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Abstract

Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its
use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the
number of nodes (N) and the average degree (k) of the network. The explicit form of that influence depends on the type of
network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between
empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various
approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed
thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N
and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring) non-
significant (significant) connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates
but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and
small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to
correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local
network structures including exponential random graph models and motif counting. We show that none of the here-
investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.
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Introduction

First reports of small-world network structures [1] and scale-free

networks based on preferential attachment [2] have inspired many

researchers investigating the anatomical and functional organiza-

tion of the nervous system. The introduction of graph theory to

neuroscience opened a new window into the study of complex

neural network organizations. In the past decade, small-world

networks have been found for the anatomical connections in C.

elegans [1], cat cortex, and macaque (visual) cortex [3]. In humans,

anatomical connectivity in vivo has been successfully assessed via

cross-correlation analysis of cortical thickness (grey matter) in

structural MRI [4,5], revealing topological differences between

healthy controls and patients with Alzheimer’s disease [6] and

schizophrenia [7]. Recent advances in tractography allowed for

more direct studies of anatomical network structure (white matter)

based on diffusion tensor imaging and diffusion spectrum imaging

[8–10]. Small-world networks are known for their efficiency in that

they enable a rapid integration of information from local,

specialized brain areas even when they are distant [3]. The

significance of efficient brain network topology is emphasized by

reports of correlations between corresponding graph measures and

intelligence [11–13].

In contrast to anatomical connections, functional connections

may evolve on a much quicker time scale and can reveal

information on network organization underlying specific brain

functions. So far, however, small-world organizations in human

functional networks have primarily been studied in resting state,

either using fMRI [14–17] or M/EEG [18–21]. Abnormalities in

these resting state networks appear to relate to neurological and

psychiatric diseases: graph measures differ between patients and

healthy controls in Alzheimer’s disease [22–25], schizophrenia

[26,27], ADHD in children [28], and brain tumors [29,30]. Also,

changes in small-worldness have been found at slow and fast time

scales alike, e.g., as effect of aging [31–33], in different sleep stages

[34,35], and during epileptic seizures [36–38]. To explicitly study

their task-dependence, changes in graph measures have been

studied when subjects performed foot movements [39] and finger

tapping [19].

While all these results are interesting in their own right and are

very promising for up-coming research throughout neuroscience,

the general methodology of comparing network structures or

network topologies of different systems appears a challenge,

certainly across studies but also within a single experimental

design. As will be explained in detail below, topologies can be

estimated using various graph measures. Central to our studies is

the fact that most of these measures depend on network size. If

network size is altered, i.e. if numbers of nodes (N) and/or

connections (average degree k) are changed, then the graph

measures will differ even if the network topology remains identical

(Figure S1). In addition, such size effects (N,k-dependence) differ

for different topologies. That is, to ‘correct’ graph measures for
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size effects, the underlying topology needs to be known, which is

typically not the case for empirical data. However, if size effects

are hard to tackle, it is certainly difficult to discriminate between

the real effects of experimental manipulations and the effects of

simply changing network size and/or density between conditions,

as illustrated in Figure 1. When reviewing the literature it appears

that these size and degree effects are often overlooked or at least

underestimated.

How can networks of different size and connectivity density be

accurately compared? Unfortunately, we cannot give a definite

answer to that crucial question since, yet, an approved, unbiased

method for empirical data does not exist. That is, one runs the risk

of obtaining a bias in the comparison between network topologies

and, hence, misinterpretation of results. The purpose of this paper

is hence to review advantages and disadvantages of methods

commonly used when estimating the topology of neural connec-

tivity and to supplement this by several alternative approaches to

compare networks, including ones that are used in social network

research.

Analysis

Graph analysis
We first provide a brief description of fundamental steps and

notations in graph analysis that will serve as glossary for the

following sections. Networks can, in general, be represented as

graphs that consist of nodes and their connections, here referred to

as edges. From these representations, a variety of graph measures can

be calculated that are informative about the network topology. We

used several standard measures to describe the network’s topology

as they were also summarized by, e.g., Watts and Strogatz [1]: the

average degree (k), which denotes the average number of edges per

node; the degree distribution, which indicates the distribution of the

network’s nodal degree values; the characteristic path length (L), which

is the average number of edges in the shortest paths between every

pair of nodes in the network; and, the average clustering coefficient (C)

that represents the probability that neighbors of a node are also

connected. C indicates the occurrence of clusters or cliques in the

network. Exact definitions of these measures can be found in Text

S1, where we also added several other, less common measures (for

a recent overview of graph measures used in neuroscience see, e.g.,

[40]).

