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Abstract

In humans, dopamine is implicated in reward and risk-based decision-making. However, the specific effects of dopamine
augmentation on risk evaluation are unclear. Here we sought to measure the effect of 100 mg oral levodopa, which
enhances synaptic release of dopamine, on choice behaviour in healthy humans. We use a paradigm without feedback or
learning, which solely isolates effects on risk evaluation. We present two studies (n = 20; n = 20) employing a randomised,
placebo-controlled, within-subjects design. We manipulated different dimensions of risk in a controlled economic paradigm.
We test effects on risk-reward tradeoffs, assaying both aversion to variance (the spread of possible outcomes) and
preference for relative losses and gains (asymmetry of outcomes - skewness), dissociating this from potential non-specific
effects on choice randomness using behavioural modelling. There were no systematic effects of levodopa on risk attitudes,
either for variance or skewness. However, there was a drift towards more risk-averse behaviour over time, indicating that
this paradigm was sensitive to detect changes in risk-preferences. These findings suggest that levodopa administration does
not change the evaluation of risk. One possible reason is that dopaminergic influences on decision making may be due to
changing the response to reward feedback.
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Introduction

Risk is a key concept in decision theory, describing situations of

uncertainty where actions lead to a range of possible outcomes [1].

Risk is ubiquitous both in the natural world and in complex

human economies, and many decisions can be conceptualised as a

trade-off between risk and potential reward. Risk perception is

driven by multiple features of a decision, such as the spread

(measured as variance) of possible outcomes [2,3,4], as well as

asymmetry between better or worse than average outcomes

(measured as skewness) [5,6,7]. While some individuals prefer to

take a risk in exchange for higher possible reward, ‘risk-averse’

individuals require a greater financial incentive to make a risky

choice (i.e. have a greater ‘risk-premium’). Dopamine plays a

central role in reward and risk-based decision-making, but its

specific contribution to risk evaluation in healthy humans is

unclear.

Clinically, Parkinson’s disease (PD), where nigro-striatal dopa-

mine pathways are impoverished, is associated with disrupted

decision-making [8,9]. Dopamine agonists, used to treat PD, can

cause pathological gambling behavior [10,11], a side-effect

exacerbated in dual therapy with both dopamine agonists and

levodopa [12], although some studies report no effect of dopamine

augmentation therapy on decision making in PD patients [13].

Manipulation of dopamine levels in rats disrupts decision-making

under uncertainty in foraging tasks. Amphetamine (which

augments dopamine release), D1-, or D2-receptor agonists can

increase preference for a risky choice, and the effects of

amphetamine can be abolished by dopamine receptor blockade

[14]. Neuroimaging studies have identified subcortical and cortical

dopaminoceptive regions linked to risk and choice [15,16,17,18].

Single-unit recording studies show that tonic firing of dopaminer-

gic midbrain neurons scales with risk [19], although there is debate

about whether this signal represents prediction errors during

learning [20,21], encoded initially at the time of reward feedback

and following learning at the time of reward-predictive signals

[22].

Previous studies have not addressed which specific aspect of risk

dopaminergic modulation might influence. For example, dopa-

mine has been proposed to act as a generic neuromodulatory

signal encoding the uncertainty of predictions [23], hence might

be expected to have a specific impact on evaluation of variance.

Dopamine agonists have also shown to systematically alter choices

and neural activity following better than average (i.e. unexpectedly

good) rewards, hence dopamine might alternatively impact upon

the evaluation of relative gains versus losses in a choice (skewness).

Moreover, previous tasks have tended to employ continual reward

feedback, either in the context of learning or for gambling tasks

where risk is explicit. Dopamine release is strongly associated with

reward feedback and reward anticipation [24], therefore it is

possible that dopamine alters the response to feedback as well as

affecting the statistical evaluation of risk per se. Performance

impairments following dopaminergic depletion in tasks involving
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risk assessment, such as the Iowa Gambling Task (IGT) [25], could

be explained in terms of any of these effects.

Here we assessed the effect of dopamine administration on the

statistical evaluation of risk, measuring decision-making in healthy

subjects performing two different economic gambling experiments.

