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Abstract

Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the
biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the
accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma
membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane
potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have
fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have
tips that are ,300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue.
Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as
slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for
nanotechnology in the development of new electrical recording techniques in neuroscience.
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Introduction

Intracellular recording is essential for investigating the electrical

activity that occurs below a neuron’s threshold for AP generation,

and so it is an important tool for elucidating the mechanisms by

which synaptic inputs are transformed into AP output [1–4].

Intracellular techniques have led to critical insights into the

biophysics of dendritic integration [5] and action potential

generation [6], but measurements of the subthreshold activity

underlying perception, memory and behavior have been limited

due to the difficulty of establishing minimally invasive, stable

intracellular recordings in vivo [7].

Intracellular electrodes often cause biochemical and physiolog-

ical perturbations in the cells from which they are recording. In

whole-cell patch recording [8,9], for example, the patch pipette

internal solution rapidly exchanges solutes with the cytoplasm.

This allows for the experimental control of intracellular concen-

trations of ions and other molecules by using different pipette

internal solutions [10], but it also leads to the disruption of

biochemical processes that are necessary for normal cellular

function [11–17]. Dilution of freely diffusible cellular molecules

occurs within a few minutes, making dialysis a limiting factor for

reliable whole-cell recording [18,19]. Using a variation of the

whole-cell patch clamp technique, perforated patch recording

[20,21], one can avoid the unwanted dialysis of biomolecules, but

poor sealing, changing access resistance and spontaneous mem-

brane ruptures have limited the in vivo application of this technique

(but see [22]).

Another type of intracellular recording electrode, the sharp

microelectrode, differs from a patch pipette in that it enters the cell

by piercing through the plasma membrane [23–26]. Sharp

electrodes have smaller tips than patch pipettes and therefore

dialyze the cytoplasm more slowly, but the impalement often

results in irreparable membrane damage and shunting of the

membrane potential [27–32]. In a study where whole-cell

recordings were established prior to sharp microelectrodes

penetration, all neurons showed significant depolarization follow-

ing impalement [32].

One way to avoid the dialysis of cellular molecules by electrode

internal solution would be to replace the liquid, electrolytic

conductor in the micropipette with a solid, metallic conductor

[33]. Incidentally, metallic microelectrodes aren’t new to in-

tracellular recording [34], and their use actually precedes the first

use of electrolyte-filled microelectrodes [23,24]. The first in vivo

neuronal recordings using metal microelectrodes were probably

the putative intracellular recordings that were reported by Hubel

in 1957 [35], which occurred occasionally while recording

extracellular units with tungsten microelectrodes. Unfortunately,

though solid-conductor intracellular microelectrodes would be

non-dialyzing, they would be just as likely to introduce a leak

current upon impalement as electrolyte-filled pipettes, thus

mitigating their advantage over patch pipettes with respect to

dialysis. To make solid-conductor intracellular electrodes practical

for long-term neuronal recording, they must first be engineered in

such a way as not to cause a membrane shunt upon insertion.

Developments in nanotechnology have prompted scientists to

consider new, nanoengineered tools to access the interior of cells

for intracellular electrical recording [36–46]. The challenge to

neurophysiologists has been to integrate these nanotechnologies

into recording electrodes that are also resilient and maneuverable

enough for use in brain tissue. This has proven difficult, largely
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because the wafer-based nanofabrication processes used to pro-

duce many nanostructured devices limit their use to flat

preparations such as dissociated cell cultures. Only a few devices

have been developed that would be suitable for being delivered

into deep tissue (e.g. [38] and [46]). Additionally, there has been

no direct demonstration that any of these tools can be used to

record from neurons without disrupting their physiology, which

requires that properties such as resting membrane potential and

input resistance be independently measured before and after

membrane penetration by the nanoelectrode. Because reducing

invasiveness is a key motivation behind developing new nano-

technology-based tools for electrophysiology, such tests will be

critical in evaluating first-generation nanoelectrode technologies.

