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A  novel  simplex  method  best  suited
to  coarsely  gridded  data  was  devel-
oped.
This  is  used  for  ‘sweet  spot’  identi-
fication  in  two  bioprocess  develop-
ment  studies.
The method  returns  comparable
experimental  costs  to those  from  DoE
methodologies.
The method  is a viable  alternative  for
‘sweet  spot’  identification  in  scouting
studies.
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a  b  s  t  r  a  c  t

The  capacity  to locate  efficiently  a  subset  of  experimental  conditions  necessary  for  the identification  of
an operating  envelope  is  a key objective  in  many  studies.  We  have  shown  previously  how  this  can  be
performed  by using  the simplex  algorithm  and  this  paper  now  extends  the  approach  by augmenting  the
established  simplex  method  to  form  a novel  hybrid  experimental  simplex  algorithm  (HESA)  for  iden-
tifying  ‘sweet  spots’  during  scouting  development  studies.  The  paper  describes  the  new  algorithm  and
illustrates  its use  in two  bioprocessing  case  studies  conducted  in  a 96-well  filter  plate  format.  The  first
investigates  the effect  of  pH and  salt  concentration  on the binding  of  green  fluorescent  protein,  isolated
from  Escherichia  coli homogenate,  to a weak  anion  exchange  resin  and  the  second  examines  the impact
of  salt  concentration,  pH  and  initial  feed  concentration  upon  the  binding  capacities  of a  FAb′,  isolated
from  E.  coli  lysate,  to a strong  cation  exchange  resin.  Compared  with  the  established  algorithm,  HESA  was
better  at  delivering  valuable  information  regarding  the  size,  shape  and  location  of  operating  ‘sweet  spots’
that could  then  be  further  investigated  and  optimized  with  follow  up  studies.  To test  how  favorably  these
features  of  HESA  compared  with  conventional  DoE  (design  of  experiments)  methods,  HESA results  were

also compared  with  approaches  including  response  surface  modeling  experimental  designs.  The  results
show  that  HESA  can return  ‘sweet  spots’  that  are  equivalently  or better  defined  than  those  obtained
from  DoE  approaches.  At the  same  time  the  deployment  of HESA  to identify  bioprocess-relevant  oper-
ating  boundaries  was  accompanied  by  comparable  experimental  costs  to  those  of  DoE  methods.  HESA is
therefore  a viable  and  valuable  alternative  route  for  identifying  ‘sweet  spots’  during  scouting  studies  in
bioprocess  development.

∗ Corresponding author. Tel.: +44 20 7679 3796; fax: +44 7916 3943.
E-mail address: nigelth@ucl.ac.uk (N. Titchener-Hooker).
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1. Introduction

Experimental design approaches are well established in many
scientific and technological fields as an effective methodology
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o determine appropriate operating conditions for complex pro-
esses. In the bioprocess industry, the use of such DoE (design
f experiments) methods are widely – and appropriately – advo-
ated throughout the development of the various unit operations
hat are used commercially to produce complex products, while
mplementing Quality by Design [1].  The DoE approach usually
onsists of three stages: (1) screening experiments, to determine
hich of a large set of possible experimental variables are impor-

ant; (2) scouting experiments on only the important variables,
o identify promising regions or ‘sweet spots’ of operating space;
nd (3) subsequent optimization experiments, within these ‘sweet
pots’, to obtain accurate and valid mathematical models which
dentify and rigorously characterize a design space. Stage 3 is often
mplemented via the adoption of response surface modeling (RSM)
esigns.

The derivation of models from RSM designs, such as central
omposite designs (CCDs), also makes them applicable to stage 2
couting studies since they can identify ‘sweet spots’ based on their
redictions [2].  During these studies however, when the investi-
ated experimental spaces are still large, poorly fitting regression
odels may  be obtained, the predictions of which could yield ill-

efined ‘sweet spots’ [3].  This can have a direct impact on the
umber of follow up optimization studies and their efficiency.
uch complexities can be avoided by employing high level facto-
ial designs during scouting studies. These designs are coarse grids
f test conditions, which are all evaluated to derive ‘sweet spots’
4–7]. Hence, when regression models cannot describe experimen-
al data accurately and reliably, favorable operating conditions can
e determined from the experimental measurements when they
re presented in highly informative contour or response surface
lots. Such designs also maximize process understanding since by
mploying the theoretical knowledge on the investigated system,
xperimental factors with the greatest interest can be allocated
umerous levels and thus assessed in detail. While this approach
nsures high levels of information about process behavior, it also
eads to increased experimental costs (e.g. increased time and

aterial requirements), especially in those cases where the defined
rids contain numerous conditions and necessitating their evalua-
ion by lengthy analytical methods, causing an analytical bottleneck
8]. Early bioprocess development is also characterized by limited
mounts of material, especially highly purified material; and often
ight timelines and limited personnel. It is therefore worth evalu-
ting which general approaches are best suited to these stringent
onstraints that compound the analytical bottleneck. Here, we  pro-
ose and evaluate a variant of an established simplex method as
n effective approach to stage 2 scouting experiments intended to
dentify ‘sweet spots’.

Simplex algorithms, and in particular the variable size simplex
lgorithm (VSSA) [9],  have been widely used for the unconstrained
ptimization of scalar objective functions. Until comparatively
ecently, it – along with other direct-search methods that do
ot use derivatives – was often regarded as a heuristic method,
ith no guarantees of convergence (e.g. [10]). However, sim-
lex variants have been shown to be convergent [11,12], thereby
roviding theoretical support to what has always been a remark-
bly effective method in practice. Simplex algorithms have also
een used in the bioprocess area [13,14],  but their use in
reparative purification (as opposed to analytical chromatogra-
hy) is more limited [15]. Recent work from our group [3] has
hown that the deployment of a simplex method is an efficient
pproach for carrying out early-stage bioprocess development
tudies. After the generation of the initial simplex (a polygon

ith k + 1 corners in an k-dimensional space of input variables),

nly those experiments suggested by the method are evaluated
n an iterative fashion generating useful information and feedback
apidly.
imica Acta 743 (2012) 19– 32

This paper extends our approach by introducing the hybrid
experimental simplex algorithm (HESA) as an alternative route
for identifying ‘sweet spots’ during scouting studies. HESA is best
suited to data generated on a coarse grid of input variables, of the
kind commonly generated by deploying high level factorial designs.
Standard simplex algorithms cannot deal readily with such con-
stant and coarse grid data. Hence, HESA incorporates modifications
which are described in a first section of this paper. It is shown that
HESA works well on typical plate data whereas VSSA fails. HESA
is then compared to established DoE methods for scouting, in two
practical purification problems, and shown to be a viable and useful
alternative.

