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Abstract

This paper presents the first dynamic 3D FACS data

set for facial expression research, containing 10 subjects

performing between 19 and 97 different AUs both indi-

vidually and in combination. In total the corpus contains

519 AU sequences. The peak expression frame of each se-

quence has been manually FACS coded by certified FACS

experts. This provides a ground truth for 3D FACS based

AU recognition systems. In order to use this data, we de-

scribe the first framework for building dynamic 3D mor-

phable models. This includes a novel Active Appearance

Model (AAM) based 3D facial registration and mesh cor-

respondence scheme. The approach overcomes limitations

in existing methods that require facial markers or are prone

to optical flow drift. We provide the first quantitative as-

sessment of such 3D facial mesh registration techniques and

show how our proposed method provides more reliable cor-

respondence.

1. Introduction

Facial analysis using 3D models has become a popular

research topic in recent years. Some of the primary benefits

of such models include potentially improved robustness to

pose and illumination changes during recognition [3], esti-

mation of 3D facial shape from 2D images [2, 20], and mo-

tion capture [13]. Given this emerging popularity, a great

need exists for rigorous and standardized 3D dynamic fa-

cial data sets that the computer vision community can use

for experimentation.

There are a range of available data sets for 2D facial

analysis – both static and dynamic – containing variation

in pose, illumination, expression and disguise (e.g. see

[19, 14, 17]. Expression recognition in particular is a highly

active research area, with many works based on move-

ment descriptions from the Facial Action Coding System

(FACS) [12]. FACS was primarily introduced by psychol-

ogists to describe different configurations of facial actions

or Action Units (AUs). FACS lists 44 AUs that form the

basis of 6 prototypical facial expressions: happiness, sad-

ness, fear, surprise, anger and disgust. Numerous attempts

exist to classify these movements in both static and dy-

namic 2D sequences [17, 1, 19]. Perhaps the most thorough

set collected to date is the Extended Cohn-Kanade Dataset

(CK+) [17], which contains 593 sets of expressions with the

peaks manually FACS coded to establish AU presence.

The ability to FACS code data automatically has a wide

potential in social psychological research on the under-

standing of facial expressions. One major reason for this

is that manual coding is highly time consuming and often

not practical for long dynamic sequences. FACS is also

now often used as the movement basis for 3D facial models

in movies, making automatic analysis relevant to motion-

capture and performance mapping [11]. However, while

available data for 2D analysis is widespread, there are only

a handful of 3D facial data sets available [8, 23]. Data sets

portraying 3D dynamic movement are fewer still [22], do

not contain AU level motions, and are not FACS coded.

There is therefore clearly a need for dynamic 3D FACS

data sets comparable to the state of the art in 2D. However,

given such a corpus, approaches are also required for the

modeling and utilization of this data. A popular model for

3D facial analysis is the morphable model [3]. This uses a

basis of static 3D laser range scans of different subjects to

learn a statistical space of shape and texture deformation.

However, in order to build such a model the scans must



first be non-rigidly registered to a common space. This pro-

cess is required to achieve 3D mesh correspondence. While

Blanz and Vetter [3] rely solely on optical flow to densely

register images, Patel and Smith [20] improve accuracy by

employing a set of manually labeled facial feature points.

Even though 3D morphable models are potentially pow-

erful tools for facial analysis, previous work to date has

only used static 3D scans of faces to build models. There is

therefore great potential for extending the framework to in-

corporate dynamic data. However, the problem with build-

ing such models lies again in non-rigid registration. In

the context of dynamic 3D data, this requires the creation

of spatio-temporal dense feature correspondences through-

out the sequences. The problem is more complex than us-

ing static scans alone since registration must reliably track

highly variable nonlinear skin deformations [13].

One approach for achieving correspondence given dy-

namic 3D sequences is to register facial images using opti-

cal flow vectors tracked dynamically in multiple 2D stereo

views [7, 24]. However, drift in the flow (caused by e.g.

violation of the brightness consistency assumption) typi-

cally accumulates over time introducing errors. Borshukov

et al [6] overcome this problem by manually correcting the

mesh positions when drift occurs. More recently, Bradley et

al [7] mosaiced the views of 14 HD cameras to create high

resolution images for skin pore tracking. By back calculat-

ing optical flow to the initial image drift is also reduced. In

addition, mesh regularization ensures that faces do not flip

due to vertices overlapping. Other solutions to the registra-

tion problem include the use of facial markers and special

make-up to track consistent points [18].

