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Abstract

There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC)
proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains
unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the
development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences
oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the
expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In
addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no
significant changes in myelination can be seen, probably due to the death of surplus cells.
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Introduction

Oligodendrocyte maturation and differentiation is a well-

orchestrated process that has been studied in detail in isolated

oligodendrocyte precursor cells (OPCs) in culture, where the

proliferation and differentiation of OPCs is controlled by a well-

defined sequence of events (see for example, [1,2]). In recent years,

numerous studies have sought to identify new factors that regulate

OPC proliferation and differentiation (see [3,4,5] for reviews).

During development, immature proliferative oligodendrocytes are

characterized by the expression of the chondroitin sulphate

proteoglycan, NG2, together with other markers, such as the

platelet-derived growth factor receptor alpha (PDGFr-a) and the

cell surface ganglioside A2B5 antigen [5,6,7,8,9,10]. During

maturation, oligodendrocytes sequentially express markers such

as adenomatous polyposis coli (APC-CC1) and 2’,3’-cyclic

nucleotide 3’-phosphodiesterase (CNPase), as well as markers of

myelinating oligodendrocytes, such as myelin basic protein (MBP)

and myelin-associated glycoprotein (MAG). Other antigens of the

oligodendrocyte lineage, such as the helix-loop-helix transcription

factors Olig2 and Sox10, are expressed in immature as well as

mature myelinating oligodendrocytes [11]. In the adult brain, the

OPCs that persist are considered to be a putative reservoir of

mature oligodendrocytes. These cells proliferate and differentiate

into myelinating oligodendrocytes in order to maintain myelin in

both the healthy and injured brain [9,12,13,14,15,16,17,18,19].

Adult OPCs in the neuronal parenchyma are NG2-positive (see

[20] for review) and they are considered to be cycling cells with the

capacity to differentiate into mature oligodendrocytes, as well as

protoplasmic astrocytes [15] and neurons [13,21].

The process of myelination is influenced by many factors,

including EGFr-mediated signaling [22]. EGFr signaling is a

complex process that is dependent upon trans-activation by other

membrane-associated proteins or receptors (e.g., GPCRs) [23].

Molecules or receptors previously thought to be unrelated to

EGFr-mediated signaling have recently been characterized as

putative modulators of EGFr pathways. One example in the CNS

is the cellular prion protein (PrPc), a glycosyl phosphatidyl inositol

(GPI)-anchored cell surface protein encoded by the Prnp gene

[24,25,26,27]. Clustering of PrPc at the cell surface has been

shown to modulate EGFr activity in GT1-7 cells [28], and while

the developmental functions of PrPc remain to be fully determined,

PrPc may help maintain myelin in both the CNS and the

peripheral nervous system (PNS) [29]. However, a putative link
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between PrPc and OPC proliferation or oligodendrocyte differen-

tiation in the CNS has not yet been fully determined.

Accordingly, we have analyzed how PrPc might influence the

proliferation and differentiation of embryonic OPCs and of adult

NG2 expressing cells. We isolated OPCs from diverse origins and

developmental stages, and analyzed their distribution in the

forebrain of adult Prnp0/0 and Prnp+/+ mice. The absence of PrPc

increased the number of undifferentiated oligodendrocytes and

delayed the expression of differentiation markers in vitro (e.g., Sox17,

cdk2, APC, CNPase). In accordance with these in vitro findings, the

large numbers of cells expressing Olig2 and NG2 were evident in

the cortical parenchyma of developing and adult mice. Surpris-

ingly, the increase in the number of NG2 expressing cells was not

correlated with alterations in myelination, suggesting that

compensatory mechanisms may have offset this effect. Indeed,

the number of BrdU-labeled OPCs in the Prnp0/0 cortex two weeks

after pulse labeling decreased significantly to wild-type level. This

decrease was correlated with the appearance of TUNEL labeling

in the NG2 expressing cells, suggesting that surplus OPCs are

eliminated by cell death in the adult Prnp0/0 cortex.

Methods

Mice
Prnp0/0 Zürich-1 mice were purchased from EMMA (Monter-

otondo, Italy) and they carried approximately 46.8% C57BL/6J

microsatellite markers (Charles River Laboratories). To avoid

putative background-related differences, we backcrossed our

Prnp0/0 mice with C57BL/6J mice over several generations. All

experiments were carried out using littermates derived from

selected heterozygous (Prnp0/+) parents after backcrossing (50

littermates: 34 adult mice and 16 newborn mice). The presence of

C57BL/6J markers in all the mouse phenotypes used in the

present study was determined by the Genetic testing service at

Charles River Laboratories, analyzing 110 microsatellite markers

at approximately 15 cM intervals across the 19 autosomes and the

X chromosome. This analysis distinguishes between 129 micro-

satellite markers ranging from 92 to 95% of C57BL/6J. For

genotyping, the following specific primers for Prnp0/0 (Zürich I)

were designed [30]: P10-new: 59-cataatcagtggaacaagccc-39; P4-

new: 59-gctacaggtggataacccctc-39; P3-new: 59-gccttctatcgccttctt-

gac-39. PCR was performed over 40 cycles: 4 minutes at 95uC; 4

minutes at 62uC and 1 minute at 72uC; followed by a final

extension for 5 minutes at 72uC. We did not analyze the behavior

of OPCs in mice overexpressing PrPc (e.g., Tga20), as differences in

PrPc expression have been reported in these animals when

compared to wild type mice [31,32]. All studies were performed

under the guidelines and protocols of the Ethical Committee for

Animal Experimentation (CEEA) at the University of Barcelona,

and the protocol for the use of animals in this study was reviewed

and approved by the CEEA at the University of Barcelona (CEEA

approval# 115/11).

Antibodies
The following antibodies were used to detect OPCs: rabbit anti-

NG2 and anti-Olig2 (1:200: Chemicon, Temecula, CA, USA),

mouse monoclonal anti-A2B5 (1:10, mAb 4D4: Developmental

Studies Hybridoma Bank-DSHB, University of Iowa, USA), and

anti-Nestin (1:1000: Chemicon). To detect mature oligodendro-

cytes and myelin we used a rabbit antiserum against CNPase

(1:200: Thermo Scientific, Fremont, USA) or MAG (1:1000: Santa

Cruz biotechnology, Santa Cruz, USA), or a mouse monoclonal

against MBP (1:2000: Chemicon). To detected astrocytes and

neurons, we used a mouse monoclonal against GFAP (1:500: Dako

Glostrup, Denmark) and NeuN (1:50: Chemicon), respectively.

Proliferating cells were detected using a rat monoclonal antibody

raised against BrdU (1:50: Harlan Sera-Lab, Loughborough,

England). To probe western blots, a mouse monoclonal antibody

against actin (1:10000) or tubulin (1:1000; Chemicon) were also

used. Two different mouse monoclonal antibodies were used to

detect PrPc: SAF61 (1:1000: Spi-Bio & Cayman Chemical, Massy

Cedex, France) and 6H4 (1:200: Prionics, Schlieren, Switzerland).