We note that by ‘topology’ we mean the layout of a realization

of a particular generating model, e.g., the Watts-Strogatz’s

rewiring model for small-world networks, with fixed parameters

other than N and k. Topologies are hence equivalent when derived

from the same baseline model irrespective of network size and

density. Since the only parameters of Erdös-Rényi random

networks and lattices are N and k, this means that we consider

all Erdös-Rényi networks to have the same topology (all random)

and all lattices to have the same topology (all regular). By contrast,

two Watts-Strogatz small-world networks with a different rewiring

probability have distinct topologies.

N,k-dependencies in known network topologies. In order

to illustrate the size- and degree-dependence of graph measures we

list (approximations of) L and C for several canonical topologies.

Although these theoretical networks are unlikely to be found in

empirical data we do capitalize on their mathematical forms

because they can provide a good feel about possible changes in the

one or the other measure. Expressions depend either on k or N, or

both and are specific for a particular network type. For instance,

the path length L depends linearly on N and reciprocally on k for

lattices, depends logarithmically on N and k for Erdös-Rényi

random networks, and has a double-logarithmic N-dependence for

Barabási-Albert scale-free networks; see Table 1 for more details.

Defining graphs from data
Most studies consider undirected, unweighted (i.e. binary)

networks. Voxels, specific regions of interest, or electrodes are

taken as nodes and their number is usually fixed throughout an

Figure 1. Differences in average degree between empirical networks may influence graph measures. The data here are taken from an
MEG experiment we conducted in which participants performed a precision grip force in six experimental conditions that differed in the force pattern
exerted (static or dynamic) and hand used (left, right, or bimanual). The topographies show the relative phase uniformity (15–30Hz) between all MEG
sensor combinations that is increased compared to resting state. The gray scale indicates the connectivity strength, with stronger connections in
darker colors. Results are averaged over 3640s steady state force production and 20 participants. Lower panels: although the clustering coefficient (C)
and path length (L) show clear differences between conditions, these effects co-vary with differences in average degree (k). This can be seen more
clearly in the right plot where values are divided by the average for each measure and L is inverted. It is difficult to disentangle true experimental
effects from those introduced by differences in k because the exact dependence of C and L on k is unknown.
doi:10.1371/journal.pone.0013701.g001
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experimental design. Subsequently, connectivity values are

estimated between all possible pairs of nodes based on, e.g.,

correlation or coherence between the corresponding time series. A

threshold is applied to convert these values into edges, i.e. if above

threshold then an edge exists, otherwise it is absent. This results in

a binary adjacency matrix from which the aforementioned graph

measures can be calculated. Reason to convert connectivity to

binary values in the first place is to enhance the contrast between

relevant and irrelevant values, since the first are only based on the

most important values, at least if the threshold is chosen properly.

The number of nodes in the network, i.e. the size of the

adjacency matrix, depends on the number of recording sites and/

or parcellation scheme [41–43]. For EEG and MEG this will

typically be in the range from 16 to 150 nodes. Likewise, for MRI

based methods relatively small scale parcellation schemes are

usually adapted like AAL (Automated Anatomical Labeling,

containing 90 nodes) or ANIMAL (Automatic Nonlinear Imaging

Matching and Anatomical Labeling, containing 70 nodes),

although voxel-based approaches have also been performed. As

will be shown below, it is often for these small numbers of nodes

when effects of different network sizes cannot be ignored.

Although usually the network size is fixed within a single

experiment, it does complicate the comparison between studies

using different data sources. The average degree is determined by

the way of thresholding connectivity values. In the following

paragraphs we sketch how different approaches for constructing

the adjacency matrix may influence results.

