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Reward outcome signalling in the sensory cortex is held as important for linking stimuli to their consequences
and for modulating perceptual learning in response to incentives. Evidence for reward outcome signalling has
been found in sensory regions including the visual, auditory and somatosensory cortices across a range of dif-
ferent paradigms, but it is unknown whether the population of neurons signalling rewarding outcomes are
the same as those processing predictive stimuli. We addressed this question using a multivariate analysis of
high-resolution functional magnetic resonance imaging (fMRI), in a task where subjects were engaged in in-
strumental learning with visual predictive cues and auditory signalled reward feedback. We found evidence
that outcome signals in sensory regions localise to the same areas involved in stimulus processing. These out-
come signals are non-specific and we show that the neuronal populations involved in stimulus representation
are not their exclusive target, in keepingwith theoretical models of value learning. Thus, our results reveal one
likely mechanism through which rewarding outcomes are linked to predictive sensory stimuli, a link that may
be key for both reward and perceptual learning.

© 2013 . Published by Elsevier Inc. All rights reserved.
Introduction

Successful reward learning requires that an organism processes
information about appetitive and aversive states, as well as assign
causal responsibility for such states to antecedent events, that usually
take the form of sensory stimuli. Whilst the first problem has been
the subject of considerable neuroscientific study, the second, ‘credit
assignment’ problem has been little explored in humans. One way
in which the brain might perform a credit assignment is to direct a
‘teaching signal’, based on rewarding outcomes, to regions involved
in stimulus processing (Friston et al., 1994; Roelfsema et al., 2010).
Recently, several studies report evidence consistent with this, show-
ing that rewarding feedback is associated with activity in sensory
areas associated with stimulus processing, even in the absence of con-
current stimulation in that modality (Brosch et al., 2011; Pleger et al.,
2008, 2009; Weil et al., 2010).

What is less clear is how populations of cells in sensory regions,
targeted by an outcome signal, relate to those involved in stimulus
representation. Supervised learning schemes, such as error back-
propagation (Rumelhart et al., 1986), require generation of error sig-
nals tailored for each unit (Roelfsema and van Ooyen, 2005). This
predicts a specific reactivation by reward feedback of units involved
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in stimulus representation. Such schemes are efficient but are consid-
ered to lack biological plausibility (Crick, 1989). Value learningmodels,
by contrast, use a non-specific error signal that only modifies eligible
connections; namely, those mediating the valuable outcome (Friston
et al., 1994; Sutton and Barto, 1998) (visual stimuli within the last five
seconds, for example). In a neurophysiological context, this predicts a
non-specific input to sensory neurons to enable an associative increase
in the strength of synaptic connections between recently active cells
(Bailey et al., 2000; Calabresi et al., 2007; Izhikevich, 2007; Roelfsema
et al., 2010). Critically, these two possibilitiesmake different predictions
about the relationship between spatial patterns of activity reflecting
stimulus and outcome processing in stimulus-processing regions of
the sensory cortex.

We tested predictions from these frameworks using fMRI adapta-
tion. In brief, when two stimuli that activate the same neurons are
presented in close temporal contiguity, the second stimulus produces
a reduced BOLD response compared with an equivalent stimulus that
does not activate the same population (Grill-Spector et al., 2006;
Sawamura et al., 2006). Although the precise electrophysiological
correlates remain unclear (Grill-Spector et al., 2006), this methodol-
ogy has been used to probe stimulus representations across a range
of distinct domains (Fang et al., 2007; Sawamura et al., 2006;
Winston et al., 2004). We were interested in comparing neuronal re-
sponses to stimuli and their reward outcomes. To do this, we adopted
a relatively new approach, based on spatial correlations within a re-
gion (Kriegeskorte and Bandettini, 2007; Kriegeskorte et al., 2008).
We reasoned that if reward signals selectively reactivate sensory neu-
rons involved in representing a preceding stimulus, then activations
induced by the stimulus and reward should co-localise and their
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Fig. 1. Cartoon illustrating the effects of non-specific and generalised reward feedback
on the spatial correlations between stimulus and outcome activity. (Darker colours
indicate greater activity/responsiveness) Stimulus processing produces an adaptation
effect, manifest in a decreased responsiveness which is greatest in voxels with the
strongest response to the stimulus. If reward feedback signals are non-specific, this
leads to a negative spatial correlation between stimulus and outcome activity. If reward
feedback signals are specific to those neurons involved in stimulus representation,
there will be a positive spatial correlation between stimulus and outcome activity.
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patterns, over voxels, should be positively correlated. Conversely, if re-
ward outcomes activate sensory neurons in a non-specific fashion,
recently-activated stimulus-specific populations should show adapta-
tion and be less responsive to reward signals, resulting in the activation
patterns due to stimulus and reward being negatively correlated
(Fig. 1). Crucially, this negative correlation should occur in the context
of an overall positive response to reward, distinguishing them from
simple reward-induced deactivations.