2. Materials and methods

2.1. Simplex algorithm

The variable size simplex algorithm [9] (VSSA) is an established
simplex algorithm that optimizes numerical functions iteratively
by using logical rules to traverse a search space rapidly (more so
than another established alternative called the fixed-size simplex
algorithm [16]) [17]. Central to VSSA is the geometrical shape of
a simplex, a polygon with k + 1 vertices in a space of k input vari-
ables, and with each vertex being associated with a value for the
optimized objective function achieved at that location in the input
variable space. Vertices are ranked from best to worst, according
to the objective function at every point, and by using simple cal-
culations the algorithm can then define the next simplex. VSSA
generates a path of simplices iteratively that lead the search toward
better regions of the underlying response surface. The possible
movements calculated by VSSA in an iteration are shown in Fig. 1.

2.2. Hybrid experimental simplex algorithm

In the proposed methodology (Fig. 2), HESA uses VSSA, with pre-
defined settings to calculate reflection, expansion, inside/outside
contraction and shrink vertices [18], to calculate the coordinates
of vertices which are then replaced with grid conditions by HESA’s
approximation procedures. When this replacement does not lead
to a Minimal simplex and/or degeneracy [19] and/or Next to Worst
(N2W) reflections (a type of reflection used by the fixed-size
simplex algorithm and HESA), then HESA carries out identical
movements to standard VSSA. Otherwise Actions and Rules that
are unique to HESA are used to obtain a new simplex and pro-
ceed to the next iteration. A Minimal simplex is defined as a simplex
for which the differences between its vertex coordinates are equal
to the step sizes of neighboring inputs. When a Minimal simplex
is obtained during a HESA search, then certain VSSA movements
(inside contractions and shrinks) become impossible.

2.2.1. Approximation procedures
HESA uses two types of procedures to approximate VSSA ver-

tices by experimental grid conditions (Table 1). These employ the
Euclidean distance metric and include tie-breaking rules that take
into account the type of movement dictated by VSSA. For exam-
ple, in two  dimensions, during the approximation of a VSSA outside
contraction vertex (Cr), which is equidistant to four grid conditions,
the one that is the furthest away from the reflected W simplex ver-
tex is selected to substitute the VSSA Cr vertex. In higher dimension
spaces it is possible that even after the first tie-breaker is applied,
multiple grid points still remain and a second tie-breaker is applied

to select the grid point which is closest to the best simplex vertex.
This is based on the weighted centroid principle of Ryan et al. [20]
that the true gradient of the surface lies closest to the direction
defined by the line connecting worst and best vertices.
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otherwise cause the search to enter a loop that merely switches
between the same points repeatedly. Actions 3, 4 and 7 handle and
apply N2W reflections in the same manner as used in the fixed-size
Fig. 1. Example of movements in an ite

During the approximation of VSSA shrink vertices when at least
ne of these vertices can be substituted by multiple equidistant
rid conditions, all possible simplices are generated by substitut-
ng these VSSA shrink vertices by any of the relative candidate grid
onditions and a non-degenerated simplex is then chosen. This
pproximation procedure also ensures that the VSSA vertices and
heir approximations all lie on the same half-plane (e.g. a set of
hree points defining a plane yields three sets of half-planes). If mul-
iple simplices were to be formed after the screens described above,
he average distances of the k new vertices (i.e. grid conditions) of
ach simplex from the common best simplex vertex would be cal-
ulated before selecting the ones resulting in the smallest average
istance.

If the two groups of approximation procedures still suggest
ore than one alternative grid point or simplex respectively, then

ne is chosen randomly for the next iteration. This random selec-

ion uses the auto-corrective nature of the algorithm to discard
ub-optimal conditions in later iterations and so correct the search
irection [21,22].

ig. 2. Proposed methodology for the application of the hybrid experimental sim-
lex  algorithm based on the variable size simplex algorithm (VSSA).
 of the variable size simplex algorithm.

2.2.2. Actions and Rules
In Actions the grid conditions that have been obtained and eval-

uated throughout an iteration are used to obtain a new simplex and
proceed to the next iteration, with the exception of Action 6 which
is a shrink step to deal with cases wherein the approximation of a
VSSA inside or outside contraction vertex has led to a degenerated
simplex. The Rules on the contrary are themselves new approxi-
mation procedures which result in the identification of a new set
of grid conditions. Different Actions are applied depending on the
specific sequences of movements occurring in an iteration of HESA
(Table 2) and they employ, in their majority, N2W reflections, where
the second least favorable vertex (N) is reflected instead of the con-
ventional worst one (W), in order to avoid oscillation that would
simplex algorithm [16]. The latter two  are applicable only when the

Table 1
Description of procedures for the approximation of the variable size simplex algo-
rithm (VSSA) vertices.

Reflection, expansion,
inside/outside contraction

Shrink

1. Calculate VSSA vertex 1. Calculate the k VSSA shrink
vertices

2.  Exclude grid conditions occupied
by the vertices of the current
simplex

2. Exclude conditions occupied by
the vertices of the current
simplex

3.  Find conditions with minimum
distance from the VSSA vertex

3. Find conditions with minimum
distance from each VSSA shrink
vertex

4. If VSSA movement is reflection,
expansion or outside contraction

4. If each VSSA shrink vertex can be
replaced by one condition.

4.1 Find the conditions furthest
away from the reflected vertex

4.1 Replace the calculated vertices
by  their respective selected
conditions

5. If VSSA movement is inside
contraction

5. If at least one VSSA shrink vertex
can be replaced by more than
one condition

5.1 Find the conditions closest to
the reflected vertex.

5.1 Replace each of the k VSSA
shrink vertices by each of their
respective selected conditions
to generate all possible
simplices

6. Find the condition closest to the
best vertex of the current
simplex

5.2. Exclude the degenerate
simplices

5.3 Exclude the simplices for which
the direction of the shrink is
reversed

5.4 Find simplices with minimum
average distance of the k new
vertices, from the best vertex
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Table  2
Description of Actions.

Action Sequence of movements Description of Action

1 N2W expansion followed by: Substitute N simplex vertex by R
(a)  Unsuccessful expansion or
(b) Violation of experimental

bounds or
(c) Degeneracy

2 Successful N2W expansion Substitute N simplex vertex by E
3 (a)  Minimal simplex and N2W

R ≥ W or
Substitute N simplex vertex by R

(b)  N2W R > W
4  Minimal simplex and N2W R < W Substitute N simplex vertex by R

and carry out a N2W reflection in
next iteration

5 (a) Minimal simplex and
unsuccessful outside
contraction or

Substitute W simplex vertex by
Cr and carry out a N2W reflection
in next iteration

(b)  Unsuccessful outside
contraction followed by
degeneracy in shrink

6  Degeneracy in outside/inside
contraction

Perform a shrink

7  Minimal simplex and R ≤ W Substitute W simplex vertex by R
and carry out a N2W reflection in
next iteration

8  Unsuccessful inside Substitute W simplex vertex by

s
t
u
V
d
l
i
v
‘

s
(
a

T
D

contraction followed by
degeneracy in shrink

Cw and carry out a N2W
reflection in next iteration

implex in the beginning of an iteration is a Minimal simplex while
he former is applicable for any type of simplex. Actions 5 and 8
se the Deming and Parker procedure [23] instead of the original
SSA shrink as used previously [24,25] and they are employed to
eal with unsuccessful inside or outside contractions that are fol-

owed by shrink steps which lead to degenerated simplices. Finally,
n HESA, N2W reflections are allowed to undergo expansions to a
ertex along the N–R line instead of the normal W–R  line. These

N2W expansions’ are handled by Actions 1 and 2.

