in which WPs are distributed to teams, and the

other (TC) represents the Team Constructions, i.e., the number of staffing persons

for each team.

For solutions representing staff assignments or TC, as shown in Figure 5.2, we

encoded the solutions in the following format. The assignment of a set of n staff to a

set of m teams is represented as a string of length n. Each gene of the chromosome

corresponds to a staff member. The alleles ranging from 1 to m represent the team

that the staff is assigned to. A single-point crossover is performed for the TC species.

Basically, the offspring takes half of the chromosome from each of both parents as

shown in Figure 5.3. The mutation operator is thus set to assign each staff randomly

to another team.

To achieve a fair comparison between projects, we chose the number of staff

n = 50 and the number of working teams m = 5. Also, we verify every new generated

solution of TCs before evaluating it with the fitness function, to ensure in each

solutions every team has at least one staff member. This “no empty team” check

is required because a team can be empty during the evolutionary process if all staff

members are assigned to other teams.

The representation of WP ordering is shown in Figure 6.2. The crossover op-

5.3. Optimisation Method: Cooperative Co-evolutionary Algorithm 89

TC Parent A: 3 m 1 · · · 4 2

TC Parent B: 2 4 3 · · · m 3

Crossover ⇓
TC Offspring A: 3 m 3 · · · m 3

TC Offspring B: 2 4 1 · · · 4 2

Figure 5.3: Crossover for Team Construction solutions: Single Point Crossover

erator for such a representation is explained in [Di Penta et al., 2011], while the

mutation operator randomly swaps a WP to another position in the queue, as shown

in Figure 5.4. The mutation rate of is 20% per gene, calibrated after trying other

(higher and lower) rates.

WPO Before Mutation: 3 2 6 · · · l l-4

''ww ����

WPO After Mutation: 6 2 3 · · · l-4 l

Figure 5.4: Mutation on Work Package Ordering solution: Randomly Swap WPs’
Positions

To satisfy the dependency constraints among WPs, a dependency check is re-

quired. Solutions that violate the dependency constraints are “repaired” as explained

in Section 5.2.3.

5.3.2 Initial Populations

The initial populations are randomly generated and subject to satisfy the “no empty

team” rule and dependency constraints among WPs. The population size is set to

50 for both species.

5.3.3 Termination Condition

We experimented with 3 sets of configurations formed of the Internal (I) and Exter-

nal (E) number of generations for CCEA. The number of internal generations relates

5.4. Empirical Study 90

to the evolution of each sub-population, while the number of external generations

represents how many times each population provides an updated reference to help

the other population co-evolve. As shown in Table 5.1, these 3 configurations are

all allowed the same budget of fitness evaluations. Although all these three configu-

rations evolve solutions in both TC and WPO populations for the same number of

generations, the level of communication between the two populations varies.

Table 5.1: Three sets of configurations for CCEA each of which requires the same
total number of evaluations before it is terminated. F represents the number of
evaluation required in one generation, and it is fixed for all configurations in this
empirical study.

Config.
of Internal # of External Total # of
Generations Generations Fitness Evaluations

I 1 100 100*F

II 10 10 100*F

III 100 1 100*F

For instance, with Config. I, CCEA evolves solutions in both populations for

a single generation only (internal generation) and then provides the updated indi-

viduals for fitness evaluations of the other population. Finally, before the evolution

process terminates, the TC population provides an updated reference for the WPO

population for a total of 100 iterations (external generation), and vice versa. Config.

III is not a CCEA by definition because during the whole period of the cooperative

co-evolutionary process, the communication happens only once. Therefore Config.

III is a ‘non-co-evolutionary’ approach, against which we compare the other (co-

evolutionary) approaches. By implementing the non co-evolutionary approach as

a ‘special case’ (by suitable choice of parameters), we remove one source of possi-

ble bias that would otherwise result from experimenting with two totally different

implementations: one co-evolutionary and the other not.

5.4 Empirical Study

The goal of this empirical study is to compare our new CCEA approach with a non-

co-evolutionary genetic algorithm and a random search. We study the effectiveness

5.4. Empirical Study 91

and efficiency of our approach, alternatives and (for purely ‘sanity check’ purposes)

random search on four industrial projects, named Projects A, B, C and D, described

below and for which quantitative data are summarized in Table 5.2.

Table 5.2: Characteristics of the four industrial projects

Projects #WPs #Dependencies Total Effort (person-days)

A 84 0 4287

B 120 102 594

C 253 226 833

D 60 57 68

More detailed descriptions of these four projects can be found in Section 3.2

along with the details of all the other industrial data sets used in this thesis.

The empirical study addresses the following research questions:

RQ1: (Sanity Check) Do the CCEA approach and the single population alterna-

tive significantly outperform random search?

RQ1.1: Does the single population GA outperform random search?

RQ1.2: Do the CCEAs outperform random search?

RQ2: (Effectiveness) How effective is the CCEA approach compared to the al-

ternatives in terms of finding an earlier completion time?

RQ3: (Efficiency) Given the same number of evaluations, which algorithm finds

the best-so-far solution the quickest?

The population size in our implementation was set to 100 and the number of

generations is listed in Table 5.1 for the three different configurations. For the CCEA,

the fitness of an individual in either species depends on the results of its simulations

with 6 individuals from the other species. Offspring compete with their parents,

and, to select parents for reproduction, the algorithm randomly picks a number of

parents and performs a tournament selection to identify parents for breeding. The

pool of offspring is half the population size, i.e., 25. That is, the best 25 offspring

had the chance to compete with their parents.

5.5. Empirical Study Results 92

5.5 Empirical Study Results

In this section, we report results of the study described in Section 5.4.

5.5.1 Analysis of the Cooperative Co-Evolutionary Progress

Results for all four projects and for the 3 CCEA configurations are plotted on Fig-

ures 5.5 to 5.8. In each sub-figure, the tick labels on the horizontal axis indicate the

total number of internal generations that have been carried out, and also indicates

the point at which the algorithm updated the population used for fitness computa-

tion. At each point on the horizontal axis, the entire population is depicted using

a boxplot to give both a sense of the values obtained for completion time as the

evolution progresses and the distribution of the fitness values in the population.

The fitness values of the entire population during the whole CCEA process are

represented as boxplots. We can observe that the number of internal generations is

the same for both populations within a specific sub-figure, as they fill equally spread

vertical bands on the sub-figures. As can be seen from the sub-figures in the top rows

in Figures 5.5 to 5.8, Config. I tends to find better solutions sooner than the other

two configurations. On the second rows, we can observe an noticeable interlacing

of the co-evolutions between the two populations. For instance, as in Figure 5.5(b),

the evolutionary process on each population takes 10 internal generations. The first

10 internal generations—plotted within the interval [1, 10] on the horizontal axis—

record the evolutionary progress of TC. After the first round of evolution on TC, the

solutions on WPO start evolving during the interval [11, 20]. On the third row of the

sub-figures, it can be seen that the optimisation of WPO produced more benefit—in

terms of project completion time—than what was done for TC. This can be noticed

in Figure 5.5(c), where both species evolved for only one round (i.e., one external

generation) and, in each round, they evolved for 100 generations (i.e., 100 internal

generations). As indicated by the generation number on the horizontal axis, results

from the TC species are plotted on the interval [1, 100], while results from the WPO

species are plotted on the interval [101, 200]. As we can see from the completion

time (vertical axis) the optimisation of WPO leads to a noticeable improvement in

the fitness function values obtained.

5.5. Empirical Study Results 93

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200

86

88

90

92

94

96

98

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(a) Project A, Config. I

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

86

88

90

92

94

96

98

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(b) Project A, Config. II

100 200

86

88

90

92

94

96

98

100

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(c) Project A, Config. III

Figure 5.5: Projects A: Boxplots of completion times for all solutions found by
different CCEAs configurations

5.5. Empirical Study Results 94

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200

21

22

23

24

25

26

27

28

29

30

31

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(a) Project B, Config. I

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

22

23

24

25

26

27

28

29

30

31

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(b) Project B, Config. II

100 200

22

23

24

25

26

27

28

29

30

31

32

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(c) Project B, Config. III

Figure 5.6: Projects B: Boxplots of completion times for all solutions found by
different CCEAs configurations

5.5. Empirical Study Results 95

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200

30

32

34

36

38

40

42

44

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(a) Project C, Config. I

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

32

34

36

38

40

42

44

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(b) Project C, Config. II

100 200
30

32

34

36

38

40

42

44

46

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(c) Project C, Config. III

Figure 5.7: Projects C: Boxplots of completion times for all solutions found by
different CCEAs configurations

5.5. Empirical Study Results 96

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(a) Project D, Config. I

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(b) Project D, Config. II

100 200

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Generation Number

Pr
oj

ec
t D

ur
at

io
n

(c) Project D, Config. III

Figure 5.8: Projects D: Boxplots of completion times for all solutions found by
different CCEAs configurations

5.5. Empirical Study Results 97

5.5.2 Results on Effectiveness

In this section we report the comparison of the effectiveness of three sets of CCEA

configuration and the random search. Each algorithm was run 30 times on each of

the 4 sets of project data to allow for statistical evaluation and comparison of the

results.

Figure 5.9 reports—for the various configurations—fitness values for the best

individual solutions found by CCEA in the 30 runs.

As shown in the figures for Projects B, C, and D, in terms of the ability to

effectively find the best solutions, CCEA performs better with Config. I and worse

with Config. III. As explained in Section 5.3.3, Config. III is the single population

evolutionary algorithm, while Config. I and II are bona fidè CCEAs. Therefore,

our results provide evidence to support the claim that CCEAs outperform the single

population evolutionary algorithm.

The random search generates twice the number of solutions of the CCEAs during

the evolutionary process, and despite that, is clearly outperformed by the CCEAs

in terms of fitness function quality. This observation is supported by a Wilcoxon

Rank Sum Test (WRST) performed to calculate the statistical significance of the

difference between the solutions produced by the different CCEAs configurations

and Random. Since we are performing multiple comparisons on the same data set,

p-values are corrected using the Holm’s correction. The Wilcoxon Rank Sum Test

(WRST) p-values reported in Table 5.3, as well as boxplots shown in Figure 5.9,

indicate that all evolutionary algorithms perform significantly better than a random

search, and that the best solutions found by the CCEAs (Config. I and II) perform

significantly better than the single population evolutionary algorithm (Config. III).

5.5. Empirical Study Results 98

80

100

120

140

160

180

200

220

Config I Config II Config III Random

P
ro

je
c
t

D
u

ra
ti
o

n

Mean Value

(a) Project A

20

25

30

35

40

45

50

55

60

Config I Config II Config III Random

P
ro

je
c
t

D
u

ra
ti
o

n

(b) Project B

30

40

50

60

70

80

90

Config I Config II Config III Random

P
ro

je
c
t

D
u

ra
ti
o

n

(c) Project C

2

3

4

5

6

7

8

9

10

11

12

Config I Config II Config III Random

P
ro

je
c
t

D
u

ra
ti
o

n

(d) Project D

Figure 5.9: Boxplots of all the best solutions found in 30 runs of the three CCEA
configurations, and in random search runs

Table 5.3: Wilcoxon Rank Sum Test (unpaired) test adjusted p-values for the
pairwise comparison of the three configurations

p-values for WRST
Projects

A B C D

Config. I vs II 0.7229 0.1885 0.4481 0.2449

Config. I vs III 5.04E-08 3.00E-11 2.78E-07 2.19E-07

Config. II vs III 1.47E-07 8.86E-10 2.08E-06 1.28E-06

Config. I vs Random 3.97E-40 3.82E-40 3.83E-40 3.83E-40

Config. II vs Random 3.97E-40 3.82E-40 3.83E-40 3.83E-40

Config. III vs Random 2.70E-30 6.04E-37 3.13E-36 3.66E-36

5.5. Empirical Study Results 99

For Project A, while all CCEAs perform significantly better than random search,

the practical benefit in terms of lower project completion time achieved is not as evi-

dent as for the other projects. This is because in Project A there are no dependencies

between WPs; the project is a conceptually simple, multiple application of a mas-

sive maintenance task (fixing Y2K problem repeatedly using a windowing approach).

Since there are no dependencies, there is no delay introduced by the need for waiting

on dependent WPs. For this reason, the WP scheduling and team construction have

little impact on the overall completion time.

In conclusion, the obtained results support the following two claims: (1) all

three CCEAs were found to perform better than the random search, which means

the CCEAs passed the ‘sanity check’ set by RQ1, and (2) RQ2 is answered with

the result of the WRST test that indicated the best solutions found by Config. I

and II are significantly better than those found by Config. III. We conclude that

there is evidence to suggest that co-evolution is effective to deal with software project

staffing and scheduling.

5.5.3 Results on Efficiency

To answer RQ3, we extended the experiments with 30 runs of 3 CCEAs configu-

rations until the solutions produced by all algorithms became stable, and, to allow

a fair comparison, the random search was set to have the same number of fitness

evaluations. The progress of the CCEAs and the random search in finding better

solutions are plotted in Figure 5.10. The fitness values are averaged over 30 runs for

CCEAs, while for the random search, the figure shows the best solutions found for

the number of evaluations indicated on the horizontal axis.

As shown in Figures 5.10(b), 5.10(c), and 5.10(d), respectively for Projects B,

C and D, in most cases, the CCEAs find better solutions than the non-cooperative

algorithm. However, there is an exception found for Project A as shown in Fig-

ure 5.10(a), for which the CCEA does not outperform its rivals. We believe that

this is due to the dependence-free nature of Project A (as mentioned before, it has

no dependencies).

In conclusion, with regard to the efficiency of finding better solutions (RQ3), we

find evidence that CCEAs outperform random search in general, and that the CCEA

5.5. Empirical Study Results 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

85.5

86

86.5

87

87.5

88

88.5

89

89.5

Fitness Evaluations

F
it
n

e
s
s
 V

a
lu

e
 (

P
ro

je
c
t
D

u
ra

ti
o
n
)

Random Search
CCEA−Config−I

CCEA−Config−II
CCEA−Config−III

1.8 1.85 1.9 1.95

x 10
5

85.7

85.8

85.9

86

86.1

86.2

(a) Project A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

20

22

24

26

28

30

32

34

Fitness Evaluations

F
it
n

e
s
s
 V

a
lu

e
 (

P
ro

je
c
t

D
u

ra
ti
o

n
)

1.8 1.85 1.9 1.95

x 10
5

21

21.5

22

22.5

(b) Project B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

30

32

34

36

38

40

42

44

Fitness Evaluations

F
it
n

e
s
s
 V

a
lu

e
 (

P
ro

je
c
t

D
u

ra
ti
o

n
)

1.8 1.85 1.9 1.95

x 10
5

30

30.5

31

31.5

(c) Project C

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Fitness Evaluations

F
it
n
e
s
s
 V

a
lu

e
 (

P
ro

je
c
t
D

u
ra

ti
o
n
)

1.8 1.85 1.9 1.95

x 10
5

2.2

2.25

2.3

2.35

2.4

2.45

(d) Project D

Figure 5.10: Efficiency Comparison of the Random Search and CCEAs

with more frequent communication between two populations (Config. I) performs

better than the others (Config. II, III, and Random).

5.5.4 Threats to Validity

Construct validity threats may be due to the simplifications made when modelling

the development/maintenance process through a simulation. In particular, (i) we

assumed communication overhead negligible and (ii) we did not consider developers’

expertise. However, accounting for these variables was out of scope for this work, as

here the intent was to compare CCEA with non-co-evolutionary genetic algorithms.

Threats to internal validity can be due, in this study, to the bias introduced

in our results by the intrinsic randomness of GA and, of course, of the random

approach. We mitigate such a threat by performing statistical tests on the results.

5.6. Related Work 101

Threats to conclusion validity concern the relationship between treatment and

outcome. Wherever possible, we use appropriate statistics—Wilcoxon test with

Holm’s correction in particular—to robustly test our conclusions.

Threats to external validity concern the generalization of our findings. We per-

formed experiments on data from four industrial projects having different charac-

teristics in terms of size, domain, and relationships among WPs. However, further

studies are desirable to corroborate the obtained results.

5.6 Related Work

Chao et al. were the first to publish on search-based project planning [Chao et al.,

1993], with their introduction of the Software Project Management Net (SPMNet)

approach for project scheduling and resource allocation, which was evaluated on

simulated project data. Aguilar-Ruiz et al. [Aguilar-Ruiz et al., 2002] also pre-

sented early results on evolutionary optimisation for search-based project planning,

once again evaluated on synthetically created software project data. Chicano and

Alba [Alba and Chicano, 2005, Alba and Chicano, 2007] applied search algorithms

to software projects to seek to find allocations that achieve earliest completion time.