Embryonic Optic Nerve Cultures
The embryonic optic nerves (ONs) from E16.5 embryos were

dissected out and cultured as described previously [33,34]. Briefly,

ON explants were placed in three-dimensional gels of rat tail-

derived collagen and cultured in Bottenstein-Sato medium

supplemented with FGF-2 (20 ng/ml: R&D Systems, Minneapo-

lis, USA) at 37uC, in an atmosphere of 5% CO2 and at 95%

humidity. After 3 days in vitro (DIV), genotypically identified

cultures were fixed with 4% paraformaldehyde (PFA) in 0.1 M

phosphate buffered saline (PBS, pH 7.4). The number of cells

migrating out of the explants was counted and the maximum

distance migrated with respect to the center of the ON explants

was determined. Cell proliferation was assessed by BrdU

incorporation (50 mM: Sigma-Aldrich, Poole Dorset, UK) added

to the medium for 6 hours (from 42–48 hours post-culture) as

described previously [35]. The medium was then removed and the

cultures were fixed as described above.

Cortical OPC Purification
Primary cultures were prepared from Prnp0/0 and Prnp+/+ mouse

pups (P0–P2) as described previously [36,37]. Cortical tissue was

dissected out and digested at 37uC with trypsin and DNAse

(Sigma-Aldrich) in HBSS (without Ca2+ and Mg2+). After

centrifugation, the cells were resuspended in 10 ml of DMEM

containing 10% fetal bovine serum and antibiotics (DMEM

medium). This suspension was then filtered through 100 mm filters

and the cells were seeded in 75 ml flasks and 6-well culture plates

previously coated with poly-L-ornithine (Sigma-Aldrich), changing

the medium every three days. To obtain differentiated cells, once

80–90% confluence was reached the medium was switched to

serum free DMEM medium supplemented with T3, T4,

putresceine, progesterone and sodium selenite (SFM; all from

Sigma-Aldrich). These cells were then maintained for 5 DIV to

allow them to differentiate into mature oligodendrocytes. As cell

death in Prnp0/0-cultured cells augments after serum removal

[38,39], OPCs were cultured over a feed layer of astrocytes for

5 days (mixed cultures). Cultures were then processed to obtain

purified oligodendrocytes. Thus, cultures were shaken at

250 r.p.m. overnight at 37uC, and the medium was then filtered

through 40 mm filters and centrifuged at 800 r.p.m for 5 minutes.

The pellet containing the OPCs was analyzed by RT-qPCR or

Western blotting. However, both Prnp0/0 and Prnp+/+ derived

OPCs were cultured in parallel.

To analyze a putative influence of astrocytes in the behavior

of OPCs, when the cultures reached 80–90% confluence in

DMEM medium they were shaken to purify the OPCs as

described above (isolated cultures). The isolated OPCs were

then cultured in SFM for additional 5 DIV and their

differentiation, survival and proliferation in the absence of

astrocytes was analyzed. In addition, we also obtained RNA for

RT-qPCR from these purified cells as described above for the

mixed cultures. Lastly, freshly shaked OPCs isolated cultures

from Prnp+/+ and Prnp0/0 mixed cultures were treated with

different concentrations of conditioned medium (DMEM)

derived from cultured astrocytes from the opposite genotype.

Oligodendrocyte Proliferation & Maturation by PrPc
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After 5 DIV, treated cultures were fixed, double labeled using

CNPase and Olig2 antibodies and quantified.

Neurosphere Isolation and Differentiation in vitro
To prepare neurospheres, Prnp0/0 and Prnp+/+ P5 pups were

anaesthetized by hypothermia and their brains were removed from

the skull aseptically. The subventricular zone of the lateral

ventricle was dissected in cold HBSS (without Ca2+ or Mg2+),

and the cells were cultured and differentiated as described

previously [40], in culture medium supplemented with B27,

antibiotics, FGF-2 and EGF (20 ng/ml, Sigma-Aldrich: unless

otherwise indicated, all culture media and supplements were

purchased from GIBCO Life Technologies, Merelbeke, Belgium).

Growing spheres were mechanically dissociated each week and

plated in fresh medium (1 passage/week). In the differentiation

experiments, after mitogen withdrawal neurospheres were grown

on poly-L-ornithine and laminin (Sigma-Aldrich) coated coverslips

(12 mm) for 7 days in serum-free medium (DMEM containing

glutamine, B27 and antibiotics). After differentiation, the cultures

were fixed with 2% paraformaldehyde for 1 hour at 4uC and they

were then processed for immunocytochemistry with Alexa-Fluor

488 and 546 tagged secondary antibodies (Molecular Probes,

Eugene, USA). After rinsing, the cell nuclei were counterstained

for 10 minutes with DAPI (1 mM in 0.1 M PBS) and the cells were

mounted in FluoromountTM (Vector Labs, Burlingame, USA).

The cells were examined on an Olympus BX61 or an Olympus

Fluoview SV 500 confocal microscope, obtaining images in

sequential scanning laser mode to avoid fluorochrome cross-

excitation.

Tissue Homogenates and Western Blotting
Mouse tissue was homogenized in lysis buffer (50 mM Tris/HCl

pH 7.4, 150 mM NaCl, 1% Triton X-100, 1.5 mM MgCl2, 10%

glycerol, 1 mM PMSF and protease inhibitors) and centrifuged at

15,000 r.p.m for 30 minutes at 4uC. Supernatants containing

soluble protein were quantified using the BCA assay (Pierce,

Rockford, USA) and the total cell protein extract (50 mg) was

mixed with Laemmli sample buffer, boiled at 100uC for 10

minutes and run on 8–12% SDS-PAGE gels. The proteins were

transferred to PVDF membranes that were then probed with the

corresponding antibodies at the concentrations indicated. Anti-

body binding was visualized by enhanced chemiluminescence

(ECL, Amersham-Pharmacia) and monoclonal antibodies against

actin and tubulin were used to normalize for loading.