Different Rules are also applied depending on the specific

equences of movements that occur in an iteration of HESA
Table 3). Rule 1 is applied when degeneracy occurs after the
pproximation of a VSSA R vertex. Rule 3 is applied when the

able 3
escription of Rules.

Rule Sequence of movements Descriptio

1 Degeneracy in reflection Find grid c
vertex and
degenerat

2 Minimal simplex and VSSA R
vertex is out of experimental
bounds

1. Reflect 

once refle
and for w
with a min
simplex is
2. Evaluat
3. If R > Re
the  next it
reflection

3 Action 6 leads to degeneracy 1. Find gri
simplex v
obtained s
2. Evaluat
3.  If Cr or C

4 (a)  N2W R ≤ W or Perform S
extended 

smallest a
simplex h
orientatio

(b)  N2W R vertex is out of
experimental bounds

5 (a) k + 1 consecutive repeated
simplices or

Carry out 

inscribed 

(b)  Rule 2 invocation
imica Acta 743 (2012) 19– 32

approximation of the shrink vertices, carried out due to Action 6,
leads to degenerated simplices alone. Rule 3 may  instruct HESA to
perform a N2W reflection in the following iteration depending on
the comparison between the newly obtained Cr or Cw vertex and
the W simplex vertex. Rule 4 is a shrink step which is applied when
the simplex at the beginning of an iteration is not a Minimal sim-
plex and a N2W reflection is either unsuccessful or the VSSA N2W R
vertex is out of the experimental bounds. When this rule does not
identify a suitable set of grid conditions, then HESA is terminated.
If the simplex at the beginning of the iteration is a Minimal sim-
plex, then Rule 4 is replaced by Action 4 or Rule 2 respectively. Rule
2 identifies an alternative simplex vertex for reflection in order to
obtain a VSSA R vertex within the experimental bounds while the
simplex obtained after the approximation of this reflection vertex
is not degenerated and not obtained in previous iterations. In the
event of a Minimal simplex with an orientation where only reflec-
tion of the most favorable vertex gives a new VSSA R vertex in the
experimental space, Rule 2 allows its reflection. As a result the sim-
plex search either moves toward a new optimum or it returns back
to the reflected best vertex.

2.2.3. Stopping criteria
After identifying a promising region of the search space, inside

contractions and shrinks take place and eventually a Minimal
simplex is derived. Then HESA switches to the fixed-size sim-
plex algorithm and the search encircles the optimum. It is during
this switch-over that HESA results to the identification of a well
resolved ‘sweet spot’ containing the experimental optimum that
could then be studied further. In two  dimensional spaces this
encirclement generates close packing simplices, but in higher
dimensions the simplices do not close pack complicating a termi-
nation decision [26]. Hence, in HESA when the search enters a state
that encircles a condition, Rule 5 (Table 3) is used to construct a
Minimal simplex that has not been obtained previously but with a
rearranged orientation in a final effort to study the favorable area.

Rule 5 is similar to the Gustavsson and Sundkvist rotation method
[27] which can improve the performance of VSSA [28]. Similar to
Rule 4, if this rule does not identify a suitable set of grid conditions,
it terminates HESA. User-defined termination criteria can also be

n of Rule

ondition closest to the VSSA R vertex, furthest away from the Reflected simplex
 closest to the B simplex vertex and is such that the obtained simplex is not
ed.
simplex vertices from W to N (or B) and identify the first simplex vertex that
cted its VSSA R vertex falls within the bounds (Mink − step sizek ,  Maxk + step sizek)
hich the approximation of the VSSA R vertex by a grid condition yields a simplex

imum volume, which is not degenerated and not previously obtained. If no such
 found use Rule 5;else:
e the approximated R vertex;
flected simplex vertex rearrange simplex to reflect the identified simplex vertex in
eration; else substitute the Reflected simplex vertex by R and perform a N2W

 in the next iteration
d condition closest to the VSSA Cr or Cw vertex, furthest or closest to the W
ertex respectively and closest to the B simplex vertex and is such that the
implex is not degenerated;

e the approximated Cr or Cw vertex and replace the W simplex vertex by Cr or Cw;
w ≤ W perform a N2W reflection in the next iteration; else proceed normally

hrink by finding grid conditions within an area inscribed by the simplex vertices
in either direction by the step size of each of the k factors which have the
verage distance from the VSSA Shrink vertices and are such that the obtained
as the smallest volume, is not degenerated and does not have reversed
n
as Rule 4 with the difference that the grid conditions are sought in an area
by the simplex vertices without the extension
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sed. For example, it is possible to stop a simplex very quickly, if it
s not making useful progress, and save time and material to start
nother simplex elsewhere in the space of input variables.

To enable objective function maximization, HESA was encoded
n Matlab 7.8 (The MathWorks® Incorporated, MA,  U.S.A.) on a
.53 GHz PC with 4 GB of RAM running Windows 7 (Microsoft Cor-
oration, WA,  U.S.A.). By deploying HESA, experimental data are
enerated on-the-fly, i.e. selection of experiments for evaluation
nd their evaluation is carried out iteratively until HESA terminates.

.3. Case studies

Two case studies are used to demonstrate the deployment of
ESA and its returned results. In the first study, HESA is used to

dentify loading conditions for an anion exchange chromatographic
tep that minimize the content of the target analyte (green fluores-
ent protein) in the flowthrough fraction from a two  dimensional
rid of 32 conditions. In the second study, HESA is used to max-
mize the binding capacity of an antibody fragment (FAb′) to a
ation exchange chromatography resin using a three dimensional
rid with 72 conditions. In the first case study HESA is compared
ith a version of VSSA using only low level modifications (VSSA-

LM) in which the approximations of the VSSA vertices are based on
imple roundings and neither Actions nor Rules are applied. In both
ase studies the ability of HESA to locate and define an accurate
sweet spot’ is compared to approaches employing high level fac-
orial, central composite face centered (CCF) and 2 level factorial
esigns. To understand more about how HESA compares against
oE approaches, and in particular RSM, in terms of their associated
xperimental costs, HESA searches were carried out from different
tarting points (initial simplices) in both case studies. Regression
nalysis and evaluation of experimental designs were carried with
atlab (The MathWorks® Incorporated) and MINITAB® (Minitab

nc., PA, U.S.A.). Experimentation details for these two  case studies
re given below.

.3.1. GFP binding case study

.3.1.1. Production of green fluorescent protein (GFP) material. The
arget analyte was recombinant GFP expressed in Escherichia coli.
he starting material was obtained from an E. coli cell paste, dis-
olved in 5 mM Tris pH 7.5 and then disrupted by high pressure
omogenization for four passes at 400 bar. The homogenate was
pun at 35,000 × g for 40 min  in an Avanti® J-E centrifuge (Beckman
oulter Inc., CA, U.S.A.). The resultant supernatant was  diafiltered

n 5 mM Tris pH 7.5 and concentrated using VivaspinTM 20 MWCO
0,000 tubes (GE Healthcare, Uppsala, Sweden).