In the first experiment, we tested whether dopamine influences the

trade-off between (expected) reward and variance. In the second

experiment, we tested if dopamine influences the evaluation of

variance, or of relative gains and losses (skewness). Crucially, we

employed a task where we could independently manipulate both

expected value-variance and variance-skewness. Critically, all

choices are based on explicit presentations of risky gambles and

no feedback is given during the task, which controls for effects on

reward feedback or learning such that we can measure solely

effects upon the evaluation of risk. Additionally, using behavioural

modeling we were able to determine whether dopamine simply

makes choices more random (which can often appear as a

tendency towards risk-neutrality). Using a randomised, double

blinded, placebo controlled administration of L-dopa (which

increases vesicular dopamine release in the central nervous system)

[26], we aimed to detect any systematic effects of dopamine

augmentation upon individuals’ risk-reward trade-offs.

Materials and Methods

1. Ethics Statement
Experiments were approved by the Institute of Neurology

(University College London) Ethics Committee. All subjects gave

fully informed written consent for participation.

2. Setup
In total forty healthy participants were recruited, (Experiment

1:7 male/13 female, mean age 23.1, SD=3.44, range 19–32;

Experiment 2:7 male/13 female, mean age 22.4, SD=4.27, range

18–33) and attended on two separate occasions one week apart.

On each week, subjects received either a 100 mg dose of L-dopa

(Madopar - levodopa/benserazide, 100/25 mg, Roche) dissolved

in fruit squash or an indistinguishable fruit squash placebo,

administered 50 minutes before behavioral testing to allow

dopamine to reach peak plasma and neural concentration [27].

Stimuli were presented and responses recorded using Cogent

presentation software (Wellcome Trust Centre for Neuroimaging,

London) written in MATLAB (version 6.5, MathWork, Natick,

MA). The task was performed on a standard PC, and choices were

indicated using a keyboard. We provided a 5-minute practice

tutorial to demonstrate the paradigm. Data were analysed using

MATLAB and SPSS (SPSS for Windows, Rel. 12.0.1. 2003.

Chicago: SPSS Inc.).

3. Paradigms
To dissociate preferences for different components of risk, in

terms of dispersion (variance) and asymmetry of outcomes

(skewness), we implemented a previously-used decision-making

task design [28] that controls the distribution of outcomes to

ensure that expected value, variance and skewness of a set of

lotteries could be manipulated independently by design. We tested

whether dopamine administration influenced the impact of either

average return, the spread of outcomes (measured as variance) or

relative loss and gain (asymmetry of outcomes, measured as

skewness). On each trial, participants were required to choose (5s

decision time) between taking a ‘sure’ (fixed) amount of money or

electing to ‘gamble’ (choosing to play a lottery with a number of

potential outcomes). Gambles were represented as 4-segment pie-

charts (Figure 1). We conducted two separate experiments, each

with 20 subjects and an identical structure, apart from the specific

stimulus sets employed.

3.1 Experiment 1: Independent manipulation of expected

value and variance. We constructed a stimulus set of 252

lotteries where expected value and variance were independent and

varied over a range (see File S1). Expected value of the lotteries

ranged from £3.25 to £8.00, while variance ranged from 0.47 to

24.05£2. All stimuli were symmetric (i.e. had zero skewness).

Stimuli were constrained to have 4 outcomes (segments of the pie

chart), with outcome probabilities varying in minimum 0.1

increments between 0 and 1. These restrictions allow the

generation of a space of possible lotteries varying in expected

value and variance. EV and variance were orthogonal by design

(correlation coefficient: r=0.07).

3.2 Experiment 2: Independent manipulation of variance

and skewness. Here, we constructed a stimulus set of 252

lotteries where variance and skewness were independent and

varied over a range (see File S2). Expected value of the lotteries

was constant (£5.95–£6.05). Variance ranged from 1.7 to 30.9£2.

Skewness ranged from 238.6 to 38.6£3. Variance and skewness

were orthogonal (correlation coefficient: r ,0.01). As in experi-

ment 1, stimuli were constrained to have 4 outcomes (segments of

the pie chart), with outcome probabilities varying in minimum 0.1

increments between 0 and 1.

This setup allows us to test whether dopamine has a systematic

influence on the trade-off between risk and reward in the absence

of decision feedback or not. We anticipated that we might detect

non-specific effects, such as a shift in risk preference from week 1

to week 2 or an effect of drug on choice randomness, hence our

paradigm and analysis enables us to distinguish and quantify these

effects separately from effects on risk dimensions. If dopamine

purely affects the evaluation of anticipated (mean) reward, we

would expect to observe a shift in risk-reward tradeoff in

experiment 1 but not in experiment 2 where expected value is

constant. If dopamine alternatively affects just the evaluation of

relative losses and gains in a gamble (which we operationalise here

as skewness), then we would expect to observe solely an effect in

experiment 2. If dopamine affects the encoding of variance, we

would expect effects in both experiment 1 and in experiment 2.