Alvarez-Valdes et al. [Alvarez-Valdes et al., 2006] applied a scatter search approach

to the problem of minimizing project completion duration.

Project management has recently [de Souza et al., 2010] been the subject of a

study of the human-competitiveness of SBSE, which found that optimisation tech-

niques are able to produce effective results in a shorter time than human decision

makers. This work demonstrates that SBSE is a suitable approach to consider for

project planning activities since it can find solutions that the human decision maker

may otherwise miss. While the ultimate decision is likely to rest with the human

decision maker, it is therefore important to find suitable SBSE techniques that can

support this decision making activity.

Other authors have also worked on SBSE as a means of decision support for soft-

ware engineering managers and decision makers in the planning stages of software

engineering projects focusing on early lifecycle planning [Barreto et al., 2008,Cortel-

lessa et al., 2008, Kapur et al., 2008, Kremmel et al., 2011, Xiao et al., 2010] as

5.7. Summary 102

we do in the present chapter, but also reaching forward to subsequent aspects of

the software engineering lifecycle that also require planning, such as scheduling of

bug fixing tasks [Fernando Netto and Alvim, 2009, Xiao and Afzal, 2010]. Like

our present work, some of this work has considered multiple objectives [Alba and

Chicano, 2007, Gueorguiev et al., 2009]. This is very natural in software project

planning which is typified by many different concerns, each of which must be bal-

anced against the others; and issue that is reported to be inherently as part of much

work on SBSE [Harman, 2007]. However, no previous work has used co-evolution

for project planning to simultaneously pursue these different objectives.

SBSE can also be used as a way to analyse and understand Software Project

Planning, yielding insight into planning issues, rather than seeking to necessarily

provide a specific ‘best’ project plan [Harman, 2010a]. For example, SBSE has been

used to study the effect of Brooks’ law [Brooks, Jr., 1975] on project planning [Di

Penta et al., 2007]. It has also been used to balance the competing concerns of risk

and completion time [Gueorguiev et al., 2009]. Our work may be used in this way,

since we can study the way the two populations evolve with respect to one another

and the ways in which they are symbiotic. A thorough exploration of this possibility

remains a topic for future work.

Di Penta et al. [Di Penta et al., 2011] compared the performance of different

search-based optimisation techniques, namely Genetic Algorithms, Simulated An-

nealing, and Hill Climbing to perform project planning on data from two industrial

projects (Projects A and B also used in this study). The present work can be

thought of as an extension of the previous work of Di Penta et al., because it uses

the same representation and fitness function, while proposing and evaluating the use

of a completely unexplored optimisation approach: co-evolutionary optimisation.

5.7 Summary

This chapter proposes the use of Cooperative Co-Evolutionary Algorithms (CCEA)

to solve software project planning and staffing problems. The co-evolutionary al-

gorithm evolves two populations, one representing WP ordering in a queue (which

determines their assignment to teams), and the other representing developers distri-

5.7. Summary 103

bution among teams.

We conducted an empirical study using data from four industrial software

projects, aimed at comparing CCEA project planning and staffing with (i) ran-

dom search and (ii) single population optimisation using genetic algorithms. Results

of the empirical study show that CCEA is able to outperform random search and

single population GA, in terms of effectiveness (i.e., best solutions proposed in terms

of project completion time) and efficiency (i.e., a smaller number of evaluations re-

quired).

Chapter 6

Co-evolutionary Project Planning

Optimisation under Staff Absence

6.1 Introduction

Most computer-based project management optimisation techniques either simply

assume full attendance from all employees [Alba and Chicano, 2007, Chang et al.,

2001] or implicitly inject a certain ratio to simulate the staff absence [Berman and

Larson, 1993, Hur et al., 2004, Zhu et al., 2005]. However, in real world cases, this

assumption can hardly be true due to the uncertainties caused by staff turnover and

absenteeism.

The uncertainties of staff attendance at the project planning stage lead to ex-

pensive operational costs to recover the scheduled project plan, and the wellness of

recovery purely relies on the project manager’s experiences and available resources

at the time when the decision was made, which is lacking support from technical

insights and subject to the constraints of available resources. However, the available

resources at any given point during the course of a project were designed or planned

under the assumption of full attendance of staff. Therefore, to utilise any of the avail-

able resources to mitigate the unplanned absence will cause inevitable disruptions

that prevent further progress on the project to be made as scheduled/planned.

As a matter of fact, employee absenteeism has been identified as one of the most

costly disruptions in project management [CIPD, 2012,Taylor et al., 2010]. Signifi-

cant efforts have been made to reduce the employee absence from the perspectives

of policy-making or in psychology, such as “Return to work interviews” and “Atten-

6.1. Introduction 105

dance bonus” [CBI, 2011]. Previous techniques can only be utilised during the course

of the project, although they are often referred as “proactive” tools. On the other

hand, we believe it is vitally important that project managers are provided with an

automatic tool for simulating and analysing the uncertainty of employees’ absence

in passive manners. The automatically generated results can help project managers

understand certain interesting “what-if” scenarios on staff absence and work pack-

age scheduling well in advance. Thus, project managers can decide whether or not

to take certain precautions that are going to be effective. For example, in some

projects, it will be very useful to the project manager if she/he could understand in

advance that even though there are only a small amount of staff absences, its impact

on project duration cannot be mitigated by rescheduling the work packages.

The harmful effects of absence on productivity are well documented [Hausknecht

et al., 2008]. According to a recent survey by the Confederation of British Industry

(CBI) [CBI, 2011] nearly 190 million days were lost to staff absence. The direct costs

of absence alone amounted to over £17 billion across the UK economy in 2010, and

the median total cost for each absent employee in 2010 was £760 a year. Over two

thirds (68%) of all working time lost to employee absence is attributable to short-term

conditions. More than a third of employers have set an explicit target for reducing

absences over the coming year. A review of the health of the working age population

by the Department of Work and Pensions [Black, 2008] reports that the economic

costs of sickness absence and worklessness due to ill health amounted to over £100

billion a year, which is greater than the annual budget of the National Health Service

(NHS) [Higgins et al., 2012]. There is also analysis on sickness absence rates by age,

gender and other socio-economic characteristics of workers. These relationships prove

to be similar across countries with widely differing mean rates of absence [Barmby

et al., 2002].

The different absence rates in Figure 6.1 from [Black, 2008] shows different in-

dustrial absence rate reported by CBI, the Chartered Institute of Personnel and De-

velopment (CIPD), and the Office for National Statistics (ONS) through its Labour

Force Survey (LFS). This is due to the difference in the population sampled, response

rate, and, crucially, data collected. The complexity of differences between surveys

6.1. Introduction 106

Figure 6.1: Sickness absence as a proportion of working time. Figure adapted
from [Black, 2008]

made it difficult to draw any general conclusion from the direct comparison of the

absence rate between these surveys [Holmes, 2008], Among these figures, because

it provides more comprehensive breakdowns of the raw data according to various

categories, we decided to adopt the figures from CIPD [CIPD, 2011] as the base line.

CIPD surveys suggested that the absent rate ranges from approximately 3.5% to

4.5%.

In addition, this absence rate needs to be adjusted to take into consideration

of paid holidays, because the paid holidays of employees can also effect the project

progress even though it is not considered as part of the absence in general. The

number of paid holidays varies from 20 to 35 days per year in UK [Danzer and

Dolton, 2012]. Therefore, the average absence rate of employee is roughly adjusted

to the range of 10.9% to 17.4%. In the implementation of our simulations, we assume

that the range of absence rate from 0% to 25% is sufficient to cover the real case.

To clarify, the term absence rate used in this thesis refers to the average rate of

a staff being absent from work when other staff are in attendance. It consists of paid

6.2. Problem Statement 107

holidays, sickness absence, away because of family responsibilities, stress or training,

etc.. It excludes weekends (104 days per year) and public holidays (8-11 days per

year in UK) by definition.

In our work reported in this chapter, instead of attempting to reduce the staff

absences, we quantitatively study the analysis of various possible scenarios of staff

absence and work package scheduling, and their impacts on project finish time.

Previous scheduling and staff rostering techniques are unable to customise the staff

availabilities calendar to simulate unavailabilities of staff in an intuitive way. We are

the first to propose Co-evolutionary Optimisation techniques to deal with this kind

of problem. The improvement of our previous work on using the Cooperative Co-

evolutionary Algorithm on software project management is reported in this chapter.

Employee skills are considered in the process of simulating the project process.

A set of four industrial project data has been used to validate our techniques,

results and analysis for each specific cases is provided, and suggestions on customi-

sations to suit different real world cases have also been put forward.

6.1.1 Research Questions

The following three research questions will be answered through the studies of work:

RQ1: How do the co-evolutionary optimisation techniques find desirable extreme

solutions for the best and worst case scenarios?

RQ2: How do the co-evolutionary optimisation techniques reveal the dynamic cor-

relation between work package scheduling and staff absence?

RQ3: How does the staff absence rate interfere with the project completion time?

6.2 Problem Statement

The results reported in this chapter come from the application of our approach to

scheduling and staffing problems for four real–world software projects. Each of these

project plans has a set of Work Packages (WPs) that ought to be executed by a

number of staff.

On the one hand, information on work packages consists of the estimations of

the effort of executing each work package, and the constraint of dependency among

WPs need to be satisfied. Furthermore, each work package consists of a set of sub

6.2. Problem Statement 108

work packages that can only be executed by staff with the required skills. The

problem of finding optimal solutions of scheduling problem is formulated as finding

Work Package Ordering.

On the other hand, each member of staff possesses a particular skill required by

one or more WPs in the project, and multiple members of staff that possess the same

skill are considered identical in terms of their performance of executing corresponding

WPs. In addition, the absence of staff from the project is considered in this model.

The problem of finding optimal solutions of staffing problem is formulated as finding

Staff Availability Calendar.

6.2.1 Work Package Ordering (WPO)

Work Package Ordering (WPO) essentially defines the order of considering the ex-

ecution of the work packages in a project. An abstract representation is illustrated

in Figure 6.2.

On the project level, WPO is partially affected by the dependency constraints

among work packages. More importantly, a large enough number of automatically

generated WPOs can properly explore the potential “parallelism” of the executions

on those WPs which are without dependency constraint and thus “good” solutions

are said to be found in the case that the resource (staff) is utilised in a more extreme

way (either more efficient or more inefficient). Therefore, the fitness of a WPO must

be evaluated against the staff availabilities, because the “goodness” of a WPO is

subject to the constraint of the availabilities of required staff.

6.2.2 Staff Availability Calendar (STCAL)

Staff Availability Calendar (STCAL) reflects all sorts of possible combinations of

absence of all members of staff on the day that a regular full time employee is

supposed to be available. An abstract representation is shown in Figure 6.3.

During the course of a project, staff with different skills become unavailable

to work for many possible reasons, most of which cannot be properly planned in

advance. The delay caused by such staff absence may vary depending on: 1) whether

there is a corresponding work package planned to be executed during the absence and

2) whether and when another member of staff with the corresponding skill becomes

6.3. Co-evolution 109

available. Thus, similarly to the evaluation of WPO, the fitness of STCAL also must

be evaluated against the order of considering to execute the work packages.

6.3 Co-evolution

As discussed in the previous section, we aim to optimise the solutions of two prob-

lems. The Co-evolutionary Optimisation technique is adapted to evolving two species

of these solutions. In this section, we first introduce the representation of these two

kinds of solutions, and the genetic operators which illustrate the methods of re-

producing new solutions based on existing solutions. Secondly, the mechanism of

deciding which are the solutions to be kept along the evolutionary process is stated

in the fitness evaluation and selection subsection. Finally, an abstract level of the

algorithm that describes the implementation of the co-evolutionary procedure among

two species is presented.

6.3.1 Genetic Representations

6.3.1.1 Array of WP’s IDs representing Work Package Ordering

As the representation of the solution and the genetic operator for WPO is the same as

we proposed in SSBSE CCEA–PM paper [Ren et al., 2011], they are briefly repeated

below for the sake of convenience.

Work Package Order: 1st 2nd 3rd · · · (l − 1)th l-th

Work Package ID: 3 2 6 · · · l l − 4

Figure 6.2: WPO Chromosome: The gray area is the representation of one spe-
cific ordering for distributing a set of l work packages. As shown the solution is
represented by a string of length l, each gene corresponding to the distributing
order of the WPs and the alleles, drawn from {1, ..., l}, representing one WP’s ID.

6.3.1.2 Boolean matrix representing Staff Availability Calendar

The staff availability calendar is represented as an NS by ND table in which NS

is the number of staff, and ND is the number of days of the project duration. An

illustrative example is given in Figure 6.3. The number “1” indicates the absence

of the corresponding member of staff on specified days, e.g. sickness leave, planned

6.3. Co-evolution 110

holiday.

Calendar (n-th Day)
1 2 3 · · · ND

Staff

Alice 0 1 0 1
Bob 0 0 1 0

Carol 1 0 0 1
...

. . .

Steve 1 0 0 1

Figure 6.3: The representation of Staff Availability Calendar with “1” indicating
the day a member of staff is not available

6.3.2 Genetic Operators

6.3.2.1 Order Crossover on WPO

WPO Parent A: 1 2 3 4 5 6 7

�� �� ��

WPO Offspring: 1 2 3 6 4 7 5
44 OO OO OO

WPO Parent B: 6 2 3 1 4 7 5

Figure 6.4: WPO Crossover: Order Crossover

6.3.2.2 Mutation on WPO

WPO Before Mutation: 1 2 3 6 4 7 5

''ww ����

WPO After Mutation: 3 2 1 6 4 5 7

Figure 6.5: WPO Mutation: Randomly Swap WPs’ Positions

6.3. Co-evolution 111

6.3.2.3 Dependency and Duplication Verification on “newborn” WPO

After the crossover and mutation on ordering the WPs, a “newborn” solution of

WPO is produced with potential violations of WPs’ dependency constraints. Be-

cause the scheduling simulator is designed to process only those WPOs without any

violations of dependency constraint, all “newborn” WPOs need to be verified by a

dependency checker, and any dependency violations should be removed.

The dependency checker goes through every single WP in an offspring WPO,

one by one, to verify whether a WP’s predecessors are all placed before it in the

ordering. The verification is considered as passed only if the predecessor is before

the successors for every pair of WPs with dependency constraints. Otherwise, the

violation will be repaired by placing the predecessor to the position just in front of

its successor.

After the verification process, the offspring will be further examined for possible

duplications. If the newly-generated WPO has the same ordering with the existing

individuals, it will be mutated and verified again until a new and different solution

is found.

6.3.2.4 Uniform Crossover on Staff Availability Calendar

Uniform crossover will be performed along the vertical dimension on the Staff Avail-

ability Calendar. This means that the offspring inherits the availability of one specific

member of staff, the same with one of its parents, while it has equal chance to inherit

it from either of the parents. The crossover process is illustrated in Figure 6.6.

6.3.2.5 Mutation on Staff Availability Calendar

As shown in each row of Figure 6.3, a member of staff’s availability is represented

where “1” indicates the absence of one member of staff or “0” indicates otherwise.

The mutation is performed as swapping the bits of “1” randomly with a bit of “0”

with the probability of 20%. The mutation process is shown in Figure 6.7. It is

worth mentioning that the total amount of sick–days is fixed for each member of

staff and for the whole project.

6.3. Co-evolution 112

P
a
re

n
t

A

Alice 0 1 0 1
Bob 0 0 1 0

Carol 1 0 0 1
...

. . .

Steve 1 0 0 1

Alice 0 1 0 1

O
ff

sp
ri

n
g

A

Bob 1 1 0 0
Carol 1 0 0 1

...
. . .

Steve 0 1 1 0

Uniform Crossover⇒ taken from Parent A

taken from Parent B

P
a
re

n
t

B

Alice 0 0 1 0
Bob 1 1 0 0

Carol 0 0 1 0
...

. . .

Steve 0 1 1 0

Alice 0 0 1 0

O
ff

sp
ri

n
g

B

Bob 0 0 1 0
Carol 0 0 1 0

...
. . .

Steve 1 0 0 1

Figure 6.6: Uniform Crossover on Staff Availability Calendar: offspring inherit
availabilities of one specific member of staff as for the whole period of the project
(a whole row on the chromosome) from either of the parents with equal probability.

Alice’s STCAL Before Mutation: 0 1 1 0 0 · · · 1

���� ''ww

Alice’s STCAL After Mutation: 1 0 1 0 1 · · · 0

Figure 6.7: Mutation on Staff Availability Calendar: for each member of staff, the
positions of a ’1’ and a random ’0’ are swapped with a defined probability.