Existing non-rigid registration methods for dynamic fa-

cial data therefore have drawbacks: they rely on optical flow

which is prone to drift over time, or use painted facial mark-

ers to acquire stable points. There is therefore clear scope

for improvement. Previous work on these methods has also

only been applied to animation, where errors can be hand

corrected. A more quantitative assessment of their merits

would therefore also be of benefit to the computer vision

community. Finally, given a reliable means to non-rigidly

register 3D facial data efficiently, the opportunity for build-

ing dynamic 3D morphable models becomes possible.

1.1. Contributions

This paper makes several contributions: It presents the

first dynamic 3D FACS data set for facial expression re-

search, portraying 10 subjects performing between 19 and

97 different AUs both individually and in combination. In

total the data set contains 519 AU sequences. Compared

with other state of the art 2D [17] and 3D [22] facial data

sets which contain more subjects, we provide substantially

more expressions per subject. As well as allowing com-

prehensive experimentation on per person facial movement,

the data allows for thorough research in a range of tasks:

large scale 3D model building, registration of 3D faces, and

tracking of 3D models to 2D video.

The peak frame of each sequence has been manually

FACS coded by certified FACS experts. These are individ-

uals whom have passed the FACS final test [12]. This pro-

vides the first ground truth for 3D FACS based AU recogni-

tion systems, as well as a valuable resource for building 3D

dynamic morphable models for motion capture and synthe-

sis using AU based parameters.

Secondly, our paper provides a description of the first

framework for building dynamic 3D morphable facial mod-

els. This extends the state of the art in static 3D morphable

model construction to incorporating dynamic data. In de-

scribing this framework, we also propose an Active Appear-

ance Model (AAM) [9] based approach for densely and reli-

ably registering captured 3D surface data. This method has

several advantages over existing dynamic 3D facial regis-

tration methods: (1) it requires no paint or special markers

on the face, and (2) it shows improved performance over

optical flow based strategies which accumulate drift over

time [7, 6, 24]. We compare the AAM based method to

the state of the art in optical flow and mesh regularization

schemes. This provides the first quantitative assessment

of popular methods adopted in this area. We also include

a comparison to techniques used in static 3D morphable

model construction [2], and highlight limitations in directly

applying these approaches given dynamic data.

2. Dynamic 3D FACS Dataset (D3DFACS)

2.1. Capture Protocol and Contents Overview

Our aim was to capture a variety of facial movements

as performed by a range of posers. For this, we recruited

4 expert FACS coders and 6 FACS-untrained participants

for our data set. The performer age range was 23 to 41

years (average age 29.3 years), and consisted of 6 females

and 4 males, all of Caucasian European origin. The expert

coders, having extensive knowledge of FACS, allowed us to

elicit more complex AU combinations than would be pos-

sible for FACS unfamiliar people. Each FACS expert spent

time before the session practicing the combinations as well

as possible. The FACS unfamiliar participants were pro-

vided coaching before the session on a reduced set of AUs

and expressions. For a discussion on how easily people find

performing different AUs, the reader is referred to [15].

In total we recorded between 80 and 97 AU sequences

(including Action Descriptors (ADs) [12]) for each FACS

expert performer, and between 19 and 38 sequences for each

FACS non-expert. This number depended on the ability of

a performer to produce the desired sequence, which either

targeted a specific single AU, or a combination of AUs. We

selected the combinations based on criteria for (1) the six



basic emotions outlined by Ekman et al [12], and (2) non-

additive appearance changes. These latter combinations are

particularly interesting since they reveal new appearance

characteristics for their joint activation that cannot be traced

back to the sum of single AUs (e.g. 1+4). In total 519 se-

quences were captured, comprising of 1184 AUs in total.

Table 1 shows the frequency of each AU in the data set.