.3.1.2. High throughput anion exchange system. Two factors (pH at
ight levels [7.6–9.0 with a step size of 0.2 pH units] and sodium
hloride in 50 mM Tris at four concentrations [0–54 mM with a
tep size of 18 mM])  – were used to generate the grid of 32 con-
itions in order to evaluate their impact on the binding of GFP
o Capto DEAE (GE Healthcare) using a PreDictorTM 96-well fil-
er plate (GE Healthcare) that was pre-filled with 2 �L of resin. A
ecan Freedom Evo® 200 station equipped with standard fixed soft
eflon® coated tips and controlled by Freedom EVOware® version
.1 software (Tecan Group Ltd, Männedorf, Switzerland) was  used
o conduct all liquid handling steps involved in the preparation and
he analysis of the samples in the study. The handling of the plate
as performed according to the manufacturer’s instructions unless

tated otherwise. The combination of the two factors required 32
uffer solutions to equilibrate the filter plate. After equilibration

2 feed solutions were applied, prepared directly in the filter plate
y adding 100 �L aliquots of the starting GFP material and 200 �L
rom a second set of 32 buffer solutions to obtain feed solutions with
he desired pH and salt concentration. The final GFP concentration
imica Acta 743 (2012) 19– 32 23

in each feed aliquot was 0.45 mg  mL−1 and the total protein con-
centration was 6.5 mg  mL−1. These were applied in triplicate to fill
all 96 wells of the filter plate and so generate triplicates of all sam-
ples. The plate was  agitated on an orbital shaker at 1100 rpm for 1 h
and the filtrate (i.e. flowthrough) was collected in a 96-well collec-
tion plate. The 32 equilibration and loading solution compositions
were all generated using a GE Healthcare in-house Microsoft Excel®

based user interface (Microsoft Corporation) capable of generating
worklists that are recognized by Freedom EVOware®.

2.3.1.3. GFP quantification by HT protein express. GFP content in the
flowthrough fraction was  quantified using an HT Protein Express
assay kit operated on a LabChip® 90 station (Caliper Life Sciences
Ltd., Halton, U.K.) according to the instructions of the manufacturer
(Caliper Life Sciences Ltd.). Samples were prepared in a 96-well
Thermowell® PCR plate (Corning Inc. Lifesciences) and the GFP con-
centration was  calculated by monitoring the density of the band at
26 kDa in the electropherograms. The GFP measurements from the
triplicated 32 flowthrough samples yielded a CV% of 6.8%.

2.3.2. FAb′ binding case study
2.3.2.1. Production of FAb′ material for chromatography study. E. coli
strain W3110 containing plasmid pTTOD A33 IGS2 (producing an
antibody fragment (FAb′) under the control of the tac promoter)
was provided by UCB (Slough, UK). This was used to prepare a
working cell bank as described by Bowering et al. [29] and the fer-
mentation followed the protocol presented by Tustian et al. [30].
Upon completion, the fermentation broth was  spun at 6300 rpm
for 60 min  using an Avanti® J-E centrifuge (Beckman Coulter Inc.).
The supernatant was  discarded and the cell pellet was  resuspended
to a final concentration of 7.1% (w/v) in periplasmic extraction
buffer (100 mM Tris, pH 7.4, 10 mM EDTA) overnight at 60 ◦C while
undergoing agitation at 200 rpm in an ISF-1-W shaker (Kühner AG,
Birsfelden, Switzerland). The completion of this lysis step was fol-
lowed by a second centrifugation step at the same conditions to
pellet the spheroplasts, after which the FAb′-rich supernatant was
collected. This was then diafiltered in water to a final concentration
of 1.10 mg  mL−1 using a Pellicon® XL 50 membrane with a cut-off
limit of 10 kDa (Millipore, Massachusetts, U.S.A.) connected to a
Labscale TFF System with a reservoir volume of 500 mL  (Millipore,
Massachusetts, U.S.A.).

2.3.2.2. High throughput cation exchange system. Three factors (pH
at six levels [5.0–7.5 with a 0.5 unit step size], sodium phos-
phate concentration at four levels [15–60 mM with a 15 mM
step size] and impure lysate FAb′ concentration at three levels
[0.11–0.33 mg  mL−1 with a 0.11 mg mL−1 step size]) – were used
to generate a grid of 72 conditions in order to evaluate their impact
upon the binding of FAb′ to the cation exchange resin Capto S (GE
Healthcare) using two PreDictorTM 96-well filter plates (GE Health-
care) that were pre-filled with 2 �L of resin. A Tecan Freedom Evo®

100 station controlled by Freedom EVOware® version 2.1 software
(Tecan Group Ltd) was used to conduct all liquid handling steps
employing BioRobotix tips (Molecular BioProducts Inc., California,
U.S.A.). The combination of the three factors required 24 buffer
solutions to equilibrate the filter plate and 72 feed solutions, each
with the desired pH and buffer salt composition. The equilibration
buffer solutions were prepared in a 24-well plate (E&K Scientific,
California, U.S.A.) using stock phosphate solutions. An additional 24
salt solutions were prepared from stock phosphate solutions and
these were applied along with the concentrated FAb′ lysate solution
to each well of the filter plate at the appropriate volumes, resulting

in the required FAb′ concentration, pH and salt concentration and a
final supernatant volume of 300 �L. The handling of the plates and
the samples was performed as described in the anion exchange
study, with the exception that the incubation period was 8 h. All
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xperiments were performed in duplicate at room temperature.
fter incubating the resin with the 72 feed solutions and remov-

ng the supernatant by centrifugation, the concentration of FAb′ in
he filtrate (i.e. flowthrough) was measured by HPLC as described
elow.

.3.2.3. FAb′ quantification by high performance liquid chromatogra-
hy. A 1 mL  HiTrapTM Protein G HP Column (GE Healthcare) was
perated on an Agilent 1200 series LC system (Agilent Technolo-
ies) at 2 mL  min−1. The injection volume was 100 �L and the
bsorbance of the eluted FAb′ was monitored at 220 nm. The load-
ng and elution buffers were 20 mM sodium phosphate at pH 7.40
nd pH 2.50 respectively and a step elution was used. FAb′ concen-
rations in the samples were calculated using a calibration curve
repared from a stock solution of pure FAb′ with concentrations in
he range of 0.1–0.5 mg  mL−1. Calibration samples were prepared
n duplicate and the coefficient of determination of the standard
urve was found to be close to unity. The FAb′ measurements from
he duplicated 72 flowthrough samples yielded a CV% of ∼6.9%.
ased on the measured FAb′ flowthrough concentrations, i.e. [FAb′]
mg  mL−1) as well as the initial FAb′ concentration ([FAb′]i) and the
esin and sample volumes (Vresin and Vliquid respectively in mL),
inding capacities (QFAb′ in mg  mL−1), were calculated by using Eq.
1).