Here we describe Solid-Conductor Intracellular NanoElectrodes,

or SCINES. We report their fabrication, electrical characterization,

and use for recording neuronal transmembrane potentials in brain

slices. We also perform simultaneous whole-cell recordings to

independently assess the invasiveness of SCINE recording.

Results

We constructed tungsten SCINEs by milling conventional

tungsten microelectrodes [35] using a focused ion beam to 100–

400 nm in diameter for a length of several microns. To ensure that

electrical contact was restricted to the nanoscopic tip, SCINEs

were then reinsulated at the base of their tips using electron-beam-

assisted chemical vapor deposition (Figure 1A–C, Figure S1).

Additionally, they were chemically modified using a hydrophobic

silane reagent in order to facilitate their penetration into cells [47]

(see Methods for details).

We measured the electrical properties of tungsten SCINES,

namely the electrochemical impedance of microscopic tungsten

surfaces in aqueous electrolyte (pipette internal solution). This

impedance is inversely related to surface area (Figure 2A) and

decreases as a function of frequency Z / f2 (12a) with

a= 0.3060.16 (n = 7, Figure 2B); DC resistances were greater

than 100 GV. Similar properties of metal–electrolyte interfaces

have been described previously for larger surfaces [48,49]. The

high impedance of small-surface-area SCINES forms a voltage

divider with all of the stray impedances in the recording setup. To

maximize signal amplitude, we have therefore systematically

reduced all sources of stray capacitance: Electrode capacitance

has been reduced to ,0.3 pF by a careful insulation procedure

and all SCINE recordings were performed using a custom-built,

low noise, low input capacitance amplifier (see Methods), resulting

in a total stray capacitance of ,4 pF.

To assess the ability of SCINES to record sub- and suprathres-

hold neuronal membrane potentials, we performed combined

patch pipette and SCINE recordings in brain slices (Figure 3A–C).

After obtaining a stable whole-cell recording, we inserted a SCINE

into the same neuron under visual control (Figure 3A, right). Upon

penetration, the SCINE signal increased dramatically

(Figure 3B,C). The whole-cell recording provided a measurement

of physiological properties, such as action potential half-width,

resting membrane potential, and input resistance, which could be

compared before and after the insertion of the SCINE. While

SCINE penetration often resulted in the loss of cell input

resistance and membrane potential (Figure S2), in ,10% of

attempts the silane-functionalized SCINE inserted through the

plasma membrane without altering cellular physiological proper-

ties at all. For the five recordings shown in Figure 4, the mean

change in input resistance was 3.0610.0 MV (mean 6 s.d.;

21.666.3%), the mean change in membrane potential was

21.062.0 mV (21.562.9%), and the mean change in action

potential half-width was 21693 ms (1.464.5%).

Our experiments indicate that surface chemistry can critically

improve SCINE penetration into neurons; only those SCINEs that

were treated with hydrophobic silane were able to record

intracellularly without causing a change in cellular properties.

Unmodified SCINEs only rarely inserted into neurons and in these

cases only after substantial indentation of the neuronal membrane.

Subsequent penetration resulted in a change of input resistance

and membrane potential (Figure S3), consistent with observations

from sharp electrode recordings, that indentation prior to

penetration often predicts membrane damage [25].

Though SCINE signal amplitudes were attenuated due to the

voltage divider formed by the high impedance metal-electrolyte

interface and the stray capacitance in the recording setup, the

electrode filtering did not seriously distort the action potential

waveform (Figure S4) or prevent the measurement of successive

action potentials (Figure S5). Futhermore, SCINEs were able to

measure both action potentials and low-frequency subthreshold

Figure 1. SCINE and manipulator design. A Magnified cross-sectional drawing of the SCINE tip. B SCINE overview showing the pulled glass
capillary and the gold pin for the electrical connection to the amplifier. C Scanning electron microscopy image using the backscattered electron
detector for material contrast (metal vs. insulator). Width dimension = 300 nm.
doi:10.1371/journal.pone.0043194.g001
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Figure 2. SCINE impedance. A Impedance as function of exposed surface area, measured at 3 kHz; line indicates fit Z / 1/A. B Electrode
impedance as a function of frequency. For this example, the exposed tungsten surface area was 5.5 mm2. Line indicates fit Z / f2(12a) with a= 0.45.
doi:10.1371/journal.pone.0043194.g002