2.2. Dynamic 3D Capture and Data Format

Each FACS performer was recorded using a 3DMD dy-

namic 3D stereo camera [21] (see Figure 1). The system

consists of six cameras split between two pods, with 3 cam-

eras stacked vertically on each pod. Each pod produces a

3D reconstruction of one half of the face. The top and bot-

tom cameras of each pod are responsible for stereo recon-

struction and middle cameras are responsible for capturing

UV color texture. The system samples at 60 FPS and pro-

vides (1) OBJ format 3D mesh data consisting of the two

pod half-face meshes joined together, and (2) correspond-

ing BMP format UV color texture map data for each frame.

The texture mapping provided by the system is originally

a stereo one, meaning that it consists of the color camera

views from the two pods joined together into one image.

We modify this by converting the mapping into a cylindri-

cal one. This means that each mesh has a UV texture map

equivalent to placing a cylinder around the head and pro-

jecting the color information on the cylinder. The mesh

data consists of approximately 30K vertices per mesh, and

each UV map is 1024x1280 pixels. Figure 2 shows example

images of the FACS performers, including corresponding

mesh and UV map data.

Figure 1. Dynamic 3D Stereo Camera used for data collection. Six

cameras combine to provide 3D reconstructions of the face, with a

recording rate of 60 FPS.

For each sequence the camera was set to record for be-

tween 5 and 10 seconds depending on the complexity of the

AU. Performers were asked to repeat AU targets as many

times as possible during this period. A mirror was set up in

front of the actor so that they could monitor their own ex-

pressions before and during each capture. Recording took

between 2 and 7 hours per participant. After all data record-

ing, the sequences which most visually matched the targets

from onset to peak were extracted for scoring by a FACS

expert. This led to the following data set:

• 519 AU sequences (single and in combination) from 10

people, including 4 expert coders and 6 non-experts.

• Each sequence is approximately 90 frames long at 60

FPS and consists of OBJ mesh and BMP cylindrical

UV texture map data.

• AU codes for each peak frame of each sequence are

scored by a FACS expert.

Instructions for acquiring the database may be found

at http://www.cs.bath.ac.uk/˜dpc/D3DFACS/. In

the remainder of the paper we describe our framework for

building dynamic 3D morphable facial models. We also in-

troduce our AAM based approach for mesh registration in

dynamic sequences and compare it to: (1) existing work on

facial mesh correspondence and (2) registration techniques

employed in static 3D data for morphable modeling [20, 2].

3. 3D Dynamic Morphable Model Framework

In the following Section, we first provide an overview of

static 3D morphable model construction before describing

extensions to dynamic sequences. In static 3D morphable

model construction, as proposed by Blanz and Vetter [2], a

set of 200 facial scans (each of a different person) is taken

from a Cyberware 2020PS laser range scanner. These are

represented in a 2D space and aligned to a common coor-

dinate frame using a dense optical flow alignment. Patel

and Smith [20] improve the accuracy of the alignment by

manually placing 2D landmarks on the faces, and then us-

ing a Thin Plate Spline (TPS) based warping scheme [4].

Procrustes analysis is also performed to remove head pose

variation. After correspondence, the 2D UV space which

also contains a mapping to 3D shape is sampled to gener-

ate the 3D mesh information. Both the UV texture data and

the 3D mesh data are then represented using linear Principle

Component Analysis (PCA) models.

We propose several extensions to this process for build-

ing dynamic 3D morphable models. Given several single

dynamic sequences (e.g. an AU combination) consisting of

multiple 3D meshes and corresponding UV texture maps:

Step 1: For each mesh, generate a mapping from each

pixel in 2D UV space to a vertex position in 3D space. This

mapping is I(u) = v, where v ∈ R
3 is a 3D vector coor-

dinate, I is a UV map, and u is a coordinate (u, v). The

function can be generated using a Barycentric coordinate

mapping between mesh faces in 2D UV space and faces in

3D vertex space (see Section 4.1).