FAb′ = [FAb′]i − [FAb′]
Vresin

× Vliquid (1)

. Results and discussion

.1. GFP case study

The [GFP] measurements from the flowthrough fraction are
hown in Fig. 3A. The condition defined by pH 8.2, [NaCl] = 0 mM
ave the smallest GFP content in the flowthrough (i.e. the global
ptimum) while the condition at pH 8.8, [NaCl] = 0 mM gave the
econd smallest GFP content (i.e. a local optimum). Based on the
aw experimental data, a ‘sweet spot’ containing the optimum was
efined and which could be further studied in an optimization fol-

ow up study employing a RSM design such as CCF (Fig. 3B).

.1.1. HESA and VSSA-LLM deployments
The averaged GFP measurements from the 32 triplicated exper-

ments were used to define the objective function which was then
inimized by HESA and VSSA-LLM. Both simplex searches were ini-

ialized from the same initial simplex which was purposely located
n an unfavorable area of the search space and away from the true
ptimum so as to allow the better description of the HESA move-
ents. VSSA-LLM degenerated quickly from the second iteration

a simplex was obtained with all of its three vertices lying on a
ine) and by the end of the VSSA-LLM search (four iterations – five
riplicated experiments) a simplex was obtained with all of its ver-
ices lying on the same grid condition (pH 8.2 and [NaCl] = 36 mM)
Fig. 3C). This condition was well away from the global and local
ptima. Thus VSSA-LLM displayed critical non-convergence and led
o an entirely erroneous identification of a ‘sweet spot’ (Fig. 3D). By
ontrast, HESA converged to the global optimum after selecting 17
riplicated experiments (i.e. ∼53% from the total available number
f the 32 triplicated experiments) (Fig. 3E and Table 4). The global

ptimum was selected for the first time in the eighth iteration and
n iterations 9–11 it was encircled to yield an accurate and well
efined ‘sweet spot’ that could then be further assessed with follow
p optimization studies (Fig. 3F).
imica Acta 743 (2012) 19– 32

3.1.2. HESA, high level factorial, CCF, and 2 level factorial ‘sweet
spot’ identification

The locations of the experimental space that were altogether
less favorable (i.e. leading to high [GFP] in the flowthrough) were
removed from the original experimental space and the remaining
subsection was used to form and evaluate a high level factorial
design (Fig. 3G), a CCF design (Fig. 3I) and a 2 level factorial design
plus a center point (Fig. 3K) which all spanned the same factor
ranges. The results from the evaluations of these three designs are
detailed in Table 5. By comparing the predicted response surfaces,
yielded by the three designs (Fig. 3G, I and K), to the raw experi-
mental data (Fig. 3A), discrepancies were observed. The high level
factorial and CCF designs returned predicted response surfaces
which compared realistically to the one from the raw experimental
data. However, they did not distinguish between the two optima
and at the same time they overestimated the effect of the [NaCl]
factor. This was also verified from Table 5 since for the high level
factorial design a %Q2 of 74.12 was obtained whereas when the CCF
design model was challenged to predict the [GFP] of the remaining
conditions of the space that were not part of the design (i.e. exter-
nal validation of the model) a %R2

prediction of 56.82 was returned.
Moreover, the residuals of the models from each design displayed
a ‘fanning out’ behavior with increasing predicted [GFP] measure-
ments. Hence, in this case study linear additive regression models
encountered difficulties in capturing the trends in the experimental
data accurately and reliably. In the case of the high level facto-
rial design, since all the conditions in the experimental space are
evaluated with such an approach, a ‘sweet spot’ would be defined
based on the experimental data instead of relying on the moder-
ately ill-fitting regression model. Consequently, the same ‘sweet
spot’ to the one obtained by the deployment of HESA would be
defined for further investigation and optimization (Fig. 3H). In the
case of the CCF design, conservative follow up studies could lead
to the definition of a new design, such as a CCF, spanning wider
ranges of both factors (Fig. 3J) than those implied by the pre-
dicted [GFP] measurements. In such a case, due to the candidate
‘sweet spot’ covering a wide range for the pH factor, for which
the [GFP] measurements underwent strongly non linear changes
(shown from the raw experimental data (Fig. 3A), such follow up
studies would be very likely to be repeated until a ‘sweet spot’
was defined that could be accurately modeled by a valid regression
model as is the goal of these optimization follow up studies. In con-
trast, the deployments of HESA and of the high level factorial design,
both returned the best candidate ‘sweet spot’ for such further
investigation.

Finally, the deployment of a 2 level factorial design led to the
least realistic description of the experimental data (Fig. 3K) since it
wrongly indicated that [GFP] was affected solely by the [NaCl] fac-
tor (Table 5). While this design correctly led to the conclusion that
low [NaCl] led to a decrease of GFP content in the flowthrough, the
indication that [GFP] was not affected at all by the pH factor could
lead to detrimental results if subsequent studies further studied
only the [NaCl] factor. If on the contrary follow up studies were
carried out by keeping the [NaCl] factor to its lowest setting, as
indicated by the 2 level factorial design, while varying only the
pH factor, despite the indications provided by the 2 level factorial
design showing that it did not affect [GFP], then the absolute opti-
mal  operating condition would be identified. However, such studies
would be of relatively low utility since they would provide limited
insights regarding the robustness of the performance of the chro-
matographic separation in face of simultaneous variations in both,
pH and [NaCl], factors. This also is one of the primary purposes

of such follow up studies. A more cautious and correct strategy
would be to augment the 2 level factorial design to the CCF design
(Fig. 3I) which would then lead to the earlier obtained ‘sweet spot’
(Fig. 3L).
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Fig. 3. GFP case study: (A) response surface of raw [GFP] data; (B) ‘sweet spot’ identification based on raw [GFP] data; (C) simplices obtained at the end of each iteration from
the  variable size simplex algorithm using the low level modifications (VSSA-LLM); (D) ‘sweet spot’ identification based on VSSA-LLM deployment; (E) simplices obtained at
the  end of each iteration from the hybrid experimental simplex algorithm (HESA); (F) ‘sweet spot’ identification based on HESA deployment; (G) response surface of predicted
[GFP]  data based on a high level factorial design; (H) ‘sweet spot’ identification based on high level factorial design deployment; (I) response surface of predicted [GFP] data
based  on a central composite face centered (CCF) design; (J) ‘sweet spot’ identification based on CCF design deployment; (K) response surface of predicted [GFP] data based
on  a 2 level factorial design plus center point; (L) ‘sweet spot’ identification based on a 2 level factorial design plus center point deployment. Circles denote experiments
employed by the deployment of each approach. Squares denote proposed experiments for follow up studies based on a CCF design deployment. The arrow denotes the
location of the experimental optimum (i.e. conditions leading to the lowest concentration of GFP in the flowthrough fraction).
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Table 4
Description of the movements of the hybrid experimental simplex algorithm (HESA) for the GFP case study. Where different the VSSA calculated vertices are shown in brackets. The light arrows show the sequence of the
movements carried out during an iteration. A bold arrow represents the end of the iteration. The last column contains the coordinates of the vertices in the simplex formed at the end of each iteration ordered from best to worst
(B,  N, W).