Figure 3. SCINE recording. A (left) Differential Interference Contrast (DIC) Micrograph of a patch-clamped neuron with the nanoelectrode above
the focal plane. (right) Double recording from the same neuron after the SCINE is inserted into the patch-clamped neuron. B Simultaneous whole-cell
patch (black) and SCINE (red) recording from a pyramidal neuron in a rat hippocampal slice culture. The red arrow indicates when the SCINE
penetrated the neuronal membrane. Action potentials (APs) were evoked via the whole-cell electrode. Gaps between traces are approximately
100 msec. C Comparison of evoked action potentials in whole-cell and SCINE channel before (left) and after (right) membrane penetration by the
SCINE. All traces shown are single, unaveraged traces that are low-pass filtered at 5 kHz. SCINE recordings are corrected for baseline drift.
doi:10.1371/journal.pone.0043194.g003
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signals in single trials (Figure 5), due to the low noise in the

recordings (rms 5569 mV [mean 6 s.e.m., n = 5], 20 Hz-25 kHz).

The SCINE recordings began with SCINE penetration and

were considered ‘‘lost’’ when the spike amplitude dropped below

the detection limit or when the SCINE recording reverted to an

apparently extracellular recording, whichever occurred earlier (see

Methods). For the recordings shown in Figure 4, the durations

were between 26 and 101 seconds (47631 sec, mean 6 s.d.,

n = 5). After this signal loss, it was possible in some cases to re-

penetrate the cell and recover the signal. Furthermore, in the case

where SCINE penetration damaged the plasma membrane (e.g.

Figure S2), electrical coupling did not diminish without a concom-

itant recovery of input resistance. These together suggest that the

signal decay was due to membrane resealing around the SCINE,

rather than due to electrode fouling by some adsorptive or

electrochemical process. One possible mechanism for resealing

around the SCINE could be membrane-spreading along the

hydrophobic surface, similarly to what has been reported for

silanized sharp microelectrodes [47]. Most importantly, although

the SCINE recording was lost over a period of seconds to minutes,

the whole-cell recording remained unaffected (Figure S6).

Discussion

Here we have demonstrated that SCINEs can be inserted into

neuronal membranes in brain tissue and can, in some instances,

record changes in the transmembrane potential without measur-

ably altering cellular properties. The solid construction prevents

SCINEs from dialyzing neurons, thus eliminating the fundamental

limit imposed on recordings by electrodes with aqueous electrolyte

conductors. The fact that SCINEs are macroscopically identical to

metal microelectrodes means that they are easily maneuverable

and suitable for use in brain tissue, a feature not shared by many

chip-based nanotechnologies. In fact, while nanoscopic metal tips

are potentially sensitive to lateral movements, the hardness of the

tungsten ensures that SCINEs can be repeatedly inserted

millimeter-deep into brain tissue without noticeable damage to

the tip, as long as the dura mater is removed and SCINE

movements are strictly longitudinal. Current design employs glass

as a sheathing material for the body of the SCINE. Exclusive use

of e.g. silicone as an insulator could ensure that electrodes do not

risk shattering in tissue, thus rendering SCINEs a potentially safer

technique for in vivo use than conventional glass electrodes.

While we show a proof-of-principle for SCINE recording,

several technical challenges must be solved before SCINEs

become practical for routine neurophysiological investigation.

The quality of SCINE intracellular recordings decayed signifi-

cantly over periods of seconds to minutes. This, as well as their

variable insertion success, indicates that further physicochemical

stabilization of the SCINE-membrane interface is needed.

Rational optimization of the existing interface, however, would

be difficult due to the fact that the exact arrangement of the silane

molecules on the SCINE surface is unknown, and consequently,

the mechanism of interaction between the SCINE and lipid-

bilayer is not well defined. In the future, a more controllable

approach to surface modification may be necessary [41].