On each occasion, the participant made decisions about the

same set of 252 choices. Using a diverse spread of lotteries enables

us to map out responses (choices) to stimuli representing an entire

array of risk and value combinations. Consistent tradeoffs between

different dimensions of value, variance, and skewness can then be

explored and tested by comparing the performance of different

decision-making models where subjects express preferences for

each of these components. In addition, utilising a large range of

possible gambles is akin to psychophysical methods [29], and

means that any specific biases engendered by the configuration of

a particular gamble will have a minor influence on an overall

decision making metric. On each occasion, choices were presented

in a randomised order, and the orientation and ordering of pie

chart segments was also randomised on each trial. Stimulus sets

were constructed and the sure amount alternative was fixed at

£4.50, such that participants would choose to gamble approxi-

mately 50% of the time on average (based on pilot studies). This

meant that the stimulus sets had the greatest power to distinguish

subtle effects on changes in EV-variance and variance-skewness

tradeoffs.

4. Payment
To ensure that subjects chose in accordance with their genuine

preferences, payment was incentive compatible. Four trials were

selected randomly (two from participants’ first session and two
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from their second session) and played out for real at the end of the

second visit. For each selected trial, if subjects chose the sure

amount, they won £4.50, whereas if they elected to gamble, the

lottery was resolved with an animated ‘roulette wheel’ graphic of a

red ball spinning around the pie chart, before coming to rest at a

randomly selected position which determined their winnings from

that trial. Winnings ranged from £20.00 to £42.50 (mean

£32.23), including a baseline participation fee of £12.

5. Behavioural Modelling
For a given lottery with 4 potential outcomes (m1, m2,… mN),

with probabilities p = p1, p2, …pn, we define the statistical moments

(expected value (EV), variance (Var), skewness (Skw)) of the

outcome distribution as follows:

Figure 1. Experimental Paradigm. A. We represented gambles on-screen as pie-charts. The pie chart was divided into different segments
showing possible outcomes from the lottery. The numbers written in each segment showed the monetary value of each outcome (in pounds sterling)
and the angle subtended by each segment indicated the probability of each outcome occurring. A negatively skewed gamble (left) has a small
chance of a worse than average outcome (the tail of the distribution is to the left). Conversely, a positively skewed gamble (right) has a small chance
of a better than average outcome (the tail is to the right). Both example gambles have identical expected value (£6) variance (5£2), but opposite
skewness (+/27.2£3). B. Each task consisted of 252 trials. For each trial, a pie chart was shown, and after 5 seconds, a cue to respond appeared on
screen (for 1 second). Subjects indicated by a button press while the cue was on-screen if they wanted to gamble on the lottery, or alternatively select
a fixed, sure amount of money (of £4.50 throughout). At the end of the experiment on their second visit, four trials were randomly selected and
played out for real. If subjects had elected to gamble, we resolved the lottery by an on-screen graphic of a red ball spinning around the outside of the
pie which stopped at a randomly selected position.
doi:10.1371/journal.pone.0068177.g001
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EV~
X4

n~1

mnpn ð1Þ

Var~
X4

n~1

mn{EVð Þ2pn ð2Þ

Skw~
X4

n~1

mn{EVð Þ3pn ð3Þ

We analysed choice data by fitting a linear mean-variance-

skewness model (MVS) where individuals are allowed to express

different preferences for variance and skewness. To establish

whether individuals are indeed responding to risk, we test this

MVS model against a series of reduced models, where decisions

are based on mean difference (M) alone (where subjects only take

account of the difference between the sure amount and the

expected value of the gamble in selecting actions), or a mean-

variance model (MV).
We then define the subjective value, or utility (U) of each lottery

for our models:

Mean model (M)

U~EV ð4Þ

Mean-variance model (MV)

U~EVzrVar ð5Þ

Mean-variance-skewness model (MVS)

U~EVzrVarzlSkw ð6Þ

r and l are free parameters, r reflecting preference for

variance, and l reflecting preference for positive versus negative

skewness respectively.

We test a further model able to account for different preferences

for positive and negative skewness (MVS2).

U~EVzrVarzlzSkwzzl{Skw{ ð7Þ

Where Skw+ indictates Skw$0 and Skw2 indicates Skw,0, and

l+ and l2 reflect preferences for positive and negative skewness

respectively.