Step 2: Perform stand-alone non-rigid registration of

each separate UV texture map sequence. This process iden-

tifies and tracks image features through neighboring image

http://www.cs.bath.ac.uk/~dpc/D3DFACS/


AU Description Total AU Description Total AU Description Total

1 Inner Brow Raiser 45 17 Chin Raiser 118 31 Jaw Clencher 4

2 Outer Brow Raiser 36 18 Lip Pucker 26 32 Lip Bite 5

4 Brow Lowerer 56 19 Tongue Out 3 33 Cheek Blow 4

5 Upper Lid Raiser 42 20 Lip Stretcher 30 34 Cheek Puff 3

6 Cheek Raiser 16 21 Neck Tightener 6 35 Cheek Suck 3

7 Lid Tightener 38 22 Lip Funneler 15 36 Tongue Bulge 4

9 Nose Wrinkler 36 23 Lip Tightener 47 37 Lip Wipe 3

10 Upper Lip Raiser 97 24 Lip Pressor 22 38 Nostril Dilator 29

11 Nasolabial Deepener 16 25 Lips Part 164 39 Nostril Compressor 9

12 Lip Corner Puller 77 26 Jaw Drop 63 43 Eyes Closed 13

13 Cheek Puffer 5 27 Mouth Stretch 14 61 Eyes Turn Left 4

14 Dimpler 32 28 Lip Suck 8 62 Eyes Turn Right 4

15 Lip Corner Depressor 28 29 Jaw Thrust 4 63 Eyes Turn Up 4

16 Lower Lip Depressor 42 30 Jaw Sideways 5 64 Eyes Turn Down 4

Table 1. AU frequencies identified by manual FACS coders in the D3DFACS data set (based on FACS descriptions in Ekman et al [12]).

Figure 2. Examples from the D3DFACS data set. The top two rows show camera views from 6 participants. The bottom two rows show

3D mesh data (textured and un-textured), and corresponding UV texture maps.

sequence frames. In this paper we propose a dense AAM

based approach to achieve registration and compare to state

of the art approaches. Directly applying optical flow for

registration without a mesh regularization term (as in [2])

produces drift artifacts in the meshes and images. Even with

a regularization term (as in [7, 24]) tracking accuracy still

depends on optical flow quality which can be error prone

(see Section 4.2). Registration is with respect to a neutral

expression image selected from the sequence.

Step 3: Perform global non-rigid registration of the dy-

namic sequences. One of the neutral sequence poses is

chosen as a global template to which each of the UV se-

quences is then registered using a single dense warping per

sequence. This registered UV space provides data for the

linear texture PCA model (see Section 4.2)

Step 4: Regularly sample the UV space to calculate 3D

vertices for each corresponding mesh. The more accurate

the pixel based registration is, the more accurate the mesh

correspondence (see Section 4.2).

Step 5: Perform rigid registration of the 3D mesh data.

Since sequences at this point have 3D mesh correspon-

dence, Procrustes analysis [5] may be applied to align the

meshes in an efficient manner. This removes head pose vari-

ation in the dynamic sequences.

Step 6: Build linear PCA models for shape and texture

using the registered 3D mesh and UV texture data.

We now expand on the above process concentrating pri-

marily on the procedures for non-rigid registration.



4. 3D Registration and Correspondence

4.1. Creating a 2D to 3D Mapping (Step 1)

A sequence of data consists of a set of meshes

X = [X1, . . .Xn], where X = [xT
1
, xT

2
. . . xTm]T , xi =

[xi
x, x

i
y, x

i
z]

T
∈ R

3. There also exists a set of UV tex-

ture maps I = [I1 . . . In], and a set of UV coordinates

U = [U1,U2, . . .Un], where U = [uT
1
,uT

2
,uT

m]T , and

ui = [ui, vi] ∈ R
2. The UV texture maps supply color

data to the mesh in the form of images, with the UV co-

ordinates linking individual vertices xi to unique points on

these images ui. In the above definitions, n is the number

of meshes and corresponding UV maps in a sequence. Sim-

ilarly, m is the number of vertices in a mesh and the number

of corresponding UV coordinates.