To test our hypotheses, we analysed high resolution fMRI data
(FitzGerald et al., 2012) collected whilst subjects performed an instru-
mental learning task with visual cues and auditory feedback (Fig. 2).
Specifically, we examined spatial correlations within an area of visual
cortex responsive to cues and rewarding outcomes.

Materials & methods

Subjects

Twenty six (ten female) right-handed subjects, age range = 19–28
years, all free of psychiatric or neurological disease, participated in the
Fig. 2. A: Reward learning task. Subjects were presented with a visual stimulus, and given 2
abilities for each stimulus-action pairing. Outcomes were then signalled with two different
(1000–3000 ms, uniform distribution). B: Learning curve, averaged across all cues and sub
they were able to acquire appropriate responses to the reward contingencies. (Solid line: l
on Q-learning models fitted to individual subject behaviour. Error bars indicate bootstrapp
study. The study was approved by the Joint National Hospital for Neu-
rology and Neurosurgery (University College London Hospitals NHS
trust) and Institute of Neurology (University College London) Ethics
Committee. The subjects were paid according to their performance dur-
ing the task (from £21.80–£28.80).

Stimuli & task

The subjects performed an instrumental learning task with visual
cues and auditory feedback (FitzGerald et al., 2012) (Fig. 2). On each
trial of the experiment, the subjects were presented with a visual
cue consisting of a box with a coloured pattern, and made either a
‘left’ or a ‘right’ response by pressing a button on the corresponding
keypad. After 2.5 s, they were played either a higher pitched ‘win’
sound, or a lower pitched ‘nowin’ sound, each lasting for 1 s. The visual
cue disappeared at the end of the sound. There was a variable inter-trial
interval of 1–3 s between the trials. The subjects received 10 pence for
each win.

Each cue had one of eight contingency types (win probabilities of
[0.05 0.30], [0.05 0.55], [0.3 0.55], [0.4 0.9], with either P(Win|Chose
Right) N P(Win|Chose Left) or the converse). Over the course of the
experiment, each contingency type was repeated three times, using
a total of 24 cues. The experiment was separated into blocks of 44
trials. In each block, two cues appeared in pseudo randomised order
(we applied the constraint that no cue could be presented on more
than three consecutive trials). Cues with identical or mirror image
contingencies were never presented together in the same block. The
subjects performed 6 blocks in each of two scanning sessions (12 in
total). Each cuewas presented in only one block. The subjects responded
using two fMRI-compatible button boxes, one held in each hand.

Behavioural analysis

Behavioural analysis was performed, as previously described, by
fitting a Q-learning algorithm, incorporating a softmax decision rule
(FitzGerald et al., 2012). Q-learning updates the values of individual
stimulus action pairs Q(s,a) according to a reward prediction error
weighted by a learning rate α (Watkins and Dayan, 1992).

Q stþ1; atþ1
� � ¼ Q st ; atð Þ þ α Rt−Q st ; atð Þð Þ
500 ms to make one of two responses, which were rewarded according to fixed prob-
sounds, which were presented for 1000 ms — followed by a jittered inter-trial interval
jects. Subjects increasingly chose the objectively higher-valued option, indicating that
earning curve based on observed choice behaviour. Dashed line: learning curve based
ed 95% confidence intervals for the observed choice behaviour).



331T.H.B. FitzGerald et al. / NeuroImage 83 (2013) 329–334
This algorithm generates trial-by-trial estimates of the values for
each action (QR and QL), as well as the associated reward outcome
prediction error (RPE). The softmax decision rule gives the probability
of choosing an action R (PR) based on the difference in value between
action R and action L (QL − QR), and the temperature parameter
τ which determines the preference sensitivity between the two
options.

