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Abstract

Background: Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is
highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially
spliced to create Nnat-a and -b isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is
known about the long-term regulation of Nnat.

Methods: Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic
caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central
nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA.

Results: Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat
expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed
differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-b expression was
significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-
operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-a expression was not suppressed after bypass surgery (P = 0.19),
and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of
Nnat-b correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post-
surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine.

Conclusions: Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-
induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute
nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the
possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing
of Nnat pre-mRNA may contribute to weight-loss.
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Introduction

Obesity is defined as excess body fat deposition and is a

considerable global healthcare challenge. The World Health

Organisation estimates that there are currently two billion obese

or overweight adults worldwide [1]. Obesity is a leading risk factor

for the development of type 2 diabetes, cardiovascular disease,

cancer and dementia [2,3,4]. As the adoption of a Western energy-

dense diet and sedentary lifestyle increases, particularly in low- and

middle-income societies, the prevalence of obesity and burden of

its complications are set to rise dramatically [5]. To compound

this, available lifestyle and pharmaceutical therapies for obesity are

ineffectual [6,7], and bariatric surgery, the only effective and

durable treatment, is reserved for the morbidly obese [8].

Excess body fat deposition occurs when energy intake from diet

chronically outweighs energy expenditure [9]. Homeostatic

centres in the hypothalamus and brainstem regulate appetite

and energy expenditure according to short- and long-term signals

of energy flux emanating from gastrointestinal, hepatic, pancreatic

and adipose tissue, and from simultaneous higher order cortical

cues [9,10]. Within this multi-organ system a variety of genetic,

molecular and physiological defects have been causally linked to

obesity [11,12,13,14,15], however the precise biological mecha-

nisms that favour long-term energy storage remain poorly

characterised. Importantly, certain bariatric procedures like gastric

bypass surgery lead to potent changes in appetite and energy

expenditure with highly significant and durable weight-loss

[16,17,18], most likely as a result of changes in gut hormones,
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such as ghrelin, peptide-YY (PYY) and glucagon-like peptide 1

(GLP1), as well as changes in neuronal and nutrient signals, that

appear to override these intrinsic defects [8]. A greater under-

standing of the key regulators within this homeostatic circuitry and

how they are modified after particular bariatric operations will be

critical in the development of targeted strategies for the prevention

and treatment of obesity.

Neuronatin (NNAT) is a paternally expressed imprinted gene

residing within a large intron of the bladder cancer associated

protein (BLCAP) gene [19,20], variations in which are implicated

in extremes of childhood and adult obesity [21]. The gene encodes

two isoforms, NNAT-a of 81 and NNAT-b of 54 amino acids,

derived by alternative splicing of the middle of three coding exons

which eliminates a transmembrane domain [22]. Based upon

shared sequence homology to proteolipids both isoforms are

thought to regulate intracellular signalling via the endoplasmic

reticulum (ER) calcium ATPase [23,24]. In murine models, Nnat is

primarily concerned with antenatal brain growth and develop-

ment [22,23,25]. Nnat-a is expressed earlier than Nnat-b in

gestational development implying isoform-specific regulation and

function [22].

Recent studies also implicate Nnat in nutrient signalling and

energy homeostasis. In mouse hypothalamus, Nnat expression is

reduced following 48-h fast, specifically in the arcuate nucleus,

dorsomedial hypothalamic nucleus (DMN), lateromedial hypotha-

lamic nucleus and paraventricular nucleus (PVN) [21,26]; is

increased following peripheral administration of the satiety

hormone leptin, though this is restricted to the DMN and PVN

[21]; and co-localises in neurones containing important mediators

of appetite control, including MCH, orexin and CART [21]. Thus

hypothalamic Nnat expression is responsive to acute nutrient and

leptin signalling in a neurone-specific fashion, and may mediate

intracellular signalling to determine appetite.

In white adipose tissue (WAT), Nnat is over-expressed in obese

and high-fat fed murine models, and is under-expressed in

lipodystrophic and lean S6kko mice, as well as in mice fed

conjugated linoleic acid to induce weight loss [27,28,29,30]. In the

pancreas, Nnat is expressed at high levels in islets cells [31,32],

where it is a target of the NeuroD1 a transcription factor that is

important for neuronal and endocrine cell differentiation and

survival [30,33]. In vitro, Nnat expression is associated with calcium-

induced 3T3-L1 cell adipogenesis [28]; activation of PI3k, Erk,

mTor and calcium signalling in medulloblastoma cells [34]; Nfkb-

regulated inflammation in aortic endothelial cells [35]; and

protection against mitochondrial toxins and ionophors in PC12

cells [36]. Similarly, in b-cell lines Nnat expression is associated

with glucose-stimulated, calcium-induced insulin secretion [24,33],

whilst overexpression of the b-isoform may be concerned with ER

stress and b-cell apoptosis [24]. In bioinformatic analyses, Nnat

expression is highly correlated with expression of genes concerned

with energy metabolism in the hypothalamus and WAT, in

particular oxidative phosphorylation, and with inflammation in

WAT alone [30].