There also exists a set of common triangular faces per

mesh Fi, i = 1 . . . n, where faces in the 3D vertex space

correspond to the same faces in the 2D texture space. The

entire set of faces for a sequence may also be defined as

F = [F1, . . .Fn].
We approach 3D correspondence as a 2D image regis-

tration problem. From a theoretical point of view, perfect

one-to-one pixel registration between successive face im-

ages relates to perfect 3D mesh correspondence. The goal

is to achieve as near an optimal correspondence as possible.

It is therefore useful from an implementation point of

view to work primarily in 2D space. We first generate 3D

images I3D(u) = x. This is achieved by taking each face in

turn, and for each pixel within its triangle in 2D space cal-

culating the corresponding 3D position using a Barycentric

coordinate mapping. Repeating for each triangle results in a

dense 2D pixel to 3D vertex mapping for the entire UV map.

Operations performed on I are from now on also applied to

I3D, including optical flow and TPS warping.

4.2. Non­Rigid Alignment (Steps 2 and 3)

We now describe several strategies for non-rigid align-

ment, including our proposed method. In Section 5 we then

provide experimental results comparing these.

Optical Flow: Blanz and Vetter [2] calculate smoothed

optical flow to find corresponding features between images

of 200 different people. However, the formulation and

choice of features is tuned to the particular data. In this

work we consider a more standardized approach and extend

to dynamic sequences. We calculate concatenated Lukas-

Kanade (LK) [16] flow fields that warp images between I+i

and I0, where I0 is the neutral expression image (UV map).

Flow is summed for the images between I + i and I0, pro-

viding the concatenated flow. Smoothing of the flow field

is applied in the form of local averaging in both the spatial

and temporal domains. Flow fields calculated from the UV

maps are also then applied to the I3D images.

Optical Flow and Regularization: Bradley et al [7],

Zhang et al [24] and Borshukov et al [6] use optical flow

from stereo image pairs to update a mesh through a se-

quence. They use this technique for animation applications.

The mesh is initialized in frame 1, and its vertices moved

to optimal positions in successive frames using flow vec-

tors merged from each stereo view. The update is also

combined with a mesh regularization constraint to avoid

flipped faces. We extend this approach by using a single

UV space for optical flow calculation and mesh updating as

opposed to merging stereo flow fields. For regularization,

we sparsely sample the flow field and interpolate the po-

sitions of in-between points using TPS warping (see AAM

and TPS next). This ensures that flow vectors follow the

behavior of the sparse control points, but as with previous

approaches does not guarantee against tracking errors accu-

mulating due to optical flow drift.

AAM and TPS: Patel and Smith [20] achieve corre-

spondence in 3D morphable model construction by man-

ually landmarking 3D images and aligning them using TPS

based warping. TPS is a type of Radial Basis Function

(RBF). RBFs can be used to define a mapping between any

point defined with respect to a set of basis control points

(e.g. landmarks in one image), and its new position given

a change in the control points (e.g. landmarks in the tar-

get image). Thus, a dense mapping between pixels in two

images may be defined. TPS itself provides a kernel that

models this mapping based on a physical bending energy

term (for more detail see [4]).

This approach has several advantages over optical flow

based correspondence: (1) the TPS warp provides a smooth

and dense warping field with no drift artifacts in the mesh

or images, and (2) manual point placement guarantees cor-

respondence of key facial features whereas optical flow is

prone to drift. We extend this to dynamic sequences by

building an AAM and using it to automatically track feature

points through a dynamic sequence of multiple UV maps.

Pixels (or (u, v) coordinates) within the control points are

corresponded with those in neighboring frames using the

TPS mapping, which warps each I and I3D to a common

coordinate frame (the neutral expression).

AAMs are well known in the computer vision literature,

and a thorough overview may be found in [9]. We use the

same principles here and define our AAM as:

l = l̄ + PlWQlc g = ḡ + PgQgc (1)

where l is a vector of image landmarks, l̄ are the mean land-

marks learned from training, g is a vector of image pixels in-

side the region defined by l, and ḡ are the mean image pixels

learned from training. The eigenvectors of the training sets

of vectors l and g are the matrices Pl and Pg respectively.

The matrix W is a set of scaling weights, the matrix Q rep-

resents the eigenvectors of the joint distribution of landmark

and image data, and c is the appearance parameter.