PR ¼ 1
1þ e QL−QRð Þ=τ

The learning rate α and softmax temperature τ parameters were
fitted individually for each subject usingmaximum likelihood (accuracy)
estimators. Three subjects who reported using deterministic strategies
on debriefing were excluded from the analysis, leaving a total of 23.
fMRI data acquisition & preprocessing

Data acquisition and pre-processing were carried out as previously
described (FitzGerald et al., 2012). Three-dimensional gradient-echo
T2*-weighted echo-planar (EPI) images were acquired on a 3T Trio
Siemens scanner with an isotropic resolution of 1.5 mm. 32 slices
were acquired allowing data acquisition from a partial volume of thick-
ness 48 mm that was angled and positioned in each subject to ensure
coverage of the visual cortex, and reward-related regions such as the
ventral striatum and ventromedial prefrontal cortex. In each session,
485 images were collected (~25 min each, two per subject). After dis-
carding the first five images from the task sessions to allow for T1 equil-
ibration effects, the fMRI time series were realigned and unwarped
(Hutton et al., 2002) to correct for both static and motion-related dis-
tortions. For each subject, the T1-weighted structural and the mean
whole brain EPI were then co-registered, and the partial volume EPIs
co-registered to the whole brain EPI. Functional and structural data
were then spatially normalised to MNI space using a DARTEL toolbox
(Ashburner, 2007). For the purposes of ROI selection, the data were
smoothed using a 4 mm3 FHWM Gaussian function. Respiration and
heart rate were recorded using a breathing belt and pulse oximeter
(Hutton et al., 2011).
Fig. 3. A: Functional ROIs for spatial correlation analysis. A conjunction analysis of group-lev
a minimum cluster size of 25 voxels) highlighted bilateral regions in the visual association
correlation analysis. B: Mean correlation between matched Cue/RPE images (S) for each su
presence of a non-specific reward outcome signal in the region.
Region of interest selection

To identify functional ROIs in which reactivation might be ex-
pressed, we analysed (smoothed) data using a general linear model
(GLM) containing events at (visual) cue onset times (Cue), and at
(auditory) outcome time (Outcome). Cue was modulated by a para-
metric regressor encoding the absolute difference between the value
of the two actions (|QR − QL|), and a binary regressor, reflecting the
action (left or right) taken on each trial. Outcome was modulated by
a parametric regressor encoding reward prediction error RPE. The six
motion regressors produced by the realignment stage of preprocess-
ing were included as regressors of no interest.

We selected regions for special correlation analysis by taking the
overlap between voxels that showed significant positive responses
to both Cue and RPE contrasts, thresholded at p b 0.05 uncorrected
with a minimum cluster size of 25 voxels (84.38 mm3). We selected
25 voxels as a compromise between sensitivity and the need to
exclude false positives, but the regions of interest, and hence our
key results, were unaffected by varying the cluster threshold from
15 to 45 voxels. Additionally, very small clusters would be unlikely
to yield reliable information about spatial correlations. This resulted
in two clusters in bilateral visual association areas (Brodmann area
18) almost identical to those identified in a previous study (Weil et al.,
2010) (Fig. 3) (Left cluster centroid [−25 −94 6], size = 253 voxels.
Right cluster centroid [29−85 9], size 255 = voxels, MNI coordinates).
Finally, a check analysis was carried out using a sphere of 6 mm radius
placed outside the brain (centre [−72 17 0]). No above-chance spatial
correlations were observed in this region.

Spatial correlation analysis

We first performed a general test of whether spatial correlations
between patterns of activity at visual cue presentation and those at
outcome presentation were positive, as predicted by stimulus-specific
feedback signals, or negative as predicted by non-specific feedback sig-
nals. To do this, we analysed unsmoothed data using a GLM containing
separate Cuei, Difference in Valuei, Actioni, Outcomei and RPEi regressors
for each of the 24 cue types i, as well as the six motion regressors. We
defined a parameter S as the mean of the correlation coefficients be-
tween T-statistics over voxels, in the regions of interest for the Cuei
el contrasts for the Cue and RPE regressors (thresholded at p b 0.05 uncorrected, with
areas (Brodmann area 18). These regions were used as functional ROIs for our spatial
bject. Overall, there was a significant negative correlation the two, consistent with the
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and RPEi contrasts (the effect of cue and RPE for each cue type). This
allowed us to test for whether overall there were positive or negative
spatial correlations between activity patterns to the cue and the re-
warding outcomes. We used T-statistic images rather than contrast im-
ages for estimating spatial correlations as this down-weights the effect
of noisy voxels, which has been shown to be advantageous in multivar-
iate analysis (Misaki et al., 2010). Swas then used as a summary statistic
for group level inference performed using a two-tailed nonparametric
Wilcoxon signed rank test. We first calculated a single value of S per
subject, pooling data across both left and right ROIs, to maximise sensi-
tivity. We then looked at the results for each side separately.