Although previous studies may suggest a role for Nnat in acute

appetite and energy homeostasis and in metabolic-inflammation

the physiological function(s) of Nnat remain largely unknown.

Further, there is limited data on the total or differential expression

of Nnat isoforms in metabolic tissues in response to either acute or

chronic changes in nutrient signalling. We therefore undertook

studies to investigate the isoform-specific regulation of Nnat in the

hypothalamus in response to acute nutrient fasting, high-fat diet-

induced obesity, chronic dietary caloric restriction and modified

gastric bypass surgery. These states were selected to represent a

broad range of short- and long-term hormonal, nutrient and

neuronal signals of energy flux, with the potential to regulate

hypothalamic Nnat expression. We also examined expression of

Nnat isoforms in other metabolic tissues involved in energy

regulation.

Results

Nnat Expression in Central Nervous System (CNS),
Adipose Tissue and Gastrointestinal (GI) Tract

In adult mice both Nnat-a and -b isoforms were highly expressed

in hypothalamus and WAT (Table 1). We also demonstrated

abundant expression of both isoforms in brainstem, modest

expression in brown adipose tissue (BAT), stomach and jejunum,

and low expression in duodenum and ileum (Table 1). Relative

Nnat-a and -b expression in all tissues under all conditions

(including diet studies below) showed positive correlation (Figure 1;

R2 = 0.35, P,0.001).

Figure 1. Relative expression between Nnat isoforms in
metabolic tissues. Nnat-a expression was positively correlated with
Nnat-b expression when compared in the hypothalamus and brainstem,
white and brown adipose tissue, and stomach, duodenum, jejunum and
ileum, implying shared and distinct regulatory factors (n = 229).
doi:10.1371/journal.pone.0059407.g001

Table 1. Tissue Nnat expression.

Nnat-a Nnat-b

Hypothalamus 0.55 0.47

Brainstem 0.30 0.25

WAT 0.28 0.17

BAT 0.0050 0.0031

Stomach 0.0029 0.0023

Duodenum 0.00075 0.00016

Jejunum 0.0066 0.017

Ileum 0.00093 0.00099

RNA was extracted from tissue for n = 4 mice and pooled for measurement of
Nnat expression; Nnat expression was standardised relative to ubiquitin (Ubc)
expression (Nnat-a or -b/Ubc).
doi:10.1371/journal.pone.0059407.t001

Differential Hypothalamic Nnat Regulation
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Effect of Acute Nutritional Regulation on Nnat Expression
We confirmed the influence of acute feeding state on global

hypothalamic Nnat expression. Mean Nnat-a and -b expression

levels were reduced in the fasted compared to ad-libitum fed state.

This did not reach significance after overnight fast (Figure 2A; t

test P = 0.397, P = 0.055; Nnat-a and -b respectively), but became

highly significant after 24-h fast (Figure 2B; t test P = 0.005,

P = 0.007; Nnat-a and -b respectively). In stomach and duodenum,

mean expression did not differ significantly between overnight fast

and ad-libitum fed groups, for either Nnat-a or -b (Figures 2C and

2D).

Effect of Diet-induced Obesity (DIO) on Hypothalamic
Nnat Expression

Adult mice fed high-fat diet for 4, 8, 12 and 16 weeks developed

DIO. Final body-weight, increase in body-weight, and plasma

leptin were significantly different in DIO groups compared to

control groups maintained on standard dietary chow, except at

week 4 for final body weight and week 8 for circulating leptin

where the difference did not reach significance (Figure S1 A–C;

Table S1). Body-weight increased between 4, 8, 12 and 16 weeks

DIO, but less rapidly after 8 weeks (Figure S1A & S1B; Table S1;

ANOVA overall significance levels P = 0.0001 for both final body-

weight and delta body-weight). The difference in plasma leptin

levels at different time points of DIO was overall significant

(ANOVA overall significance level P = 0.038, though post-hoc

comparisons did not show a significant difference between

Figure 2. Expression of Nnat isoforms in response to fasting versus ad-libitum feeding. A) Hypothalamic Nnat-a and -b showed a non-
significant reduction in response to overnight fasting (n = 10) when compared to ad-libitum fed counterparts (n = 10); B) but a significant reduction
after 24-h fasting (n = 10) compared to feeding (n = 11), equivalent for both isoforms (**Nnat-a P = 0.005, **Nnat-b P = 0.007); C–D) Nnat isoforms did
not show a consistent or significant change after overnight fasting in the stomach or duodenum (n = 10 fasted, n = 10 ad-libitum fed in both tissues);
key – AU = arbitrary units where Nnat expression was standardised using ubiquitin (Ubc) as a reference gene.
doi:10.1371/journal.pone.0059407.g002

Differential Hypothalamic Nnat Regulation
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different time points). Mean global hypothalamic Nnat expression

did not differ either between tiers of DIO or in comparison to

controls, for either Nnat-a or -b (Figure S1D and S1E).