6.3.3 Fitness Evaluation and Selection of Candidate Solutions

6.3.3.1 Scheduling Simulation

As shown in Figure 6.8, the Scheduler (the scheduling simulator) takes one WPO and

one STCAL solution as its input. In the course of simulating a project, provided

there is a prioritised list of all the WPs (WPO), a Scheduler understands the order

of WPs to be considered assigning a member of staff to. At the same time, provided

there is a STCAL, the Scheduler understands the availability of staff at any given

time of the project.

In addition to the inputs (WPO and STCAL), some other essential information

of WPs and staff is also needed for the simulation: 1) required skills and efforts of

6.3. Co-evolution 113

1st 2nd 3rd · · · (l − 1)th l-th
WP ID 3 2 6 · · · l l − 4

Work Package Ordering

Calendar

Staff

0 1 0 1
0 0 1 0
1 0 0 1

. . .

1 0 0 1

Staff Availability Calendar

↘ ↙
Scheduling Simulator

For a given project, the information of work package dependency,
required skills and efforts, and the number of staff and the skills they have
is not varied by different input solutions and therefore stored on the side.

Delay the Nonstarted WP

WPi has predecessor(s)? All pred finished?Yes

YesNo

Set es_time of WPi to the
latest pred's finish time

Start checking the i-th WP
WPi

cur_time >= WPi.es_time

Yes

No

Set i = 1
(Start over)

set i = i + 1
(check next WP)

if i > num_WPs
(all WPs checked

at cur_time?)
No Yes

No

Set WPi's successors' es_time to WPi's
Expected Finish Time (expf_time)

if staff with required
skill(s) is available

Delay the Started
NonCP WP

Yes

min(ea_time) > cur_time
(if all staff's all busy?)

Yes

No

if sick leave exist?

Assign WPi to the first found
combination of available staff

set IF_started = 1
set WPi.as_time = cur_time

No

a) SetFullAttendant()
c) set WPi's expf_time to

[cur_time + req_skill's dur];
d) set recheck = 0 (no need for recheck)

Yes

SetPartlyAttendant()
a) WPs affected by sick leave will be rechecked at

the time when the required staff leaves..
(store the every leave_start into RecheckTime)

b) record the sick leave on WP, such as:
set as_time(end+1) = cur_time

af_time(end+1) = min(leave_start)
Note: we have NOT considered the case which
the delay on WPi is severe enough to change

the Critical Path.

Move required staff from non-CP WP
WPnc to WPi until WPi finished
a) pause the process of WPnc

b) start the process of WPi

If WPi is on CP

No

Yes

If required healthy
staff is working on non-CP

Yes

No

Delay the Started NonCP WP
start the process of WPi's

unfinished part

Pause the process of
NonCP WP (WPnc)
from which required

staff is taken

If WPi is a started WP
IF_started == 1?

Yes

No

if staff with required
skill(s) is available

Yes

No

S
e

tF
u

ll
A

tt
e

n
d

a
n

t(
)

Id
e

n
ti

fy
 f

u
ll

 a
tt

e
n

d
a

n
t

s
ta

ff
 a

n
d

 m
o

d
if

y
 t

h
e

 i
n

fo
a

)
fo

r
fu

ll
a

tt
e

n
d

a
n

t
s
ta

ff
's

,
s
e

t
e

a
_

ti
m

e
 t

o
 [

c
u

r_
ti

m
e

 +
 r

e
q

_
s

k
il

l'
s

 e
ff

o
rt

]
b

)
s
e

t
W

P
i's

 f
u

ll
a

tt
e

n
d

e
d

 s
k
ill

s
' a

s
_

ti
m

e
(e

n
d

+
1

)
to

 c
u

r_
ti

m
e

fu
ll

a
f_

ti
m

e
(e

n
d

+
1

)
to

 [
c

u
r_

ti
m

e
 +

 r
e

q
_

s
k

il
l'
s

e

ff
o

rt
]

No

D
e

la
y

 t
h

e
 N

o
n

s
ta

rt
e

d
 W

P
S

e
t
W

P
i's

 e
s
_

ti
m

e
 t

o
 t

h
e

e

a
rl
ie

s
t

p
o

s
s
ib

le
 t

im
e

 t
h

a
t

A
L

L

re
q

u
ir
e

d
 s

ta
ff
 b

e
c
o

m
e

a

v
a

ila
b

le
(W

P
i.
e

s
_

ti
m

e
 =

 m
a

x
(e

a
_

ti
m

e
))

D
e

la
y

 t
h

e
 S

ta
rt

e
d

 N
o

n
C

P
 W

P
S

e
t
W

P
i's

 e
s
_

ti
m

e
 t

o
 t

h
e

e

a
rl
ie

s
t

p
o

s
s
ib

le
 t

im
e

 t
h

a
t

s
ta

ff

o
n

 u
n

fi
n

is
h

e
d

 p
a

rt
 b

e
c
o

m
e

a

v
a

ila
b

le
.

(W
P

i.
e

s
_

ti
m

e
 =

 m
in

(e
a
_

ti
m

e
))

P
a

u
s

e
 t

h
e

 p
ro

c
e

s
s

 o
f

N
o

n
C

P
 W

P

fr
o

m
 w

h
ic

h
 r

e
q

u
ir

e
d

 s
ta

ff
 i

s
 t

a
k

e
n

1

)
s
e

t
W

P
n

c
.a

f_
ti

m
e

 =
 c

u
r_

ti
m

e
2

)
s
e

t
th

e
 r

e
m

a
in

in
g

 e
ff
o

rt
 f

o
r

W
P

n
c

3
)

s
e

t
W

P
n

c
's

 e
s
_

ti
m

e
 t

o
 m

in
(e

a
_

ti
m

e
)

S
ta

rt
 t

h
e

 p
ro

c
e

s
s

 o
f

W
P

i'
s

 u
n

fi
n

is
h

e
d

 p
a

rt

fi
n

d
 r

e
m

a
in

in
g

 e
ff
o

rt

n
e

e
d

e
d

(p

re
p

a
ra

ti
o

n
 f

o
r

n
e

x
t

s
te

p
)

N
e

e
d

 t
o

 c
o

n
s

id
e

r
th

e
 c

a
s

e
:

th
e

re
 i

s
 N

o
n

C
P

 W
P

 t
h

a
t

h
a

s

b
e

e
n

 p
ro

c
e

s
s

e
d

 b
e

fo
re

 a

d
is

ru
p

te
d

 C
P

 W
P
,

a
n

d
 t

h
e

c

u
r_

ti
m

e
 s

k
ip

 t
o

 n
e

x
t

ro
u

n
d

d

u
e

 t
o

 a
ll

 s
ta

ff
 i

s
 b

u
s

y
 c

ri
te

ri
a

.

set cur_time to min(RecheckTime, ea_time)
(the earliest time that any staff become available)

⇓
Simulation Result

The fitness of either of the input solutions will be evaluated mainly
according to the project completion time in the simulation result.

Figure 6.8: Scheduling simulation with Work Package Ordering and Staff Avail-
ability Calendar. The scheduling simulator takes one WPO solution and one
STCAL solution as its inputs. The simulation result illustrates the process of a
corresponding project being executed, such as: project completion time, staff-to-
WP allocation.

6.3. Co-evolution 114

Delay the Nonstarted WP

WPi has predecessor(s)? All pred finished?Yes

YesNo

Set es_time of WPi to the
latest pred's finish time

Start checking the i-th WP
WPi

cur_time >= WPi.es_time

Yes

No

Set i = 1
(Start over)

set i = i + 1
(check next WP)

if i > num_WPs
(all WPs checked

at cur_time?)
No Yes

No

Set WPi's successors' es_time to WPi's
Expected Finish Time (expf_time)

if staff with required
skill(s) is available

Delay the Started
NonCP WP

Yes

min(ea_time) > cur_time
(if all staff's all busy?)

Yes

No

if sick leave exist?

Assign WPi to the first found
combination of available staff

set IF_started = 1
set WPi.as_time = cur_time

No

a) SetFullAttendant()
c) set WPi's expf_time to

[cur_time + req_skill's dur];
d) set recheck = 0 (no need for recheck)

Yes

SetPartlyAttendant()
a) WPs affected by sick leave will be rechecked at

the time when the required staff leaves..
(store the every leave_start into RecheckTime)

b) record the sick leave on WP, such as:
set as_time(end+1) = cur_time

af_time(end+1) = min(leave_start)
Note: we have NOT considered the case which
the delay on WPi is severe enough to change

the Critical Path.

Move required staff from non-CP WP
WPnc to WPi until WPi finished
a) pause the process of WPnc

b) start the process of WPi

If WPi is on CP

No

Yes

If required healthy
staff is working on non-CP

Yes

No

Delay the Started NonCP WP
start the process of WPi's

unfinished part

Pause the process of
NonCP WP (WPnc)
from which required

staff is taken

If WPi is a started WP
IF_started == 1?

Yes

No

if staff with required
skill(s) is available

Yes

No

S
e

tF
u

ll
A

tt
e

n
d

a
n

t(
)

Id
e

n
ti

fy
 f

u
ll

 a
tt

e
n

d
a

n
t

s
ta

ff
 a

n
d

 m
o

d
if

y
 t

h
e

 i
n

fo
a

)
fo

r
fu

ll
 a

tt
e

n
d

a
n

t
s
ta

ff
's

,
s
e

t
e

a
_

ti
m

e
 t

o
 [

c
u

r_
ti

m
e

 +
 r

e
q

_
s

k
il

l'
s

 e
ff

o
rt

]
b

)
s
e

t
W

P
i'
s
 f

u
ll
 a

tt
e

n
d

e
d

 s
k
il
ls

'
a

s
_

ti
m

e
(e

n
d

+
1

)
to

 c
u

r_
ti

m
e

fu
ll
 a

f_
ti

m
e

(e
n

d
+

1
)

to
 [

c
u

r_
ti

m
e

 +
 r

e
q

_
s

k
il

l'
s

e

ff
o

rt
]

No

D
e

la
y

 t
h

e
 N

o
n

s
ta

rt
e

d
 W

P
S

e
t
W

P
i'
s
 e

s
_

ti
m

e
 t

o
 t

h
e

e

a
rl
ie

s
t

p
o

s
s
ib

le
 t

im
e

 t
h

a
t

A
L

L

re
q

u
ir
e

d
 s

ta
ff
 b

e
c
o

m
e

a

v
a

il
a

b
le

(W
P

i.
e

s
_

ti
m

e
 =

 m
a

x
(e

a
_

ti
m

e
))

D
e

la
y

 t
h

e
 S

ta
rt

e
d

 N
o

n
C

P
 W

P
S

e
t
W

P
i'
s
 e

s
_

ti
m

e
 t

o
 t

h
e

e

a
rl
ie

s
t

p
o

s
s
ib

le
 t

im
e

 t
h

a
t

s
ta

ff

o
n

 u
n

fi
n

is
h

e
d

 p
a

rt
 b

e
c
o

m
e

a

v
a

il
a

b
le

.
(W

P
i.
e

s
_

ti
m

e
 =

 m
in

(e
a
_

ti
m

e
))

P
a

u
s

e
 t

h
e

 p
ro

c
e

s
s

 o
f

N
o

n
C

P
 W

P

fr
o

m
 w

h
ic

h
 r

e
q

u
ir

e
d

 s
ta

ff
 i

s
 t

a
k

e
n

1

)
s
e

t
W

P
n

c
.a

f_
ti

m
e

 =
 c

u
r_

ti
m

e
2

)
s
e

t
th

e
 r

e
m

a
in

in
g

 e
ff
o

rt
 f

o
r

W
P

n
c

3
)

s
e

t
W

P
n

c
's

 e
s
_

ti
m

e
 t

o
 m

in
(e

a
_

ti
m

e
)

S
ta

rt
 t

h
e

 p
ro

c
e

s
s

 o
f

W
P

i'
s

 u
n

fi
n

is
h

e
d

 p
a

rt

fi
n

d
 r

e
m

a
in

in
g

 e
ff
o

rt

n
e

e
d

e
d

(p

re
p

a
ra

ti
o

n
 f

o
r

n
e

x
t

s
te

p
)

N
e

e
d

 t
o

 c
o

n
s

id
e

r
th

e
 c

a
s

e
:

th
e

re
 i

s
 N

o
n

C
P

 W
P

 t
h

a
t

h
a

s

b
e

e
n

 p
ro

c
e

s
s

e
d

 b
e

fo
re

 a

d
is

ru
p

te
d

 C
P

 W
P
,

a
n

d
 t

h
e

c

u
r_

ti
m

e
 s

k
ip

 t
o

 n
e

x
t

ro
u

n
d

d

u
e

 t
o

 a
ll

 s
ta

ff
 i

s
 b

u
s

y
 c

ri
te

ri
a

.

set cur_time to min(RecheckTime, ea_time)
(the earliest time that any staff become available)

Figure 6.9: Program flowchart of the scheduling simulation.

6.3. Co-evolution 115

each WP, and dependency among all WPs; and 2) the corresponding skills processed

by each individual member of staff. However, because they are assumed to not

be changed for the same project, they are stored as static values that are always

accessible to the Scheduler.

A simplified but comprehensive decision making process of the Scheduler is rep-

resented as a program flowchart in Figure 6.9. In summary, when the Scheduler de-

cides whether or not there is an available member of staff that can be assigned to

execute a WP at a given moment, the following main criteria needs to be verified:

1) whether or not all this WP’s predecessors are finished before the current moment;

2) whether or not there is an appropriate member of staff available; and 3) if this

WP is on the critical path, staff working on non-critical WP should be reallocated

to this WP subject to the constraints of skill requirement.

6.3.4 Overall Co-evolution Procedure

As previously stated, the software project management problem is divided into two

subproblems: finding optimal WPO and STCAL. As finding optimal solutions for

WPO and STCAL are two separately but closely related tasks and the evaluation

criteria of these two subproblems are the same, a 2–population based cooperative

co-evolution optimisation technique is adapted.

On the project level, the solutions for managing a project are composed of

two pieces: WPO and STCAL. The solution is evaluated by simulating the project

execution of these two pieces together in the scheduling simulator. The result of

the simulation of such management plan is the Project Duration, which is shared by

these two pieces of subsolution to form their fitness values.

The co-evolutionary optimisation procedure is described in Algorithm 3. Ini-

tially, two random population of parents, Pwpo and Pstcal, are created, evaluated, and

ranked. Each individual solution is assigned a fitness value according to the schedul-

ing simulation result with solutions from the other population. A chronicle records

the initial population. In the main loop of the algorithm, tournament selection,

crossover and mutation operators are used to create the offspring population. The

parents are joined by the offspring population to form the intermediate population,

and then each solution in intermediate population is evaluated by the simulation

6.4. Empirical Study 116

with the parent solutions in the other population. Selections on better solutions are

proceeded based on the evaluation. Only the surviving solutions in the intermediate

population are recorded in Cwpo and Cstcal, and are passed on to breed the next

generation. This main loop of reproducing and selection process repeats until the

stopping criteria is met. Finally, after the co-evolutionary procedure is terminated,

all the surviving individuals recorded in Cwpo and Cstcal are assessed with two same

sets of individuals Hwpo and Hstcal that are selected as elites from the entire history

in the other population.

6.4 Empirical Study

This section report the results of an empirical study of our absenteeism management

approach on four real world software projects.

6.4.1 Parameter Setting

In the implementation, the following details are taken from the industrial data sets,

and they are different for each project: 1) total number of WPs, 2) dependence

among WPs, 3) required skills and effort to execute each WP, 4) total number of

Staff, and 5) the skills each staff member possesses. For the purpose of setting a

meaningful value for the ND in Staff Availability Calendar, the length of the critical

path is calculated in advance and set as the number of days of the project duration.

A set of three values, [0.1%, 10%, 25%], for the Staff Absence Rate have been

tested for all the projects. These three values of absence rate are used as in the

following three scenarios respectively: 1) all staff attend the project without any

absence, 2) staff attend the project with an absence rate that is close to industrial

average rate as reviewed in Section 6.6, and 3) staff attend the project with an

abnormally high absence rate.