Another limitation of SCINEs is their high attenuation of

neuronal signals, which would currently prevent the measurement

of all but the largest synaptic inputs (Figure 5). This attenuation

may be due to SCINEs incomplete insertion of their exposed tips

through the plasma membrane. Based on the surface areas of the

SCINEs used in this study (2–10 mm2) and the system stray

impedance (,4 pF), our impedance measurements would have

predicted signals of roughly an order of magnitude larger

amplitude. If signal attenuation is indeed higher due to incomplete

membrane insertion, then signal strength could be improved by

optimizing the electrode-membrane interaction to favor complete

insertion of the exposed metal tip. Secondarily, signal amplitudes

might be further improved by using a different material for the

exposed SCINE tip–one that forms a lower impedance interface in

solution than does tungsten (e.g. iridium oxide [50]). Developing

a lower-impedance interface would enable the measurement of

low frequency signals and might also allow for the estimation of

resting membrane potentials upon break-in. Furthermore, such an

interface would better facilitate current injection, which is

currently not practical using tungsten SCINEs.

Existing intracellular recording techniques have fundamental

limitations that prevent them from being applied to study many

important processes in vivo, so developing an innocuous, non-

dialyzing electrode is a key technical goal for extending the

timsescales of intracellular neurophysiology to those of neurophys-

iological processes. The recordings reported here are short-lived,

but they demonstrate an approach to intracellular recording that

can, in principle, be much less invasive to cells than currently

Figure 4. SCINEs can be inserted into cells non-invasively.
Examples (n = 5) where SCINE recordings did not significantly alter
cellular properties (measured from whole-cell electrode). Comparison of
input resistance, membrane potential and AP half width as measured
with the whole-cell electrode before and after SCINE membrane
penetration (error bars are 1 standard deviation). Overall means were:
Rinp = 160612 MV (mean 6 s.d., before), 157614 MV (after), p = 0.53
(paired t-test); Vm= 267.360.8 mV; 68.360.7 mV; p = 0.31; APHW =
2.1160.11 ms; 2.1360.09 ms; p = 0.64.
doi:10.1371/journal.pone.0043194.g004

Figure 5. SCINEs can record both APs and slower, subthreshold
potentials. SCINE recording (red) of subthreshold and suprathreshold
signals evoked by a simultaneous whole-cell recording electrode
(black). In the far right trace, the AP height and depolarizing step
response are 109 mV and 27 mV above RMP, respectively. The SCINE
recording measures 2.62 mV and 0.25 mV for the same features; the
RMS of the noise in the first 100 ms of the SCINE recording (before
current injection) is 0.05 mV. All traces shown are single, unaveraged
traces that are low-pass filtered at 5 kHz. SCINE recordings are corrected
for baseline drift.
doi:10.1371/journal.pone.0043194.g005
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available methods. Importantly, the loss of SCINE recordings is

due to instability of the membrane-SCINE interface rather than

the deterioration of cellular properties, implying that stabilization

of the interface could lead to long-term intracellular electrical

recordings that are free of the fundamental limitations of existing

recording methods. We hope that this prospect will encourage

nanoengineers and neurophysiologists to cooperate on future

SCINE-based approaches to neuronal recording.

Materials and Methods

Ethics Statement
All animal experiments were performed according to European

and German guidelines for the welfare of experimental animals

and reviewed and monitored by the animal welfare officer

(Tierschutzbeauftragte) of the MPI for medical research and the

Abteilung 3 - Landwirtschaft, Ländlicher Raum, Veterinär- und

Lebensmittelwesen of the Regierungspräsidium Karlsruhe.