Effect of Caloric Restriction on Hypothalamic Nnat
Expression

Mice with DIO and normal-weight counterparts were subjected

to 4 weeks of caloric restriction. DIO mice were either maintained

on high-fat diet, or switched to a diet of standard chow or caloric

restriction. Normal-weight controls were exposed to equivalent

dietary switches. This resulted in significant differences in final

body-weight and change in body-weight between both DIO and

control groups (Table 2A and 2B; DIO dietary switches, ANOVA

overall significance P = 0.0001 for both final and delta body-

weight; Control dietary switches, ANOVA overall significance

P = 0.0001 for both final and delta body-weight). Fasting

circulating plasma leptin was also significantly different in the

DIO and control groups (Table 2A and B; DIO and Control

dietary switches, ANOVA overall significance P = 0.0001). Mean

hypothalamic Nnat-a and -b expression did not differ between

DIO mice maintained on a high-fat diet, or switched to a diet of

standard chow or calorie restricted (Figure S2A and S2B).

Similarly, mean hypothalamic Nnat expression was comparable

between control groups with parallel dietary switches (Figure S2A

and S2B) and also did not differ when compared to the DIO

groups, for either Nnat-a or -b (Figure S2A and S2B). Nnat isoforms

showed no correlation with either weight reduction or fasting

leptin after dietary caloric restriction (Nnat-a weight-loss R2 = 0.08,

P = 0.08; leptin R2 = 0.05, P = 0.19; Nnat-b weight-loss R2 = 0.03,

P = 0.29; leptin R2 = 0.05, P = 0.69).

Differential Hypothalamic Nnat Expression after Bariatric
Surgery, and Correlation Analyses

DIO mice subjected to modified gastric bypass surgery

exhibited marked reduction in food intake throughout the post-

operative period; food intake in sham mice reduced initially then

returned to baseline pre-operative levels by post-operative Day 5

(Figure S3). Mice after bypass lost more weight and weighed

significantly less at 10 days post-surgery compared to sham mice

(Table 3). Fasting plasma leptin was significantly lower in the

bypass versus sham group, whilst circulating fasting levels of the

gut hormones acyl-ghrelin, total PYY and active-GLP1 were

significantly higher (Table 3). Nnat isoforms showed differential

expression in hypothalamus after bypass surgery (Figure 3A).

Hypothalamic Nnat-b expression was significantly reduced after

bypass compared with sham surgery (Figure 3A; t test P = 0.003).

Nnat-a expression was not (Figure 3A; t test P = 0.188). Nnat-a
expression did not correlate with reduction in weight after surgery

(Figure 4A; R2 = 0.06, P = 0.34) or fasting plasma leptin (Figure 4B;

R2 = 0.23, P = 0.38). However, Nnat-b showed positive correlation

with weight reduction after surgery (Figure 4C; R2 = 0.38,

P = 0.01) and weak correlation with fasting leptin concentration

(Figure 4D; R2 = 0.27, P = 0.06). Neither Nnat isoform correlated

with circulating fasting levels of the gut hormones acyl-ghrelin,

total PYY and active-GLP1 after surgery (Table S2). Nnat

expression was also analysed in the brainstem after bariatric and

sham surgery. In brainstem Nnat-a and –b did not differ between

bypass and sham counterparts (Figure 3B; t test P = 0.56, P = 0.51;

Nnat-a and -b respectively).

Discussion

Our key new finding is that Nnat isoforms are regulated by

differential pre-mRNA splicing in the hypothalamus after modi-

fied gastric bypass surgery. We found that hypothalamic Nnat-b
expression is significantly reduced after bypass compared with

sham surgery, and is correlated with weight reduction and to a

lesser extent with circulating fasting leptin after surgery. Alterna-

tively, Nnat-a expression is unaltered after bypass compared to

sham-operated mice and does not correlate with weight reduction

or fasting plasma leptin. We found no relationship between fasting

gut hormones and hypothalamic Nnat expression after surgery. In

the brainstem expression of Nnat-a and -b is comparable after

bypass and sham surgery. In the analogous experimental situation

of dietary caloric restriction hypothalamic Nnat does not reduce

either in total or differential expression, despite comparable total

weight-loss and circulating leptin levels. Likewise, overall or

differential expression of Nnat in the hypothalamus does not alter

during the development of DIO. In contrast, Nnat-a and -b
isoforms are comparably suppressed in the hypothalamus after an

over-night and 24-h fast.

Table 2. Change in body weight and leptin after chronic dietary switches.