Although the situations of absence for each employee over a project period are

simulated independently to the other employees, the absence rate is the same for all

staff in a single run. The motivation of applying a flat absence rate is attempting to

provide equal opportunities to every single staff member, because we should not hold

the bias of assuming different rates for certain staff members without the knowledge

of previous record of individual staff. It is certain that the assumption of flat absence

6.4. Empirical Study 117

begin Initialisation

N ← the total number of generations of the co-evolution process
P - main population:
Pwpo ← randomly generated solutions of WPO
Pstcal ← randomly generated solutions of STCAL
initial fitness evaluation on both population

O - offspring population: Owpo ← ∅; Ostcal ← ∅
I - intermediate population: Iwpo ← ∅; Istcal ← ∅
C - chronicle (record the entire survived population in runtime):
Cwpo(1)← Pwpo

Cstcal(1)← Pstcal

H - hall of fame (select only a small number of elites): Hwpo ← ∅; Hstcal ← ∅
end

for n from 1 to N do

//evolve the WPO population
for each individual Pi ∈ Pwpo do

P ′
i ← TournamentSelect(Pwpo) /* select a second individual */

Owpo ← Join(Owpo, CrossoverAndMutation(Pi, P
′
i)) /* breed */

end
Iwpo ← Join(Pwpo, Owpo) /* form the intermediate population */

EvaluateInternalFitness(Iwpo, Cstcal(n))
Pwpo ← SelectFirstHalf(Iwpo) /* preserve the better half */

//evolve the STCAL population
for each individual Pi ∈ Pstcal do

P ′
i ← TournamentSelect(Pstcal)
Ostcal ← Join(Ostcal, CrossoverAndMutation(Pi, P

′
i))

end
Istcal ← Join(Pstcal, Ostcal)
EvaluateInternalFitness(Istcal, Cwpo(n))
Pstcal ← SelectFirstHalf(Istcal)

//record the survived individuals
Cwpo(n+ 1)← Pwpo

Cstcal(n+ 1)← Pstcal

end
begin Assessment of External Fitness

Hwpo ← SelectHallofFame(Cwpo)
Hstcal ← SelectHallofFame(Cstcal)

for n from 1 to N do /* assess all survived individuals */

for each Pi ∈ Cwpo do
AssessExternalFitness(Pi, Hstcal)

end
for each Pi ∈ Cstcal do

AssessExternalFitness(Pi, Hwpo)
end

end

end

Algorithm 3: 2-Population Cooperative Co-evolutionary Algorithm

6.4. Empirical Study 118

rates is not true in the real world, although it reduces the complexity of the model

dramatically.

After trials of simulation on four industrial projects with different difficulties

of finding “good-enough” solutions, the following settings for the co-evolutionary

algorithm are found to be able to demonstrate the optimisation progress for all of

the project data. The Number of External Generations is set to 25 and the Size of

Population is set to 80. The Number of Internal Generations is set to 1 to achieve

the most frequent possible communications between two populations. The Mutation

Rate is set to 30%.

6.4.2 Four Configurations of Co-evolutionary Optimisation

As explained in detail in the simulation of project execution in Section 6.3.3.1, it

takes a WPO and a STCAL cooparatively to simulate a particular real–world case

of project execution. The absolute simulating result is essentially the same for these

two inputs because the total project duration of such project execution is considered

as the only evaluation criteria for both parts. Even though the absolute fitness value

is the same for both parts from two populations, the selection function (based on

internal fitness values) that guides the evolutionary process can be different. To be

more specific, the selection process can choose to keep those solutions with either

the highest fitness value, or the lowest fitness values. This mechanism allows the co-

evolutionary process to be able to perform four kinds of configurations as introduced

as followings.

For either population, the evolutionary process can be competitive or cooper-

ative with the other population on the fitness value. For the sake of clarity, the

solutions associated with longer durations are considered as worse solutions as the

project that adapts this plan has a longer execution time, and a better solution has

relatively a shorter duration. There are four possible situations listed below:

Configuration BWWS: Competitively Searching for Better WPOs and

Worse STCALs : in this case, the optimisation process aims to find good WPOs

and bad STCALs. It helps mangers explore the worst possible impact of staff absence

assuming good managements on work package ordering.

6.5. Results Analysis 119

Configuration WWBS: Competitively Searching for Worse WPOs and

Better STCALs : the optimisation process aims to find bad WPOs and good

STCALs. It helps to investigate the possibility of saving a project by arranging staff

absence to compensate the impact of bad scheduling on work packages.

Configuration WWWS: Cooperatively Searching for Worse WPOs and

Worse STCALs : in both populations, solutions evolve with increasingly longer

durations for project execution. The optimisation process aims to find solutions for

both WPO and STCAL that can cause longer delays on the project. These solutions

can help project managers learn about the worse case scenarios to be avoided in

practice.

Configuration BWBS: Cooperatively Searching for Better WPOs and

Better STCALs : in both populations, solutions evolve with decreasingly shorter

durations for project execution. These solutions can help to review the best case

scenarios that in favour.

In general, we can assume that the solutions found by these four configurations

should follow the following patterns. Given a project and a fixed staff absence

rate: Configuration WWWS should eventually find solutions with the longest project

completion time, and similarly Configuration BWBS should find solutions with the

shortest durations, while Configuration BWWS and WWBS should find solutions in

between.

6.5 Results Analysis

While all the raw results are presented in the figures attached in the Appendix A,

two tables provide a general summary of the results about the quality of the outcome

(Table 6.1) and the abilities of the algorithms in finding them (Table 6.2).

The statistics shown in these two tables are based on the External Fitness

Assessments conducted by evaluating all the surviving individuals in every generation

against a fixed set of elites in the history of the evolutionary process (a.k.a.: “hall

of fame”). Whilst the Internal Fitness helps the optimisation system to determine

selection during co-evolutionary process, the External Fitness helps to gauge the

progress of the algorithm. The External Fitness is chosen for statistical comparison,

6.5. Results Analysis 120

because it is an absolute measurement that makes the general comparison between

individual solutions across different generations become meaningful.

By analysing the statistics, observations have been recorded and discussed in

detail. An example of specific case is also presented. The research questions are

answered in the end of this section, and suggestions for using this tool as a source

of decision support to the project manager are also proposed.

6.5.1 Running Time

The volume of the raw results is large. There are 4 configurations of Co-evolutionary

GAs {BWWS, WWBS, WWWS, BWBS}, 3 levels of staff absence rates {0.1%,

10%, 25% }, 2 populations evolving simultaneously, and all the combinations above

are to be run on 4 real–world project data. That makes 4*3*2*4 = 96 rounds of

co-evolutionary processes in total to produce the raw results, and then another 96

rounds of external fitness assessments to assess the entire surviving population during

the entire co-evolutionary process.

On the one hand, the running time of these co-evolutionary processes vary from

just over ten minutes to over four hours, depending on the features of the project as

well as the configurations. When the Matlab’s parallel computing feature is enabled,

it takes nearly two hours on average for each of these 96 simulations to run on a PC

with Intel i5 3.2GHZ, 3.4GB RAM, Windows 8 32bit.

On the other hand, another 96 rounds of external fitness assessments are done

to assess whether or not the optimisation is making progress during the process of

producing the raw results. The external fitness assessment takes about half of the

running time as that of the optimisation process.

6.5. Results Analysis 121

Table 6.1: The table shows the average fitness of the solutions found by algorithms
in terms of their externally assessed project finish time (Days). This reveals the
quality of the solutions found in the last generation of the co-evolutionary process.
The maximum and minimum values in each row are highlighted in bold font. Ex-
trema tend to be found in cooperative search, especially in the solutions of WPO in
cooperative search. In competitive search, optimisation on WPO dominates the
competition on complex projects (C and E), whilst optimisation on STCAL dom-
inates the competition on simpler projects (D and F).

Co-evolutionary Algorithm Configurations
Competitive Search Cooperative Search

Project Name BWWS WWBS WWWS BWBS
Absence Rate WPO STCAL WPO STCAL WPO STCAL WPO STCAL

C
0.1% 126.5 126.2 137.9 142.0 147.1 147.9 116.6 117.1
10% 134.7 134.2 141.1 142.1 162.0 160.3 127.2 127.5
25% 149.6 150.0 153.7 154.0 184.9 181.4 142.4 142.7

D
0.1% 25.0 24.1 21.0 21.0 25.0 25.0 21.0 21.0
10% 29.0 29.0 21.0 21.0 30.0 30.0 21.0 21.0
25% 35.3 35.1 22.4 22.5 36.0 36.0 22.0 22.1

E
0.1% 336.6 338.0 361.8 360.4 408.7 408.1 299.7 300.3
10% 403.3 397.8 393.3 392.0 463.9 446.8 335.1 344.4
25% 431.1 432.4 443.7 441.6 497.0 490.5 379.1 385.1

F
0.1% 75.1 77.2 70.3 70.3 83.1 79.5 69.2 69.2
10% 85.8 84.5 70.0 70.4 87.1 85.1 69.2 69.2
25% 87.9 87.4 76.8 76.7 90.0 87.7 74.8 75.4

6.5. Results Analysis 122

6.5.2 Average External Assessment of the Solutions Found

Table 6.1 shows the average external fitness value of solutions in the last generation

for all the configurations and projects. In other words, for each of the four real–world

project data, the table reveals the quality of the solutions of WPO and STCAL, in

terms of their finish time, found by four co-evolutionary configurations under three

levels of absence rate.

Observation I: extrema tend to be found by cooperative searching. In the

Table 6.1, for the purpose of comparing the results among different algorithm con-

figurations under the same given project and absence rate, the shortest and longest

average durations in each row are highlighted in bold font. The highlighted val-

ues tend to concentrate on the right hand side of the table (where the results of

cooperative co-evolutionary optimisation are shown) because, with the cooperative

co-evolutionary configurations, WWWS and BWBS, both populations aim to evolve

towards the same directions concurrently. For example, with Configuration WWWS,

the population of solutions for both WPO and STCAL are evolved in finding the

worst case – longer project completion time. As a result, given a project data

and the same staff absence rate, the maximum durations tend to be found by the

Configuration WWWS. Similarly, the minimum durations tend to be found by the

Configuration BWBS.

Essentially, this observation also confirms the effectiveness of the optimisation

on both populations. To achieve solutions to fulfil either longer or shorter project

durations, the optimisations on both WPO and STCAL are equally important.

Observation I(a): extrema tend to be found in the solutions of WPO.

Observation I confirms that the optimisation on both WPO and STCAL are equally

important. Nevertheless, when comparing only the results of WWWS and BWBS,

the extrema tend to be found in the solutions of WPO rather than distributed evenly

among the two population.

The reason for this observation is unclear by the time of writing up this thesis.

This might have something to do with the method of External Fitness Assessment.

The best solutions found on the [1/2, 3/4, 1] (half way, third quarter way, and

the finale) of the entire evolutionary process were selected as the “hall of fames”,

6.5. Results Analysis 123

which are later on used to externally assess the progress of the solutions found

by algorithms. The terms External Assessment refers to the assessment that has no

effect on the algorithms’ ability to find desirable solutions, unlike Internal Evaluation.

Observation II: in competitive search, the degree of complexity of the

project tend to decide the species that dominates the competition. When

comparing each row of the results under “BWWS” and “WWBS”, average durations

of the solutions under “BWWS” tend to be shorter than those under “WWBS” on

project C and E. This magnitude relation coincides with the objective of the op-

timisation on WPO, meaning that, when it is searching for a “Better” WPO, the

average durations are shorter than the case when it is in the search of a “Worse”

WPO, in spite of the fact the other species (STCAL) is optimised towards the op-

posite direction. In contrast, for project D and F, projects are much more simpler

and the entries under “BWWS” are all larger than those under “WWBS”, which

coincide with the objective of the optimisation on STCAL.

As previously mentioned, Project C and E are considered more complex than

Project D and F on the grounds that Project C and E have larger numbers of work

packages, as well as larger numbers of dependencies among them.

Given our knowledge on the projects and the observation that dominating

species in competitive search is not the same for all projects, it can be concluded

that in the competitive search, the optimisation on WPO dominates the competition

in complex projects (C and E), whilst the optimisation on STCAL dominates the

competition in relatively simpler projects (D and F).

6.5. Results Analysis 124

Table 6.2: The Spearman’s rank correlation coefficient table indicates the trend
in the improvements of average external fitness values of the entire population as
the co-evolutionary progress proceeds over generations. The values highlighted in
bold font indicate the cases in which there is no statistically significant overall
trend of improvement.

Co-evolutionary Algorithm Configurations
Competitive Search Cooperative Search

Project Name BWWS WWBS WWWS BWBS
Absence Rate WPO STCAL WPO STCAL WPO STCAL WPO STCAL

C
0.1% -0.726 0.933 0.782 -0.535 1.000 0.969 -0.992 -0.906
10% -0.965 0.963 0.808 -0.962 0.997 0.993 -0.923 -0.939
25% -0.920 0.996 0.827 -0.952 0.999 0.994 -0.985 -0.876

D
0.1% 0.000 0.880 0.000 -0.471 0.000 0.993 0.000 -0.471
10% -0.471 0.957 0.000 -0.956 0.340 0.943 0.000 -0.886
25% 0.000 1.000 0.000 -1.000 0.549 1.000 -0.763 -1.000

E
0.1% -0.843 0.962 0.922 -0.833 0.943 0.983 -0.987 -0.635
10% -0.584 0.984 0.939 -0.818 0.980 0.993 -0.973 -0.999
25% -0.822 0.970 0.935 -0.980 0.958 0.996 -0.708 -0.993

F
0.1% -0.274 0.928 0.788 -0.791 0.743 0.955 0.000 -0.340
10% -0.146 0.988 0.272 -0.997 0.799 0.988 -0.887 -1.000
25% 0.221 0.988 0.788 -0.984 0.624 0.993 -0.878 -0.998

6.5. Results Analysis 125

6.5.3 Trend of Improvement on Solutions in the Process of Search-

ing

In order to observe the trend of the improvement on the quality of the solutions,

the Spearman’s rank correlation coefficient (SRCC) is conducted to indicate the

correlation between the average external fitness values, and the generation numbers.

SRCC is used to assess the probability of the existence of a monotonic function that

can be used to describe the correlation of two variables. The ρ value always lies in

the range (−1 ≤ ρ ≤ 1). In practice, no strong correlation can be concluded for

−0.5 ≤ ρ ≤ 0.5. The closer the value to 1, the stronger the positive correlation; the

closer the value to −1, the stronger the negative correlation.

The comparison of external fitness values among generations becomes mean-

ingful, because the external fitness measurement is an absolute measurement by

assessing all the solutions across generations against the same set of elites.

As shown in Table 6.2, the observed ρ values indicate the probability of the aver-

age external fitness values (i.e., Finish Time) of the entire population is increasing or

decreasing as the optimisation progress proceeds over generations (i.e., Generation

Number).

In our experiments, a high value of ρ indicates a desirable improvement in finish

time is observed. More specifically, a high positive value of ρ indicates that an

upward trend in finish time improvement, and a high negative value of ρ indicates a

downward trend in improvement.

Observation III (a): for simple projects, the cases of no improvements

(indicating by small value of ρ) are most likely to be observed on the

solutions of WPO rather than STCAL. By definition, a small ρ value (|ρ| < 0.5)

indicates that there is no overall significant trend of improvements. Those ρ values,

which have been are in bold font in Table 6.2, could indicate either a static fitness

value or a trembling line. All these highlighted cases are to be found in the result for

Project D and F. Because these two projects are relatively simpler, the optimisation

on WPO found good solutions in an early stage of the process, and thereafter no

further improvement on the fitness values, such as the left plot in Figure A.4 (b).

Exceptionally, an interesting trembling line was found for Project F in one spe-

6.5. Results Analysis 126

cific configuration. The WPO’s average fitness value in the Configuration (BWWS,

0.1%) is trembling during the optimisation process, as shown on the top-left plot

in Figure A.8 (a). Because there is insufficient empirical results to investigate this

exception further, it is left for future work.

6.5.4 Detailed Case Analysis on Configuration BWBS

In addition to the general analysis provided above, the result of Configuration BWBS

is picked out for detailed analysis, for the purpose of demonstrating that our co-

evolutionary optimisation technique can be helpful to the decision maker to obtain

an insight into the project.

With Configuration BWBS, because the optimisation objectives for both

WPO and STCAL are to find solutions with shorter project finish times, those solu-

tions for scheduling and staffing are considered as optimal solutions if the external

fitness value (i.e., Finish Time) is equal to the shortest possible duration. In general,

the shortest possible duration of completing a project is equal to the length of the

critical path provided that all required resources are sufficient. To provide such a

reference, the duration of executing the critical path for each project is plotted ac-

cordingly as a dashed line near the bottom of every sub-figure in Figure 6.10, 6.11,

6.12, and 6.13.

In each of these sub-figures, all surviving solutions in the entire optimisation

process are box-plotted according to their external fitness values (i.e., Finish Time)

indicated on a vertical axis, while the numbers on horizontal axis indicate the gen-

eration when they were survived.

Observation III (b): in cooperative search for shorter project finish time,

when the project is less complex, small rate staff absence can be compen-

sated by the optimisation. In the comparisons on the results of Configuration

BWBS on all four projects over three levels of staff absence rate, the results of

Project D and F stand out, because optimal scheduling and staffing solutions were

only found for these two projects and only on the small and medium levels of staff

absence.

