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� The effect of the Laplace’s law on the thermodynamic consistency is investigated.
� The dependence of rV on the droplet size can be reduced when qV increases.
� The interface thickness is related to the slope of the mechanically unstable region.
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a b s t r a c t

In this paper, the effects of the equation of state on the thermodynamic consistency and the interface
thickness are examined in the pseudopotential lattice Boltzmann modeling of liquidevapor flows. It is
shown that, with the increase of the slope of the equation of state in the vapor-phase region (qV), the
influence of the droplet size on the vapor density can be reduced. Numerically, it is found that, when the
vapor-phase sound speed (

ffiffiffiffiffiffi
qV

p
) is of the same order of magnitude as the lattice sound speed (cs), the

vapor density can be generally kept around its equilibrium value. Hence, to achieve thermodynamically
consistent simulations, the vapor-phase sound speed should be comparable with the lattice sound speed.
Furthermore, the interface thickness in the pseudopotential LB modeling is found to be related to the
slope of the equation of state in the mechanically unstable region (qM). It is shown that jqM j should be
decreased when the interface thickness needs to be widened to reduce the spurious currents.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

In the past two decades, the lattice Boltzmann (LB) method,
which is based on the mesoscopic kinetic equation for particle
distribution functions, has been developed into an alternative
approach for simulating fluid flows [1e6] and solving partial dif-
ferential equations [7,8]. Owing to its kinetic nature, the LB method
has been found to be pretty useful for modeling multiphase flows,
which is an important subject of fundamental and applied scientific
research with applications to a wide variety of industrial and nat-
ural processes [1,4,9,10].

The existing multiphase LB models can be generally classified
into four categories: the color-gradient model [11,12], the pseudo-
potential model [13,14], the free-energy model [15e17], and the
kinetic-theory-based model [18,19]. Among these models, the
0
r Ltd. This is an open access article
pseudopotential multiphase model proposed by Shan and Chen
[13,14] is a very popular model in the LB community. In this model,
the fluid interactions are mimicked by an interparticle potential
and the phase separation is achieved via a short-range attraction
between different phases. As a consequence, in the pseudopotential
LB modeling of multiphase flows the phase segregation can emerge
naturally without tracking or capturing the interfaces between
different phases, which is often required in traditional numerical
approaches. Although the pseudopotential LB model has attracted
much attention because of its simplicity and computational effi-
ciency, it has also received considerable criticism on the lack of
thermodynamic consistency and the large spurious currents [20].

It is well-known that, in the pseudopotential LB model, the
coexistence densities (the liquid and vapor densities) are related to
the mechanical stability condition of the model. However, in the
thermodynamic theory the coexistence densities are determined
by the Maxwell construction. Generally, the coexistence densities
given by the mechanical stability condition of the pseudopotential
LB model are inconsistent with the solution obtained with the
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Maxwell construction. Recently, we found [21,22] that in the
pseudopotential LB model the thermodynamic consistency can be
approximately achieved by adjusting the mechanical stability
condition. Nevertheless, for circular/spherical interfaces, the
droplet or bubble size will also affect the thermodynamic consis-
tency of the system through the Laplace’s law [9]. As a result, the
coexistence densities (especially the vapor density) often vary with
the droplet/bubble size significantly.

In the present study, the influences of the equation of state in
the pseudopotential LB modeling of liquidevapor flows are
examined. To be specific, we will investigate the effects of the
equation of state on the thermodynamic consistency and the
interface thickness. We will show how to adjust the equation of
state to reduce the dependence of the coexistence densities on
the droplet size and how to widen the interface thickness to
minimize the spurious currents. The rest of the present paper is
organized as follows. Firstly, the pseudopotential LB model with
an improved forcing scheme is introduced in Section 2. Numerical
results will be given in Section 3. A brief conclusion is finally
made in Section 4.