Immunohistochemistry
The day of detecting the vaginal plug in female Prnp+/0 mice

was considered as embryonic day 0.5 (E0.5) and the day of birth

(the night between E19 and E20) was considered postnatal day 0

(P0). Animals were sacrificed on either E16.5 or upon reaching 2

months of age (adults). Three to five animals from at least 3

different litters of different genotypes were processed after genomic

identification. Fetuses were removed by caesarean section and all

the animals were transcardially perfused with 4% PFA. After

perfusion, the brain was removed from the skull and post-fixed in

4% PFA for 12 hours, cryoprotected in 30% sucrose and sectioned

on a cryostat at a thickness of 20 (embryos) or 30 mm (adults). The

sections were permeabilized with 0.1 M PBS containing 0.2%

Triton X-100 and to avoid unwanted cross-reactivity with the

immunoreagents they were then blocked with 10% normal goat

serum containing anti-mouse or anti-rabbit Fab fragments (1:50:

Jackson ImmunoResearch, West Grove, USA). Subsequently, the

sections were incubated overnight at 4uC with the primary

antibodies (NG2, Olig2, etc) and the primary antibodies bound to

the tissue were detected using the avidin-biotin peroxidase

complex (ABC), according to the manufacturer’s instructions

(Vector Laboratories), or with Alexa-Fluor 488 and 546

conjugated secondary antibodies (Molecular Probes, Eugene,

USA). For the ABC method, immunoreagents were diluted in

0.1 M PBS containing 0.5% Triton X-100, 0.2% gelatin and 5%

pre-immune serum. After development with 0.03% diaminoben-

zidine (DAB) and 0.01% H202, sections were mounted on

gelatinized slides, dehydrated in ethanol and coverslipped with

EukittTM (Merck Chemicals, Darmstadt, Germany). For immu-

nofluorescence, sections were counterstained with DAPI and

mounted in FluoromountTM (Vector Labs). Omission of the

primary antibody or its substitution with normal serum in the

immunocytochemical controls yielded no immunostaining.

In situ Hybridization
To detect MAG expression, we generated a cRNA probe that

recognizes both S-MAG and L-MAG [41]. A 760 bp restriction

fragment (base pairs 885–1645, shared by both S- and L-MAG)

was obtained by digesting the full-length cDNA with EcoRI and

XhoI and it was cloned into pBlueScript SK+. A MAG antisense

probe was generated from this plasmid by linearization with

EcoRI, followed by in vitro transcription with T7 RNA polymerase.

Conversely, a MAG sense probe was generated by linearization

with XhoI followed by transcription with T3 RNA polymerase.

Both sense and anti-sense riboprobes were labeled with digox-

igenin according to the manufacturer’s instructions (Roche Farma,

Barcelona, Spain), and in situ hybridization was carried out as

described previously [41].

BrdU-pulse Labeling and Immunohistochemistry
For BrdU labeling, 2 month old mice (Prnp0/0 or Prnp+/+)

received a daily i.p. pulse of BrdU (50 mg/kg b.w.) on 4 days (see

[40] for details). BrdU-injected mice were assigned to 2 equivalent

experimental groups and sacrificed 1 (4 + 1) or 15 (4 + 15) days

after the last BrdU injection. Mice were perfused with 4% PFA

and post-fixed in the same fixative for an additional 2.5 hours at

4uC. After fixation, the brains of the mice were cryoprotected,

frozen and microtome sections were obtained (30 mm). Free-

floating sections were processed as described previously [42].

Briefly, sections were pre-treated with cold 0.1 N HCl for 15

minutes and 2 N HCl for 20 minutes at 37uC to denature the

DNA. After rinsing in 0.1 M PBS, the sections were incubated

with a Fab goat anti-mouse IgG (1:50, Jackson ImmunoResearch)

for 2 hours and then with the anti-BrdU antibody. The binding of

the primary antibody to the tissue was detected using a

biotinylated secondary antibody and the ABC method. Alternative

serial sections were stained with cresyl violet or processed for dual

immunofluorescence detection of BrdU using Alexa-Fluor 488 and

Alexa-Fluor 568 tagged secondary antibodies (Molecular Probes)

as indicated [43]. Finally, the sections were mounted in

FluoromountTM (Vector Labs).

RT-qPCR
Quantitative real time PCR was performed on total RNA

extracted from isolated oligodendrocytes with the mirVana’s

isolation kit (Ambion) according to the manufacturer’s instruc-

tions. Purified RNAs were used to generate the corresponding

cDNAs that served as PCR templates for mRNA quantification.

The following primers were used for RT-qPCR validation: Prnp

For: 59-agtcgttgccaaaatggatca-39; Prnp Rev: 5̀-aaccaacctcaag-

catgtgg-39; Olig2 For: 59-ctggtgtctagtcgcccatc-39; Olig2 Rev: 59-

gctcagtcatctgcttct-39; NG2 For: 59-agcacgatgactctgagacc-39; NG2

Rev: 59-ggctacgtgaagataggg-39; Sox10 For: 59-cggacgatga-

Oligodendrocyte Proliferation & Maturation by PrPc
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caagttcccc-39; Sox10 Rev: 59-gaggtgagggtactggtcg-39; Nkx2.2 For:

59-ggtggagcgattggataaga-39; Nkx2.2 Rev: 59-tgccatcaaccttttcatca-

39; CNPase For: 59-cagctcaaggagaagaacc-39; CNPase Rev: 59-

ttgtacagtgcagcacacc-39; APC For: 59-gaagtcagtcggcatctaaagga-39;

APC Rev: 59-tctccaagtactcactcgagg-39. Sox17 For: 59-

ctttatggtgtgggccaaag-39; Sox17 Rev: 59-cttctctgccaaggtcaacg-39;

cdk2 Rev: 59-cctgcttatcaatgcagaggg-39; cdk2 Rev: 59-tgcgggtcac-

catttcagc-39. PCR amplification and detection was performed on a

Roche LightCycler 480 detector, using the 2x Sybr Green Master

Mix (Roche) as the reagent according to the manufacturer’s

instructions. The reaction protocol involved a denaturation-

activation cycle (95uC for 10 minutes), followed by 40 cycles of

denaturation-annealing-extension (95uC for 10 minutes, 72uC for

1 minute, 98uC continuous). The mRNA levels were calculated

using the LightCycler 480 software and the data was analyzed

using the DDCt method. Both experimental and calibration

samples were normalized to the relative expression of a

housekeeping gene (GAPDH).

Results

Impaired Proliferation and Differentiation of
Hippocampal Progenitor Cells in PrPc Knockout Mice

PrPc expression was previously shown to enhance the

proliferation of SVZ-derived stem cells, whilst in its absence the

proliferation of hippocampal progenitors in the subgranular zone

(SGZ) was impaired [44]. More recently, PrPc was shown to play a

critical role in modulating the proliferation of cells in embryonic-

derived neurospheres [45]. Thus, we sought to corroborate these

results in our backcrossed Prnp0/0 mice. Cell proliferation and

neurogenesis in the dentate gyrus of Prnp0/0 and Prnp+/+ mice was

monitored by measuring BrdU incorporation into dividing cells 1

or 15 days after administering BrdU (Fig. 1). The cell counts in

the SGZ and granule cell layer of the dentate gyrus revealed that

there was 52.9% reduction in the cells that incorporated BrdU

cells in Prnp0/0 mice when compared with the Prnp+/+ animals

1 day after the last BrdU pulse. Moreover, a similar decrease in

the number of cells expressing PSA-NCAM (a marker for neuronal

lineage in the SGZ [46,47,48,49]) was also detected (Fig. 1A). To

determine whether the decrease in the numbers of BrdU-positive

cells affected neurogenesis in the dentate gyrus, we assessed the

incorporation of BrdU in cells that expressed the neuronal marker

NeuN 15 days after the last BrdU pulse (Fig. 1A-C). While the

proportion of cells that incorporated BrdU in Prnp0/0 mice was

32% lower than in Prnp+/+ mice, the Figure rose to 50.7% when

considering the cells expressing NeuN that had incorporated BrdU

(Fig. 1A). Thus, the absence of PrPc diminished the proliferation

of neuroprogenitor cells and/or neurogenesis in the adult dentate

gyrus. However, a more detailed analysis of the BrdU incorpo-

ration revealed a significant increase in cells that incorporated

BrdU outside the granular cell layer and in the SGZ of the dentate

gyrus of Prnp0/0 mice (Fig. 1D-E), and these BrdU-positive cells in

the molecular layer also expressed NG2 (Fig. 1F). Based on this

observation, we sought to determine the possible role of PrPc in

oligodendrocyte proliferation and differentiation, both in vitro and

in vivo.