For these two relatively simpler projects, the original staffing level is sufficient

to guarantee the project will not be delayed because of resource conflict. Therefore,

6.5. Results Analysis 127

105

110

115

120

125

130

135

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

105

110

115

120

125

130

135

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(a) Staff Absence Rate=0.001

105

110

115

120

125

130

135

140

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

105

110

115

120

125

130

135

140

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(b) Staff Absence Rate=0.1

105

110

115

120

125

130

135

140

145

150

155

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

105

110

115

120

125

130

135

140

145

150

155

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(c) Staff Absence Rate=0.25

Figure 6.10: External fitness of solutions by Configuration BWBS on Project
C. The solutions for two species are plotted separately in two side-by-side sub-
figures, with the WPOs on the left and STCALs on the right. The sub-figures are
arranged in three rows according to their levels of the absence rate equal to 0.001,
0.1, and 0.25 respectively. The finish time of the entire population is plotted for
each generation along the co-evolutionary process. A solid line on the boxes is
the mean value of each generation. The duration of executing the critical path
for each project is plotted accordingly as a dashed line near the bottom of each
sub-figure.

6.5. Results Analysis 128

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(a) Staff Absence Rate=0.001

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(b) Staff Absence Rate=0.1

20

21

22

23

24

25

26

27

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

20

21

22

23

24

25

26

27

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(c) Staff Absence Rate=0.25

Figure 6.11: External fitness of solutions by Configuration BWBS on Project D

6.5. Results Analysis 129

280

290

300

310

320

330

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

280

290

300

310

320

330

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(a) Staff Absence Rate=0.001

280

300

320

340

360

380

400

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

280

300

320

340

360

380

400

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(b) Staff Absence Rate=0.1

280

300

320

340

360

380

400

420

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

280

300

320

340

360

380

400

420

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(c) Staff Absence Rate=0.25

Figure 6.12: External fitness of solutions by Configuration BWBS on Project E

6.5. Results Analysis 130

69.2

69.4

69.6

69.8

70

70.2

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

69.2

69.4

69.6

69.8

70

70.2

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(a) Staff Absence Rate=0.001

70

72

74

76

78

80

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

70

72

74

76

78

80

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(b) Staff Absence Rate=0.1

68

70

72

74

76

78

80

82

84

86

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

WPS’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

68

70

72

74

76

78

80

82

84

86

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Generation Number

STCAL’s External Fitness Assessment

F
in

is
h
 T

im
e
 (

D
a
y
s
)

(c) Staff Absence Rate=0.25

Figure 6.13: External fitness of solutions by Configuration BWBS on Project F

6.5. Results Analysis 131

as shown in Figure 6.11 (a) and 6.13 (a), the best solutions found in the early stage

of the evolutionary process are already close to or have already overlapped with the

dashed line.

For Project D, the lower bound of the actual measured fitness values are con-

sidered to be the optimal value, although they cannot possibly overlap the dashed

line, because of the limitation of the implementation in rounding small numbers.

An example of detailed analysis is demonstrated to further understand the rea-

sons why Project D is simpler. As illustrated in Figure 3.3, Project D has a long

critical path (31 out of 60 WPs are on the critical path), and more importantly only

a couple of the non-critical path WPs require the same resources as required by the

WPs on critical path. This means there are only a few very small time windows

in which a resource conflict might occur. The project delay is increased only when

a WP on the critical path cannot be processed due to resource conflict or absence.

Therefore, a low chance of resource conflict and minimised resource absence will es-

sentially minimise the possibility of a delay. From another perspective, no resource

conflict means the execution of WPs can be highly parallel, in which case the chance

of delay on the project is eventually minimised.

This unique feature (i.e., having a long critical path) of Project D makes the

optimisation on WPO have significantly less impact on the final project duration.

This is because two very different scheduling orders of WPs make much less difference

in the project completion time if the executions of WPs can be highly parallel.

6.5.5 Answers to the Research Questions and Proposals to the PM

Given the discussions on the observations above, the research questions can be an-

swered as follows, and proposals to the software project manager are made accord-

ingly for the purpose of taking full advantage of the co-evolutionary optimisation in

practice.

RQ1: How do co-evolutionary optimisation techniques find desirable ex-

treme solutions for the best and worst case scenarios?

Answer 1: As demonstrated in Observation I, comparing the results from all the

configurations of the project simulations, the cooperative searching Configurations

BWBS and WWWS are able to find the best and worst solutions.

6.5. Results Analysis 132

Proposal 1: Because it is assumed that no compensations are made to cancel the

optimisation efforts devoted by the other species in the cooperative co-evolution pro-

cess, the best and worst solutions found by cooperative search (BWBS and WWWS)

can be proposed to be used as the lower bound and upper bound of the execution

time of project. This enables the project manager to know the lower bound and up-

per bound of a project’s duration based on a given degree of staff absence rate, and

essentially provides a great deal of advantage in the negotiation with shareholders

on the delivery deadline.

RQ2: How do the co-evolutionary optimisation techniques reveal the dy-

namic correlation between workpackage scheduling and staff absence rate?

Answer 2: The competitive search process is useful to find the dynamic correlation

between work package scheduling and staff absence for each individual project. Ob-

servation II shows that it can identify the key problem to be solved by revealing

the dominating party in the optimisation of both WPO and STCAL.

Proposal 2: The Configuration BWWS are proposed to reveal whether or not it

is possible to shorten the project completion time by optimising the work package

scheduling under a certain degree of staff absence. This aid is particularly helpful in

the case of predictable staff absence. Because it gives the project manager a good

reference to guide the decision as to whether he/she should devote more effort in

managing the work package scheduling to avoid additional cost spent on acquiring

extra staff.

RQ3: How does the staff absence rate interfere with the project comple-

tion time?

Answer 3: The results not only confirm the common scenario that a higher degree

of staff absence rate leads to longer project completion time, but they also also reveal

that the complexity of the project, as discussed in Observations III(a) and III(b),

is also found to be a very important factor that needs to be taken into consideration.

Proposal 3: Although it is always safe for the project manager to assume that a

higher degree of staff absence will consequently lead to more delay on the project,

this automatic tool makes further attempts to quantify the degree of consequent

delay to provide project manager with additional insightful knowledge about the

6.6. Measuring the Absence Rate 133

project’s complexity.

6.6 Measuring the Absence Rate

The following three techniques are the most commonly used methods for quantita-

tively measuring the degree of absence [Seccombe, 1995,CIPD, 2011]. They focus on

different aspects of measuring the lost of workforce.

Absence Rate shows the total duration of all employees’ absence in proportion

to the total duration of all available contracted working time in the same period.

Absence Rate =
Total Duration of All Absence

Total Contracted Working T ime

It gives the average length of all absence within a group or organisation, but no

information on the frequency of absence is given.

Frequency Rate measure provides the average number of absence events per

employee.

Frequency Rate =
Number of Spells of Absence

Number of Employees

It indicates the average frequency of absence, but it does not give any information

about the length of each absence.

By measuring both the number of spells and lengths of absence for each individ-

ual employee, the Bradford Factor provides an indication of the degree of absence

for each employee.

Bradford Score = S2 ×D

where:

S = Number of Spells of Absence

D = Total Duration of Absence

Considering two employees who have the same total duration of absences, this indi-

cator is able to highlight the one with more frequent absences which are relatively

shorter.

6.7. Summary 134

6.7 Summary

This work introduces a co-evolutionary approach to software project scheduling and

staffing problems with respect to analysing the uncertainties due to staff absences.

While the solutions to these two problems are automatically co-evolved, three levels

of staff absence are injected to simulate the scenarios of almost zero, normal, and high

staff absence rate. In order to analyse the impacts of staff absence and the algorithm’s

ability to find good solutions, four co-evolutionary configurations have been applied

to real-world software project planning data. In addition to our previous work on

applying co-evolutionary techniques on software project management problem, the

problem model is redefined in a way that the skill requirement associated between

staff and work package is taken into consideration. The results of the simulations

are analysed in detail with comprehensive discussions on the observations.

Through the empirical studies of four sets of real-world software projects, it has

been revealed that co-evolutionary techniques can be helpful in providing the project

manager with insightful information on the project: 1) by cooperatively searching

for either shorter or longer finish time on both scheduling and staffing problem,

it can provide the project manager with a good reference of the lower bound and

upper bound of a project finish time. 2) in competitively searching, by observing the

dynamic correlation between the solutions of the two problems, it helps the project

managers identify the dominating problem. 3) by analysing the correlation between

staff absence rate and the extreme solutions obtained, it can help the project manager

with an insightful understanding on the non-linear correlation.

Chapter 7

Conclusions and Future Works

“I suppose it is tempting, if the only tool you have is a hammer, to
treat everything as if it were a nail.”

Abraham H. Maslow (1966), The Psychology of Science

This thesis aims to advance the state of the art in the application of SBSE techniques

to three software project management problems at the stages of project initiation,

planning and enactment. As though it were the only tool we have, the application of

SBSE technique has been exploited in this thesis. However, it is useful to exploit the

metaphor of hammers and nails to understand which ’nails’ have been hammered

with which ’hammers’ as the results of the findings of this thesis.

Table 7.1: Thesis Summary

Three different stages of a software project
Initiation Planning Enactment

Challenges
Information is not
yet fully available.

What is the right
team size?

Execution deviates
from the plan.

Nails
Mis-estimations on
requirements’ cost

Project Staffing
and Scheduling

Unplanned Staff
Absence

Hammers
Sensitivity

Analysis and
NSGA-II on NRP

Cooperative
Co-evolutionary

Optimisation

Co-evolutionary
Optimisation

Improvements

Focus on analysing
error-sensitive

requirements &
budgets

“Co-optimise” two
inter-related

problems

Study various
“what-if” scenarios

Advantages
Gain more accurate

estimations
Achieve the global

optimum

Anticipate and
ameliorate the
impact of staff

absence
In Chapters Chapter 4 Chapter 5 Chapter 6

7.1. Summary of Contributions 136

As summarised in Table 7.1, the thesis first proposes an SBSE sensitive analysis

to achieve more accurate estimations at the stage of requirement selection. Sec-

ondly, the cooperative co-evolutionary algorithm is applied to effectively co-optimise

project staffing and scheduling problems at the stage of project planning. Finally,

at the stage of project enactment, the co-evolutionary model is extended to study

the impact of staff absence on project completion time.

7.1 Summary of Contributions

The major contributions of this thesis are summarised as follows:

Search based data sensitive analysis applied to requirement engineering

Through the empirical studies of both synthetic and real-world requirement

data, the work presents a statistical analysis that confirms the Positive Cor-

relation Assumption, i.e. more expensive requirements and higher level of

inaccuracies tend to have greater impact on NRP. However, the heat-map

visualisation also reveals that there exist exceptions to this assumption. Iden-

tifying these exceptions can guide the decision maker towards more accurate

estimation and safer decision making.

Co-evolving software project staffing and scheduling

It is the first time that the Cooperative Co-evolutionary Algorithm was intro-

duced to the field of SBSE for solving software project staffing and scheduling

problems. We conducted an empirical study using data from four industrial

software projects, aimed at comparing CCEA project planning and staffing

with (i) random search and (ii) single population optimisation using genetic

algorithms. Results of the empirical study show that CCEA is able to outper-

form random search and single population GA, in terms of effectiveness (i.e.,

best solutions proposed in terms of project completion time) and efficiency

(i.e., a smaller number of evaluations required).

Co-evolutionary project planning optimisation under staff absence

This work introduces a co-evolutionary approach to software project schedul-

ing and staffing problems with respect to analysing the uncertainties of the

7.2. Summary of Future Work 137

staff absences. In addition to our previous work on applying co-evolutionary

techniques on software project management problems, the problem model is

redefined in a way that the skill requirement associated between staff and work

package is taken into consideration. Through the empirical studies of four sets

of real-world software projects, it has been revealed that co-evolutionary tech-

niques can be very helpful in providing the project manager with insightful

information on the project: 1) by cooperatively searching for either shorter or

longer finish time on both scheduling and staffing problems, it can provide the

project manager with a good reference of the lower bound and upper bound of

a project finish time. 2) in competitively searching, by observing the dynamic

correlation between the solutions of the two problems, it helps the project man-

agers identify the dominating problem. 3) by analysing the correlation between

staff absence rate and the extreme solutions obtained, it can help the project

manager with an insightful understanding of the non-linear correlation.

Establishment of an SBSE project management tool - Amphisbaena

During the course of the research, several functions of our automated SBSE

project management tool were developed. Amphisbaena provides not only

proactive analysis on staffing and scheduling, but also reveal great insights

on the project itself.

7.2 Summary of Future Work

In this thesis, a number of new SBSE techniques are introduced for software project

management, and new tools are developed to evaluate the advancements. This

promises further investigation and more empirical studies to thoroughly explore their

advantages and find the best scenario to apply them. Promising future work includes:

To consider more complex aspects of the Next Release Problem. It is ex-

pected that more detailed studies in the future will be conducted, and it is encour-

aging to apply sensitivity analysis procedures to more real-world multi-objective op-

timisation problems, such as to consider the complex dependency relation between

requirements, and to further conquer the scalability issue of performing the global

sensitivity analysis method.

7.3. Closing Remark 138

To extend the usage of Co-evolutionary Algorithms to more sophisticated

software project management models. Through thorough empirical studies on

a total of six sets of real-world software project data, this thesis demonstrates the

suitability of co-evolution as a methodology for solving software project staffing and

scheduling problems. Future work will aim at extending this with further data sets

and, above all, at considering a more sophisticated project model, which accounts

for further factors not considered in this study, such as issues of developers’ non-

uniform absence rates and performance inconsistency, training overhead, communi-

cation overhead, requirement changes, and schedule robustness.

To enrich and make available the SBSE management tool - Amphisbaena.

As discussed, Amphisbaena can provide proactive project planning analysis. Most

importantly, our tool establishes the connections between research studies and prac-

tical executions of software projects, because it applies SBSE approaches directly

and automatically on Microsoft R© Project Plan (*.mpp) file, which is one of the dom-

inant project management software in practice. It is expected to attract more plan

data sets on the tool once it becomes available to a wider range of industry partners.

7.3 Closing Remark

Software project managers are faced with the challenging task of managing the

project process filled with uncertainties. In practice, they have to make decisions

based on incomplete knowledge. Therefore, extra contingency plans or budgets are

usually made, based on experiences, in the hope that all the deviations from plans

can be absorbed. This thesis presents several SBSE techniques that can automati-

cally provide various insights on the requirements, project team staffing and project

scheduling. Provided with this computer-aided assistance, more control over specific

factors becomes available to software project managers who will subsequently be able

to confront problems with the abilities of identifying uncertainties, minimising risks,

and preallocate contingency resource accordingly with more scientific guidance.

Appendix A

Results of Co-evolutionary Project
Management Optimisation on Four
Real–world Projects

This appendix contains the all the results of simulations produced in Chapter 6. All
the results are firstly arranged into four sections (A.1, A.2, A.3, and A.4,) according
to four different configurations (BWWS, WWBS, WWWS and BWBS). The results
then are further grouped according to the four sets of industry data used.

In each page, there are the twelve figures which represent the results for one
particular real–world industrial project tested on one configuration of the algorithm
running with three different staff absence rates. The six figures on the left hand
side display the result of the Internal Fitness Evaluation, and the other six figures
of the results of External Fitness Evaluation are plotted on the right. In the figures
for either internal or external fitness evaluation, the results for both populations are
plotted side by side with the WPO on the left and STCAL on the right.

A.1 Competitive Searching for Better WPOs and Worse
STCALs

A.1. Competitive Searching for Better WPOs and Worse STCALs 140

A
.1

.1
P

ro
je

ct
C

(S
o
ft

C
h
o
ic

e
)

–
C

o
n
fi
g
.

B
W

W
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
W

o
rs

e
S

T
C

A
L

s)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

:
C

–
B

W
W

S
–

In
te

rn
al

F
it

n
es

s

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

:
C

–
B

W
W

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.1. Competitive Searching for Better WPOs and Worse STCALs 141

A
.1

.2
P

ro
je

ct
D

(Q
u
o
te

T
o
O

rd
e
r)

–
C

o
n
fi
g
.

B
W

W
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
W

o
rs

e
S

T
C

A
L

s)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.3

:
D

–
B

W
W

S
–

In
te

rn
al

F
it

n
es

s

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)
2

0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.4

:
D

–
B

W
W

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.1. Competitive Searching for Better WPOs and Worse STCALs 142

A
.1

.3
P

ro
je

ct
E

(D
a
ta

b
a
se

)
–

C
o
n
fi
g
.