Control Control-HF Control-CR HF-control HF HF-CR

Body weight (g) 28.8 (0.7) 33.6 (0.9) 20.5 (0.5) 30.5 (0.9) 35.1 (1.9) 26.2 (0.6)

Delta body weight (g) 21.9 (0.4) 1.7 (0.4) 28.0 (0.7) 24.3 (0.7) 21.3 (0.6) 210.6 (1.1)

Leptin (ng/ml) 1.13 (0.16) 6.06 (0.16) 0.29 (0.05) 1.26 (0.25) 7.29 (1.91) 0.37 (0.08)

Final body-weight
(P value)

Delta change in body-weight
(P value)

Final plasma leptin
(P value)

Control vs. Control-HF 0.0001* 0.0001* 0.01*

Control vs. Control-CR 0.0001* 0.0001* 0.001*

Control-HF vs. Control-CR 0.0001* 0.0001* 0.01*

HF-control vs. HF 0.1 0.07 0.04*

HF-control vs. HF-CR 0.0001* 0.0001* 0.02*

HF vs. HF-CR 0.0001* 0.0001* 0.02*

Control = standard dietary chow maintained, Control-HF = standard dietary chow switch to high-fat diet, Control-CR = standard dietary chow switch to caloric restriction;
HF-Control = high-fat diet switch to standard dietary chow, HF = high-fat diet maintained, HF-CR = high-fat diet switch to caloric restriction; data presented as P value
(post-hoc ANOVA).
doi:10.1371/journal.pone.0059407.t002
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Differential expression of Nnat isoforms has been demonstrated

previously, both during embryogenesis and in neuroendocrine cell

lines. Nnat-a is first expressed in the brain of the mouse embryo at

the time of neuroepithelial proliferation (embryonic days 7–10),

whilst Nnat-b is expressed later during neurogenesis (embryonic

days 11–14) [22]. In a murine pancreatic beta-cell line (MIN6)

transfected with addition copies of the Nnat gene, the Nnat-b to

Nnat-a ratio is increased proportionately to both glucose concen-

tration and to length of glucose exposure [24]. The function of

Nnat isoforms was tested in MIN6 cells by over-expression. At high

glucose concentrations over-expression of Nnat-b induced ER

stress and decreased the expression of genes important for beta-cell

function, glucokinase (Gck), pancreas duodenum homeobox-1 (Pdx-

1), and insulin [24]. Nnat-a did not have these effects [24]. Pdx1

encodes a transcription factor necessary for pancreatic develop-

ment and b-cell maturation. Pdx1 is expressed in the developing

neuroendocrine pancreas at a similar time to Nnat in the brain

[37]. These reports indicate different roles for Nnat-a and Nnat-b in

growth and differentiation during development, and in nutrient

responsiveness within differentiated cells. Our observations, taken

together with these previous findings, raise the possibility that

factors within the milieu of signalling changes accompanying

bypass may lead to suppression of the Nnat-b isoform through

differential splicing of Nnat pre-mRNA. This in turn may alter

neuroendocrine function in the hypothalamus in support of

weight-loss.

Surgical reorganisation of gut anatomy causes changes in

nutrient partitioning and absorption, with resultant adaptation of

gut-derived hormonal, neuronal and nutrient signals. These

signals are known to act in the hypothalamus, as well as in the

brainstem and other CNS regions, and are considered in part to

mediate the weight loss changes observed post-surgery [8]. We

found no link between fasting gut hormone levels and differential

hypothalamic expression of Nnat isoforms. This makes it unlikely

that ghrelin, which acts to increase appetite primarily in the fasted

state, plays a major role. Neither meal-stimulated gut hormone

levels nor neuronal and nutrient signals were assessed; however all

could mediate differential Nnat expression. Of note, post-prandial

changes in PYY and GLP-1 show greater modification compared

to fasted levels after bypass surgery [8]. Such changes could play a

regulatory role if acting through a delayed mechanism, for

example by direct or indirect modification of gene expression.

Alternatively, differential expression of Nnat isoforms in the

hypothalamus may reflect changes in body-weight or food intake

specific to bypass surgery. Total weight-loss per-se is unlikely to be

responsible as we found similar total weight-loss after bypass and

dietary caloric restriction, and Nnat expression was independent of

weight-loss after dietary caloric restriction. However, mice at day

10 post-bypass are in an anorectic and accelerated weight-loss

phase, whereas mice undergoing chronic dietary caloric restriction

show more gradual weight reduction and exhibit increased

hunger. These differences in energy status might mediate

differential expression of Nnat isoforms after bypass; though this

would appear to be hypothalamus-specific as brainstem expression

is not comparably altered. Of note, circulating leptin is secreted

proportionate to adipose tissue mass but also in relation to

dynamic energy status irrespective of adipose tissue mass [38]. We

observed equivalent circulating leptin levels after bypass surgery

and dietary caloric restriction. Together these observations suggest

that differences in energy balance do not fully account for

differential effects on hypothalamic Nnat isoforms after bypass

surgery.