PrPc is Expressed by OPCs in the Developing and
Perinatal Telencephalon

In the CNS, PrPc expression has been described in postmitotic

neurons and glial cells [44,50], as well as in isolated oligodendro-

cytes and myelin [51]. However, there is no strong evidence to

date that PrPc is expressed by OPCs and indeed, glial PrPc was not

detected in the brain of transgenic mice expressing PrPc-eGFP

under the Prnp promoter [52] or eGFP under the control of the

bovine Prnp gene promoter [53]. Unfortunately, PrPc is difficult to

localize in tissue sections and there are only a few non-commercial

antibodies available to detect PrPc (see [52] for technical details).

Accordingly, we performed several experiments to define PrPc

expression in OPCs. First, we used double immunofluorescence to

examine PrPc expression in cultured OPCs that express NG2 from

P0 postnatal Prnp+/+ brains (Fig. 2A-C). Subsequently, we

determined the expression of PrPc in Western blots of protein

extracts from cortical OPC obtained from postnatal mice (P0–P2)

and from the mouse embryonic ON (Fig. 2D,E). The

characteristic pattern of PrPc expression was detected in Western

blots of Prnp+/+ OPC extracts [54] but it was absent from extracts

from Prnp0/0 mice. Moreover, we determined PrPc expression in

NG2-positive cells differentiated from SVZ neurospheres and

maintained for 20 weeks as floating aggregates in the presence of

EGF and FGF-2 before differentiating for 7 days without growth

factors (Fig. 2F-I). As expected, NG2-positive cells from Prnp0/0-

derived SVZ neurospheres exhibited no PrPc staining (Fig. 2H-I).

The Proliferation of OPCs is Stronger in ON Explants from
Prnp0/0 Embryos

We next analyzed OPC proliferation in embryonic ON explants

from Prnp0/0 and Prnp+/+ embryos (Fig. 3). At the developmental

stages studied, most of the cells populating the ON were

proliferating (Nestin-positive) oligodendrocyte precursors (Olig2-

positive). To study these two populations quantitatively, we

analyzed ON protein extracts in Western blots, which revealed

that more Nestin and Olig2 were found in the Prnp0/0 ON than in

the corresponding Prnp+/+ extracts (Fig. 3A). When ON explants

from the two genotypes were cultured on collagen matrices and

incubated with BrdU (see methods), no astrocytes migrated from

the explants and only OPCs identified as A2B5-positive cells

migrate radially from the explants [33,34,55] (Fig. 3B,C). Indeed,

more cells incorporated BrdU in the Prnp0/0 explants than in those

from Prnp+/+ mice (Fig. 3D,E), and after A2B5 immunostaining,

Prnp+/+ OPCs clearly migrated further from the explants

(Fig. 3F,G). To corroborate these observations, we counted the

number of double-labeled (A2B5-BrdU) cells in four quadrants

(200 mm2, yellow squares in Fig. 3H,I). Cell counts in randomly

selected quadrants of Prnp0/0 cultures revealed a 23% increase in

the number of A2B5 expressing cells that had incorporated BrdU

than in the Prnp+/+ cultures (Fig. 3I). By contrast, there was a 31%

decrease in the distance migrated by Prnp0/0 derived OPCs when

compared with Prnp+/+ OPCs (Fig. 3J).These data revealed a clear

correlation between the proliferation and migratory potential in

OPCs from Prnp0/0 ON explants, with higher proliferation

associated with lower migration. Indeed, Prnp+/+ OPCs displayed

weaker proliferative activity but increased migration. These

findings suggest that in three dimensional hydrogels, PrPc

decreased the proliferation and increased the migratory properties

of ON-derived oligodendrocytes.

The Absence of PrPc in Isolated Cortical OPCs Augments
Proliferation and Delays Differentiation

OPC primary cultures were established from Prnp0/0 and

Prnp+/+ mouse pups (P0-P2) as described previously [36], and the

presence of OPCs (identified as NG2-positive cells) growing over

an astrocyte monolayer was determined by dual immunohisto-

chemistry (Fig. 4A). After 3 DIV, there were many ramified

oligodendrocytes in cultures derived from Prnp+/+ mice, which

were clearly visible by phase contrast microscopy (Fig. 4B,D).

By contrast, Prnp0/0 cultures contained unramified bipolar cells

Oligodendrocyte Proliferation & Maturation by PrPc
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(Fig. 4C,E). To define the putative delay in OPC maturation in

these cultures, we performed dual immunohistochemistry 5 DIV

after the addition of SFM medium to examine markers of

different stages of oligodendrocyte maturation: Olig2, CNPase

(Fig. 4F-K) and MBP (Fig. 4M,N). Prnp0/0 cultures contained

fewer double-labeled (CNPase-Olig2) oligodendrocytes than

Prnp+/+ cultures, in which ramified double-labeled oligodendro-

cytes were frequently observed (Fig. 4F-L), and there was a 2.6-

fold increase in CNPase-positive cells (123 6 13 cells/mm2) in

the Prnp+/+ cultures with respect to the Prnp0/0 cultures (47.6 6

11 cells/mm2). Conversely, the number of Olig2 cells was 3.72-

fold greater in primary Prnp0/0 versus Prnp+/+ cultures (3,033 6

136 vs 816 6 113 cells/mm2, respectively: Fig. 4L).