2. The pseudopotential LB model

The two-dimensional nine-velocity (D2Q9) LB model with a
multiple-relaxation-time (MRT) collision operator [23] is consid-
ered. The MRT LB equation is given by

faðx þ eadt ; t þ dtÞ ¼ faðx; tÞ �
�
M�1LM

�
ab

�
fb � f eq

b

�
þ dtF 0a:

(1)

where L ¼ diagðs�1
r ; s�1

e ; s�1
2 ; s�1

j ; s�1
q ; s�1

j ; s�1
q ; s�1

n ; s�1
n Þ is the di-

agonal Matrix, M is the orthogonal transformation matrix, and F 0a
represents the forcing term in the velocity space. Using the trans-
formation matrix, the right hand side of Eq. (1) can be rewritten as
[24]

m* ¼ m�Lðm�meqÞ þ dt

�
I�L

2

�
S; (2)

where I is the unit tensor, S is the forcing term in themoment space
with ðI� 0:5LÞS ¼ MF0, and the equilibria meq is given by

meq ¼ r
�
1;�2þ 3jvj2;1� 3jvj2; vx;�vx; vy;�vy; v

2
x � v2y ; vxvy

�T
:

(3)

The streaming process of the MRT LB equation is given by

faðx þ eadt ; t þ dtÞ ¼ f *a ðx; tÞ; (4)

where f* ¼ M�1m*. The macroscopic density and velocity are
calculated via

r ¼
X
a

fa; rv ¼
X
a

eafa þ dt
2
F: (5)

Here F ¼ (Fx,Fy) is the interaction force [25]

F ¼ �GjðxÞ
X8
a¼1

w
�
jeaj2

�
jðx þ eaÞea; (6)

where j is the pseudopotential, G is the interaction strength, and
wðjeaj2Þ are the weights, which are given by w(1) ¼ 1/3 and
w(2) ¼ 1/12 for the nearest-neighbor interactions on the D2Q9
lattice.
In Shan-Chen’s original pseudopotential LB model, the pseu-
dopotential j is defined as j ¼ j0 expð�r0=rÞ, which is usually
limited to low-density-ratio multiphase flows. To achieve high
density ratios, the pseudopotential can be chosen as

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpðrÞ � rc2s Þ=Gc2

q
[21,26], where cs ¼ c=

ffiffiffi
3

p
is the lattice

sound speed and p(r) represents a desired equation of state, such as
the Carnahan-Starling equation of state. Nevertheless, with such a
choice, the pseudopotential LB model will suffer from the lack of
thermodynamic consistency because the coexistence densities
given by the model are inconsistent with the solution given by the
Maxwell construction. Recently, we found that in this case the
thermodynamic consistency can be approximately achieved by
adjusting the mechanical stability condition [21,22], which can be
implemented via an improved forcing scheme. For the MRT pseu-
dopotential LB model, the improved forcing scheme is given as
follows [22]:

S ¼

2
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0

6
�
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; (7)

where jFj2 ¼ ðF2x þ F2y Þ and s is used to tune the mechanical sta-
bility condition.
3. Numerical results and discussion

3.1. Equation of state

In the present study, a piecewise linear equation of state [27] is
adopted for non-ideal fluids:

pðrÞ ¼
8<
:

rqV if r � r1
r1qV þ ðr� r1ÞqM if r1 < r � r2;

r1qV þ ðr2 � r1ÞqM þ ðr� r2ÞqL if r> r2

(8)

where qV ¼ ðvp=vrÞV , qL ¼ ðvp=vrÞL, and qM ¼ ðvp=vrÞM are the
slopes of p(r) in the vapor-phase region, the liquid-phase region,
and the mechanically unstable region, respectively (qV > 0 and
qL> 0, while qM< 0). Meanwhile,

ffiffiffiffiffiffi
qV

p
and

ffiffiffiffiffi
qL

p
represent the sound

speeds of the vapor-phase and the liquid-phase, respectively. The
unknown variables r1 and r2, which define the spinodal points, are
obtained by solving two equations [27]: one for determining me-
chanical equilibrium

ZreL

reV

dpðrÞ ¼ p
�
reL
�� p

�
reV

� ¼ �
r1 � reV

�
qV þ ðr2 � r1ÞqM

þ �
reL � r2

�
qL ¼ 0;