Our models compare the utility of the lottery with the value of

the sure amount (S) to generate a trial-by-trial probability of

choosing the lottery over the sure amount, using a logistic/softmax

function which allows for noise in action selection (by free

parameter b).

Pchoose gamble~
1

1ze
1
b
U{Sð Þ

ð8Þ

We estimated best-fitting model parameters using maximum

likelihood analysis, with unconstrained optimisation implemented

with a non-linear Nelder-Mead simplex search algorithm in

Matlab (Matlab, Natwick, USA) and compared models using the

Bayesian Information Criterion (BIC) [30] as an approximations

to the model evidence and penalising model complexity [31].

Results

1. Behaviour
1.1 Experiment 1: Expected value versus variance trade-

off. Subjects distributed their choices between gamble and sure

options throughout the course of the experiment (as intended by

experimental design), choosing to gamble on average 43.1% (SD

617.23%) of trials on placebo, and 40.6% (SD 617.15%) on L-

dopa (compared to a risk-neutral decision maker who would have

gambled on 79% of trials with this stimulus set). There was no

significant difference between these proportions (paired t-test,

t19 = 1.20, p = 0.24) (Figure 2A). Even accounting for the effect of

order in a 262 repeated measures ANOVA (drug/placebo6drug

week 1/drug week 2), there was no overall effect of drug

administration (F1,9 = 0.05, p = 0.95), although the order effect

reached trend significance (F1,9 = 4.38, p = 0.06), with an average

25.7+/28.0% change in percentage gambling from week 1 to

week 2.

1.2 Experiment 2: Variance versus skewness trade-

off. Here, subjects also distributed their choices between gamble

and sure options throughout the course of this experiment,

choosing to gamble in on average 47.8% (SD 619.5%) of trials on

placebo, and 48.4% (SD 619.3%) on L-dopa (compared to a risk-

neutral decision maker who would have always gambled with this

stimulus set). There was no significant difference between these

proportions (paired t-test, t19 = 0.15, p = 0.88) (Figure 2B). As
above, we also entered data into a 262 repeated measures

ANOVA, which confirmed no overall effect of drug administration

(F1,9 = 0.03, p= 0.87), although the order effect again approached

significance (F1,9 = 3.83, p = 0.07), with an average 28.1+/
217.9% change in percentage gambling from week 1 to week 2.

We further examined for any effects on risk in specific

subdomains (e.g. only for positively skewed gambles with a small

chance of high rewards). Choice data were partitioned into 4

domains - high/low variance and positive/negative skewness

decisions - and entered into repeated measures ANOVA. This

revealed no significant effect of drug (F1,9 = 0.01, p= 0.91), with no

significant interaction between drug and domain (F3,9 = 0.11,

p = 0.96).

2. Behavioural Modelling
We next performed a model-based analysis of participants’

choices, where we estimated parameters for variance- and

skewness-aversion from an economic decision model. This model

based analysis was designed firstly to test whether subjects’ made

consistent choices, trading risk and reward in a coherent manner

(as opposed to being insensitive to risk). A lack of drug effect could

be purely due to a baseline indifference to risk in our subjects.

Secondly, parameters estimated from a behavioural model have

greater sensitivity to detect small systematic changes in risk-

preferences than a simple summary analysis of percentage

gambling. Thirdly, we can test specific behavioural hypotheses

by comparing the performance of different models in explaining

the data. Dopamine may induce a change in risk-preference (i.e.

the trade-off between risk and potential reward) or may simply

induce a general bias in choice that leads to an increased

predilection for gambling, without altering risk-sensitivity. Finally,

The Effect of L-dopa on Risk Evaluation in Humans
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we can also test whether dopamine significantly changed choice

randomness or noise as we explicitly model this as a free parameter

that determines the slope of the logistic (softmax) function.

2.1 Sensitivity to risk. We independently manipulated

variance and skewness, and predicted that individuals’ preferences

would be sensitive to both aspects of risk. To test this, we

compared a set of models which predict choice on the basis of

either the mean value of sure vs lottery options alone (model M,

risk-insensitive), the mean and lottery variance (model MV), and
for experiment 2, the mean variance and skewness (model MVS).

Risk-sensitive models far outperformed the risk-insensitive

model demonstrating that subjects’ choices were significantly

influenced by decision risk (Figure 3A). Moreover, the MVS
model was superior to the MV model in predicting choice in

experiment 2 (Figure 3B), showing that individuals are influenced
by both risk dimensions of variance and skewness (experiment 1:

BICM=11827, BICMV=5964, MV model posterior probabili-

ty.0.99 (very strong evidence in favour of MV model);

experiment 2: BICM=12999, BICMV=8708, BICMVS=8352,

MVS model posterior probability.0.99 (very strong evidence in

favour of MVS model)).