When we studied markers of further differentiation, such as

MBP, Prnp0/0 derived oligodendrocyte cultures exhibited milder

MBP staining than Prnp+/+ cultures in which several multipolar

cells displayed considerable MBP staining (Fig. 4M,N). Taken

together, these results suggest that there is a delay in

oligodendrocyte differentiation in Prnp0/0 cultures. To corrobo-

rate these findings, we assessed the expression of oligodendrocyte

markers in mRNA extracted from oligodendrocytes in mixed

cultures after 5DIV in SFM and we found that Olig2, Sox10 and

Nkx2.2 were mildly up-regulated in oligodendrocytes derived

from Prnp0/0 cultures (Fig. 4O). However, when markers of

different stages of oligodendrocyte differentiation were analyzed

there was an up-regulation of NG2 in Prnp0/0 cultures while other

markers of maturation were down-regulated, such as Sox17,

CNPase and APC (Fig. 4O). These data suggest that the absence

of PrPc delays oligodendrocyte differentiation in vitro. Finally, we

analyzed the differential expression cyclin-dependent kinase 2

(cdk2), a marker of the cell cycle that controls the progression of

oligodendrocytes through the cell cycle and their differentiation

[56,57]. Cdk2 expression was significantly up-regulated in

oligodendrocytes derived from Prnp0/0 cultures, consistent with

the immature oligodendrocyte phenotype observed in

Prnp0/0 cultures.

Given that we were working with mixed cultures and since

astrocytes also express PrPc (Fig. S1), we examined whether

astrocyte conditioned media from Prnp+/+ astrocytes influenced

OPC differentiation in Prnp0/0 cultures and vice versa. Results

showed a lower percentage of CNPase/Olig2 cells in Prnp0/0 OPC

cultures than in Prnp+/+ irrespective of the amount of the added

astrocyte conditioned media (Fig. S1). To further rule out the

potential influence of astrocytes on OPC differentiation, isolated

OPCs from Prnp0/0 and Prnp+/+ mice were maintained in SFM

medium (see methods). After 5 DIV, OPCs derived from Prnp+/+

mice again displayed more CNPase-positive ramifications than

those from Prnp0/0 mice (Fig. 4P,Q). Moreover, fewer oligoden-

Figure 1. Low SGZ proliferation and neurogenesis in the dentate gyrus of adult Prnp0/0 mice correlate with high numbers of double
labeled NG2-BrdU cells in the molecular layer. A) Left: Quantification of the number of PSA-NCAM-positive and BrdU-positive cells in dentate
gyrus sections from Prnp+/+ and Prnp0/0 mice one day after BrdU-labeling. Right: Quantification of the number of BrdU-positive and BrdU/NeuN-
positive cells per section in the dentate gyrus 15 days after administering the last BrdU pulse. Values represent the mean 6 standard deviation and
the asterisks indicate statistical significance (P , 0.01, Students t-test). B-C) Representative photomicrographs showing the suprapyramidal region of
the adult dentate gyrus of 2 month old Prnp+/+ (B) and Prnp0/0 (C) mice injected with BrdU 15 days prior to sacrifice. Sections were incubated with
antibodies for NeuN and BrdU and the arrows indicate newborn neurons in the dentate gyrus. The fluorochrome used in each case is indicated in the
Figure. D-E) Representative low power photomicrographs of the dentate gyrus of 2 month old Prnp+/+ (D) and Prnp0/0 (E) mice injected with BrdU
1 day prior to sacrifice. Note the decrease in the number of cells that incorporate BrdU (arrows) in the subgranular zone of Prnp0/0 compared to
Prnp+/+ mice. By contrast, numerous BrdU-positive cells (arrowheads) can be seen in the molecular layer of Prnp0/0 than in Prnp+/+ mice. F) Example of
a double-labeled BrdU/NG2 cells in the molecular layer of Prnp0/0 mice. This image was obtained on an Olympus confocal microscope and processed
with Imaris Silicon Graphics software to obtain the orthogonal 3D Z-axis projections. Orthogonal projections are shown on the right (y-axis) and at
the bottom (x-axis). Abbreviations: DG: dentate gyrus: GCL: granule cell layer; ML: molecular layer; H: Hilus; SGZ: subgranular zone. Scale bars: B =
50 mm also applies to C. D = 200 mm also applies to E; F = 25 mm.
doi:10.1371/journal.pone.0033872.g001
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drocytes were double-labeled (CNPase/Olig2) in Prnp0/0 cultures

compared to Prnp+/+ ones (Fig. S2). To corroborate these findings,

we analyzed the mRNA isolated from these oligodendrocytes at 0

and 5 DIV in SFM. We observed similar tendencies in these

cultures to the mixed cultures and again, oligodendrocyte markers

were up-regulated in knockout mice (Olig2 and NG2) while

differentiation markers were downregulated, such as Sox17 (Fig.
S2). Together, these data confirm that the differences in the

oligodendrocyte differentiation in absence of PrPC are not

mediated by astroglial cells.

Olig2- and NG2-positive Cells are More Abundant in
Prnp0/0 than in Prnp+/+ Mice at Perinatal and Adult Stages

When we next investigated the presence of OPCs during

perinatal development, we found that Olig2-immunoreactive cells

that migrated tangentially from subpalial regions were more

abundant (2.5-fold) in the neocortex of Prnp0/0 than in Prnp+/+

embryos (E16.5: Fig. 5A-D,O). Indeed, there was an increase in

cells expressing Olig2 and NG2 (Fig. 5P) in sections of the parietal

cortex of adult Prnp0/0 versus Prnp+/+ mice (Fig. 5E,F,J,K,H,M).

Moreover, these results correlated with the 1.44- and 1.35-fold

increase in Olig2 and NG2 mRNA in this region, as determined by

RT-qPCR (Fig. S3). Nissl counterstaining revealed no differences

between Prnp+/+ and Prnp0/0 mice in the organization of the

distinct layers in the adult cortex (Fig. 5G,L). Moreover, in situ

hybridization to study the expression of the myelin-associated

glycoprotein (MAG), identifying mature myelinating oligodendro-

cytes, revealed no significant changes in the neocortex

(Fig. 5I,N,Q), cingular cortex or the white matter of Prnp0/0

mice (Fig. 6A-C). Accordingly, myelination did not appear to be

affected by the absence of Prnp. Indeed, no significant differences

were detected between the two genotypes in terms of the amount

of total MAG or myelin basic protein (MBP) in adult cortical

(Fig. 6D) and spinal cord extracts (Fig. 6E). In addition, electron

microscopy revealed no alterations to the myelin sheaths in the

cortical white matter due to the loss of Prnp (Fig. 6F-I). In

conclusion, our results indicate an increase in the number of NG2-

and Olig2-positive cells in the neocortex of Prnp0/0 mice, which

were not correlated with defective myelination. These results are

consistent with the normal myelin content and structure described

previously in the CNS of Prnp0/0 mice (see Introduction).