(9)



Fig. 1. Density contours of Case O (left) and Case A (right) at R ¼ 20.
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and the other for chemical equilibrium

ZreL

reV

1
r
dpðrÞ ¼ log

�
r1
	
reV

�
qV þ logðr2=r1ÞqM þ log

�
reL
	
r2
�
qL ¼ 0;

(10)

where reV and reL are the vapor density and liquid density, respec-
tively. Note that, in the derivation of Eq. (10), the Maxwell con-
struction has been used

ZreL

reV

1
r2



pðrÞ � p

�
reV

��
dr ¼

ZrL
rV



pðrÞ � p

�
reV

��
d
�
�1
r

�

¼
ZreL

reV

1
r
dpðrÞ ¼ 0: (11)

In Ref. [27], the parameters qV, qL, and qM are given as follows
(Case O):

qV ¼ 0:04c2s ; qL ¼ c2s ; qM ¼ �0:36c2s : (12)

When reV and reL are given, the unknown variables r1 and r2 can be
determined by Eqs. (9), (10) and (12). For example, when reV ¼ 1
and reL ¼ 100, Eq. (12) leads to r1 ¼ 34.29 and r2 ¼ 83.59.
Fig. 2. Density contours of Case O (le
3.2. Numerical analyses via the simulation of circular droplets

Nowwe investigate the influences of the equation of state in the
pseudopotential LB modeling of liquidevapor flows. Specifically,
we will show the effects of the parameters qV and qM in Eq. (8) on
the thermodynamic consistency and the interface thickness,

respectively. The liquid-phase sound speed is fixed at
ffiffiffiffiffi
qL

p
¼ cs.

The problem of stationary circular droplets is simulated. A
Nx � Ny ¼ 120 � 120 lattice system is employed and a circular
droplet with a radius of R is initially placed at the center of the
domain with the liquid phase inside the droplet. The periodical
boundary conditions are applied in the x- and y-directions. The

pseudopotential jðrÞ is given by j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpðrÞ � rc2s Þ=Gc2

q
. The

requirement for G is to ensure that the whole term inside the
square root is positive [9]. In the present study, G is set to �1. The
relaxation times are chosen as : sr ¼ sj ¼ 1.0, s�1

e ¼ s�1
2 ¼ 1:1, and

s�1
q ¼ 1:1.

To display the effect of the parameter qM, the following case is
considered:

Case A : qV ¼ 0:04c2s ; qL ¼ c2s ; qM ¼ �0:06c2s : (13)

The original case given by Eq. (12) is referred as Case O. Ac-
cording to Eq. (9) and Eq. (10), the variables r1 and r2 in Eq. (8) are
given by r1 ¼ 9.4 and r2 ¼ 95.19 for Case A. The density contours of
Cases O and A with R ¼ 20 and R ¼ 40 are shown in Figs. 1 and 2,
respectively. From the figures it can be seen that the interface
thickness of Case A is larger than that of Case O. To show this point
more clearly, local details of the density contours of Cases O and A
at R ¼ 40 are illustrated in Fig. 3, from which we can find that the
ft) and Case A (right) at R ¼ 40.



Fig. 3. Local details of the density contours of Case O and Case A at R ¼ 40.

Table 1
The coexistence densities of Cases A and B at R ¼ 40, 25, and 12.5.

R rV rL

Case A Case B Case A Case B

40 1.001 1.004 100.11 100.14
25 1.151 1.019 100.17 100.21
12.5 1.609 1.060 100.35 100.42
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interface thicknesses of Cases O and A are around 3.5 l.u and 5 l.u.,
respectively, where l.u. denotes lattice units. Meanwhile, it is found
that, from Case O to Case A, the maximum magnitude of the
spurious currents is significantly reduced from 0.032 to 0.002 with
the increase of the interface thickness. Actually, in the literature,
some previous studies of multiphase LB models have shown that
[28,29] the interface thickness in the LB modeling of multiphase
flows should be around 4e5 lattices in order to achieve a reliable
solution. According to the numerical results as well as Eqs. (12) and
(13), we can conclude that the interface thickness in the pseudo-
potential LB model can be enlarged by decreasing jqM j.