Hypothalamic Nnat expression was assessed after overnight and

24-h fasts, compared to ad-libitum feeding; both Nnat isoforms

showed a comparable modest reduction in expression after

overnight fast and a larger reduction after 24-h fast. Published

work has shown reduction in hypothalamic Nnat expression in

response to prolonged 48-h fast [21,26], and that leptin

administration acutely increases Nnat in the DMH and PVN

[21]. Previous studies find that Nnat expression is unaffected

following 24-h fast in the cerebellum [26], a stress responsive tissue

not concerned with energy balance, supporting the view that the

changes in Nnat mRNA in the hypothalamus are a direct response

to changes in nutrient or leptin signalling.

We investigated the effect of chronic high-fat feeding and DIO

on hypothalamic Nnat expression and found no effect, despite

significant differences in body-weight and circulating leptin

between DIO and control mice. Thus, chronic nutrient excess

and elevations in circulating leptin do not appreciably determine

global hypothalamic Nnat expression, and hypothalamic Nnat

Figure 3. Hypothalamic and brainstem Nnat expression after
modified gastric bypass versus sham surgery. A) Nnat-b showed a
significant reduction in the hypothalamus (**P = 0.003) after modified
gastric bypass (n = 8) compared to sham surgery (n = 7) whilst Nnat-a
did not reduce significantly, consistent with a bypass-specific effect on
Nnat-b expression; B) expression of Nnat-a and Nnat-b did not differ in
the brainstem after modified gastric bypass (n = 8) compared to sham
surgery (n = 7); key – GBP = modified gastric bypass surgery, Sham = sham
surgery, AU = arbitrary units where Nnat expression was standardised
using an endogenous reference gene (ubiquitin (Ubc) for hypothalamus,
hypoxanthine guanine phosphoriboribosyl transferase (Hprt) for brain-
stem).
doi:10.1371/journal.pone.0059407.g003

Differential Hypothalamic Nnat Regulation
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expression is not perturbed in this model of obesity. Hypothalamic

leptin resistance has been shown to develop as early as day 16 in

DIO mice [39], and this may abrogate a leptin-dependent effect

on hypothalamic Nnat expression in this model. Alternatively, we

may miss hypothalamic nucleus-specific changes in Nnat expres-

sion since we examine only whole hypothalamus. These findings

contrast with other metabolic tissues such as WAT and aortic

endothelial cells where Nnat expression is increased in obesity and

diabetes [30,35].

The effect of chronic dietary caloric restriction on hypothalamic

Nnat expression was also examined in mice with DIO and in

normal-weight counterparts. We found no difference in Nnat

expression in response to caloric restriction for either Nnat isoform,

despite differences in final body-weight, change in body-weight

and circulating leptin levels. In contrast to acute caloric restriction

Figure 4. Isoform-specific Nnat expression in the hypothalamus after surgery in relation to weight-loss and circulating leptin. A–B)
Nnat-a expression in the hypothalamus did not correlate with either change in body-weight or with circulating leptin after surgery; C–D) by contrast
Nnat-b expression showed positive correlation with change in body-weight and weak positive correlation with circulating leptin after surgery; key –
Nnat-a expression shown with open squares, Nnat-b with filled circles, AU = arbitrary units where Nnat expression was standardised using ubiquitin (Ubc)
as a reference gene.
doi:10.1371/journal.pone.0059407.g004

Table 3. Changes in body-weight, leptin and gut hormones after surgery.

Final body-
weight (g)

Change in body-
weight (g)

Plasma leptin
level (ng/ml)

Plasma acyl-
ghrelin level
(pmol/l)

Plasma total PYY
level (pmol/l)

Plasma active-
GLP1 level (pmol/l)

GBP surgery (n = 8) 24.5 (1.2) 211.4 (1.3) 0.27 (0.07) 1179 (258) 29.0 (5.1) 10.5 (2.9)

Sham surgery (n = 7) 31.1 (1.4) 24.8 (0.6) 1.05 (0.23) 517 (83) 13.1 (1.8) 2.3 (0.4)

GBS vs. Sham (P value) 0.003* 0.0007* 0.004* 0.03* 0.01* 0.02*

GBP = modified gastric bypass surgery; data presented as Mean (Standard Error of Mean) or P value (t test).
doi:10.1371/journal.pone.0059407.t003

Differential Hypothalamic Nnat Regulation
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and modified gastric bypass surgery, chronic dietary caloric

restriction leading to weight-loss with reductions in circulating

leptin level has no appreciable effect on global hypothalamic Nnat

expression. Importantly, these findings include mice with normal

starting body-weight and intact hypothalamic leptin signalling,

implying that hypothalamic leptin resistance does not account for

unchanged Nnat expression either after chronic caloric restriction

or in DIO.