The Number of NG2-positive Cycling Cells Increased in
the Neocortex of Adult Prnp0/0 Mice

We extended our studies on BrdU accumulation and examined

the effects of pulse labeling in adult mice. One day after the last

BrdU pulse, more cells had incorporated BrdU in all the cortical

areas and subcortical regions of adult Prnp0/0 mice than in Prnp+/+

mice. We also observed more cells that incorporated BrdU in all

layers of the parietal cortex in Prnp0/0 mice (43.85 6 4.4 as

opposed to 29.02 6 2.1 cells per 1.5 mm2 in Prnp+/+ mice:

Fig. 6J,K). Most of the cycling cells in the neural parenchyma that

Figure 2. PrPc is expressed in oligodendrocyte precursor cells. A-C) High magnification immunofluorescence images of double-labeled
(NG2-PrPc) cells in primary OPC cultures. D) PrPc detection in Western blots of brain extracts from P0 Prnp+/+ mice probed with the SAF61 antibody
(lane 1) and extracts from primary postnatal oligodendrocyte cultures of Prnp+/+ and Prnp0/0 mice (lanes 2 and 3 respectively). E) PrPc detection in
Western blots of embryonic mice ONs (E16.5) from Prnp+/+ (lane 1) and Prnp0/0 mice (lane 2) probed with the SAF61 antibody. No PrPc was detected in
ONs from Prnp0/0 mice. F-I) Immunofluorescence images of Prnp0/0 (F-G) and Prnp+/+ (H-I) SVZ neurospheres after differentiation, demonstrating the
ability of both genotypes to differentiate into NG2-positive cells. No PrPc expression was detected in NG2-positive cells in Prnp0/0 neurospheres. Scale
bars: A = 25 mm also applies to B-C; F = 50 mm also applies to G-I.
doi:10.1371/journal.pone.0033872.g002
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Figure 3. The absence PrPc increases OPC proliferation in cultured embryonic ONs. A) Western blots of embryonic ONs (E16.5) from
Prnp0/0 and Prnp+/+ mice probed for Nestin and Olig2. Expression of both proteins was increased in Prnp0/0 versus Prnp+/+ ONs. B-C) Representative
immunofluorescence images of a 2 DIV ON explant culture from Prnp+/+ mice in three dimensional collagen matrices after staining with anti-AB25
and counterstaining with DAPI. Cells that migrated radially were identified as OPCs by the expression of the A2B5 epitope (see also lower box). D-G)
Immunofluorescence photomicrographs of 2 DIV ON explant cultures from Prnp (D-E) and Prnp0/0 (F-G) mice in three dimensional matrices after
double staining with anti-BrdU and anti-A2B5. H) Scheme illustrating the method to quantify A2B5 and BrdU staining in explant cultures. Yellow
boxes to quantify each quadrant are shown. I) Histogram showing relative percentage of A2B5 and BrdU-positive cells in Prnp0/0 and Prnp+/+ mice.
The absence of PrPc significantly increased the number of BrdU-labeled OPCs. J) Quantification of the maximal distance migrated by OPCs in ON
explants. Prnp+/+ OPCs migrated significantly further than their Prnp0/0 counterparts. Values in I and J represent the mean 6 standard deviation, and
the asterisks indicate statistical significance (P , 0.01, Students t-test). Scale bars: in B and D = 200 mm also apply to A, and E-G, respectively.
doi:10.1371/journal.pone.0033872.g003
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Figure 4. Cultured Prnp0/0 oligodendrocytes remain in an undifferentiated state for longer than the Prnp+/+ controls. A) Low power
photomicrograph of a primary Prnp+/+ mixed culture showing NG2-positive oligodendrocytes (arrows) grown and differentiated over a GFAP-positive
astrocyte monolayer. B-C) Phase contrast (PhC) images of a Prnp+/+ (B) and Prnp0/0 (C) primary oligodendrocyte mixed cultures showing the
morphology after 3 days in SFM. Numerous ramified oligodendrocytes (arrows in B) can be seen in Prnp0/0-derived cultures, in contrast to the bipolar
oligodendrocyte morphologies (arrowheads in C) seen over the astrocyte monolayer (asterisk in B and C). D-E) High magnification images of B and C
showing the greater ramification (arrows) of Prnp+/+ versus Prnp0/0 (arrowheads) oligodendrocytes. F-K) Immunofluorescence images of Olig2 (F,I)
and CNPase (G,J) expression in mixed cultures (5 days in SFM) derived from Prnp+/+ and Prnp0/0 mice. Cultures were counterstained with DAPI and the
arrows indicate the CNPase-Olig2-positive cells in both cultures. Note the absence of double labeled (CNPase/Olig2) cells in Prnp0/0 derived cultures.
L) Histogram illustrating the mean number of Olig2 and CNPase cells per mm2 in cultures of both genotypes. Values represent mean 6 standard
deviation and the asterisks indicate statistical significance (P , 0.01 Students t-test). M-N) MBP labeling in Prnp+/+ (M) and Prnp0/0 (N) in mixed
cultures after 5 days in SFM. O) Histogram showing RT-qPCR analysis of RNA samples extracted from Prnp+/+ and Prnp0/0 purified oligodendrocytes
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incorporated BrdU expressed NG2 (35.88 6 4.1 and 24.9 6 1.7 in

Prnp0/0 and Prnp+/+ mice, respectively: Fig. 6L), and these cells

(NG2-BrdU) were often arranged in small clusters or pairs

(Fig. 6M). However, 15 days after the last BrdU pulse (4 +
15 days after the first pulse), there were no significant differences

between Prnp0/0 and Prnp+/+ mice in terms of the number of cells

that had incorporated BrdU (5.1 6 0.7 vs. 5.6 6 0.8, respectively:

Fig. 6N). These data suggest that the initial overproduction of

BrdU labeled OPCs was subsequently attenuated by cell death.

Indeed, when we assessed the apoptotic cell death among surplus

NG2 cells using the TUNEL assay, some double-labeled NG2-

TUNEL-positive cells were observed in the Prnp0/0 parietal cortex

(Fig. 6O) but not in the sections of Prnp+/+ mice. After

quantification, we observed a slight increase in the number of

NG2/TUNEL cells in Prnp0/0 mice when compared to the wild-

type animals (Fig. S4). Although a direct correlation cannot be

established since Prnp0/0 cells are very sensitive to serum

withdrawal, a similar increase in the number of apoptotic cells

was also observed in the Prnp0/0 cultures in vitro (Fig. S4).

Discussion

Despite numerous studies into the role of PrPc and its

pathogenic isoform in transmissible spongiform encephalopathies

(TSEs), its function in healthy mammalian neural and non-

neuronal cells remains unclear. Opposing effects of PrPc

expression on cell proliferation have been reported and there is

considerable variation in the relative expression of this protein in

different proliferating cell types. For example, murine and bovine

PrPc is expressed strongly in proliferating cells such as hemato-

poietic stem cells, spermatogonia and lymphocytes [58,59,60,61],

whereas it is absent in other proliferating cells such as neural stem

cells in the SVZ [44] or gut [27]. Taken together, it appears that

PrPc expression may modulate the cell cycle and proliferation in a

cell specific manner, as demonstrated here. Indeed, we showed

that PrPc plays distinct roles in the proliferation of SGZ cells and

OPCs. We examined the effect of Prnp gene expression on

oligodendrocyte differentiation in detail and we demonstrated that

the absence of PrPc in OPCs increases their rate of proliferation,

strongly implicating PrPc expression in oligodendrocyte differen-

tiation. This finding is consistent with previous reports of higher

proliferative rates and shorter duplication times in neural cell lines

derived from Prnp0/0 mice when compared with those expressing

PrPc [62].