Importantly, our analysis is based upon the parametric RPE regres-
sor rather than the regressor encoding the mere occurrence of the
outcome event itself. This means that we have de facto regressed
out any artefacts related simply to the proximity of the stimulus
and feedback presentation events (for example through the use of a
suboptimal haemodynamic response function). This means that our
results are driven by the reward prediction error associated with
each feedback event, which is orthogonal to the presence or absence
of the event itself.

Specificity of adaptation effects

To test whether the adaptation effects we observed were cue spe-
cific (driven responses in visual cortex that were specific to the cue
being presented) or not (Kamitani and Tong, 2005). We first sought
to establish that responses to cue presentation were cue specific.
We did this by creating a GLM with separate regressors encoding
cue onsets for each of the different cues, separated into the first and
second half of the trials on which that cue was presented (so that for
each cue, the model contained two regressors, one for the first half
of the trials on which it appeared, and one for the second). We then
calculated the spatial correlation between responses to the first cue
presentation regressor and the second cue presentation regressor,
and compared them to the mean spatial correlation with the regres-
sors encoding the presentation of the other cues. Significance was
assessed using a two-tailed Wilcoxon test as above.

Next we tested for evidence of cue-specificity in our adaptation
effects. To do this, we compared the strength of the spatial correla-
tions observed between matched Cue and RPE images (those corre-
sponding to the same cue-type), and non-matched Cue and RPE images
(those corresponding to different cue-types). Group level statistics
were then calculated in the sameway as for S. Finally, we testedwhether
the negative spatial correlations we observed were specific to paired
stimuli and outcomes, by testing whether themean correlation between
non-matched Cue and RPE contrast images was significantly different
from zero at the group level, using a two-tailed Wilcoxon signed rank
test.

Results

Behaviour

As previously reported, both choice patterns and reaction times
demonstrated that subjects used information about rewarding out-
comes to modify their responses to visual stimuli (FitzGerald et al.,
2012). In brief, subjects were more likely to select the ‘correct’
(higher valued) action at the end of a learning block than at the be-
ginning, and showed a strong negative effect of absolute difference
in value between the stimuli on reaction times, meaning that they
responded more quickly when there was a greater disparity in the
value of the actions available to them. The mean learning rate (α)
across subjects was 0.284 (interquartile range: 0.191). Themean tem-
perature parameter (τ) was 0.161 (interquartile range: 0.092). Aver-
aged across subjects, the model predicted observed choices with
77.0% accuracy (p b 0.0001, Wilcoxon signed rank test).
Spatial correlation analysis

Analysis of the spatial correlations between Cue and RPE provided
our key measure of whether the outcome signals we observed in
the sensory cortex show stimulus-specificity or not. A negative corre-
lation provides evidence for an adaptation effect, suggesting a non-
specific signal, whilst stimulus-specific signalling predicts the oppo-
site. When we analysed spatial correlations across the combined visual
cortices ROI, the group-level mean correlation between matched Cue
and RPE images (S) was significantly less than zero (μ = −0.02, p =
0.014, Wilcoxon signed rank test) (Fig. 3). This was also true for the
right side considered individually (μ = −0.024, p = 0.007), but the
left side showed only a trend towards significance (μ = −0.015, p =
0.101). We thus observed strong evidence of an fMRI adaptation effect,
manifested in negative spatial correlations between stimulus and out-
come activity (Fig. 1). This suggests, consistent with our hypothesis,
that the reward outcome signalling we observed in visual areas involved
in stimulus processing is non-specific, rather than being restricted to
those neurons responding to the particular stimulus involved.