Iteration
number

pH [NaCl] (mM) pH [NaCl] (mM) pH [NaCl](mM) pH [NaCl]
(mM)

0 Start 8.0 36
8.6 54
9.0 54

1 Reflection 7.6 36 → Outside contraction
(successful)

7.8 (7.95) 36 (40.5) 8.0
8.6
7.8

36
54
36

2 Reflection 8.8 54 → Inside contraction (successful) 8.2 (8.05) 36 (40.5) 8.2
8.0
8.6

36
36
54

3  Reflection 7.6 18 → Outside contraction
(successful)

7.8 (7.85) 18 (27) 8.2
8.0
7.8

36
36
18

4  Reflection 8.4 54 → Inside contraction (successful) 8.0 (7.95) 18 (27) 8.0
8.2
8.0

18
36
36

5  Reflection 8.2 18 → Expansion (successful) 8.4 (8.3) 0 (9) 8.4
8.0
8.2

0
18
36

6  Reflection Boundary Violation → Inside contraction (successful) 8.2 18 (22.5) 8.4
8.2
8.0

0
18
18(8.2) (−18)

7  Reflection 8.6 0 → Expansion Boundary Violation 8.6
8.4
8.2

0
0
18(8.9) (−9)

8  Reflection Boundary Violation → Inside contraction
(unsuccessful)

8.4 (8.35) 18 (9) → Shrink 8.2
8.4 (8.5)

0
18 (9)

8.2
8.6
8.4

0
0
18(8.8)  (−18)

9  Reflection Boundary Violation → Inside contraction Degeneracy → Action 6 8.4
8.2 (8.3)

0
18 (9)

8.2
8.4
8.2

0
0
18(8.4)  (−18) 8.4 0 (9)

10  Reflection Boundary Violation → Inside contraction Minimal simplex → Rule 2 (reflect
N  vertex)

8.0 (8.3) 18 (0) 8.2
8.2
8.0

0
18
18(8.4)  (−18)

11  Next to worst
reflection

8.0 0 → Stop 8.2
8.0
8.0

0
0
18
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Table  5
Details of experimental designs and regression analysis for the investigation of the [GFP] data.

High level factorial design CCF design 2 Level factorial design plus center point

Runs 63 (21 triplicated) 27 (9 triplicated) 15 (5 triplicated)

Model terms
Coefficient valuea p-Value Coefficient valuea p-Value Coefficient valuea p-Value

Constant 0.17 (69) <0.0001 0.1914 <0.0001 0.1910 (0.1905) <0.0001
pH 0.0039 0.1831b 0.0012 0.7098b (0.0013) (0.7584)
[NaCl] 0.0314 <0.0001 0.0328 <0.0001 0.0359 (0.0359) <0.001
pH  × [NaCl] 0.0092 0.0119 0.0078 0.0638c (0.0078) (0.0866)
pH2 0.0225 <0.0001 0.0125 0.0383 NA NA
[NaCl]2 −0.0091 0.0293 −0.0139 0.0231 NA NA
Center point NA NA NA NA (0.0028) (0.7685)

ANOVA
Model

DF  5 5 1
SS  0.0493 0.0222 0.0155
MS  0.0098 0.0044 0.0155
F-ratio 42.1341 23.0521 71.4890
p-Value <0.0001 <0.0001 <0.0001

Residual error
DF 57 21 13
SS  0.0133 0.0040 0.0028
MS 0.0002 0.0002 0.0002

Lack  of fit
DF 15 3 3
SS  0.0046 0.0004 0.0007
MS  0.0003 0.0001 0.0002
F-ratio 1.46 0.6321 1.2675
p-Value 0.1673 0.6038 0.3376

Pure  error
DF 42 18 10
SS 0.0088 0.0037 0.0020
MS  0.0002 0.0002 0.0002

Summary of fit
%R2 78.71 84.59 84.61
%Q2 74.12 74.12 79.03

External validation
Runs NA 36 (12 triplicated) 48 (16 triplicated)

Residual error
SS NA 0.0138 0.0258
MS NA 0.0004 0.0005

Summary of fit
%R2

prediction
NA 56.82 38.77

a Coefficient values are based on coded factors.
b Retained to support model hierarchy.
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c Retained based on an observed deterioration of goodness of fit upon removal;
-values prior to model reduction.

.2. FAb′ case study

.2.1. HESA, high level factorial, CCF, and 2 level factorial ‘sweet
pot’ identification

The raw QFAb′ measurements are provided in Fig. 4A. These mea-
urements have a global optimum at the grid condition pH 6.0,
sodium phosphate] = 15 mM and [FAb′]i = 0.33 mg  mL−1. The [FAb′]

easurements from the 72 duplicated experiments were used to
alculate QFAb′ values (Eq. (1)). These values were averaged and
sed to define the objective function which was  maximized by
ESA. A HESA search was purposely initialized from a simplex with

ts vertices lying in an unfavorable area of the search space and after
election of 24 duplicated experiments (i.e. 33% from the total avail-
ble number of the 72 duplicated experiments) it converged to the
lobal optimum and encircled it (Fig. 4B). Similar to the first case
tudy the HESA results could then be used to identify an accurate
nd well defined ‘sweet spot’, enclosing the experimental optimum,

or investigation in follow up studies.

In this case study, a smaller experimental space was  also defined
y removing from the original space those conditions that were
ltogether unfavorable (i.e. low QFAb′ values) in order to form and
e 2 level factorial design model, terms in brackets indicate coefficient values and

evaluate a high level factorial design (Fig. 4C), a CCF design (Fig. 4D)
and a 2 level factorial design plus a center point (Fig. 4E) which
all spanned the same factor ranges. Details from the evaluations
of these designs are shown in Table 6. The models from each of
these designs displayed a significant lack of fit. This is easily under-
stood in the case of the 2 level factorial design since without the
ability to evaluate the quadratic terms of the three factors (pH,
[sodium phosphate], and [FAb′]i) it indicated that follow up studies
should investigate a ‘sweet spot’ spanning a pH range that was  also
extended toward low values (i.e. lower then pH 5.0) (Fig. 4E) and it
thus led to the least realistic description of the experimental data.
By comparing the response surface from the raw experimental data
(Fig. 4A) to the predicted response surfaces that were based on the
high level factorial and CCF design models (Fig. 4C and D), it was
observed that the predicted QFAb′ values matched closely the mea-
sured ones despite the significant lack of fit. The latter was therefore
further investigated by observing the residuals of the two models.