Our results demonstrate that OPCs from the embryonic ON

proliferate more in the absence of PrPc, both in perinatal stages

and in the adult neuronal parenchyma. However, these effects are

cell-specific and cannot be generalized to other cell types. For

example, treatment with specific antibodies against PrPc inhibits

the proliferation of human T lymphocytes after they are activated

[63], while re-expression of the Prnp gene in splenocytes derived

from Prnp0/0 mice restores their proliferative potential [64].

Similar findings were described in gastric cell lines [65] and

epithelial cells [66], and human embryonic stem cells (hESCs)

proliferation augments when they are incubated with recombinant

PrPc due to the down-regulation of PrPc [67]. Whether these

effects are mediated by the down-regulation of PrPc per se or

through specific PrPc-mediated intracellular signaling remains

unclear, as does the question regarding whether PrPc acts directly

(through its aggregation in lipid rafts) or indirectly (by binding to

cell receptors such as the laminin receptor (65) or to extracellular

factors like STI1 [45]). The identification of PrPc targets that

influence the cell cycle in specific cell types may shed light on these

issues. Interestingly, we found stronger cdk2 expression in cultured

OPCs derived from Prnp0/0 mice. Cdk2 participates in the G1-S

transition, and it is crucial for OPC proliferation and differenti-

ation [56,57]. In fact, contrasting patterns of cdk2 expression have

been described in proliferation and differentiation states [56].

However, we cannot rule out the possibility that extrinsic factors

modulate OPC proliferation and the increased expression of stress

markers in the Prnp0/0 mouse brain [38]. This increase in stress

may enhance the proliferation of OPCs in mutant mice as

described for other neural cells (e.g., microglia).

To the best of our knowledge, this is the first report of

oligodendrocyte differentiation in vitro in the absence of PrPc. The

absence of Prnp was correlated with an increase in the expression

of OPC markers (Olig2, Sox10, etc) and the down-regulation of

APC, CNPase and Sox17, particularly in cultured OPCs. Sox17

controls the transition from the proliferative to the myelinating

stage during oligodendrocyte development [68], and it modulates

the expression of myelin-associated genes like MBP [68]. Indeed,

we propose that the down-regulation of Sox17, together with that

of other regulators of cell fate, such as cdk2 (see above), is involved

in the delayed differentiation of Prnp0/0-derived OPCs in vitro,

although further studies will be necessary to confirm this

hypothesis. However, in a distinct model it was demonstrated

that the undifferentiated state was protracted in Prnp-deficient stem

cells after serum withdrawal, as determined by the expression of

Nestin as opposed to MAP2 protein [44]. Delayed maturation of

cerebellar granule cells was recently reported in Prnp0/0 mice,

mainly due to the protracted proliferation of granule cells during

the postnatal period [69], although normal motor behavior was

recovered around postnatal day 50. Similarly, a recent study

showed that cells PrPC expression contributes to neuritogenesis

[70].

Oligodendrocyte maturation is a complex process and com-

pensatory mechanisms may be active during development and in

adulthood. Such mechanisms could compensate for the absence of

PrPc, resulting in normal differentiation to mature myelinating

oligodendrocytes of a proportion of OPCs. This tentative

hypothesis may explain why despite the overproduction of OPCs,

oligodendrocytes that manage to ensheath the axon survive in

Prnp0/0 mice while those that fail degenerate. Oligodendrocyte

survival is regulated by their interaction with axons, which serves

to ensure that the correct number of oligodendrocytes is matched

to the surface of axons requiring ensheathment ([71], see also [72]

for discussion). Moreover, natural elimination of overproduced

OPCs by programmed cell death targeting OPCs that do not fully

mature has also been described [73]. In vivo, the direct contact of

OPCs with neurons and axonal tracts is maintained in a dynamic

manner, and their differentiation is dependent on intrinsic as well

as extrinsic cues provided by neurons (see [14,72,74] for recent

from mixed cultures after 5DIV in SFM (see methods for details). Data represent the mean induction of three independent experiments where GAPDH
was used as the reference gene. P-Q) Immunofluorescence images of double labeled CNPase-Olig2-positive cells in isolated OPCs cultures (5 days in
SFM, without astrocytes) derived from Prnp+/+ (P) and Prnp0/0 (Q) mice. Cultures were counterstained. In the Prnp0/0 cultures there were less
oligodendrocytes (Olig2-positive arrowheads) expressing CNPase with reduced ramifications (Q) compared to wild-type oligodendrocytes (P). Scale
bar: A = 50 mm; B = 50 mm also applies to C; D = 20 mm also applies to E; F = 50 mm also applies to G-K. M = 50 mm also applies to N. P = 40 mm
also applies to Q.
doi:10.1371/journal.pone.0033872.g004
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reviews). Thus, although large OPC populations are observed in

PrPc-deficient mice, it is feasible that similar numbers of OPCs

mature in Prnp0/0 and Prnp+/+ mice due to these neural factors and

axonal interactions (Fig. 7), neither of which influence this process

in vitro. Accordingly, overproduction of OPCs that do not mature

into myelinating oligodendrocytes through the appropriate

Figure 5. PrPc expression modulates the number of oligodendrocytes in the perinatal and adult neocortex. A-D) Low power
photomicrographs showing Olig2 expression in coronal sections of Prnp+/+ and Prnp0/0 embryonic (E16.5) brains. B,D) High magnification
photomicrographs of A and C. E-N) Low power photomicrographs showing a coronal brain section immunostained for NG2 (E and J), Olig2 (F, H, K
and M) and MAG. In situ hybridization (I and N) of the parietal cortex of adult Prnp+/+ (E-I) and Prnp0/0 mice (J-N). G and L are adjacent Nissl stained
sections to E and J. Note the increase in the number of NG2- and Olig2-positive cells in the Prnp0/0 neocortex compared to that of the Prnp+/+ mice. O)
Histogram showing the number of Olig2-positive cells in the embryonic neocortex of Prnp0/0 and Prnp+/+ mice. P) Histogram showing the number of
Olig2- and NG2-positive cells in the adult neocortex of Prnp0/0 and Prnp+/+ mice. The presence of Olig2- and NG2-positive cells increased significantly
in the knockout mice when compared with their Prnp+/+ counterparts. Q) Quantification of the number of MAG-positive cells in the adult cortex of
Prnp0/0 and Prnp+/+ mice, revealing no significant differences between these genotypes. Values represent the mean 6 standard deviation and the
asterisks indicate statistical significance (P , 0.01, Students t- test). Scale bars: A = 500 mm also applies to C; B = 200 mm also applies to D. E =
300 mm also applies to F,G and J-L; H = 100 mm also applies to I and M-N.
doi:10.1371/journal.pone.0033872.g005
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Figure 6. Adult Prnp0/0 mice exhibit normal myelination in the CNS. A-B) In situ hybridization of MAG in coronal sections from the brains of
adult Prnp+/+ and Prnp0/0 mice. C) Quantification of MAG-positive cells revealed no differences between genotypes in the corpus callosum or cingular
cortex. Values represent the mean 6 standard deviation and they were analyzed using the Student’s t-test. D-E) Western blots of brain extracts from
Prnp+/+ and Prnp0/0 mice showing no differences in the expression of the MAG and MBP myelin proteins between genotypes in neocortex (D) and
spinal cord (E). F, H) Lower magnification electron microscopy photomicrograph of Prnp+/+ and Prnp0/0 mice. G, I) Higher magnification of F and H,
respectively, showing no gross ultrastructural differences in the myelin sheaths of the corpus callosum. J-K) Representative photomicrographs of the
parietal cortex of Prnp+/+ (J) and Prnp0/0 (K) mice immunostained for BrdU 1 day after the last BrdU pulse. Slides were lightly counterstained with Nissl.
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neuronal-glia interactions may disappear due to cell death (Fig. 7).