On the basis of Case A, another case can be considered to
investigate the effect of qV:

Case B : qV ¼ 0:49c2s ; qL ¼ c2s ; qM ¼ �0:06c2s : (14)
By comparing Eq. (14) with Eq. (13), we can see that the vapor-
phase sound speed has been increased from

ffiffiffiffiffiffi
qV

p
¼ 0:2cs to 0.7cs.

When reV ¼ 1 and reL ¼ 100, Case B corresponds to r1 ¼ 1.49 and
r2 ¼ 94.65. Three different radii are studied: R ¼ 40, R ¼ 25, and
R ¼ 12.5. The test of R ¼ 40 is taken as the standard test. In other
words, the parameter s in Eq. (7) is adjusted to achieve thermo-
dynamic consistency (rVz1 and rLz100) in the test of R ¼ 40.
Hence s in Eq. (7) is set to 0.1116 and 0.087 for Cases A and B,
respectively. The coexistence densities of the two cases are listed in
Table 1. From the table we can see that the liquid densities agree
well with the prescribed liquid density reL ¼ 100 for both Case A
and Case B. However, the vapor densities of Case A significantly
vary with the droplet size, while the results of Case B are basically
in good agreement with the prescribed vapor density reV ¼ 1.
Specifically, at R ¼ 12.5 the relative errors (vapor-phase) of Cases A
and B are about 61% and 6%, respectively.

From Eqs. (13) and (14), it can be seen that the main difference
between Case A and Case B lies in that the vapor-phase sound speed
of Case B is of the same order of magnitude as the lattice sound
speed (cs), whereas the vapor-phase sound speed of Case A is much
smaller than cs. For flat interfaces, the thermodynamic consistency
of the pseudopotential LB model is completely determined by the
mechanical stability condition. However, for circular interfaces, the
Laplace’s law [9]

pL � pV ¼ w

R
(15)

will also affect the thermodynamic consistency of the system.
In Eq. (15), w is the surface tension; pL and pV are the pressures of

the liquid and vapor phases, respectively, which can be described as
follows [9]:

pL ¼ peL þ
reL

reL � reV

�
w

R

�
; pV ¼ peV þ reV

reL � reV

�
w

R

�
(16)

The superscript e denotes the prescribed properties given by the
Maxwell construction. For simplicity, we assume that the pressure
difference DpV ¼ ðpV � peV Þ can be defined as

DpV ¼ ðrV � reV Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvp=vrÞV
p �2, in which

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvp=vrÞV
p ¼

ffiffiffiffiffiffi
qV

p
is the

sound speed in the vapor-phase region. Then we can obtain

rV � reV ¼ 1
qV

reV
reL � reV

�
w

R

�
(17)

Obviously, when w and qV are given, the density deviationDrV ¼
ðrV � reV Þ will increase with the decrease of R. Meanwhile, it can be
seen that a larger qVwill lead to a smaller difference between rV and
reV . This is the reasonwhy from Case A to Case B the deviation of the
vapor density can be lowered from 61% to 6%: qV has been increased
from qV ¼ 0:04c2s to 0:49c2s . To sum up, we have shown that, in the
pseudopotential LB modeling of liquidevapor flows, the sound
speed of the vapor phase should be comparable with lattice sound
speed so as to reduce the dependence of the vapor density on the
droplet size.



Table 2
The minimum and maximum densities during the impingement process of droplet
splashing.

t 200dt 400dt 800dt 1200dt 1600dt

rmin 0.945 0.906 0.914 0.928 0.933
rmax 538.9 507.6 511.9 506.3 521.0

Fig. 4. The impingement process of droplet splashing on a thin liquid film at reL=r
e
V ¼

500 and Re ¼ 500. From top to bottom: t ¼ 0, 500dt, 1100dt, and 1600dt.
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3.3. Droplet splashing

In this subsection, a dynamic problem is considered to show the
dynamic variations of the densities: droplet splashing on a thin
liquid film. The splashing of droplets on liquid/solid surfaces is a
crucial event in a wide variety of phenomena, such as the raindrop
splashing on the ground, the impact of a fuel droplet on thewall of a
combustion chamber, and nano-printing using the laser induced
forward transfer technique [22,28].