For both models, the residuals were found to exhibit a quadratic
trend when they were plotted against the predicted QFAb′ values.
This trend was stronger for medium to low predicted QFAb′ values
and weaker for medium to high predicted QFAb′ values. This was
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Fig. 4. FAb′ case study: (A) response surface of raw binding capacity, QFAb′ , data; (B) segments of the response surface revealed by the deployment of the hybrid experimental
s d from
c d by t
p ental

f
m
r
t
e

implex algorithm (HESA); (C)–(F) response surfaces of predicted QFAb′ data obtaine
enter point, and custom designs respectively. Circles denote experiments employe
oint  (initial simplex) for the deployment of HESA. The arrow indicates the experim

urther supported when a custom design was used to fit a regression

odel using an even smaller subset of the available experiments by

emoving additional conditions that led to poor QFAb′ values from
he original experimental space (Fig. 4F). Such a model returned
xcellent statistics with an insignificant lack of fit (Table 6) and
 the high level factorial, central composite face centered (CCF), 2 level factorial plus
he deployment of each approach. Squares denote experiments forming the starting

 optimum (i.e. conditions leading to the highest QFAb′ value).

its residuals were found to be homoscedastic. Using the high level

factorial design experiments (Fig. 4C), a model was  fitted contain-
ing additional higher order terms, but the trend in the residuals
remained and so did the significant lack of fit error. Data trans-
formations (e.g. log10 of response) did not counter the problem
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Table  6
Details of experimental designs and regression analysis for the investigation of the QFAb′ data.

High level factorial design CCF design 2 Level factorial plus center point Custom design

Runs 90 (45 duplicated) 30 (15 duplicated) 18 (9 duplicated) 24 (12 duplicated)

Model terms
Coefficient valuea p-Value Coefficient valuea p-Value Coefficient valuea p-Value Coefficient valuea p-Value

Ct 27.8467 <0.0001 27.1978 <0.0001 20.0571 <0.0001 29.6277 <0.0001
pH  −3.9279 <0.0001 −3.7238 <0.0001 −3.2817 0.0007 0.0591 0.6687b

[sod. phosph.] −3.1325 <0.0001 −3.0293 <0.0001 −2.885 0.0017 −0.1694 0.1055b

[FAb′]i 10.4308 <0.0001 10.3163 <0.0001 10.0726 <0.0001 12.0459 <0.0001
pH  × [sod. phosph.] −4.3306 <0.0001 −3.8945 <0.0001 −3.8945 0.0002 −1.0598 <0.0001
pH  × [FAb′]i −2.4221 <0.0001 −2.3716 0.0006 −2.3716 0.0058 −0.5743 0.0015
[sod.  phosph.] × [FAb′]i −2.1827 <0.0001 −2.6066 0.0002 −2.6066 0.0033 −0.5642 <0.0001
pH2 −3.2692 <0.0001 −4.3669 0.0003 NA NA −1.8799 <0.0001
[sod.  phosph.]2 −1.2507 0.0025 – – NA NA – –
[FAb′]i

2 −3.4571 <0.0001 −2.7133 0.0129 NA NA −4.2300 <0.0001
Center point NA NA NA NA 8.9546 0.0013 NA NA

ANOVA
Model

DF  9 8 7 8
SS  9178.9244 3270.1632 2513.0637 4915.1782
MS  1019.8805 408.7704 359.0091 614.3973
F-ratio  319.0817 73.1976 48.7201 1224.7518
p-Value <0.0001 <0.0001 <0.0001 <0.0001

Residual error
DF 80 21 10 39
SS  255.7039 117.2740 73.6881 19.5644
MS  3.1963 5.5845 7.3688 0.5017

Lack  of fit
DF 35 6 1 15
SS 212.4731 99.7198 65.3602 8.1539
MS  6.0707 16.6200 65.3602 0.5436
F-ratio 6.3191 14.2018 70.6347 1.1434
p-Value <0.0001 <0.0001 <0.0001 0.3739

Pure  error
DF 45 15 9 24
SS 43.2308 17.5541 8.3279 11.4105
MS 0.9607 1.1703 0.9253 0.4754

Summary of fit
%R2 97.29 96.54 97.15 99.60
%Q2 96.42 91.95 83.96 99.34

External validation
Runs NA 60 (30 duplicated) 72 (36 duplicated) NA

Residual error
SS NA 217.5863 1322.2860 NA
MS  NA 3.6264 18.3651 NA

Summary of fit
%R2 NA 96.39 80.43 NA
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prediction

a Coefficient values are based on coded factors.
b Retained to support model hierarchy.

ither. Hence, in the case of the high level factorial design the
sweet spot’ could be identified based on the experimental data,
eading thus to the same ‘sweet spot’ obtained via the deploy-

ent of HESA. In the case of the CCF design, since a higher order
odel would most likely not result to an insignificant lack of fit,

ither external validation runs could be employed, which would
ncrease the experimental costs, or a ‘sweet spot’ could be iden-
ified in a conservative manner and thus be greater in size than
he one obtained from HESA and the high level factorial design
eployments, but still correctly focusing on the experimental
ptimum.

.3. Comparison of HESA and DoE approaches

To assess the extent to which HESA can be considered as a viable

lternative approach for carrying out scouting studies during early
ioprocess development, it is compared against DoE approaches in
wo aspects: (1) Ability to return accurate and well resolved ‘sweet
pots’; (2) Involved experimental burden.
3.3.1. ‘Sweet spot’ identification
Both case studies support the earlier observation that when

investigating large experimental spaces, as is the case for biopro-
cess development scouting studies, ill-fitting regression models
may  be obtained. Instead, when the space is narrowed down, valid
regression models can be derived with greater ease (e.g. the regres-
sion model based on the custom design in the second case study).
Based on the CCF designs from the two  case studies, ‘sweet spots’
could be obtained that also contained the experimental optima.
The ‘sweet spot’ obtained in the second case study would be better
defined than the one obtained in the first case study. However, for
both cases, and particularly for the first one, the obtained ‘sweet
spots’ could be less well defined than those obtained by deploying
HESA and the high level factorial designs. The latter approach will
always be capable of yielding such accurate and well defined ‘sweet
spots’ regardless of the shape of the underlying response surface,

being accompanied however by high experimental costs. This is not
the case for HESA or for other DoE approaches such as RSM and 2
level factorial designs. HESA may  be affected by the presence of
multiple optima, similar to its parent algorithm VSSA, while DOE
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ig. 5. Comparison of hybrid experimental simplex algorithm (HESA) experimen
odeling employing central composite designs (CCDs) for: (A) case study 1; and (B

pproaches can also be affected by the presence of multiple optima
nd in general they may  not deal well with non linear responses
ven if they contain only one optimum. In the first case study, when
000 random HESA searches (i.e. starting from different, randomly
efined, initial simplices) were carried out, 64% and 36% of them
esulted to the definition of a ‘sweet spot’ encircling the global and
ocal optima respectively. In the second case study, where only one
ptimum was present in the experimental space, more than 98% of
000 random HESA searches resulted in the correct derivation of a

sweet spot’ encircling the optimum. Hence, the ability of HESA to
eturn correctly located ‘sweet spots’ is affected by the presence of
ultiple optima. However, it needs to be underlined that HESA will

lways locate and characterize an optimal condition, even if it is not
 global optimum, as opposed to the deployment of a DoE approach.
his is an attractive feature of HESA since if the associated perfor-
ance of the investigated system is found to be acceptable, then the

dentified ‘sweet spot’ can still be further assessed and optimized in
ollow up studies. The fact that in the first case study the ‘sweet spot’
ielded by the CCF design included both global and local optima is
ot a generic feature of RSM and DoE methodologies. Instead, it is
qually likely that in other cases of responses with multiple and
ell separated optima or non linear trends, a DoE approach could

ead to an entirely erroneously identified ‘sweet spot’. Hence, the
doption of HESA in scouting studies appears to occupy the middle
round between approaches adopting a high level factorial design
nd other conventional DoE methodologies, such as RSM, in terms
f its ability to yield ‘sweet spots’ for further investigation. Finally,
mploying 2 level factorial designs for identifying process relevant

sweet spots’ was shown to be in both case studies the least suc-
essful approach. This was expected as such designs are not meant
o be used to obtain predictions of responses. Instead they are used
o screen experimental factors.