Future studies will investigate the relationship between PrPc and

the expression of neuronal factors that modulate OPC differen-

tiation (e.g., PDGF-AA, neuregulins, Notch, etc.), which may be of

special interest when considering oligodendrocyte maturation in

demyelinating diseases and other myelopathies. In fact, the

absence of PrPc accelerates the onset of experimental autoimmune

encephalomyelitis (EAE) and exacerbates its devastating effects

[75,76]. Although warrant for further studies, the present data

suggest that in absence of PrPC, OPCs might remain in a more

protracted undifferentiated state that may negatively affect the

normal course of differentiation to myelinating oligodendrocytes in

the EAE model.

Numerous BrdU-positive cells can be seen in Prnp0/0 compared to wild-type (arrows in J and K) L) Quantification of BrdU incorporation and the
double-labeled BrdU-NG2-positive cells 1 day after the last BrdU pulse. Both populations increased in the parietal cortex of Prnp0/0 mice when
compared to Prnp+/+ mice. M) Photomicrograph of double-labeled BrdU-NG2 cells (arrows) in the parietal cortex of Prnp0/0 mice. Arrowheads indicate
non-BrdU NG2-positive cells. N) Quantification of BrdU-positive cells 15 days after the BrdU pulse (4 + 15 protocol). Values in (L) and (N) represent the
mean 6 standard deviation and the asterisks indicate statistical significance (P , 0.01, Student t-test). O) Photomicrograph showing double-labeled
NG2/TUNEL cells (arrows) in the Prnp0/0 parietal cortex, in which the arrowheads indicate non-NG2-TUNEL-positive cells. Abbreviations: DG: dentate
gyrus: GCL: granule cell layer; ML: molecular layer; H: Hilus; SGZ: subgranular zone. CC: corpus callosum; CGC: cingulate cortex; NC: neocortex. H:
hippocampus; Scale bars: A = 300 mm also applies to B; F: 2 mm also applies to H; G = 0.5 mm also applies to I; J and K = 100 mm. M = 50 mm and O
= 25 mm.
doi:10.1371/journal.pone.0033872.g006

Figure 7. A putative scheme of PrPc involvement in oligodendrocyte proliferation and maturation. A-B). Scheme summarizing the main
in vitro findings of the present study. The absence of PrPc in cultured OPCs from the ON and in the isolated cortical OPCs prolonged the proliferative
stage in these precursors, and the modification of intrinsic factors modulating cell proliferation and oligodendrocyte differentiation (e.g., Sox17, cdk2)
may delay their normal maturation. C-D) No differences in CNS myelination were observed between Prnp0/0 and Prnp+/+ mice, although increased
proliferation was observed in adult NG2 cells in Prnp0/0 mice. The putative changes in intrinsic factors are overcome by extrinsic (neuronal and
astroglial) factors to establish normal myelination. These extrinsic signals (e.g., PDGF-AA, FGF-2, IGF-1, NT-3 or CNTF) may help to control the proper
timing of OPC differentiation, ensuring adequate myelination and its maintenance. Surplus NG2 cells are eliminated by cell death in this balanced
system.
doi:10.1371/journal.pone.0033872.g007
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Supporting Information

Figure S1 Astrocytes do not affect oligodendrocyte
differentitation in vitro. A) Western blots of protein extracts

from astrocyte cultures from Prnp+/+ mice and total brain, probed

with GFAP and PrPc antibodies. B) Histogram showing the

percentage of CNPase/Olig2-positive cells in cultures of Prnp0/0

and Prnp+/+ mice in the presence of different amounts of

conditioned media collected from astrocyte cultures of the opposite

genotype (0, 25, 50 and 75% of conditioned media in SFM

medium). Values represent the mean 6 standard deviation and the

asterisks indicate statistical significance (P , 0.01, Student t-test). In

wild-type cultures there were no differences in differentiation in the

presence of Prnp0/0 astrocyte conditioned media, although there

were significantly more CNPase/Olig2-positive cells than in

knockout cultures. In Prnp0/0 OPCs cultures there were no

differences in differentiation in the presence of conditioned media

from wild-type astrocyte cultures.

(TIF)

Figure S2 Prnp0/0 oligodendrocytes were less differen-
tiated than the wild type oligodendrocytes in vitro. A)

Histogram showed the quantification of the CNPase/Olig2 double

labeled cells in cultures of isolated OPCs from Prnp0/0 and Prnp+/+

mice. Note that in Prnp0/0 cultures the proportion of mature

oligodendrocytes was lower. Values represent the mean 6

standard deviation, and the asterisks indicate statistical significance

(P , 0.01, Students t-test). B) Histogram showing RT-qPCR

analysis of RNA samples extracted from Prnp+/+ and Prnp0/0

purified oligodendrocytes after 0 and 5 DIV in SFM and without

astrocytes. The data represent the induction of three independent

experiments, with GAPDH used as the reference gene.

(TIF)

Figure S3 Prnp0/0 mice have increased levels of Olig2
and NG2 mRNA than Prnp+/+ mice. Histogram showing RT-

qPCR analysis of RNA samples extracted from the adult Prnp+/+

and Prnp0/0 mouse cortex. Data represent the mean induction of

three independent experiments in which GAPDH was used as the

reference gene.

(TIF)

Figure S4 PrPc absence derived in OPCs less survival in
vivo and in vitro. A) Histogram showed the number of NG2/

TUNEL-positive cells in the neocortex of adult Prnp+/+ and Prnp0/0

mice. B) Histogram showed the number of double labeled Olig2/

TUNEL cells in isolated oligodendrocytes derived from Prnp+/+

and Prnp0/0 cultures. In both cases there were more apoptotic

oligodendrocytes in the absence of PrPc. Values in A and B

represent the mean 6 standard deviation, and the asterisks

indicate statistical significance (P , 0.01, Students t-test).

(TIF)
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