Fitting AAMs to new images is a well covered topic in

the computer vision literature (see [9, 17]). In this work we

define a simple minimization approach which compares the

current guess to the models best reconstruction of this:

E = min
c

(gl − (PT (gl − ḡ)) (2)

where gl is portion of the image I within the area defined by

l (the current guess). Calculating gl requires first calculat-

ing l using c (in (1)), and then warping this region into the

space defined by the mean landmarks l̄. In order to optimize

E we use the Levenberg-Marquardt algorithm. The process

of tracking results in a set of labeled feature based land-

marks per frame (neutral expression). These can be then

used to warp each image to the common coordinate frame,

thus achieving dense non-rigid correspondence.

4.3. Sampling, Rigid Alignment and Statistical
Modeling (Steps 4, 5 and 6)

Given a set of non-rigidly aligned sequences, these are

aligned again to a single common coordinate frame. This is

selected to be a neutral expression from the full training se-

quence. The space of aligned images I3D is then uniformly

sampled. This sampling defines the topology and density

of the facial mesh, recalling that I3D(u) = x. Since each

I3D refers to a different set of 3D points, aligning these and

then sampling in a uniform manner results in a unique set

of registered 3D meshes. Similarly, there now also exists a

common set of faces F for each mesh.

The entire set of 3D mesh data can now be rigidly aligned

using Procrustes analysis (see [5] for a detailed description).

Following [2] the registered 3D mesh X and UV texture data

I may now be expressed using two PCA models:

X′ = X̄ + PXbX I′ = Ī + PIbI (3)

where X̄ is the mean mesh, Ī is the mean UV image tex-

ture, PX and PI are the eigenvectors of X and I, and bx

and bI are vectors of weights. The eigenvectors of X and

I are ordered by the proportion of total variance in the data

they represent. Removing some of their columns therefore

means that the projected weights bx and bI can be made

much smaller than x and I. Rewriting (3) allows us to per-

form this parameterization to a lower dimensional space:

bX = PT
X(X′

− X̄) bI = PT
I (I

′
− Ī) (4)

This provides a convenient lower dimensional represen-

tation for storing dynamic facial movements and perform-

ing optimization when fitting the model to new sequences.

5. Experiments

In this Section we perform baseline experiments com-

paring the three registration approaches described in sec-

tion 4.2. These are (1) standard optical flow concatenation

which extends [2], (2) a combined optical flow and regular-

ization approach similar to [7, 24], and (3) the new AAM-

TPS combination approach proposed in this paper.

For test purposes we selected 8 dynamic AU sequences

from our data set consisting of approximately 65 frames

each. For optical flow we use the pyramidal Lucas-Kanade

(LK) algorithm as in [7]. We first wished to compare how

well the AAM and LK algorithms tracked facial feature

points versus a ground truth. To create the ground truth we

manually annotated each frame from each sequence with

landmark points at 47 key facial features around the eyes,

nose and mouth. This test would give an indication of how

stable points are over time, and whether drift occurs as re-

ported in previous work. For the AAM test, an individual

model with 47 landmarks was trained for each sequence us-

ing 3 manually selected frames – typically at the beginning,

middle and end. Points were manually initialized in frame 1

for both the AAM and LK tests. Table 2 shows the mean Eu-

clidian error between ground truth points and tracked points

(in pixels) for each frame. It can be seen that the AAM er-

ror is consistently lower than the LK error. Figure 3 shows

examples of how the LK error accumulates over the course

of tracking, supporting the optical flow drift observations

in [6, 7, 24]. This is evidence that the AAM method pro-

vides a more stable tracking approach over time, and is a

valuable tool for reducing drift.

We next wished to evaluate how well each method per-

formed registration of the image sequences from a qualita-

tive point of view. Figure 4 shows example registrations of

peak frames to neutral frames for four sequences using (1)

dense concatenated LK flow fields between the peak and

neutral frame (see Section 4.2 - Optical Flow), (2) concate-

nated LK optical flow combined with TPS regularization

(see Section 4.2 - Optical Flow and Regularization), and (3)

feature points tracked with an AAM and registered using

TPS (see Section 4.2 - AAM and TPS).