Fabrication
A 12–25 mm diameter tungsten wire (Advent Research Materi-

als) was threaded into a standard 1–1.2 mm O.D., 90 mm long

glass capillary. With the aid of a syringe, approximately 100 ml of

conductive silver epoxy (CW2400 Chemtronics) was drawn up

into the end of the capillary, contacting the wire. Next, a gold

connector-pin (MK05, Reissig Electronic Vertriebs GmbH) was

inserted into the epoxy-filled end of the capillary. After curing the

epoxy at 165uC for .30 min, the glass was pulled on a Sutter P-97

Puller (Sutter Instrument Co.), and the protruding tungsten wire

was trimmed and electrolytically etched to a conical, sub-

micrometer tip [51]. The etching was performed under micro-

scopic observation, in 4 N KOH, with an applied bias of (+) 4 to

20 V versus a platinum or tungsten loop electrode. The etchant

solution was continuously replenished using a tube connected to

a syringe. After washing with distilled, de-ionized H2O, the tips

were dipped into an electrophoretic paint solution [52] made from

1 part glacial acetic acid and 9 parts Clearclad HSR (LVH

Coatings). The tungsten tip was held at a potential of 24 to 27 V

versus a silver/silver chloride counter electrode for one minute to

coat it with the electrophoretic paint. The paint was cured at

165uC for 20 minutes. Afterwards, the probes were dip-coated

under microscopic observation into a 3 mm diameter wire loop

(tungsten wire, diameter 250 mm) containing a viscous silicone

glue, Elastosil E41 or E43 (Wacker silicones). After the silicone

cured (20–30 min at room temperature), the insulated electrodes

were milled to nanoscopic proportions using the FIB [52] under

SEM control (Neon 40 EsB Crossbeam, Zeiss). To avoid charging,

the electrode holder for the FIB/SEM was designed in a way that

the back pin was connected to the microscope ground. The

electrode was first cut on two opposite sides to form a paddle

shape. Next, the electrode was rotated 90u around its long axis and

the paddle was shaped into a post. This rotation and cutting was

repeated until the diameter of the post was between 100 and

400 nm (Figure S1). This size was selected on the basis of earlier

experiments, done with nanoscopic atomic force microscopy

probes [53,54]. Larger, initial cuts were made using the 1 nA or

500 pA FIB aperture; the final thinning of the tip was

accomplished with a 20 pA aperture. Exposed tungsten around

the base of the tip was reinsulated using electron-beam-assisted

chemical vapor deposition of insulative silicon oxide (EBCVD)

[55]. This was accomplished using the electron microscope’s gas

injection system to flood the volume around the electrode with

a silicon dioxide precursor gas, 2,4,6,8,10-Pentamethylcyclopen-

tasiloxane [56] (purchased from Zeiss), which was decomposed

under the energy of the scanning electron beam to deposit

insulative silicone dioxide. EBCVD takes approximately 10–20

minutes of deposition time per side of the electrode. Deposition

time is inversely related to scanning speed and beam accelerating

voltage. Coating was considered complete 5–10 minutes after the

backscattered electron signal of the tungsten was no longer

detectable. Cross-sections of these coated surfaces reveal silicon

oxide layer thicknesses of 50–200 nm. The coated portion of the

cylindrical tip is deliberately coated less than the base (only to the

point where the backscattered electron signal of the metal is lost) in

order to keep its diameter as small as possible. The completed

SCINE was removed from the Crossbeam system and treated with

oxygen-plasma in a plasma cleaner (Harrick Plasma) for 20–30

minutes to expose inorganic hydroxyl groups for reaction with the

hydrophobic silane reagent.

Silane Functionalization
After oxygen plasma treatment probes were dipped for 1–2

minutes into a 1–3% solution of benzophenone-silane (4-

(39triethoxysily) propylamidobenzophenone) in 95% ethanol.

They were then rinsed with ethanol or acetone, and dried in an

oven at 110uC to complete condensation of the silane on the

SCINE surface. Exposure of SCINEs to silane solution for more

than 2 minutes often resulted in a large increase in impedance,

indicating a thick polymerization layer. For this reason, exposure

was limited to less than 2 minutes. Before using the silane solution

to treat SCINEs, the activity of the solution was first confirmed by

treating a glass microscope slide and qualitatively observing

a change of water contact angle on the slide before and after

treatment: on glass surfaces, and especially plasma cleaned glass

surfaces, a droplet of water spreads very thinly across the glass. On

a hydrophobic surface the droplet will form a bead [57].