We estimated parameters corresponding to tastes for our 2

independent risk domains, variance (r) and skewness (l), as well as
choice randomness (b), for each subject and each condition (drug/

placebo) independently. We entered individually estimated

parameters into group-level analysis to test for differences.

Participants were on average averse to variance in both

experiment 1 (rPLACEBO=20.13, SD +/20.08; rLDOPA =20.15,

SD +/20.10) and experiment 2 (rPLACEBO=20.11, SD +/
20.07; rLDOPA=20.12, SD +/20.10). While 19/20 subjects

here were variance averse, skew preferences were heterogeneous

(lPLACEBO= 0.0039, SD +/20.0253; lLDOPA =0.0011, SD +/
20.0169), with 8/20 positive skew-seeking individuals (on

placebo). b values were low (experiment 1: bPLACEBO=0.52 SD

+/20.17, bLDOPA= 0.49 SD +/20.13; experiment 2: bPLACE-
BO= 0.53 SD +/20.18, bLDOPA =0.53 SD +/20.24), indicating

that choices were well partitioned by the behavioural models and

that choice noise was low.

2.2 Drug-induced changes in preference. There were no

significant differences in r, l, or b parameters between drug and

placebo sessions, either in experiment 1 (paired t-tests, r:
t19 = 1.63, p = 0.12; b: t19 = 0.35, p = 0.96; Figure 3C) or in

experiment 2 (paired t-tests, r: t19 = 0.29, p= 0.78; l: t19 = 0.62,

p = 0.54; b: t19 = 0.01, p = 0.99, Figure 3D). This indicates that

L-dopa had no effect on altering risk-return tradeoffs, either in

terms of the impact of the spread of outcomes, or on relative losses

and gains. Moreover, there was no effect on choice randomness –

choices were equally noisy in both sessions.

We also checked for evidence of skewness intransitivity in

experiment 2 by fitting a different model (MVS2) where subjects

can express different sensitivities for positive and negatively skewed

lotteries. If individuals prefer or dislike both positive and negative

skew, this will not be well captured by the MVS model, hence

lowers our power to detect drug-induced changes in preference.

Figure 2. Behavioural results. A. Experiment 1– Expected value – variance manipulation. B. Experiment 2– Variance – skewness manipulation. On
left, scatterplots of percentage gambling choices on levodopa and placebo (n = 20). Gambling choice percentage is very highly correlated for
individuals for the two separate (placebo and levodopa) attended sessions (linear fit through origin - Experiment 1: F1,19 = 431, p,0.01, r = 0.98;
Experiment 2: F1,19 = 123, p,0.01, r = 0.93).On right, percentage differences in gambling choice between placebo and levodopa conditions plotted
per subject with average effect size (ns = non-significant, error bars show standard error).
doi:10.1371/journal.pone.0068177.g002
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Indeed, the MVS2 model was significantly better than the simpler

MVS model at explaining choice, even accounting for its extra

parameter (BICMVS=8352, BICMVS2=7914), and revealed that

9/20 participants disliked both positive and negative skew

compared to symmetric gambles, while 3/20 preferred both

positive and negative skew. However, even in this more sensitive

model, we detected no difference in preference (or choice noise)

between drug and placebo (average parameter values: rPLA-
CEBO=20.12, SD +/20.08, rLDOPA=20.12, SD +/20.10;

l+PLACEBO= 0.0052, SD +/20.0207; l+LDOPA= 0.0073, SD +/
20.0246; l2PLACEBO=20.0027, SD +/20.0241;

l2LDOPA=20.0002, SD +/20.0339; bPLACEBO=0.55 SD +/
20.23, bLDOPA= 0.53 SD +/20.23. Paired t-tests, r: t19 = 0.21,

p = 0.84; l+: t19 = 0.50, p = 0.62; l2: t19 = 0.35, p = 0.73; b:
t19 = 0.30, p = 0.77).

2.3 Changes in preference over time. Given the observed

(non-significant) changes in percentage gambling over time in both

experiments, we tested whether this translated into significant

changes in model parameter estimates for risk preference,

expected if the model-based approach is indeed more sensitive

in detecting such changes. As anticipated, there were significant

changes in variance preference parameters from week 1 to week 2

(paired t-tests: experiment 1 - r: t19 = 2.82, p= 0.01; experiment 2

- r: t19 = 2.09, p = 0.05; l: t19 = 1.59, p = 0.13, Figure S1).