B
W

W
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
W

o
rs

e
S

T
C

A
L

s)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.5

:
E

–
B

W
W

S
–

In
te

rn
a
l

F
it

n
es

s

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.6

:
E

–
B

W
W

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.1. Competitive Searching for Better WPOs and Worse STCALs 143

A
.1

.4
P

ro
je

ct
F

(S
m

a
rt

P
ri

ce
)

–
C

o
n
fi
g
.

B
W

W
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
W

o
rs

e
S

T
C

A
L

s)

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.7

:
F

–
B

W
W

S
–

In
te

rn
al

F
it

n
es

s

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)
7

0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.8

:
F

–
B

W
W

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.2. Competitive Searching for Worse WPOs and Better STCALs 144

A.2 Competitive Searching for Worse WPOs and Better
STCALs

A.2. Competitive Searching for Worse WPOs and Better STCALs 145

A
.2

.1
P

ro
je

ct
C

(S
o
ft

C
h
o
ic

e
)

–
C

o
n
fi
g
.

W
W

B
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.9

:
C

–
W

W
B

S
–

In
te

rn
al

F
it

n
es

s

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

0
:

C
–

W
W

B
S

–
E

x
te

rn
a
l

F
it

n
es

s

A.2. Competitive Searching for Worse WPOs and Better STCALs 146

A
.2

.2
P

ro
je

ct
D

(Q
u
o
te

T
o
O

rd
e
r)

–
C

o
n
fi
g
.

W
W

B
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

1:
D

–
W

W
B

S
–

In
te

rn
al

F
it

n
es

s

2
0

2
0
.52
1

2
1
.52
2

2
2
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
2
0

2
1

2
2

2
3

2
4

2
5

2
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

2:
D

–
W

W
B

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.2. Competitive Searching for Worse WPOs and Better STCALs 147

A
.2

.3
P

ro
je

ct
E

(D
a
ta

b
a
se

)
–

C
o
n
fi
g
.

W
W

B
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

3:
E

–
W

W
B

S
–

In
te

rn
al

F
it

n
es

s

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

4:
E

–
W

W
B

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.2. Competitive Searching for Worse WPOs and Better STCALs 148

A
.2

.4
P

ro
je

ct
F

(S
m

a
rt

P
ri

ce
)

–
C

o
n
fi
g
.

W
W

B
S

(C
o
m

p
e
ti

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

6
9

6
9
.57
0

7
0
.57
1

7
1
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

6
9

6
9
.57
0

7
0
.57
1

7
1
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

5:
F

–
W

W
B

S
–

In
te

rn
a
l

F
it

n
es

s

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

6
:

F
–

W
W

B
S

–
In

te
rn

a
l

F
it

n
es

s

A.3. Cooperative Searching for Worse WPOs and Worse STCALs 149

A.3 Cooperative Searching for Worse WPOs and Worse
STCALs

A.3. Cooperative Searching for Worse WPOs and Worse STCALs 150

A
.3

.1
P

ro
je

ct
C

(S
o
ft

C
h
o
ic

e
)

–
C

o
n
fi
g
.

W
W

W
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
W

o
rs

e
S

T
C

A
L

s)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

7:
C

–
W

W
W

S
–

In
te

rn
a
l

F
it

n
es

s

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

8:
C

–
W

W
W

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.3. Cooperative Searching for Worse WPOs and Worse STCALs 151

A
.3

.2
P

ro
je

ct
D

(Q
u
o
te

T
o
O

rd
e
r)

–
C

o
n
fi
g
.

W
W

W
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
W

o
rs

e
S

T
C

A
L

s)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.1

9
:

D
–

W
W

W
S

–
In

te
rn

a
l

F
it

n
es

s

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.52
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)
2

0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

0
:

D
–

W
W

W
S

–
E

x
te

rn
a
l

F
it

n
es

s

A.3. Cooperative Searching for Worse WPOs and Worse STCALs 152

A
.3

.3
P

ro
je

ct
E

(D
a
ta

b
a
se

)
–

C
o
n
fi
g
.

W
W

W
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
W

o
rs

e
S

T
C

A
L

s)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

1
:

E
–

W
W

W
S

–
In

te
rn

a
l

F
it

n
es

s

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

2
:

E
–

W
W

W
S

–
E

x
te

rn
a
l

F
it

n
es

s

A.3. Cooperative Searching for Worse WPOs and Worse STCALs 153

A
.3

.4
P

ro
je

ct
F

(S
m

a
rt

P
ri

ce
)

–
C

o
n
fi
g
.

W
W

W
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
W

o
rs

e
W

P
O

s
a
n

d
W

o
rs

e
S

T
C

A
L

s)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

7
0

7
5

8
0

8
5

9
0

9
5

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

7
0

7
5

8
0

8
5

9
0

9
5

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

3:
F

–
W

W
W

S
–

In
te

rn
a
l

F
it

n
es

s

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

7
0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)
7

0

7
5

8
0

8
5

9
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

4
:

F
–

W
W

W
S

–
E

x
te

rn
a
l

F
it

n
es

s

A.4. Cooperative Searching for Better WPOs and Better STCALs 154

A.4 Cooperative Searching for Better WPOs and Better
STCALs

A.4. Cooperative Searching for Better WPOs and Better STCALs 155

A
.4

.1
P

ro
je

ct
C

(S
o
ft

C
h
o
ic

e
)

–
C

o
n
fi
g
.

B
W

B
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

5:
C

–
B

W
B

S
–

In
te

rn
a
l

F
it

n
es

s

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

6:
C

–
B

W
B

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.4. Cooperative Searching for Better WPOs and Better STCALs 156

A
.4

.2
P

ro
je

ct
D

(Q
u
o
te

T
o
O

rd
e
r)

–
C

o
n
fi
g
.

B
W

B
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

7
:

D
–

B
W

B
S

–
In

te
rn

a
l

F
it

n
es

s

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0
.2

2
0
.4

2
0
.6

2
0
.82
1

2
1
.2

2
1
.4

2
1
.6

2
1
.82
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
0

2
0
.52
1

2
1
.52
2

2
2
.52
3

2
3
.52
4

2
4
.5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)
2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

8:
D

–
B

W
B

S
–

E
x
te

rn
a
l

F
it

n
es

s

A.4. Cooperative Searching for Better WPOs and Better STCALs 157

A
.4

.3
P

ro
je

ct
E

(D
a
ta

b
a
se

)
–

C
o
n
fi
g
.

B
W

B
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

2
8
5

2
9
0

2
9
5

3
0
0

3
0
5

3
1
0

3
1
5

3
2
0

3
2
5

3
3
0

3
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
5

2
9
0

2
9
5

3
0
0

3
0
5

3
1
0

3
1
5

3
2
0

3
2
5

3
3
0

3
3
5

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.2

9
:

E
–

B
W

B
S

–
In

te
rn

a
l

F
it

n
es

s

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.3

0
:

E
–

B
W

B
S

–
E

x
te

rn
a
l

F
it

n
es

s

A.4. Cooperative Searching for Better WPOs and Better STCALs 158

A
.4

.4
P

ro
je

ct
F

(S
m

a
rt

P
ri

ce
)

–
C

o
n
fi
g
.

B
W

B
S

(C
o
o
p

e
ra

ti
v
e

S
e
a
rc

h
in

g
fo

r
B

e
tt

e
r

W
P

O
s

a
n

d
B

e
tt

e
r

S
T

C
A

L
s)

6
9
.2

6
9
.4

6
9
.6

6
9
.87
0

7
0
.2

7
0
.4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

6
9
.2

6
9
.4

6
9
.6

6
9
.87
0

7
0
.2

7
0
.4

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 C
o
e
v
o
lu

ti
o
n
 P

ro
g
re

s
s

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 C
o

e
v
o

lu
ti
o

n
 P

ro
g

re
s
s

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.3

1:
F

–
B

W
B

S
–

In
te

rn
a
l

F
it

n
es

s

6
9
.2

6
9
.4

6
9
.6

6
9
.87
0

7
0
.2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

W
P

S
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

6
9
.2

6
9
.4

6
9
.6

6
9
.87
0

7
0
.2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e
n
e
ra

ti
o
n
 N

u
m

b
e
r

S
T

C
A

L
’s

 E
x
te

rn
a
l
F

it
n
e
s
s
 A

s
s
e
s
s
m

e
n
t

Finish Time (Days)

(a
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.0

0
1

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

7
0

7
2

7
4

7
6

7
8

8
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(b
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.1

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

W
P

S
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
G

e
n

e
ra

ti
o

n
 N

u
m

b
e

r

S
T

C
A

L
’s

 E
x
te

rn
a

l
F

it
n

e
s
s
 A

s
s
e

s
s
m

e
n

t

Finish Time (Days)

(c
)

S
ta

ff
A

b
se

n
ce

R
a
te

=
0
.2

5

F
ig

u
re

A
.3

2
:

F
–

B
W

B
S

–
E

x
te

rn
a
l

F
it

n
es

s

Bibliography

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-Based Reason-

ing: Foundational Issues, Methodological Variations, and System Approaches. AI

Communications, IOS Press, 7(1):39–59. 36

[Abran et al., 2004] Abran, A., Moore, J., Bourque, P., Dupuis, R., and Tripp, L.

(2004). Guide to the software engineering body of knowledge: 2004 version. IEEE

Computer Society. 10, 26, 27, 29

[Adamopoulos et al., 2004] Adamopoulos, K., Harman, M., and Hierons, R. M.

(2004). Mutation Testing Using Genetic Algorithms: A Co-evolution Approach. In

Genetic and Evolutionary Computation Conference (GECCO 2004), LNCS 3103,

pages 1338–1349, Seattle, Washington, USA. Springer. 84

[Afzal et al., 2009] Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic review

of search-based testing for non-functional system properties. Information and

Software Technology, 51(6):957–976. 45

[Aguilar-Ruiz et al., 2002] Aguilar-Ruiz, J. S., Santos, J. C. R., and Ramos, I.

(2002). Natural Evolutionary Coding: An Application to Estimating Software

Development Projects. In Proceedings of the 2002 Conference on Genetic and

Evolutionary Computation (GECCO ’02), pages 1–8, New York, USA. 101

[Aho et al., 1972] Aho, a. V., Garey, M. R., and Ullman, J. D. (1972). The Transitive

Reduction of a Directed Graph. SIAM Journal on Computing, 1(2):131. 53

[Aickelin and Dowsland, 2004] Aickelin, U. and Dowsland, K. A. (2004). An indi-

rect Genetic Algorithm for a nurse-scheduling problem. Computers & Operations

Research, 31(5):761–778. 49

Bibliography 160

[Alba and Chicano, 2005] Alba, E. and Chicano, F. (2005). Management of Soft-

ware Projects with GAs. In Proceedings of the 6th Metaheuristics International

Conference (MIC ’05), pages 13–18, Vienna, Austria. Elsevier Science Inc. 20, 47,

84, 101

[Alba and Chicano, 2007] Alba, E. and Chicano, F. (2007). Software project man-

agement with GAs. Information Sciences, 177(11):2380–2401. 20, 45, 47, 84, 101,

102, 104

[Ali et al., 2010] Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege, R. K.

(2010). A Systematic Review of the Application and Empirical Investigation of

Search-Based Test Case Generation. Software Engineering, IEEE Transactions

on, 36(6):742–762. 45

[Alvarez-Valdes et al., 2006] Alvarez-Valdes, R., Crespo, E., Tamarit, J. M., and

Villa, F. (2006). A Scatter Search Algorithm for Project Scheduling under Partially

Renewable Resources. Journal of Heuristics, 12(1-2):95–113. 20, 47, 101

[Antoniol et al., 2004] Antoniol, G., Cimitile, A., Lucca, G. D., and Di, M. (2004).

Assessing staffing needs for a software maintenance project through queuing sim-

ulation. Software, IEEE Transactions on, 30(1):43–58. 46, 53

[Antoniol et al., 2005] Antoniol, G., Di Penta, M., and Harman, M. (2005). Search-

Based Techniques Applied to Optimization of Project Planning for a Massive

Maintenance Project. 21st IEEE International Conference on Software Mainte-

nance (ICSM’05), pages 240–249. 20, 47, 53

[Arcuri and Yao, 2008] Arcuri, A. and Yao, X. (2008). A Novel Co-evolutionary

Approach to Automatic Software Bug Fixing. In Proceedings of the IEEE Congress

on Evolutionary Computation (CEC ’08), pages 162–168, Hongkong, China. IEEE

Computer Society. 84

[Arcuri and Yao, 2010] Arcuri, A. and Yao, X. (2010). Co-evolutionary automatic

programming for software development. Information Sciences (Available online 4

January 2010). 84

Bibliography 161

[Armour, 2002] Armour, P. (2002). Ten unmyths of project estimation. Commun.

ACM, 45(11):15–18. 61

[Axelrod and Dion, 1988] Axelrod, R. and Dion, D. (1988). The further evolution

of cooperation. Science (New York, N.Y.), 242(4884):1385–90. 43

[Axelrod and Hamilton, 1981] Axelrod, R. and Hamilton, W. D. (1981). The evolu-

tion of cooperation. Science (New York, N.Y.), 211(4489):1390–6. 43

[Bäck and Schwefel, 1993] Bäck, T. and Schwefel, H.-P. (1993). An Overview of

Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation,

MIT Press, 1(1):1–23. 43

[Bagnall et al., 2001] Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M.

(2001). The next release problem. Information and Software Technology,

43(14):883–890. 62, 63, 64, 82

[Baker et al., 2006] Baker, P., Harman, M., Steinhofel, K., and Skaliotis, A. (2006).

Search Based Approaches to Component Selection and Prioritization for the Next

Release Problem. In 22nd IEEE International Conference on Software Mainte-

nance, pages 176–185, Philadelphia, USA. IEEE Computer Society. 15, 50, 51,

82

[Baniotopoulos, 1991] Baniotopoulos, C. C. (1991). A contribution to the sensitivity

analysis of the sea-bed-structure interaction problem for underwater pipelines.

Computers & Structures, 40(6):1421–1427. 82

[Barki et al., 1993] Barki, H., Rivard, S., and Talbot, J. (1993). Toward an As-

sessment of Software Development Risk. Journal of Management Information

Systems, 10:203–225. 34

[Barmby et al., 2002] Barmby, T. A., Ercolani, M. G., and Treble, J. G. (2002).

Sickness Absence: An International Comparison. The Economic Journal,

112(480):F315—-F331. 105

Bibliography 162

[Barreto et al., 2008] Barreto, A., de O. Barros, M., and Werner, C. M. L. (2008).

Staffing a software project: A constraint satisfaction and optimization-based ap-

proach. Computers & Operations Research, 35(10):3073–3089. 101

[Beasley and Chu, 1996] Beasley, J. E. and Chu, P. C. (1996). A genetic algo-

rithm for the set covering problem. European Journal of Operational Research,

94(2):392–404. 48

[Beck and Andres, 2004] Beck, K. and Andres, C. (2004). Extreme programming

explained: embrace change. Addison-Wesley Professional. 29

[Beck et al., 2001] Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunning-

ham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,

Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas,

D. (2001). Manifesto for Agile Software Development. 29

[Berman and Larson, 1993] Berman, O. and Larson, R. C. (1993). Optimal work-

force configuration incorporating absenteeism and daily workload variability.

Socio-Economic Planning Sciences, 27(2):91–96. 104

[Black, 2008] Black, D. C. (2008). Working for a healthier tomorrow: review of the

health of Britain’s working age population. Technical report, Department of Work

and Pensions, London. 12, 105, 106

[Blazewicz et al., 1983] Blazewicz, J., Lenstra, J. K., and Kan, A. H. G. R. (1983).