Adaptation specificity analysis

We next sought to establish whether the observed adaptation
effects occurred in neuronal populations which showed specific pat-
terns of responding to visual cues, and, if so, whether these adaptation
effects themselves were cue-specific. Spatial correlations between re-
gressors encoding the same cue were significantly larger than those
encoding different cues in the joint ROI (μ = 0.338, p b 0.001), and
this was true for both the left and right ROIs considered separately
(Left: μ = 0.337, p b 0.001. Right: μ = 0.340, p b 0.001). This indi-
cates, in line with previous findings (Kamitani and Tong, 2005), that
cue-evoked responses in this region of the visual cortex contain infor-
mation about the specific visual stimulus presented.

Cue specific adaptation effects were assessed by comparing the
difference between the size of the spatial correlation effects observed
between Cue and RPE regressors corresponding to the same cue, and
those corresponding to different (non-matched) cues. This difference
was significantly negative across both ROIs (μ = −0.021, p = 0.014),
indicating that the adaptation effects we observed were indeed cue
specific (driven by cue-specific visual responses). Again, the results
were significant in the right ROI considered individually, (μ = −0.022,
p = 0.011), but the left side showed only a trend level effect
(μ = −0.018, p = 0.083). Overall, the spatial correlation between
non-matched stimuli and outcomes showed no significant correlation,
either calculated over both or when considered separately in the right
(μ = 0.003, p = 0.693) or left (μ = −0.003, p = 0.128) ROI.

Taken together, these results suggest that the adaptation effects
we observed occurred in regions of the visual cortex which showed
cue-specific patterns of responding, and that, in keeping with this,
the adaptation effects we observed were driven by this cue-specific
activity.

Discussion

Linking sensory stimuli to outcomes they predict is critical for suc-
cessful learning and adaptive behaviour. Previous studies have sug-
gested that rewarding outcomes drive activity in sensory regions
involved in stimulus representation (Brosch et al., 2011; Pleger et al.,
2008, 2009; Weil et al., 2010), but have not addressed the specificity
of this outcome targeting. Using spatial correlations, we found evidence
suggesting that outcome signals are non-specific in their targeting of
sensory regions.

By considering patterns of activity reflecting stimulus and outcome
processing in regions of the sensory cortex that responded positively
to both, we found strong evidence for a non-specific reward outcome
signal in sensory regions that targeted both neuronal populations
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involved in stimulus representation and those which are not. In this
sense our results are consistent with the predictions of value learning
models, which posit the existence of a generalised feedback signal
(Friston et al., 1994; Sutton and Barto, 1998), rather than one that spe-
cifically targets active units alone (Roelfsema and van Ooyen, 2005).
Learning can still proceed efficiently in such a framework, despite
the non-specificity of the error signal, provided that it exclusively
affects the connection strengths between recently activated units
(Bailey et al., 2000; Calabresi et al., 2007; Izhikevich, 2007). In other
words, the credit assignment problem – induced by a non-specific
RPE or value signal – is resolved simply by reinforcing recently activated
stimulus-stimulus and stimulus-response links that precede valuable
outcomes. Generally, models of this type of value dependent learning
involve the modulation of associative plasticity in the form of a three
way covariance rule (Friston et al., 1994).

At the same time, our results, together with those reported in
other neuroimaging studies, suggest that information about reward-
ing outcomes can be selectively routed to, or amplified in, sensory
regions associated with stimulus processing (Pleger et al., 2008,
2009; Weil et al., 2010). This suggests the existence of an additional
mechanism for credit assignment, perhaps one mediated by attention,
as recently proposed (Roelfsema and van Ooyen, 2005; Roelfsema
et al., 2010). Indeed, the selective consolidation of eligible synapses by
a non-specific reward prediction error signal may rest on exactly the
same synaptic mechanisms that have been proposed recently to medi-
ate top-down attentional effects; namely, a modulation of postsynaptic
gain to presynaptic inputs (Feldman and Friston, 2010). In the context
of predictive coding, this gain is thought to encode the precision or
expected predictability of sensory information— for example, the offset
of the visual cue that is preceded by the auditory outcome.