It can be seen from Figure 4 that the LK method used

alone produces noticeable drift artifacts. We observed that

this is due to pixels overlapping each other, and is a re-

sult of the flow field being concatenated over consecutive

neighboring frames. One approach to avoid this in the fu-

ture may be to add a temporal constraint to the flow cal-

culation which observes learned facial deformations. The

LK+TPS method overcomes the drawback of pixel over-

lap due to (1) tracked points being initially far apart, and

(2) the TPS method regularizing the positions of pixels in

between the tracked points. Alignment is much improved

over LK alone. However, as highlighted by the red dotted

circles, accumulated optical flow drift causes some facial

features (such as the lower lip and cheeks) to distort. The

AAM-TPS method provides the most stable registration, as

demonstrated qualitatively by an absence of drift artifacts

and pixel overlaps. We have also used this technique in a



perceptual face experiment [10] and participants reported

no visible issues with the model.

Finally, we used the AAM-TPS approach to create a

morphable model (see Section 4.3). We parameterized the

original sequences using (4) and then re-synthesized them

using (3). Figure 5 shows example outputs from the model.

In order to show how the mesh deforms smoothly with the

tracked facial features we also show corresponding exam-

ples using a UV map of a checkered pattern. The defor-

mations in the pattern clearly demonstrate that the mesh is

following the correct facial movement.
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Figure 3. AAM-TPS (blue line) and Lucas Kanade (red line) track-

ing errors for 4 sequences. It can be seen that the optical flow

method accumulates error as the sequence moves on, whereas the

AAM value remains consistently lower.

AU Sequence AAM-TPS LK

1+2+4+5+20+25 18.6 43.1

20+23+25 53.8 63.8

9+10+25 25.4 41.7

18+25 15.3 43.6

16+10+25 23.2 38.8

12+10 15.2 48.7

4+7+17+23 3.4 28.5

1+4+15 2.3 26.2

Table 2. AAM-TPS and Lucas Kanade mean Euclidian error val-

ues (in pixels) for tracked feature points versus ground truth land-

mark points. 8 dynamic AU sequences were tracked in this partic-

ular test. The result demonstrates the improved reliability of the

AAM tracking method over the optical flow approach.

6. Conclusion and Future Work

In this paper we have presented the first dynamic 3D

FACS data set (D3DFACS) for facial expression research.

The corpus is fully FACS coded and contains 10 partici-

pants performing a total of 534 AU sequences. We also

proposed a framework for building dynamic 3D morphable

facial models and described an AAM based approach for

non-rigid 3D mesh registration. Our experiments show that

the approach has several advantages over optical flow based

registration. For future work we wish to perform exper-

iments comparing the performance of dynamic morphable

models versus static ones in a series of benchmark tests such

as tracking. We would also like to combine model based ap-

proaches such as AAMs with optical flow to improve dense

feature point registration between the tracked feature points.

Acknowledgements
We would like to thank the Royal Academy of Engineer-

ing/EPSRC for funding this work. Also thanks to all the

participants in the data set, particularly the FACS experts:

Gwenda Simons, Kornelia Gentsch and Michaela Rohr.

References

[1] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel,

and J. Movellan. Automatic recognition and facial actions in

spontaneous behavior. Journal of Multimedia, 2006. 1

[2] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In Proc. of ACM Siggraph, 1999. 1, 2, 3, 4, 5, 6

[3] V. Blanz and T. Vetter. Face recognition based on fitting a 3d

morphable model. IEEE Trans. Pattern Anal. Mach. Intell.,

25:1063–1074, 2003. 1, 2

[4] F. Bookstein. Principal warps: Thin-plate splines and the

decomposition of deformations. IEEE Trans. Pattern Anal.