Scheduling subject to resource constraints: classification and complexity. Discrete

Applied Mathematics, 5(1):11–24. 46

[Boehm, 1991] Boehm, B. (1991). Software risk management: principles and prac-

tices. IEEE Software, 8(1):32–41. 32

[Boehm, 2006] Boehm, B. (2006). A view of 20th and 21st century software engi-

neering. Proceeding of the 28th international conference on Software engineering

- ICSE ’06, page 12. 29

Bibliography 163

[Boehm et al., 2000] Boehm, B., Abts, C., and Chulani, S. (2000). Software de-

velopment cost estimation approachesA survey. Annals of Software Engineering,

10:177–205. 35, 82

[Boehm et al., 1995] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy,

R., and Selby, R. (1995). Cost models for future software life cycle processes:

COCOMO 2.0. Annals of Software Engineering, 1(1):57–94. 36

[Boehm and Ross, 1989] Boehm, B. and Ross, R. (1989). Theory-W software project

management principles and examples. Software Engineering, IEEE Transactions

on, 15(7):902–916. 32, 34

[Boehm, 1984] Boehm, B. W. (1984). Software Engineering Economics. Software

Engineering, IEEE Transactions on, SE-10(1):4–21. 36, 61

[Boehm, 1988] Boehm, B. W. (1988). A spiral model of software development and

enhancement. IEEE Computer, 21(5):61–72. 28

[Box et al., 1978] Box, G., Hunter, J., and Hunter, W. (1978). Statistics for experi-

menters: an introduction to design, data analysis, and model building. John Wiley

& Sons. New York, USA. 38

[Box and Wilson, 1951] Box, G. and Wilson, K. (1951). On the experimental at-

tainment of optimum conditions. Journal of the Royal Statistical Society. Series

B (, 13(1):1–45. 39

[Brooks, Jr., 1975] Brooks, Jr., F. P. (1975). The Mythical Man Month: Essays on

Software Engineering. Addison-Wesley, Reading, MA, USA. 102

[Bryde, 2003] Bryde, D. (2003). Project management concepts, methods and ap-

plication. International Journal of Operations and Production Management,

23(7/8):775–793. 31

[Bucher, 1990] Bucher, C. (1990). A fast and efficient response surface approach for

structural reliability problems. Structural Safety, 7(1):57–66. 39

Bibliography 164

[Campolongo and Braddock, 1999] Campolongo, F. and Braddock, R. (1999). Sen-

sitivity analysis of the IMAGE Greenhouse model. Environmental Modelling and

Software, 14(4):275–282. 39

[Campolongo et al., 2007] Campolongo, F., Cariboni, J., and Saltelli, a. (2007). An

effective screening design for sensitivity analysis of large models. Environmental

Modelling & Software, 22(10):1509–1518. 39

[Carley et al., 2004] Carley, K. M., Kamneva, N. Y., and Reminga, J. (2004).

Response Surface Methodology. Technical report, CASOS Technical Report,

Carnegie Mellon University. 39

[Carr et al., 1993] Carr, M., Konda, S., Monarch, I., and Ulrich, F. (1993).

Taxonomy-based risk identification. Technical Report June, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania. 34

[Cattrysse and Wassenhove, 1992] Cattrysse, D. G. and Wassenhove, L. N. V.

(1992). A survey of algorithms for the generalized assignment problem. Euro-

pean Journal of Operational Research, 60(3):260–272. 48

[CBI, 2011] CBI (2011). Healthy returns? Absence and workplace health survey

2011. Technical report, Confederation of British Industry, London. 105

[Chan et al., 1996] Chan, W.-T., Chua, D. K. H., and Kannan, G. (1996). Con-

struction Resource Scheduling with Genetic Algorithms. Journal of Construction

Engineering and Management, 122(2):125–132. 20, 47

[Chang et al., 1998] Chang, C., Chao, C., Nguyen, T., and Christensen, M. (1998).

Software project management net: a new methodology on software management.

Proceedings of the 22nd International Computer Software and Applications Con-

ference, pages 534—-539. 20, 47

[Chang et al., 2001] Chang, C., Christensen, M., and Zhang, T. (2001). Genetic

algorithms for project management. Annals of Software Engineering, 11(1):107–

139. 20, 47, 104

Bibliography 165

[Chang et al., 2008] Chang, C. K., Jiang, H., Di, Y., Zhu, D., and Ge, Y. (2008).

Time-line based model for software project scheduling with genetic algorithms.

Information and Software Technology, 50(11):1142–1154. 20, 47

[Chao et al., 1993] Chao, C., Komada, J., Liu, Q., Muteja, M., Alsalqan, Y., and

Chang, C. (1993). An Application of Genetic Algorithms to Software Project

Management. In Proceedings of the 9th International Advanced Science and Tech-

nology, pages 247–252, Chicago, Illinois, USA. 101

[Christopher Frey and Patil, 2002] Christopher Frey, H. and Patil, S. R. (2002).

Identification and Review of Sensitivity Analysis Methods. Risk analysis : an

official publication of the Society for Risk Analysis, 22(3):553–578. 38, 82

[Chu and Beasley, 1997] Chu, P. C. and Beasley, J. E. (1997). A genetic algo-

rithm for the generalised assignment problem. Computers & Operations Research,

24(1):17–23. 48

[CIPD, 2011] CIPD (2011). Absence Management: Annual Survey Report 2011.

Technical report, CIPD (Chartered Institute of Personnel and Development), Lon-

don. 106, 133

[CIPD, 2012] CIPD (2012). Absence Management: Annual Survey Report 2012.

Technical report, CIPD (Chartered Institute of Personnel and Development), Lon-

don. 104

[Coello, 2000] Coello, C. A. (2000). An updated survey of GA-based multiobjective

optimization techniques. ACM Comput. Surv., 32(2):109–143. 65

[Cortellessa et al., 2008] Cortellessa, V., Marinelli, F., and Potena, P. (2008). An

Optimization Framework for “Build-or-Buy” Decisions in Software Architecture.

Computers & Operations Research, 35(10):3090–3106. 101

[Danzer and Dolton, 2012] Danzer, A. M. and Dolton, P. J. (2012). Total Reward

and pensions in the UK in the public and private sectors. Labour Economics,

19(4):584–594. 106

Bibliography 166

[Darwin, 1859] Darwin, C. (1859). On the Origin of Species by Means of Natural

Selection, or the Preservation of Favoured Races in the Struggle for Life. London:

J. Murray. 40

[de Souza et al., 2010] de Souza, J. T., Maia, C. L., de Freitas, F. G., and Coutinho,

D. P. (2010). The Human Competitiveness of Search Based Software Engineer-

ing. In Second International Symposium on Search Based Software Engineering

(SSBSE), 2010, pages 143–152. 101

[Deb and Gupta, 2005] Deb, K. and Gupta, H. (2005). Searching for Robust

Pareto-Optimal Solutions in Multi-objective Optimization. In Coello Coello, C.,

Hernández Aguirre, A., and Zitzler, E., editors, Evolutionary Multi-Criterion Op-

timization, volume 3410 of Lecture Notes in Computer Science, pages 150–164.

Springer Berlin / Heidelberg. 82

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A. (2002).

A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evolutionary

Computation, IEEE Transactions, 6(2):182–197. 70

[Di Penta et al., 2011] Di Penta, M., Harman, M., and Antoniol, G. (2011). The Use

of Search-Based Optimization Techniques to Schedule and Staff Software Projects:

An Approach and An Empirical Study. Softw., Pract. Exper., 41(5):495–519. 45,

46, 50, 53, 84, 87, 89, 102

[Di Penta et al., 2007] Di Penta, M., Harman, M., Antoniol, G., and Qureshi, F.

(2007). The Effect of Communication Overhead on Software Maintenance Project

Staffing: a Search-Based Approach. In Software Maintenance, 2007. ICSM 2007.

IEEE International Conference on, pages 315–324. 45, 46, 53, 87, 102

[Fairley, 1994] Fairley, R. (1994). Risk management for software projects. IEEE

software. 33

[Fernando Netto and Alvim, 2009] Fernando Netto, M. B. and Alvim, A. (2009). A

Hybrid Heuristic Approach for Scheduling Bug Fix Tasks to Software. In Proceed-

ings of the 1st International Symposium on Search Based Software Engineering

(SSBSE ’09), Cumberland Lodge, Windsor, UK. IEEE. 102

Bibliography 167

[Finkelstein et al., 2009] Finkelstein, A., Harman, M., Mansouri, S., Ren, J., and

Zhang, Y. (2009). A search based approach to fairness analysis in requirement

assignments to aid negotiation, mediation and decision making. Special Issue

on RE’08: Requirements Engineering for a Sustainable World; Guest Editor: T.

Tamai, 14(4):231–245. 44

[Finkelstein et al., 2008] Finkelstein, A., Harman, M., Mansouri, S. A., Ren, J., and

Zhang, Y. (2008). Fairness Analysis in Requirements Assignments. In 16th IEEE

International Requirements Engineering Conference, pages 115–124. IEEE. 44

[Fisher et al., 1986] Fisher, M. L., Jaikumar, R., and Wassenhove, L. N. V. (1986).

A Multiplier Adjustment Method for the Generalized Assignment Problem. Man-

agement Science, 32(9):pp. 1095–1103. 48

[Flyvbjerg et al., 2002] Flyvbjerg, B., Holm, M. S., and Buhl, S. (2002). Underes-

timating Costs in Public Works Projects: Error or Lie? Journal of the American

Planning Association, 68(3):279–295. 61

[Flyvbjerg et al., 2005] Flyvbjerg, B., Skamris Holm, M. K., and Buhl, S. r. L.

(2005). How (In)accurate Are Demand Forecasts in Public Works Projects?: The

Case of Transportation. Journal of the American Planning Association, 71(2):131–

146. 61

[Fogel, 1991] Fogel, D. B. (1991). System identification through simulated evolution:

a machine learning approach to modeling. Ginn Press, USA. 43

[Fogel et al., 1966] Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial

intelligence through simulated evolution. John Wiley and Sons. 43

[Forrester and Wright, 1961] Forrester, J. W. and Wright, J. (1961). Industrial dy-

namics. MIT press Cambridge, MA. 36

[Garrett and Dasgupta, 2008] Garrett, D. and Dasgupta, D. (2008). Multiobjective

Landscape Analysis and the Generalized Assignment Problem. In Maniezzo, V.,

Battiti, R., and Watson, J.-P., editors, Learning and Intelligent Optimization,

Bibliography 168

volume 5313 of Lecture Notes in Computer Science, pages 110–124. Springer Berlin

/ Heidelberg. 49

[Ge and Chang, 2006] Ge, Y. and Chang, C. (2006). Capability-based Project

Scheduling with Genetic Algorithms. 2006 International Conference on Com-

putational Inteligence for Modelling Control and Automation and International

Conference on Intelligent Agents Web Technologies and International Commerce

(CIMCA’06), pages 161–161. 20, 47

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic algorithms in search, optimiza-

tion, and machine learning. Addison-Wesley Reading, MA, USA. 36, 42

[Griffiths et al., 1993] Griffiths, W. E., Hill, R. C., and Judge, G. G. (1993). Learning

and practicing econometrics. John Wiley & Sons Inc. 36

[Gueorguiev, 2008] Gueorguiev, S. (2008). Using SBSE for Project Management

Optimisation: Finding Robust Project Plans. Msc thesis, King’s College London.

54

[Gueorguiev et al., 2009] Gueorguiev, S., Harman, M., and Antoniol, G. (2009).

Software Project Planning for Robustness and Completion Time in the Presence

of Uncertainty using Multi Objective Search Based Software Engineering. In Pro-

ceedings of the 11th Annual Conference on Genetic and Evolutionary Computation

(GECCO ’09), pages 1673–1680, Montral, Canada. ACM. 20, 35, 37, 47, 50, 102

[Guignard and Rosenwein, 1989] Guignard, M. and Rosenwein, M. B. (1989). An

Improved Dual Based Algorithm for the Generalized Assignment Problem. Oper-

ations Research, 37(4):pp. 658–663. 48

[Gunawan et al., 2005] Gunawan, R., Cao, Y., Petzold, L., and III, F. J. D.

(2005). Sensitivity Analysis of Discrete Stochastic Systems. Biophysical Jour-

nal, 88(4):2530–2540. 82

[Hajri-Gabouj, 2003] Hajri-Gabouj, S. (2003). A fuzzy genetic multiobjective op-

timization algorithm for a multilevel generalized assignment problem. Systems,

Bibliography 169

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

33(2):214–224. 49

[Hamby, 1994] Hamby, D. M. (1994). A review of techniques for parameter sensitiv-

ity analysis of environmental models. Environmental Monitoring and Assessment,

32(2):135–154. 37

[Harman, 2007] Harman, M. (2007). The Current State and Future of Search Based

Software Engineering. In Briand, L. and Wolf, A., editors, Future of Software

Engineering 2007, pages 342–357, Los Alamitos, California, USA. 18, 102

[Harman, 2010a] Harman, M. (2010a). The Relationship between Search Based

Software Engineering and Predictive Modeling. In Proceedings of the 6th Inter-

national Conference on Predictive Models in Software Engineering, ACM, pages

1–13, Timisoara, Romania. ACM. 102

[Harman, 2010b] Harman, M. (2010b). Why the Virtual Nature of Software Makes It

Ideal for Search Based Optimization. In Rosenblum, D. and Taentzer, G., editors,

Fundamental Approaches to Software Engineering, volume 6013 of Lecture Notes

in Computer Science, pages 1–12. Springer Berlin / Heidelberg. 44

[Harman et al., 2012] Harman, M., Burke, E., Clark, J., and Yao, X. (2012). Dy-

namic adaptive search based software engineering. In Proceedings of the ACM-

IEEE International Symposium on Empirical Software Engineering and Measure-

ment, ESEM ’12, pages 1–8, New York, NY, USA. ACM. 18

[Harman and Jones, 2001] Harman, M. and Jones, B. F. (2001). Search-based soft-

ware engineering. Information and Software Technology, 43(14):833–839. 18, 44

[Harman et al., 2009a] Harman, M., Krinke, J., Ren, J., and Yoo, S. (2009a). Search

based data sensitivity analysis applied to requirement engineering. In Proceedings

of the 11th Annual conference on Genetic and evolutionary computation, GECCO

’09, pages 1681–1688, New York, NY, USA. ACM. 37, 44, 45

[Harman et al., 2009b] Harman, M., Mansouri, S., and Zhang, Y. (2009b). Search

based software engineering: A comprehensive analysis and review of trends tech-

Bibliography 170

niques and applications. Technical report, Technical Report TR-09-03, Kings

College London. 29, 44, 45

[Harman and McMinn, 2010] Harman, M. and McMinn, P. (2010). A Theoretical

and Empirical Study of Search-Based Testing: Local, Global, and Hybrid Search.

Software Engineering, IEEE Transactions on, 36(2):226–247. 45

[Harper et al., 2005] Harper, P. R., de Senna, V., Vieira, I. T., and Shahani, A. K.

(2005). A genetic algorithm for the project assignment problem. Computers &

Operations Research, 32(5):1255–1265. 49

[Hart et al., 2005] Hart, E., Ross, P., and Corne, D. (2005). Evolutionary Schedul-

ing: A Review. Genetic Programming and Evolvable Machines, 6(2):191–220. 46

[Hausknecht et al., 2008] Hausknecht, J., Hiller, N., and Vance, R. (2008). Work-

Unit Absenteeism: Effects of Satisfaction, Commitment, Labor Market Condi-

tions, and Time. The Academy of Management Journal ARCHIVE, 51(6):1223–

1245. 105

[Helmer et al., 1966] Helmer, O., Brown, B., and Gordon, T. (1966). Social technol-

ogy. Basic Books New York. 36

[Helton et al., 2006] Helton, J., Johnson, J., Sallaberry, C., and Storlie, C. (2006).

Survey of sampling-based methods for uncertainty and sensitivity analysis. Reli-

ability Engineering & System Safety, 91(10-11):1175–1209. 37, 38, 40

[Herroelen, 2005] Herroelen, W. (2005). Project SchedulingTheory and Practice.

Production and Operations Management, 14(4):413–432. 30, 45

[Higgins et al., 2012] Higgins, A., OHalloran, P., and Porter, S. (2012). Manage-

ment of Long Term Sickness Absence: A Systematic Realist Review. Journal of

Occupational Rehabilitation, 22(3):322–332. 105

[Hill and Hunter, 1966] Hill, W. and Hunter, W. (1966). A review of response surface

methodology: a literature survey. Technometrics, 8(4):571–590. 39

Bibliography 171

[Hillis, 1990] Hillis, W. (1990). Co-evolving parasites improve simulated evolution

as an optimization procedure. Physica D: Nonlinear Phenomena, 42:228–234. 20,

43

[Hindi et al., 2002] Hindi, K. S., Yang, H., and Fleszar, K. (2002). An evolutionary

algorithm for resource-constrained project scheduling. Evolutionary Computation,

IEEE Transactions on, 6(5):512–518. 20, 47

[Holland, 1992] Holland, J. H. (1992). Adaptation in natural and artificial systems.

MIT Press, Cambridge, MA, USA. 18, 42

[Holmes, 2008] Holmes, E. (2008). The feasibility of comparing sickness absence

surveys and the Labour Force Survey. Technical report, HSE Contract Research

Report RR673. 106

[Hughes et al., 2004] Hughes, B., Ireland, R., West, B., Smith, N., and Shepherd, D.

(2004). Project management for IT-related projects: Textbook for the Iseb Foun-

dation Certificate in Is Project Management. Swindon: The British Computer

Society. 26

[Hur et al., 2004] Hur, D., Mabert, V. A., and Bretthauer, K. M. (2004). Real-

Time Work Schedule Adjustment Decisions: An Investigation and Evaluation.