To investigate the wider function of Nnat we examined its

expression in a broad range of metabolic tissues. We identified

Nnat expression at high levels in brainstem, substantial levels in

BAT, stomach and jejunum, and lower levels in duodenum and

ileum, and confirmed published results showing high levels of Nnat

expression in WAT. When we compared relative expression of

Nnat isoforms in these metabolic tissues we found modest positive

correlation between Nnat-a and -b, suggesting potential differential

isoforms expression in these tissues too. The role of overnight fast

on Nnat expression in the stomach and duodenum was examined

as these tissues have key acute nutrient sensing and signalling

functions. No difference was found in stomach or duodenal Nnat

expression after overnight fast when compared to ad-libitum fed

counterparts; the role of 24-h fast was not examined in the absence

of a directional effect equivalent to that found in the hypothal-

amus. While the overall functional significance of Nnat isoforms in

metabolic tissues is likely to relate to total tissue expression levels,

this may underestimate the local impact of Nnat within specialised

neuroendocrine cells. This may be important in the GI tract, as in

the pancreas, where neuroendocrine cells make up only a small

proportion of total tissue and are the expected location of Nnat

[31,32]. The effect of acute fast on Nnat expression in the GI tract

will need to be re-examined using localising techniques in

enteroendocrine cells.

Our studies have several limitations. We focus on isoform-

specific regulation of Nnat pre-RNA in global hypothalamus in

response to states of acute and chronic energy flux, but do not

investigate hypothalamic nucleus-specific changes in Nnat, or

confirm our findings with protein expression. We also do not

investigate in detail other brain regions involved in energy

regulation. Our results demonstrate differential expression of

hypothalamic Nnat isoforms after gastric bypass surgery. However,

this finding is associative and the relative contribution of bypass-

specific and other indirect factors remains to be established. We

are able to make mechanistic inferences but do not delineate

underlying biological mechanisms. Future studies are therefore

required to localise changes in Nnat pre-RNA and protein isoforms

in hypothalamic nuclei after bariatric surgery, DIO and dietary

caloric restriction, as well as in other metabolic tissues, and to

investigate precise causal processes within cellular systems and

transgenic models.

Summary and Conclusion
In the hypothalamus we demonstrate for the first time that

differential pre-mRNA splicing preferentially suppresses Nnat-b in

response to modified gastric bypass surgery, but not in response to

the analogous situation of dietary caloric restriction. We further

show that global Nnat expression is reduced in response short-term

fast in the hypothalamus, though comparably for both isoforms.

No effect on Nnat mRNA was discovered in response to chronic

caloric excess and DIO. Our results indicate that the Nnat gene

expression has shared (i.e. RNA transcription or turnover) and

isoform-specific regulatory factors (i.e. differential pre-mRNA

splicing). In addition our studies provide the first evidence that

both Nnat isoforms are expressed in a broad range of metabolically

active tissues, where the effect of nutritional status now needs to be

examined further. Whilst the functional determinants of Nnat

expression in the hypothalamus remain unclear, our findings raise

the possibility that Nnat could mediate changes in appetite and

energy expenditure during fasting/feeding and after bariatric

surgery, via intracellular signalling changes. This position is

strengthened by previously published work, which demonstrates

co-localisation of Nnat in neuronal cells specifically expressing

functional mediators of appetite control and energy expenditure

[21]. Our study adds Nnat to the group of genes in which

differential pre-mRNA splicing coordinates protein isoforms

expression with potentially meaningful physiological consequences

[40].

Materials and Methods

In vivo Studies
All studies were performed in accordance with the Home Office

Animal Procedures Act, UK (1986), project license PPL70/6648,

and guidelines established by the European Convention for the

Protection of Laboratory animals. All animals comprised male

C57BL/6 mice (from Charles River U.K. Ltd), maintained in a

pathogen-free environment at constant temperature with free

water access, and subjected to 12-h light/dark cycle (0700–1900-

h). Diets were obtained from Research Diets, New Brunswick, NJ

USA (details specified below). Weight measurements were made

using precision weighing balance (Sartorius, GE), accurate to

0.01 g.

For baseline expression studies in homeostatic tissues, adult

mice without regulatory pre-conditions were used (n = 4, aged 8–

16 weeks).

For acute nutritional studies, adult mice aged 8 weeks were

randomised to ad-libitum standard dietary chow (composition 70%

carbohydrate, 10% fat, 20% protein; Research Diets Catalogue

D12450B), overnight fast (14-h duration) and 24-h fast groups

(n = 10, n = 10, n = 11 respectively). All fasted mice were pre-

conditioned, and experienced equivalent duration fast then re-

feeding on three prior occasions.

For chronic high-fat diet and DIO studies, adult mice aged 8

weeks were randomised to ad-libitum high-fat diet (composition

35% carbohydrate, 45% fat, 20% protein; Research Diets

Catalogue D12451) or standard dietary chow (composition above)

groups, n = 40 in both. Body-weight was monitored weekly. After

4, 8, 12 and 16 weeks respectively ten mice from each dietary

group were killed after 16-h fast. 16-h fasts were carried out in all

chronic dietary studies (DIO; chronic dietary modulation with

dietary switch; bariatric surgery) prior to termination. This

minimises the confounding effect of acute feeding state, as systemic

gut hormone levels may remain elevated up to 12-h after nutrient

intake [41,42].