If outcome signalling were purely stimulus-specific, then we
would expect to find a positive spatial correlation between stimulus
and reward prediction error driven patterns of activity. The fact that
we did not see this, and instead observed a strong negative correlation
argues for the existence of non-specific reward outcome signalling
in sensory areas. However, our results do not rule out the possibility
that there is an additional stimulus-specific component to outcome
signalling in the areas we tested, as might be predicted by supervised
learning (Rumelhart et al., 1986) or augmented reinforcement learn-
ing (Roelfsema and van Ooyen, 2005; Roelfsema et al., 2010) theories.
Such specificity might have been overshadowed by the strength of
adaptation effects to non-specific outcome signalling at the short
stimulus-outcome offsets used in our paradigm. Follow-up experi-
ments with a longer gap between the stimulus and outcome could ad-
dress this question. Additionally, it is possible that stimulus-specific
outcome signalling might not have precisely the same effect on the
BOLD signal as that of the coding of a visual stimulus (for example
if it was expressed in changes in synaptic activity). In light of this,
our results should be interpreted as evidence in favour of the existence
of non-specific reward signals in sensory areas rather than evidence
against the existence of stimulus-specific reward signals, since the
two are by no means incompatible.

Two alternative interpretations of the negative spatial correlations
we observed are that rewarding outcomes inhibit stimulus represen-
tations in the visual cortex, or that they preferentially activate cells
not involved in stimulus representations. The former is extremely
unlikely, given the overall positive effect of rewarding feedback on
activity in the sensory cortex found in this and other studies (Brosch
et al., 2011; Pleger et al., 2008, 2009;Weil et al., 2010). The latter is dif-
ficult to rule out, since it makes similar predictions to the generalised-
feedback interpretation, but seems implausible under any theory of
value learning of which we are aware.

Three (non-exclusive) models of repetition suppression have been
put forward (Grill-Spector et al., 2006). In ‘fatigue’ models, neurons
show a reduction in responding to the second stimulus that is propor-
tional to the size of their response to the first one, perhaps through
general firing rate suppression, or through reduced efficacy of par-
ticular synapses (Grill-Spector et al., 2006). In ‘sharpening’ models,
neuronal populations become increasingly well-tuned, leading to a
sharper representation of stimuli, and, under certain assumptions
(Grill-Spector et al., 2006), an overall decrease in responding (Wiggs
and Martin, 1998). ‘Facilitation’ models suggest that repeated stimuli
produce smaller responses due to faster stimulus processing (James
and Gauthier, 2006) or increased stimulus predictability (reduced
prediction error) (Friston and Kiebel, 2009; Garrido et al., 2009; Rao
and Ballard, 1999). Our results are most easily framed in terms of
fatigue models, since it is difficult to see how either sharpening or
facilitation would play a role here.

Our findings are of particular interest in light of the recent demon-
stration that outcome-correlated activity in the sensory cortex is
dopaminergically modulated (Pleger et al., 2009). Given the anatomy
of the dopaminergic system (Seamans, 2007), this is unlikely to be a
direct effect, but instead is likely to be mediated by other regions
more strongly innervated by the dopaminergic system, such as the
ventral striatum or ventral medial prefrontal cortex. It is important
to note that although in our analyses we model rewarding feedback
in terms of reward prediction errors, the correlation between our
RPE regressor and one simply reflecting rewards is strong in our study,
so we make no strong claim about what precise parameter is signalled
in the sensory cortex at outcome time.

Previous studies have focussed on outcome signals in the sensory
cortex in the context of perceptual decision-making (Brosch et al.,
2011; Pleger et al., 2008, 2009; Weil et al., 2010), whilst our study in-
volved reward-based decision-making, in which the perceptual com-
ponent is trivial. Since allowing reward information to boost neuronal
plasticity is likely to be important both for perceptual (Roelfsema
et al., 2010) and reward (Friston et al., 1994; Izhikevich, 2007) learn-
ing, it seems likely that similar or identical processes occur in both
situations. Nonetheless, it is conceivable that they are different, and
future studies could usefully test this.

Overall, our results suggest the existence of non-specific outcome
signals in the sensory cortex that are consistent with the predictions
of several models of value learning. Understanding how rewarding out-
comes affect sensory processing is essential both for understanding the
effect of reward on perceptual learning, and solving the problem of
how the brain links sensory stimuli to the outcomes, rewarding or other-
wise, that they generate. Our findings thus represent a step towards
characterising the processes linking perception, learning and value.
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