Discussion

We explored the effect of L-dopa administration on evaluation

of different aspects of risk, and the impact on decision making, in

healthy humans. To control for possible drug-induced changes in

learning and response to reward, our paradigm was specifically

designed to isolate effects on risk evaluation. Moreover, by using

an economic task and behavioural modelling, we could empirically

quantify changes in risk preferences.

1. Risk Sensitivity
All subjects were sensitive to risk, being generally averse to

increasing variance (spread of outcomes), and with a range of

preferences for skewed gambles (asymmetrical distribution of

outcomes). Our behavioural modelling revealed the importance of

both risk dimensions, as simpler models based only on the average

anticipated reward (expected value) failed to explain behaviour as

well as the MV and MVS models. Crucially, we find that L-dopa

administration does not affect preferences for either variance or for

skewness. Moreover, the fact that we observe no changes in

Figure 3. Behavioural modelling. A. Experiment 1: Log-evidence, approximated by the Bayesian information criterion (BIC), for mean only (M)
and mean-variance (MV) models. Fixed effects analysis of Group Bayes Factors shows MV highly significantly superior to M model (likelihood ratio
test: p,1025). B. Experiment 2: BIC scores for mean-variance (MV) and mean-variance-skewness (MVS) models. MVS highly significantly superior to
MVmodel (likelihood ratio test: p,1025). BIC= k.ln(n) –2ln(L), where L is the model likelihood, n is the number of observations and k is the number of
free parameters. Lower BIC indicates better model fit. C. Experiment 1: Differences in (standardised) model parameters for choice noise (b) and
variance preference (r) between placebo and levodopa sessions. Error bars show standard deviation. D. Experiment 2: Differences in (standardised)
model parameters for choice noise (b), variance (r), and skewness (l) preference between placebo and levodopa sessions. Error bars show standard
deviation.
doi:10.1371/journal.pone.0068177.g003
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experiment 1 means that neither average value, variance, or the

trade-off between them is influenced by L-dopa.

Our paradigm substantially differs from previous psychophar-

macological studies of risk, as we assess choice preferences for

independent statistical features of a distribution of outcomes. This

economic quantification of risk preference lends power and

precision over previous paradigms used to assess risk-taking (e.g.

Cups task [32], Game of Dice Task [33], Risk Task [34]). In these

tasks risk is explicitly described for participants, as opposed to less

specific alternatives such as the IGT and Ballon Analogue Risk

Task (BART) [35] where participants are uncertain about the real

probability of rewards. Summary measures of percentage gam-

bling are used to delineate risk-taking, however these measures are

specific to the set of stimuli used - stimulus sets in which different

features, such as expected value, variance, and skewness, are often

correlated. This renders it difficult to quantify precise effects, to

map these on to specific psychological or neural processes, and to

determine the true effect size of choice shifts.

Our observed lack of drug effect cannot be simply accounted for

by an inability of the task to engage participants, or due to the

large variety of risk levels presented impairing the ability to make

appropriate responses. The fact that subjects demonstrated clear

and consistent risk-sensitivity (to both variance and skewness)

indicates that subjects were attentive and able to execute the task

correctly (i.e. to make considered decisions between risky and risk-

free choices in accordance with intrinsic preferences). There was

also a strong consistency in individuals’ choices over time. This

correlation was slightly less in experiment 2, perhaps reflecting

that preferences for variance are more stable than those for

skewness. Here we employed a within-subject design with twenty

subjects tested on two separate occasions, which potentially could

induce a desire for consistency in choice behavior and explain a

lack of effect. However, this paradigm and closely related tasks

with similar sample sizes have been used to delineate changes in

risk-preference induced by physiological manipulations such as

hunger and satiety [36] and psychological manipulations such as

making decisions for losses versus gains [37].

Our paradigm was sensitive to small changes in risk preference,

as revealed by the systematic decrease in propensity to gamble

from week 1 to week 2 across subjects. Moreover, the model-based

analysis showed greater sensitivity in detecting this change than

the overall measure of percentage gambling choice. The 6%

choice shift in experiment 1 was explained by a significant increase

in variance aversion (r), which translates in financial terms to a

difference in risk premium of £0.80 for a 50:50 chance of winning

£10 or £0 (i.e. this same gamble becomes £0.80 less appealing to

an individual from week 1 to week 2). Thus although our

paradigm was sensitive to this small, systematic drift in risk attitude

over time, we did not detect a drug effect.