Benzophenone silane was synthesized according to ref. [58], with

minor modifications as suggested by its corresponding author: 15

grams of the acid chloride of benzophenoic acid (Sigma) was

dissolved in 75 ml of dry tetrahydrofuran. This was added slowly,

over a period of 20–30 minutes, to a cold solution of 13.2 grams

aminopropyltriethoxy silane (Sigma) and 6.7 grams triethylamine

(Sigma) in 75 ml dry tetrahydrofuran (THF). The reaction was

then allowed to warm over a period of several hours. The reaction

was performed under inert gas to prevent polymerization of the

silane. Afterwards, the product was quickly vacuum-filtered

through filter paper to remove polymerization products. The

remaining THF was removed by use of a rotary evaporator

(,40uC). The crude product was re-dissolved in anhydrous

ethanol and re-filtered. When stored as a solid, the silanes were

more likely to polymerize. In our hands, benzophenone silane

underwent a color change over time when dissolved in toluene.

Thus, the silane was stored in anhydrous ethanol, and always

verified for silane activity before use by glass slide treatment and

water contact angle observation, as described above.

Impedance Measurements
Capacitance measurements of the electrode-electrolyte interface

were performed using a GW Instek LCR-821 lock-in amplifier

that can measure small capacitances reliably (,0.01 pF). The

positive and negative inputs to the LCR-821 were attached to the

gold pin of a SCINE and a tungsten loop electrode, respectively.

The SCINE was then manipulated using a manual micromanip-

ulator to dip it into and out of a droplet of internal solution (see

Electrophysiology) contained in the tungsten loop electrode. The

device was zeroed with the electrode just above the solution, and

the measurement was made with the electrode immersed in the

Solid-Conductor Intracellular Nano Electrodes
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solution. For all measurements, the LCR output voltage was

a 5 mV sine wave.

To measure the frequency dependence of the metal-electrolyte

interface, we cut off the tip of several insulated electrodes using the

focused ion beam, and measured the capacitance of electrodes

ranging from 1–33 mm2 in surface area at frequencies between

1 kHz and 100 kHz. Resulting capacitance measurements were

then converted into impedance values (Z = (2pfC)21). Independent

confirmation of the frequency-dependent impedance was per-

formed on the same electrodes using the Axoclamp-2B (Molecular

Devices, Inc.) by voltage clamping the electrode in a bath of

internal solution and measuring the current that flowed when the

command voltage was Gaussian white noise. Dividing the Fourier

transform of the command voltage by the Fourier transform of the

measured current gave us the impedance as a function of

frequency (data not shown). To measure impedance as a function

of exposed surface area, we cut off the tip of an insulated electrode

with the focused ion beam and measured its surface area from an

electron micrograph using ImageJ (NIH). Impedance was assessed

using the LCR at 3 kHz as described above. After exposure and

measurement, all electrodes were re-insulated using electron-

beam-assisted chemical vapor deposition of silicon oxide. The

electrodes were again immersed in electrolyte solution, and the

remaining stray capacitance was measured. This stray capaci-

tance, which was less than 0.3 pF for all electrodes, was subtracted

from the first capacitance measurement, giving the true capaci-

tance for the metal-electrolyte interface at each exposed surface.

Electrophysiology
Whole-cell patch recordings were performed in rat hippocam-

pal organotypic slice cultures [59,60] between 7 and 12 days in vitro

using an Axoclamp 2-B, visualized using Diferential Interference

Contrast (DIC) optics on an Axioplan 2 microscope (Zeiss) with

a custom built stage containing a solution chamber for slice

physiology. Electrode internal solution was: 130 mM K-methan-

sulfonate, 7 mM KCl, 10 mM Hepes, 2 mM ATP (sodium salt),

2 mM ATP (magnesium salt), 0.5 mM GTP, 0.05 mM EDTA,

pH = 7.4, Osmolarity = 283 mOsm/kg. External recording

solution contained: 125 mM NaCl, 25 mM NaHCO3, 2.5 mM

KCl, 1.25 mM NaH2PO4, 25 mM Glucose, 2 mM CaCl2, 1 mM

MgCl2. All experiments were performed at room temperature.

SCINEs were connected to a custom-built amplifier and digitizer.