For chronic dietary modulation with dietary switch studies,

adult mice aged 8 weeks were randomised to ad-libitum high-fat

diet (n = 30) and ad-libitum standard dietary chow (n = 30). After 16

weeks high-fat diet (DIO) mice were then randomised to one of

three groups: i) maintained on this diet (n = 10); ii) switched to ad-

libitum standard dietary chow (n = 10); or iii) switched to step-down

caloric restriction (n = 10). Similarly control diet mice were

randomised to one of three groups: i) maintained on standard

dietary chow (n = 10); ii) switched to high-fat diet (n = 10); or iii)

switched to step-down caloric restriction (n = 10). These diets were

maintained for a further 4 weeks then mice were killed after 16-h

fast. Body-weight was monitored weekly. Calorie restriction was

carried out by step-down regime [43,44]. Food intake and body-

weight were assessed on a daily basis in DIO and control mice

both maintained on ad-libitum standard dietary chow, to obtain
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measurements of food consumed per gram of body-weight. These

measurements were then used to calculate food intake in DIO

mice switched to caloric restriction and in control mice switched to

caloric restriction respectively. For the step-down caloric restric-

tion, an 80% restriction was applied in week 1, with 60%

restriction in weeks 2–4. Food was given at onset of the dark phase

(19.00-h) to maintain circadian rhythms.

For the bariatric surgery studies, adult mice aged 6 weeks were

fed ad-libitum high-fat diet for 18 weeks, and then acclimatised for

one week. After matching for body-weight, mice were assigned to

modified gastric bypass or sham surgery (n = 8 for both groups).

Procedures were carried out as previously described [45,46].

Modified gastric bypass surgery comprised a midline laparotomy,

ligature of the pyloric sphincter, and entero-gastric anastomosis

between stomach fundus and mid-jejunum, thus excluding

duodenum and proximal jejunum. Sham surgery comprised

midline laparotomy, intestinal exposure and intestinal manipula-

tion without transection, with duration corresponding to the

bypass group. Daily post-operative monitoring for well-being was

provided. One mouse in the sham group died post-operatively. On

post-operative day 10 mice were re-weighed then killed, after a 16-

h fast. This time point was selected for evaluation of factors

contributing to weight-loss, rather than those resulting from

marked changes in body-weight. Posthumously, the pyloric

ligation was checked and was intact for all bypass subjects.

Blood and Tissue Collection
Mice were killed using terminal anaesthesia. Blood was sampled

by cardiac puncture using 29-gauge needle and syringe, after

exposure of the chest cavity. For measurement of active GLP-1,

dipeptidyl peptidase-IV inhibitor [10 ml/ml of blood] (Millipore,

Watford, UK), was drawn into a chilled syringe before blood

collection. For all other hormones blood was collected into an

empty chilled syringe. Blood was transferred from syringes to tubes

containing 0.5 M EDTA [50 ml/ml of blood], and aprotinin,

[5000 Kallikrein inhibitor units (KIU)/ml of blood] (Trasylol;

Bayer, UK). All samples were kept on ice until processing. Blood

tubes were centrifuged for 15-mins at 10,000 rpm at 4uC. Plasma

was aspirated by pipette and transferred to empty eppendorfs. For

measurement of acyl-ghrelin, plasma was acidified by addition of

50 ml of 1 N hydrochloric acid per ml and 10 ml, 4-(2-

Aminoethyl)-benzenesulfonyl fluoride hydrochloride (Fluka, Dor-

set, UK) 100 mg/ml was added to retard ex-vivo degradation. All

samples were stored at 280uC until analysis.

All tissues were rapidly dissected and collected in cryovials

(Nunc; Thermo Fisher, Roskilde, Denmark), then snap frozen in

liquid nitrogen for storage at -80uC. Interscapular BAT and

inguinal WAT were dissected. Stomach was divided from

oesophagus and duodenum. The entire alimentary tract was

removed from the body and fully extended. For duodenum, the

first 3 cm of duodenum distal to the pyloric sphincter was

dissected, a 3 cm section of jejunum (15 cm from the pyloric

sphincter) was dissected, a 3 cm section of ileum proximal to the

ileo-caecal valve. GI tissue was cleared of peritoneum and

contents. After decapitation brain was removed. Hypothalamus

and brainstem were dissected. The limits of the hypothalamus for

dissection were: i) optic chiasma at the anterior border; ii)

mammillary bodies at the posterior border; iii) the hypothalamic

sulci at both lateral sides. Hypothalamic tissue was finally cut

dorsally at 2 mm from the ventral face. Brainstem blocks were

composed of pons and medulla regions of the hind brain and

excluded cerebellum; dissection of the block started cranially at the

level of intersection between midbrain and pons, and finished

caudally at the level of intersection between pons and spinal cord.