It can also be difficult to distinguish between drug induced

changes in risk-reward tradeoff versus changes in choice noise in

previous paradigms. Inattentive or random responding in a binary

choice task will shift choice proportions towards 50%, an effect

which can often masquerade as a change in risk evaluation, and

may account for some previous findings in drug studies [38].

Importantly, we can account for non-specific effects of drug

administration on the randomness of responses in our behavioural

model, which partitions effects into changes in risk preferences,

and the independent quantification of choice noise.

2. Effects of L-dopa
It is possible that our L-dopa administration did not cause

sufficient physiological effects to influence behaviour, and inter-

individual variability in drug pharmokinetics is a potential source

of heterogeneity in our results. However, the oral dose of 100 mg

L-dopa used here has been previously employed in a range of

studies, demonstrating effects on semantic priming [39,40,41],

cognitive control [42], learning and memory [43,44,45,46],

perception [47], and decision-making [48,49]. A 100 mg oral

dose minimises side effects of nausea or drowsiness, which can

significantly impact upon performance. Although oral administra-

tion is used in standard clinical practice, this delivery method relies

on systemic absorption into the central nervous system which is

another source of variability. We also ensured a delay between

drug administration and task execution such that the task was

performed at the expected time of peak L-dopa concentration

[50], making it unlikely that the lack of effect is only due to low L-

dopa levels.

3. Risk Versus Reward Learning
Given previous reports of the effects of dopamine manipulation

on risk-taking in patients and healthy humans, we speculate about

alternative explanations for the lack of effect here. We were careful

to design our task to eliminate effects of learning and reward

feedback. Here, our stimuli were explicit, whereas in many

previous studies the level of risk associated with a stimulus needs to

be learnt over a number of trials. For example, in the IGT where

different decks of cards are presented, the quality of the decks

needs to be ascertained by repeated sampling [51]. Since

dopamine has a central role in reward-based learning, and

encodes reward-prediction error [22], it is possible that the effects

of dopaminergic manipulation are expressed at this early stage

when probabilistic contingencies are being acquired. L-dopa

augments dopamine release at synapses [26] and could encourage

risk-taking by boosting the apparent value of stimuli in the face of

unpredictable reward, which has been proposed as a neurocom-

putational mechanism underlying addiction [52]. Moreover,

differential effects of dopamine on the response to rewards and

punishments [53,54,55] which could encourage risk-taking if

positive prediction errors are given more weight than negative

prediction errors [56,57], leading to an overestimation of value for

risky stimuli. This effect cannot be engendered in our paradigm, as

all choices were resolved after the end of the experiment, as

standard in experimental economic paradigms [58].

Related to this is the distinction between explicit risk, where the

probabilities of outcomes are precisely known, and ambiguity,

where the outcome distribution is unknown and needs to be learnt

through exploration. Ambiguity-aversion is a well-known behav-

ioural bias [59], distinct from risk attitude [60], however the two

are conflated in risk-taking tasks such as the BART and IGT

where risks are not explicit. Our finding of a lack of effect of

dopamine on risk evaluation is consistent with findings in PD

patients of specific deficits in decision making under ambiguity

rather than risk [61].

4. Dopaminergic Effects, Genetic Variability, and the Role
of other Neurotransmitters
Other explanations for the absence of a change in risk-taking

with L-dopa include specific dopamine receptor subtype effects,

genetic heterogeneity in responses, or other neurotransmitter

systems being central to risk evaluation.

Impulse control disorders are noted side effects of dopamine

agonists in particular [10]. Risk-taking may therefore be a specific

by-product of D1-receptor stimulation, an effect opposed by

simultaneous D2-receptor stimulation. Contrary to this is the

finding that the risk-promoting effects of amphetamine are

abolished by both D1- and D2-receptor antagonists [14], and

that D1, D2 and D3-specific dopamine agonists are all reported to
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induce gambling behaviour [62,63], although D3- receptor agonist

effects are also reported to decrease risky choice in an animal

model [14]. L-dopa itself potentiates gambling behaviour in co-

administration with dopamine agonists [12]. An abnormal

baseline in PD patients with depleted nigrostriatal systems may

engender disrupted dopamine receptor expression or sensitivity

that render this vulnerability to agonist effects, however these side-

effects have also been reported in individuals treated for restless

legs syndrome [64]. L-dopa promotes the phasic and tonic release

of dopamine from synapses in response to afferent depolarisation,

while dopamine agonists enhance the tonic stimulation of post-

and pre-synaptic receptors in a non-physiological manner [65].