Mach. Intell., 11:567–585, 1989. 3, 5

[5] F. Bookstein. Morphometric Tools for Landmark Data: Ge-

ometry and Biology. Cambridge Uni. Press, 1991. 4, 6

[6] G. Borshukov, D. Piponi, O. Larsen, J. Lewis, and

C. Tempelaar-Lietz. Universal capture - image based fa-

cial animation for the matrix reloaded. In ACM SIGGRAPH

Sketch, 2003. 2, 5, 6

[7] D. Bradley, W. Heidrich, T. Popa, and A. Sheffer. High

resolution passive facial performance capture. ACM Trans.

Graph., 29:1–10, 2010. 2, 4, 5, 6

[8] F. R. G. Challenge. http://www.nist.gov/itl/iad/ig/frgc.cfm. 1

[9] T. Cootes, G. Edwards, and C. Taylor. Active appearance

models. IEEE Trans. Pattern Anal. Mach. Intell., 23:681–

685, 2001. 2, 5, 6

[10] D. Cosker, E. Krumhuber, and A. Hilton. Perception of lin-

ear and nonlinear motion properties using a facs validated

3d facial model. In In Proc. of ACM Applied Perception in

Graphics and Visualisation, pages 101–108, 2010. 7

[11] J. Duncan. The unusual birth of benjamin button. Cinefex,

2009. 1

[12] P. Ekman, W. Friesen, and J. Hager. Facial Action Coding

System: Second Edition. Salt Lake City: Research Nexus

eBook, 2002. 1, 2, 3, 4

[13] Y. Furukawa and J. Ponce. Dense 3d motion capture for hu-

man faces. In In Proc. of IEEE Computer Vision and Pattern

Recognition (CVPR), pages 1674–1681, 2009. 1, 2

[14] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition un-

der variable lighting and pose. IEEE Trans. Pattern Anal.

Mach. Intelligence, 23(6):643–660, 2001. 1

[15] P. Gosselin, M. Perron, and M. Beaupre. The voluntary con-

trol of facial action units in adults. Emotion, 10(2):266–271,

2010. 2



Figure 4. Peak frames registered to neutral frames using LK, LK+TPS and AAM+TPS (see Section 4.2). In each case the concatentated

sequence information between the peak and neutral frame is used for registration. Red circles highlight drift errors in the LK+TPS approach.

Figure 5. Outputs from a morphable model constructed using the AAM+TPS method: (left to right) Neutral, 9+10+25, 20+23+25, 12+10

and 16+10+25. The checker pattern highlights the underlying mesh deformation.

[16] B. Lucas and T. Kanade. An iterative image registration tech-

nique with an application to stereo vision. In In Proc. of

Image Understanding Workshop, pages 121–130, 1981. 5

[17] P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and

I. Matthews. The extended cohn-kanade dataset (ck+): A

complete dataset for action unit and emotion-specified ex-

pression. In In Proc. of IEEE Computer Vision and Pattern

Recognition (CVPR), pages 94–101, 2010. 1, 2, 6

[18] W. Ma, A. Jones, J. Chiang, T. Hawkins, S. Frederiksen,

P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. Facial

performance synthesis using deformation-driven polynomial

displacement maps. ACM Tran. Graph., 27(5):1–10, 2008. 2

[19] M. Pantic, M. Valstar, R. Rademaker, and L. Matt. Fully

automatic facial recognition in spontaneous behavior. In In.

Proc of International Conference on Multimedia and Expo,

pages 317–321, 2005. 1

[20] A. Patel and W. Smith. 3d morphable face models revisited.

In In Proc. of IEEE Computer Vision and Pattern Recogni-

tion (CVPR), pages 1327–1334, 2009. 1, 2, 3, 5

[21] D. Systems. http://www.3dmd.com. 3

[22] L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale. A high-

resolution 3d dynamic facial expression database. In In Proc.

of Int. Conf. on Auto. Face and Gesture Recog., 2008. 1, 2

[23] L. Yin, X. Wei, Y. Sun, J. Wang, and M. Rosato. A 3d facial

expression database for facial behavior research. In In Proc.

of Int. Conf. on Auto. Face and Gesture Recog., 2006. 1

[24] L. Zhang, N. Snavely, B. Curless, and S. Seitz. Spacetime

faces: high resolution capture for modeling and animation.

ACM Trans. Graph., 23(3):548–558, 2004. 2, 4, 5, 6