Production and Operations Management, 13(4):322–339. 104

[Husbands and Mill, 1991] Husbands, P. and Mill, F. (1991). Simulated co-evolution

as the mechanism for emergent planning and scheduling. Proceedings of the Fourth

International Conference on Genetic Algorithms, pages 264—-270. 43

[IEEE610.12-1990, 1990] IEEE610.12-1990 (1990). IEEE Standard Glossary of Soft-

ware Engineering Terminology. IEEE StMcMinn2005andard, 610.12-90. 26

[Isukapalli et al., 2000] Isukapalli, S. S., Roy, a., and Georgopoulos, P. G. (2000).

Efficient sensitivity/uncertainty analysis using the combined stochastic response

surface method and automated differentiation: application to environmental and

biological systems. Risk analysis : an official publication of the Society for Risk

Analysis, 20(5):591–602. 39

Bibliography 172

[Jø rgensen, 2004a] Jø rgensen, M. (2004a). A review of studies on expert estimation

of software development effort. Journal of Systems and Software, 70(1-2):37–60.

37

[Jø rgensen, 2004b] Jø rgensen, M. (2004b). Top-down and bottom-up expert es-

timation of software development effort. Information and Software Technology,

46(1):3–16. 31, 36

[Jø rgensen et al., 2009] Jø rgensen, M., Boehm, B., and Rifkin, S. (2009). Software

Development Effort Estimation: Formal Models or Expert Judgment? IEEE

Software, 26(1):14–19. 35, 36

[Jø rgensen and Shepperd, 2007] Jø rgensen, M. and Shepperd, M. (2007). A Sys-

tematic Review of Software Development Cost Estimation Studies. Software En-

gineering, IEEE Transactions on, 33(1):33–53. 30

[Jones, 1997] Jones, C. (1997). Applied Software Measurement: Assuring Productiv-

ity and Quality. McGraw-Hill. 36

[Jose, 2008] Jose, F. D. (2008). Sensitivity Analysis for Search-Based Software

Project Management. PhD thesis, King’s College London, UK. 54

[Kapur et al., 2008] Kapur, P., Ngo-the, A., Ruhe, G., and Smith, A. (2008). Op-

timized staffing for product releases and its application at Chartwell Technol-

ogy. Journal of Software Maintenance and Evolution: Research and Practice,

20(5):365–386. 101

[Keil et al., 1998] Keil, M., Cule, P., Lyytinen, K., and Schmidt, R. (1998). A

framework for identifying software project risks. Communications of the ACM,

41(11):76–83. 34

[Keil et al., 2003] Keil, M., Rai, A., Cheney Mann, J., and Zhang, G. (2003). Why

software projects escalate: The importance of project management constructs.

Engineering Management, IEEE Transactions on, 50(3):251–261. 31

[Kelley Jr and Walker, 1959] Kelley Jr, J. E. and Walker, M. R. (1959). Critical-

path planning and scheduling. In IRE-AIEE-ACM ’59 (Eastern): Papers pre-

Bibliography 173

sented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer con-

ference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York, NY, USA.

ACM. 31, 46

[Khuri and Mukhopadhyay, 2010] Khuri, A. I. and Mukhopadhyay, S. (2010). Re-

sponse surface methodology. Wiley Interdisciplinary Reviews: Computational

Statistics, 2(2):128—-149. 39

[Kicinger et al., 2005] Kicinger, R., Arciszewski, T., and De Jong, K. (2005). Evo-

lutionary computation and structural design: A survey of the state-of-the-art.

Computers & Structures, 83(23-24):1943–1978. 42

[Kolisch and Hartmann, 2006] Kolisch, R. and Hartmann, S. (2006). Experimental

investigation of heuristics for resource-constrained project scheduling: An update.

European Journal of Operational Research, 174(1):23–37. 46

[Koza and Poli, 2005] Koza, J. and Poli, R. (2005). Genetic programming. Search

Methodologies, Springer, pages 127—-164. 42

[Koza, 1992] Koza, J. R. (1992). Genetic programming: on the programming of

computers by means of natural selection. Cambridge, Mass.: The MIT press. 42

[Kremmel et al., 2011] Kremmel, T., Kubaĺık, J., and Biffl, S. (2011). Software

Project Portfolio Optimization with Advanced Multiobjective Evolutionary Algo-

rithms. Applied Soft Computing, 11(1):1416–1426. 101

[Langdon and Poli, 2002] Langdon, W. B. and Poli, R. (2002). Foundations of Ge-

netic Programming. Springer. 42

[Levine, 1996] Levine, D. (1996). Application of a hybrid genetic algorithm to airline

crew scheduling. Computers & Operations Research, 23(6):547–558. 49

[Levine and Renelt, 1992] Levine, R. and Renelt, D. (1992). A sensitivity analysis of

cross-country growth regressions. The American Economic Review, 82(4):942–963.

38, 82

Bibliography 174

[Majumdar and Bhunia, 2007] Majumdar, J. and Bhunia, A. K. (2007). Elitist ge-

netic algorithm for assignment problem with imprecise goal. European Journal of

Operational Research, 177(2):684–692. 49

[Malcolm et al., 1959] Malcolm, D. G., Roseboom, J. H., Clark, C. E., and Fazar,

W. (1959). Application of a Technique for Research and Development Program

Evaluation. Operations Research, 7(5):pp. 646–669. 31, 46

[McMinn, 2004] McMinn, P. (2004). Search-based software test data generation: a

survey. Software Testing, Verification and Reliability, 14(2):105–156. 45

[McMinn, 2005] McMinn, P. (2005). Evolutionary search for test data in the presence

of state behaviour. PhD thesis, University of Sheffield. 45

[Miller and Spooner, 1976] Miller, W. and Spooner, D. (1976). Automatic Genera-

tion of Floating-Point Test Data. Software Engineering, IEEE Transactions on,

SE-2(3):223–226. 44

[Miyazaki et al., 1994] Miyazaki, Y., Terakado, M., Ozaki, K., and Nozaki, H.

(1994). Robust regression for developing software estimation models. Journal

of Systems and Software, 27:3–16. 36

[Mokotoff, 2001] Mokotoff, E. (2001). Parallel machine scheduling problems: A sur-

vey. Asia-Pacific Journal of Operational Research, 18(2):193–242. 47

[Morris, 1991] Morris, M. (1991). Factorial sampling plans for preliminary compu-

tational experiments. Technometrics, 33(2):161–174. 38

[Moynihan, 1997] Moynihan, T. (1997). How experienced project managers assess

risk. Software, IEEE, 14(3):35–41. 33

[Newman et al., 1999] Newman, J., Taylor, A., Barnwell, R., and Newman, P.

(1999). Overview of sensitivity analysis and shape optimization for complex aero-

dynamic configurations. Journal of Aircraft, 36(1):87–96. 37

[Odzaly and Des Greer, 2009] Odzaly, E. E. and Des Greer, P. S. (2009). Software

risk management barriers: An empirical study. In Proceedings of the ACM-IEEE

Bibliography 175

International Symposium on Empirical Software Engineering and Measurement,

pages 418–421. Ieee. 35

[Paredis, 1994] Paredis, J. (1994). Co-evolutionary constraint satisfaction. Parallel

Problem Solving from Nature (PPSN III), 37(2):121–133. 43

[PMI, 2004] PMI (2004). A Guide to the Project Management Body of Knowledge:

PMBOK{\textregistered} Guide. Project Management Institute, Pennsylvania,

USA. 31

[Potter, 1997] Potter, M. (1997). The design and analysis of a computational model

of cooperative coevolution. PhD thesis, George Mason University. 44

[Potter and Jong, 1994] Potter, M. A. and Jong, K. A. D. (1994). A Cooperative

Coevolutionary Approach to Function Optimization. In The Third Conference on

Parallel Problem Solving from Nature, pages 249–257. Springer-Verlag. 20, 44, 88

[Putnam and Myers, 1992] Putnam, L. H. and Myers, W. (1992). Measures for ex-

cellence: reliable software on time, within budget. Yourdon Press. 36

[Racu et al., 2005] Racu, R., Jersak, M., and Ernst, R. (2005). Applying sensitivity

analysis in real-time distributed systems. 11th IEEE Real Time and Embedded

Technology and Applications Symposium, pages 160–169. 37

[Rechenberg, 1964] Rechenberg, I. (1964). Cybernetic solution path of an experi-

mental problem. Library Translation 1122. Farnborough, UK: Royal Aircraft Es-

tablishment. 42

[Ren et al., 2011] Ren, J., Harman, M., and Di Penta, M. (2011). Cooperative Co-

evolutionary Optimization of Software Project Staff Assignments and Job Schedul-

ing. In Proceedings of the Third International Symposium of Search Based Software

Engineering, SSBSE 2011, volume 6956 of Lecture Notes in Computer Science,

pages 127–141. Springer Berlin / Heidelberg. 109

[Ross and Soland, 1975] Ross, G. T. and Soland, R. M. (1975). A branch and bound

algorithm for the generalized assignment problem. Mathematical Programming,

8(1):91–103. 48

Bibliography 176

[Royce, 1970] Royce, W. (1970). Managing the development of large software sys-

tems. Proceedings of Western Electronic Show and Convention (IEEE WESCON),

26(August):1–9. 27

[Saltelli, 2004] Saltelli, A. (2004). Sensitivity analysis in practice: a guide to assess-

ing scientific models. John Wiley & Sons. 40

[Saltelli, 2005] Saltelli, A. (2005). Global sensitivity analysis: an introduction. . 4th

International Conference on Sensitivity Analysis of, pages 27–43. 40

[Saltelli and Annoni, 2010] Saltelli, A. and Annoni, P. (2010). How to avoid a per-

functory sensitivity analysis. Environmental Modelling & Software, pages 1–10.

38, 40

[Saltelli et al., 2004] Saltelli, A., Chan, K., Scott, E. M., and Others (2004). Sensi-

tivity analysis. John Wiley & Sons. 40

[Saltelli et al., 2008] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni,

J., Gatelli, D., Saisana, M., and Tarantola, S. (2008). Global sensitivity analysis:

the primer. John Wiley & Sons. 38, 40

[Saltelli et al., 2000] Saltelli, A., Tarantola, S., and Campolongo, F. (2000). Sensi-

tivity Anaysis as an Ingredient of Modeling. Statistical Science, 15(4):377–395.

38, 82

[Sandu et al., 2003] Sandu, a., Daescu, D., and Carmichael, G. (2003). Direct and

adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I–theory

and software tools. Atmospheric Environment, 37(36):5083–5096. 37

[Schwaber and Beedle, 2001] Schwaber, K. and Beedle, M. (2001). Agile software

development with Scrum. Prentice Hall, Upper Saddle River, NJ, USA. 29, 31

[Schwefel, 1965] Schwefel, H. P. (1965). Kybernetische Evolution als Strategie der

experimentellen Forschung in der Stromungstechnik. Master’s thesis, Technical

University of Berlin. 42

[Seccombe, 1995] Seccombe, I. J. (1995). Measuring and monitoring absence from

work. Institute for Employment Studies, IES Report 288. 133

Bibliography 177

[Shepperd, 2007] Shepperd, M. (2007). Software project economics: a roadmap. In

Future of Software Engineering, 2007. FOSE ’07, pages 304–315. 37

[Sommerville, 1992] Sommerville, I. (1992). Software Engineering. Addison-Wesley,

UK. 28

[Tausworthe, 1980] Tausworthe, R. (1980). The Work Breakdown Structure in Soft-

ware Project Management. Journal of Systems and Software, 1:181—-186. 31,

36

[Taylor et al., 2010] Taylor, P., Cunningham, I., Newsome, K., and Scholarios, D.

(2010). Too scared to go sick reformulating the research agenda on sickness ab-

sence. Industrial Relations Journal, 41(4):270–288. 104

[Thogmartin, 2010] Thogmartin, W. E. (2010). Sensitivity analysis of North Amer-

ican bird population estimates. Ecological Modelling, 221(2):173–177. 38

[van den Akker et al., 2008] van den Akker, M., Brinkkemper, S., Diepen, G., and

Versendaal, J. (2008). Software product release planning through optimization

and what-if analysis. Information and Software Technology, 50(1-2):101–111. 82

[Van Veldhuizen, 1999] Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary

Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Air

Force Institute of Technology, Wright Patterson, OH, USA. 67

[Wallace and Keil, 2004] Wallace, L. and Keil, M. (2004). Software project risks and

their effect on outcomes. Communications of the ACM, 47(4):68–73. 34

[Weise, 2009] Weise, T. (2009). Global Optimization Algorithms Theory and Appli-

cation. URL: http://www.it-weise.de, Abrufdatum, E-book. 43

[Wiegand, 2003] Wiegand, R. (2003). An analysis of cooperative coevolutionary al-

gorithms. PhD thesis, George Mason University. 44

[Wilson, 1997] Wilson, J. M. (1997). A Genetic Algorithm for the Generalised As-

signment Problem. The Journal of the Operational Research Society, 48(8):pp.

804–809. 48

Bibliography 178

[Xiao and Afzal, 2010] Xiao, J. and Afzal, W. (2010). Search-based Resource

Scheduling for Bug Fixing Tasks. In Proceedings of the 2nd International Sym-

posium on Search Based Software Engineering (SSBSE ’10), pages 133–142, Ben-

evento, Italy. IEEE. 102

[Xiao et al., 2010] Xiao, J., Osterwell, L. J., Wang, Q., and Li, M. (2010). Dynamic

Resource Scheduling in Disruption-Prone Software Development Environments. In

Proceedings of the 13th International Conference on Fundamental Approaches to

Software Engineering (FASE ’10) Held as Part of the Joint European Conferences

on Theory and Practice of Software (ETAPS ’10), volume 6013, pages 107–122,

Paphos, Cyprus. Springer. 101

[Yang et al., 2008a] Yang, D., Wang, Q., Li, M., Yang, Y., Ye, K., and Du, J.

(2008a). A survey on software cost estimation in the chinese software industry.

Proceedings of the International Symposium on Empirical Software Engineering

and Measurement, pages 253—-262. 37

[Yang et al., 2008b] Yang, Z., Tang, K., and Yao, X. (2008b). Large Scale Evo-

lutionary Optimization Using Cooperative Coevolution. Information Sciences,

178(15):2985–2999. 44, 88

[Yao, 1996] Yao, X. (1996). An Overview of Evolutionary Computation. Chinese

Journal Of Advanced Software Research, 3(1):12—-29. 42

[Zhang et al., 2007] Zhang, Y., Harman, M., and Mansouri, S. A. (2007). The multi-

objective next release problem. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, GECCO ’07, pages 1129–1137, New York,

NY, USA. ACM. 44, 65, 70, 82

[Zhu et al., 2005] Zhu, G., Bard, J. F., and Yu, G. (2005). Disruption Management

for Resource-Constrained Project Scheduling. The Journal of the Operational

Research Society, 56(4):365–381. 104

	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Search-based Software Engineering
	1.2 Software Project Management
	1.3 Contributions of this Work
	1.4 Research Methodology
	1.5 Layout of the Thesis

	2 Literature Review
	2.1 Software Project Management
	2.2 Software Cost Estimation
	2.3 Sensitivity Analysis
	2.4 Evolutionary Computation
	2.5 Search Based Software Engineering

	3 Industrial Data for Evaluation
	3.1 Industrial Requirement Data
	3.2 Industrial Project Plan Data
	3.3 Limitations of Data Usage

	4 Sensitivity Analysis on Cost Estimation of Requirements Selection
	4.1 Introduction
	4.2 Background
	4.3 Sensitivity Analysis in NRP
	4.4 SA Experimental Set Up
	4.5 SA Results and Analysis
	4.6 Related work
	4.7 Summary

	5 Cooperative Co-evolutionary Job Sequencing and Team Sizing
	5.1 Introduction
	5.2 Problem Statement and Definitions
	5.3 Optimisation Method: Cooperative Co-evolutionary Algorithm
	5.4 Empirical Study
	5.5 Empirical Study Results
	5.6 Related Work
	5.7 Summary

	6 Co-evolutionary Project Planning Optimisation under Staff Absence
	6.1 Introduction
	6.2 Problem Statement
	6.3 Co-evolution
	6.4 Empirical Study
	6.5 Results Analysis
	6.6 Measuring the Absence Rate
	6.7 Summary

	7 Conclusions and Future Works
	7.1 Summary of Contributions
	7.2 Summary of Future Work
	7.3 Closing Remark

	Appendices
	A Results of Co-evolutionary Project Management Optimisation on Four Real–world Projects
	A.1 Competitive Searching for Better WPOs and Worse STCALs
	A.2 Competitive Searching for Worse WPOs and Better STCALs
	A.3 Cooperative Searching for Worse WPOs and Worse STCALs
	A.4 Cooperative Searching for Better WPOs and Better STCALs

	Bibliography