.3.2. Involved experimental burden
To compare HESA and DoE approaches, and in particular RSM

esigns, in terms of their associated experimental burden, the num-
er of replicated experiments selected by HESA from the 1000
andom searches mentioned earlier, were compared against RSM
pproaches employing a central composite design with one or mul-
iple center points for each case study (Fig. 5). The number of
eplicated experimental runs from each approach were normalized
gainst the total number of available experimental runs and thus
xpressed in terms of percentages. For example, the HESA search

hat selected 17 triplicated conditions in the first case study yielded
n experimental burden of 100 × (17 × 3)/(32 × 3) ≈ 53% whereas
he deployment of a CCD with one center point yielded an experi-

ental burden of 100 × (9 × 3)/(32 × 3) ≈ 28%.
rden from 1000 random searches to experimental burden from response surface
 study 2.

Based on Fig. 5A, in the first case study ∼45% of the HESA
searches resulted in a number of experimental runs that was
approximately equal or lower than that required by a CCD with
one center point. An additional ∼50% of the HESA searches were
accompanied with an experimental burden that was between those
from the CC designs with one and five center points whereas the
remaining ∼5% of the searches required a greater number of exper-
imental runs than the latter design. For the second case study,
Fig. 5B showed that the equivalent percentages were ∼38%, ∼46%,
and ∼16% respectively. According to these results, ∼40% and ∼80%
of the HESA searches required a number of runs that was equal
or lower than those required by CC designs with one or multiple
center points respectively in both case studies. Hence, both HESA
and RSM approaches are more rapid than adopting a high level
factorial design approach for identifying ‘sweet spots’ in scouting
studies during early bioprocess development. Between them the
involved experimental costs appear to be comparable. The latter
conclusion is also supported by the fact that HESA application does
not require a downtime for ‘off-line’ data analysis by an end-user
between successive experimental studies. This is because HESA
does not require a mathematical model; instead it only uses directly
measurable experimental data. The same does not apply for RSM
approaches. The duration of such a downtime period is not insignif-
icant as can be understood by the elaborated data analyses in the
two case studies.

3.4. Implications of HESA

As mentioned earlier the hybrid experimental simplex algo-
rithm does not guarantee the identification of a ‘sweet spot’
enclosing the global optimum. Like any other simplex method, it
may  find local optima. The likelihood of finding the global opti-
mum can be improved by deploying multiple searches. This will
also inevitably increase the associated experimental costs but not
in a multiplicative manner due to the finite number of experiments
within a space investigated by HESA. For example, for each case
study the 1000 random HESA searches were split in half and com-
bined to simulate 500 paired searches starting from two  different
and randomly defined initial simplices. For the first case study 85%
of these paired searches encircled the global optimum, whereas
for the second case study all paired searches encircled the single
optimum. The experimental burden was  increased on average by
∼15% and ∼10% respectively. This increase can be minimized by ini-

tializing a search from an initial simplex with good size, location,
and orientation, possibly based on initial experiments or previous
experience. Such optimally started HESA searches are faster than
their random alternatives and display improved convergence. The
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erivation of rules of thumb for initializing HESA and the investi-
ation of strategies for deploying multiple searches is the topic of
ngoing research in our group.

Finally, HESA is also affected by the presence of experimental
rror. Such effects were countered in the described application
xamples by running all HESA suggested experiments at least
n duplicate. This is in agreement with good laboratory practice
egardless of the way that a set of experiments is to be performed.
n cases where the experimental error is expected to be overly great
nd extensive replication is required, then a DoE approach may
e deployed instead since such approaches can usually deal with
xperimental errors without requiring extensive replication.

. Conclusions

Scouting studies in early bioprocess development aim to iden-
ify a process viable ‘sweet spot’ for further investigation in follow
p studies. Such ‘sweet spots’ are routinely identified by deploying
igh level factorial or RSM designs. An alternative methodology,
he hybrid experimental simplex algorithm, was introduced in this
aper, and it was demonstrated in two case studies which sought to
ptimize the binding conditions for GFP to a weak anion exchange
esin and FAb′ to a cation exchange resin. The obtained results
uggest that HESA can readily deal with experimental spaces that
annot be directly searched via the application of the standard vari-
ble size simplex algorithm even when the latter is lightly modified.
t the same time deployment of HESA was found to be comparable

o the deployment of RSM designs regarding its ability to yield well
efined and accurate ‘sweet spots’ and its associated experimental
osts. These results suggest that HESA can be considered as a viable
lternative approach for carrying out scouting studies in early bio-
rocess development which aim to identify process relevant ‘sweet
pots’ for further investigation and optimization by traditional DoE
ethodologies.

omenclature

[FAb′] (mg  mL−1) Concentration of FAb′

[FAb′]i (mg  mL−1) Initial concentration of FAb′

[GFP] (mg  mL−1) Concentration of green fluorescent
protein

[NaCl] (mM) Concentration of sodium chloride
[sodium phosphate] (mM)  Concentration of sodium phosphate
B  (–) Vertex of a simplex with the most

favorable objective function value
Cr (–) Outside contraction vertex or

movement
Cw (–) Inside contraction vertex or movement
E  (–) Expansion vertex or movement
HESA (–) Hybrid experimental simplex

algorithm
k  (–) Number of factors in experimental

space
Maxk (–) Maximum value of factor k
Minimal simplex (–) A simplex of minimal size
Mink (–) Minimum value of factor k
N  (–) Vertex of a simplex with the second

less favorable objective function value
N1 (–) Vertex of a simplex with the second

most favorable objective function value
for three factor experimental spaces

N2 (–) Vertex of a simplex with the second
less favorable objective function value
for three factor experimental spaces

N2W (–) Next to worst
R  (–) Reflection vertex or movement

S1 (–) Shrink vertex across N–B line
S2 (–) Shrink vertex across W–B line
step sizek (–) Absolute difference between two

adjacent levels of factor k
Vliquid (mL) Volume of liquid solution

[

[
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Vresin (mL) Volume of chromatographic resin
VSSA (–) Variable size simplex algorithm
VSSA-LLM (–) Variable size simplex algorithm with

low level modifications
QFAb′ (mg  mL−1) Binding capacity for FAb′

W (–) Vertex of a simplex with the least
favorable objective function value
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