Briefly, it uses a low input capacitance buffer amplifier (AD549,

Analog Devices) and a high resolution, low-noise 24-bit Analog-to-

Digital Converter (ADS1271, Analog Devices). The amplifier was

not designed to pass current and acted only as a voltage-follower.

Data was acquired from the digital output of the amplifier/

digitizer using a National Instruments PCI-6229 card, Labview

2010 SP1 (National Instruments), Igor Pro 6.0 (WaveMetrics), and

the Igor acquisition/analysis package developed by Jason Roth-

man, Neuromatic 2.00 (www.neuromatic.thinkrandom.com).

Patch pipette and SCINE were both lowered into the bath

solution and positioned by micromanipulator control to tens of

micrometers above the slice surface. A suitable pyramidal neuron

was selected, a patch recording was established (access resistance

8–20 MV) and an I-V protocol performed. Then repetitive action

potentials were evoked by current injection with the patch pipette

while the SCINE approached the patch-recorded cell. Shortly

after penetration, another I-V protocol was performed for before-

after comparison.

Analysis and Signal Processing
For the before-after comparison of cellular properties, in 2 cells

for which input resistance before and after penetration was

reported, input resistance was calculated (R = V/I) from the

average voltage V and current I from the last 5 ms of a 100 ms

hyperpolarizing step. In the remaining 3, where the SCINE signal

was lost before a post-penetration I-V protocol could be obtained,

the change in input resistance was estimated by calculating the

ratio of the rise times of the voltage responses to 10 ms

depolarizing current injections, before and after penetration.

The rise time t is determined by the cell input resistance R and

capacitance C, t= RC, so that when cell capacitance remains

constant, the ratio of the rise times will be the ratio of the input

resistances. This analysis was repeated for the recordings where

after-penetration I-Vs existed, and the two approaches yielded

indistinguishable results. The resting membrane potential was

calculated by averaging 35–50 ms before the respective input

resistance current injection protocol. AP half width was calculated

from averaging .10 APs before and after break-in, and calculat-

ing the time difference between the two points in the action

potential where the potential was equal to half the difference

between the action potential threshold and action potential peak.

For calculating recording duration, two time points were

obtained for each recording: (1) AP amplitude duration – the

time point at which the SCINE-measured AP amplitude

consistently (in two repeated measures) dropped below the

detection level, set as three times the rms of the noise in the

SCINE recording. We define the time of the first of the two

repeated measures as the AP amplitude duration. (2) Intracellular

duration – the time point at which the SCINE-measured AP half

width (measured from baseline to peak, measurements from

threshold to peak did not appreciably alter the results) consistently

(in two repeated measures) dropped below the half-width of an

extracellular recording. The latter was estimated from calculating

the half width of the derivative of the whole-cell recording trace.

We define the time of the first of the two repeated measures as the

intracellular duration. For obtaining a conservative estimate of

intracellular recording duration we report the earlier of the two

duration measures (AP amplitude and intracellular duration).

SCINEs have a large DC resistance (.100 GV), resulting in

low-frequency baseline fluctuations. Where noted this drift has

been subtracted for displaying purposes. This was accomplished in

the following way: for the period of the current injection and

action potential after-hyperpolarization, the points before and

after this period were linearly interpolated to produce an AP-

subtracted voltage record, which was low-pass filtered. This

baseline was then subtracted from the original recording.

All recordings were sampled at 50 kHz and digitally low-pass

filtered at 5 kHz.

Supporting Information

Figure S1 SCINE fabrication scheme. This schematic

shows the process of making SCINEs, as described in the Methods

section.

(TIF)

Figure S2 Unsuccessful SCINE penetration. SCINEs do

not yet work as reliably as sharp microelectrodes or patch pipettes;

non-destructive membrane penetration occurs only in a minority

of cases. A This double-recording typifies an unsuccessful attempt

at SCINE recording (red). The whole-cell recording (black) shows

that the cell input resistance drops and the membrane potential

becomes depolarized when the SCINE pierces through the plasma

membrane. B Expanded view of the gray-shaded period in A, also

showing the current injection from the whole-cell pipette (middle).