Thus, differential effects of these agents could be attributed to a

distinction between phasic and tonic dopamine, which have been

suggested to map onto different computational processes [66]. An

important future avenue for research is to delineate whether effects

on gambling behaviour are dopamine-receptor specific, and

whether any effects pertain to risk evaluation or other processes

such as learning and reward-responsiveness.

Genetic heterogenetiy may also determine the effects of L-dopa

on risk-taking, given that polymorphisms in the D1 [67,68], D2

[69,70] and D4 [71,72] receptor, and the dopamine transporter

gene [72], have been associated with risky or impulsive behaviour.

Although we were careful to consider within-subject effects to

minimise the role of between-subject variability, it is still possible

that significant variability could mask an effect at an individual

level. For example, pharmacogenetic interactions have been

demonstrated, with a report of L-dopa increasing risk-taking, in

a paradigm with feedback and dynamic risk changes, only for

subjects with a specific DRD4 polymorphism [73]. Dopamine

receptor polymorphisms are also suggested to mediate different

neuronal responses to reward during gambling tasks [74,75,76].

Given the constellation of findings, and the fact that individual

polymorphisms appear to account for only a small fraction of the

tendency to pathological gambling [72], the specific effects of each

on different elements of the decision making and learning process

remains a challenge for future large scale investigations.

It is also possible that an alternative neurotransmitter is involved

in imbuing risk-preference. Evidence from both neuroimaging and

single-unit recording studies have implicated serotonin in reward

processing [77,78,79], and serotonin augmentation [80] or

depletion [81,82] alters reward and risk-based decision-making.

An effect of serotonin on risk-attitude could also contribute to the

effect of satiety and starvation on decision making under risk [36].

While the rewarding and appetitive effects of food have been

attributed to dopaminergic systems [83], serotonin is also critical

in behavioural homeostasis [84]. Serotonin and dopamine

receptor genes may also interact to determine propensity for

risk-taking [85].

Conclusion
The central finding from this study is that 100 mg L-dopa

administration does not affect risk preference in healthy humans.

This is in contrast to studies implicating dopamine in risky decision

making, and potentially suggests that these effects of dopamine are

effected via other mechanisms such as modulation of learning or

response to reward, rather than the evaluation of risk itself. Given

that a lack of effect cannot be conclusively interpreted as evidence

of no effect, these conclusions are necessarily speculative. Clearly

future work is needed to test the hypotheses arising from the

present study, specifically that dopamine influences decision-

making by affecting the response to feedback rather than risk

evaluation. It also remains to be determined if this lack of effect is

specific to levodopa or a generic finding about dopaminergic

transmission. Our paradigm offers careful control over different

aspects of risk which are often conflated in behavioural studies,

and a quantification of risk-preference independent of non-specific

effects on choice noise due to attentional changes. Thus, this task

could be further adapted to dissociate possible effects of dopamine

on reward feedback, and to explore the effects of stimulation of

different dopamine receptor subtypes as well as other neuromod-

ulatory agents.

Economically inspired paradigms can offer experimental control

to selectively manipulate aspects of a decision and sensitively assay

pharmacological effects. Understanding the role of dopamine in

decision making under risk is critically important given its central

role as a signalling agent in the brain, the cognitive effects of

disease process affecting the dopaminergic system such as

Parkinson’s disease, and side effects from clinical treatments as

well as drugs of abuse.

Supporting Information

Figure S1 Changes in risk preference between weeks.
Differences in (standardised) risk preference model parameters

between weeks, plotted per subject with average effect size (error

bars show standard error, indicates p#0.05). A. Experiment 1,

showing difference in variance preference (r). B. Experiment 2,

showing differences in variance (r), and skewness (l) preferences.
On average, subjects’ behaviour showed greater aversion to

variance between week 1 and week 2.

(TIF)

File S1 Stimulus set, Experiment 1. Stimulus set of 252 4-

outcome lotteries. Expected value of the lotteries ranges from

£3.25 to £8.00; variance ranges from 0.47 to 24.05£2.

(DOCX)

File S2 Stimulus set, Experiment 2. Stimulus set of 252 4-

outcome lotteries. Expected value of the lotteries is constant

(£5.95–£6.05). Variance ranges from 1.7 to 30.9£2. Skewness

ranges from 238.6 to 38.6£3.

(DOCX)
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