The lattice system is chosen as Nx � Ny ¼ 600 � 250. The liquid
film is placed at the bottom of the computational domain and its
height is one-tenths of the entire domain height. The radius of the
droplet is R ¼ 50 and its impact velocity is (vx,vy) ¼ (0,�U), where
U¼ 0.125 (dt ¼ 1). The no-slip boundary condition is imposed at the
bottomwall, while the open boundary condition is applied at other
boundaries. To show the capability of the model for simulating
Fig. 5. Local detail of droplet splashing on a thin liquid film shown in Ref. [30].
large-density-ratiomultiphase flows, the liquid and vapor densities
are taken as reL ¼ 500 and reV ¼ 1, respectively.

Following the analyses in the above section, the parameters qV,
qL, and qM are chosen as follows:

qV ¼ 0:64c2s ; qL ¼ c2s ; qM ¼ �0:04c2s : (18)

According to Eqs. (9) and (10), r1 and r2 are given by r1 ¼ 1.36
and r2 ¼ 481.04. The parameter s in Eq. (7) is taken as 0.084. The
Reynolds number Re ¼ UD=yL is set to 500 with yL ¼ 0:025. The
kinematic viscosity ratio between the vapor and liquid phases is
fixed at yV=yL ¼ 20. For simplicity, the viscosity in the simulations
is chosen as yðrÞ ¼ yL for r > ðreL þ reV Þ=2 and yðrÞ ¼ yV for r �
ðreL þ reV Þ=2.

The snapshots of the impingement process are shown in Fig. 4,
fromwhich it can be seen that, after the impact, a thin liquid sheet
will be formed in the region located at the intersection between the
droplet and the liquid layer. Later, the sheet evolves into a lamella
whose end-rim is unstable and will break-up into secondary
droplets, which is an important phenomenon of droplet splashing
and can be seen in Fig. 3 at t ¼ 1600dt. The observed main features
are in good agreement with the solution obtained by the volume-
of-fluid method in Ref. [30], which is shown in Fig. 5 for compari-
son. The minimum density rmin and the maximum density rmax at
t ¼ 400dt, 200dt, 800dt, 1200dt, and 1600dt are listed in Table 2. As
can be seen, the variations of the minimum and maximum den-
sities are basically within 10% of the corresponding prescribed
densities (reV ¼ 1 and reL ¼ 500).

4. Conclusions

In this paper, we have studied the influences of the equation of
state on the thermodynamic consistency and the interface thickness
in the pseudopotential LB modeling of liquidevapor flows.We have
shown that the dependence of the vapor density on the droplet size
can be reducedwith the increase of the slope of the equation of state
in the vapor-phase region (qV), which can be seen from Eq. (17).
Through the numerical simulations of stationary circular droplets,
we found that the vapor density can be generally kept around its
equilibrium value when

ffiffiffiffiffiffi
qV

p
is comparable with the lattice sound

speed (cs), e.g., at R ¼ 12.5 the deviation of the density is lowered
from 61% to 6% when

ffiffiffiffiffiffi
qV

p
increases from 0.2cs to 0.7cs.

Meanwhile, it has been shown that the interface thickness is
related to the slope of the equation of state in the mechanically
unstable region (qM). When jqM j decreases, the interface thickness
is found to be widened. Furthermore, to show the dynamic varia-
tions of the densities, the problem of droplet splashing on a thin
liquid film at reL=r

e
V ¼ 500 has been simulated. Themain features of

the impingement process of droplet splashing agree well with
previous studies. Owing to the use of a vapor-phase sound speed
comparable with the lattice sound speed, the deviations of the
densities are within 10%.
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