Two action potentials (arrows) are measured by the SCINE
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recording (red) before the neuron dies. All traces shown are single,

unaveraged traces, low-pass filtered at 5 kHz.

(TIF)

Figure S3 Untreated tungsten nanoelectrode. A Untreat-

ed SCINES considerably deform the neuronal plasma membrane

prior to penetration. B Recording from an untreated SCINE (red).

The recording begins after the SCINE has already been pushed

deeply into the neuronal cell body as schematized in A. The

neuron is firing action potentials, which are evoked by somatic

current injection by the patch pipette. After SCINE penetration,

the whole-cell recording (black) shows that the membrane

potential is depolarized by 16 mV due to a leak caused by the

SCINE. Prior to penetration (first arrows), the action potential is

high-pass filtered by the plasma membrane; after penetration

(second arrows), the SCINE records an intracellular action

potential waveform. C Comparison of successively evoked action

potentials in whole-cell (black) and SCINE (red) channel just

before (left) and just after (right) membrane penetration by the

SCINE. All traces shown are single, unaveraged traces that are

low-pass filtered at 5 kHz. SCINE recordings are corrected for

baseline drift.

(TIF)

Figure S4 Spike waveforms (single trials) from SCINE
and whole-cell recording. SCINE (red) and whole-cell

recording (black) measurements of the same action potential are

overlaid with each other to show the relative filtering properties of

the two electrodes. Spikes are displayed for each of the cells shown

in Figure 4. Traces are single, unaveraged traces.

(TIF)

Figure S5 SCINE recording of multiple APs. SCINE (red)

and whole-cell recording (black) measurements of current-evoked

action potentials. Traces are single, unaveraged traces.

(TIF)

Figure S6 SCINE signal loss. A This brief SCINE recording

(red) and whole-cell recording (black) are annotated to highlight

three time periods before membrane penetration (1), immediately

after membrane penetration (2), and when the SCINE signal is

diminishing (3). Throughout the entire duration, the whole-cell

recording appears undisturbed (black). The time between traces is

130 ms. B The average of 10 consecutive whole-cell recordings of

action potentials from the three time periods shown in Figure S6A.

Note the spike shape remains constant between periods.

(TIF)
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4. Vervaeke K, Lőrincz A, Nusser Z, and Silver AR (2012) Gap Junctions

Compensate for Sublinear Dendritic Integration in an Inhibitory Network.

Science 335: 1624-1628.

5. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nature

Reviews Neuroscience 1: 181-190.

6. Bean BP (2007) The action potential in mammalian central neurons. Nature

Reviews Neuroscience 8: 451-465.

7. Chorev E, Epsztein J, Houweling AR, Lee AK and Brecht M (2009)

Electrophysiological recordings from behaving animals--going beyond spikes.

Current Opinions in Neurobiology 19: 513-519.

8. Hamill OP, Marty A, Neher E, Sakmann B, and Sigworth FJ (1981) Improved
patch-clamp techniques for high-resolution current recording from cells and cell-

free membrane patches. Pflugers Archive 391: 85-100.

9. Marty A and Neher E (1995) Tight-seal whole-cell recording. Single-Channnel

Recording. New York, Dordrecht, Heidelberg, London, Springer.

10. Swandulla D and Chow RH (1992) Recording solutions for isolating specific

ionic channel currents. Practical Electrophysiological Methods. New York:

Wiley-Liss.

11. Forscher P and Oxford GS (1985) Norepinephrine modulation of Ca channels in

internally dialyzed sensory neurons. Biophysical Journal 45: 181.

12. Chad JE and Eckert R (1986) An enzymatic mechanism for calcium current

inactivation in dialyzed Helix neurones. Journal of Physiology 378: 31-51.

13. Korn SJ and Weight FF (1987). Patch clamp study of the calcium-dependent

chloride current in AtT-20 pituitary cells. Journal of Neurophysiology 57: 325-
340.

14. Penner R, Pusch M, and Neher E (1987) Washout phenomena in dialyzed mast

cells allow discrimination of different steps in stimulus-secretion coupling.

Bioscience Reports 7: 313-321.
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