Nnat mRNA Expression using RTqPCR
Total RNA (tRNA) was extracted from homogenised whole

tissue (including brainstem, hypothalamus, WAT, BAT, stomach,

duodenum, jejunum and ileum) using a commercial extraction

system (TRIzol reagent protocol). Quantity of RNA was measured

using Nanodrop spectrometer, and integrity assessed by analysis of

A260/A280 ratios. A two-tube technique was used for real-time

quantitative PCR (RTqPCR). 2 ml of tRNA was reverse

transcribed into cDNA under optimal conditions using Taqman

reverse transcriptase reagents (Applied Biosystems, UK). RTqPCR

was performed using proprietary sequence specific Taqman Gene

Expression Assay FAM/TAMARA probes, specific for Nnat-a,

Nnat-b, ubiquitin (Ubc) and hypoxanthine guanine phosphoribor-

ibosyl transferase (Hprt), on an AbiPrism 7000HT instrument

utilising automatically selected Ct values. Ubc was chosen as an

endogenous reference gene to normalise expression data and

account for differences in efficiency in all conditions except

brainstem. In brainstem Hprt was used as the endogenous

reference gene because of significant differences in Ubc expression

between study groups. Target-specific standard curves were

performed using 2-4-fold serial dilutions of template tRNA from

tissue samples under investigation, and analysed to confirm

efficiency, reproducibility and sensitivity, and to quantify the

unknowns. Sample hypothalamic cDNA was diluted 1:8, brain-

stem cDNA 1:6, and stomach and duodenum cDNA 1:5, to fit

these standard curves. All samples were analysed in duplicate, with

negative controls.

Hormone Assays
Plasma leptin was measured as a marker of adiposity and

chronic nutritional state. Plasma concentrations of leptin and

active-GLP1 were measured using commercially available ELISA

kits (Millipore, Watford, UK). Plasma acyl-ghrelin and total PYY

were measured using commercially available radioimmunoassay

(Millipore, Watford, UK). All samples were tested in duplicate.

Statistics
For all expression studies, results were expressed as mean and

standard error of the mean. Comparisons between Nnat expres-

sion, final body-weight, changes in body-weight and plasma leptin,

were made using non-paired Student’s t test for comparing the

means of two groups, and using one-way ANOVA for comparing

the means of three or more groups. For one-way ANOVA post-

hoc tests were performed in case a significant effect was detected

(Bonferroni correction was used when the equality of variances

assumption held, and Dunnett t3 correction was used otherwise).

Significance was established at P,0.05. Linear regression analyses

were performed to compare relationships between two continuous

variables.

Supporting Information

Figure S1 Body-weight, circulating leptin and hypotha-
lamic Nnat expression in response to diet-induced
obesity. A–C) Final body-weight, (delta) increase in body-weight,

and plasma leptin were significantly different after 4, 8, 12, 16

weeks of high-fat feeding compared to control groups, except at

week 4 for final body-weight and week 8 for plasma leptin where

the difference did not reach significance; D-E) neither Nnat-a or -b
expression was altered in the hypothalamus after 4, 8, 12, 16 weeks

of high-fat feeding, either sequentially or compared to controls, key

– HF = high-fat diet, Control = standard dietary chow.

(TIF)

Differential Hypothalamic Nnat Regulation

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e59407



Figure S2 Hypothalamic Nnat expression in response to
dietary caloric restriction. A–B) Nnat-a and -b isoforms were

equivalently expressed in DIO mice either maintained on high-fat

diet or switched to standard dietary chow or caloric restriction,

and in controls undergoing equivalent switches; key – Control

(standard dietary chow throughout, n = 10), Control-CR (standard dietary

chow for 16 weeks then step-down caloric restriction for 4 weeks, n = 10),

Control-HF (standard dietary chow for 16 weeks then switch to high-fat diet

for 4 weeks, n = 10), HF (high-fat diet throughout, n = 10), HF-Control

(high-fat diet for 16 week then switch to standard dietary chow for 4 weeks,

n = 10) and HF-CR (high-fat diet for 16 weeks then step-down caloric

restriction for 4 weeks, n = 10); AU = arbitrary units where Nnat expression

was standardised using ubiquitin (Ubc) as a reference gene.

(TIF)

Figure S3 Food intake after modified gastric bypass
versus sham surgery. Mean 24-h caloric intake was signifi-

cantly suppressed at Day 2 after surgery compared to pre-surgery

baseline, in both bypass and sham groups; in the bypass group

mean daily intake remained comparably suppressed up to day of

termination (Day 10); by contrast, in the sham group mean daily

intake returned to pre-surgery baseline by Day 5, and remained at

this level until termination; food intake between the two groups

was significantly different from Day 2; key – circles show mean food

intake (g) per 24-h period in the modified gastric bypass group, squares show

food mean intake (g) per 24-h period in the ad-libitum fed sham control group,

standardised for mean body-weight (g); * ** *** represent P,0.05, ,0.01,

,0.001 respectively for within group comparisons; ### represents

P,0.001 for between group comparisons.

(TIF)

Table S1 Changes in body-weight and leptin in control
and DIO mice.

(DOCX)

Table S2 Correlation of Nnat isoform expression and
fasting gut hormone measures.

(DOCX)
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