Fixed threshold: k-dependence. In general, the choice of

threshold should depend on the research question and falls in the

regime of educated guesses, especially when simply fixing to a

certain value. Three criteria are typically adopted: (1) one uses a

5% significance level as a threshold in order to omit connectivity

values that can readily be expected by chance (e.g., [5,14,17,27]);

(2) one selects just an arbitrary value as threshold, with which one

roughly obtains a certain desired average degree of the network

(e.g., [12,32,36]); or, (3) one defines the threshold as large as

possible while guaranteeing that all nodes are connected or a so-

called giant component exists [19]. However, connectivity values

often vary between subjects and conditions, which may yield a

clear difference in the total (summed) connectivity. This can result

in a difference in average degree k when using the same fixed

threshold for all networks under study. Most studies reflect

awareness to this problem as they include multiple thresholds,

determine the most ‘appropriate’ threshold value by different

means, or even show how graph measures may fluctuate as a

function of threshold. Although results could be preserved over a

broad range of thresholds, the problem of an accurate comparison

remains as differences in k between networks are also preserved

over the same range of thresholds.

Fixed average degree: network structures may change.

To omit all k-dependencies one may adjust the threshold for each

individual network so that k is fixed over all recordings and

conditions (e.g., [6,25,29,34,35]). However, as said, the overall

connectivity in empirical networks can vary profoundly, rendering

the fixed average degree k generally problematic. A fixed k may be

relatively large for a network with low average connectivity and,

by the same token, relatively small for a network with high average

connectivity. Put differently, for a network with low average

connectivity there will be fewer significant connectivity values.

Still, a fair number of low, non-significant connectivity values has

to be converted into edges in order to achieve the imposed k. This

yields an unwanted emphasis on ‘irrelevant’ connections as they

may be a mere by-product of the noise in neural data, in particular

in networks with low average connectivity. On the contrary, for

networks with large average connectivity, connections that are

important may be ignored because including them would result in

a too large average degree. In this way, applying a prescribed

average degree k can modify the topology (Figure 2). To get an

impression of how results are affected by the choice of threshold,

graph measures might be calculated both as a function of a fixed

threshold and with a fixed average degree [11,16,22].

Fixed edge density. An alternative but less common

approach to define a threshold is to fix the network’s edge

density (also referred to as wiring cost), i.e. number of existing edges

divided by the number of possible edges [41]. This approach is

motivated by that fact that fixing the edge density implies fixing

the probability for the existence of an edge in the case of Erdös-

Rényi random networks. Choosing a fixed edge density can be a

useful approach but it should be kept in mind that it also restrains

the number of edges and hence may involve a modification of the

topology under study as discussed in the previous paragraph. We

note that for two networks with the same number of nodes this

approach boils down to preserving the same average degree.

Weighted graph analysis: N,k-dependence remains. The

transformation of connectivity values from a continuous to a

binary scale entails many difficulties. While the binary scale clearly

enhances contrast it also hides potentially important information

as connectivity values below or above threshold may vary

considerably between conditions. Weighted graph analysis seeks

to preserve that information and also avoids all aforementioned

issues related to the selection of an appropriate threshold.

Therefore it has become more popular in recent studies

Table 1. Analytical expressions for graph measures of theoretical networks.

Network type Path length (L) Clustering coefficient (C)

Ring lattice N

2k

3 k{2ð Þ
4 k{1ð Þ

Random network
Erdös-Rényi

ln Nð Þ
ln kð Þ

k

N

Small-world network with rewiring probability p
Watts & Strogatz

N

k
f pkNð Þ with

f uð Þ~
const if u%1

ln uð Þ=u if u&1

�
3 k{2ð Þ
4 k{1ð Þ 1{pð Þ3

Scale-free network
Barabási-Albert

ln Nð Þ=ln ln Nð Þ N{0:75

Expressions adapted from [80].
doi:10.1371/journal.pone.0013701.t001
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[10,23,27]. Still, results for weighted graphs are not qualitatively

very different from the unweighted network analysis [13,38]. In

principle, for weighted graphs one could eliminate connections

that may be present by chance using a threshold to set all non-

significant values to zero. Then the resulting graph exists of zeros

and weights instead of mere zeros and ones. However, the

importance of individual edges in the network scales with

connectivity strength and non-significant connectivity values are

therefore supposed to play a minor role in the network topology,

also without thresholding. Unfortunately, using weighted graphs

cannot solve the problem of the N,k-dependence of graph

measures as two networks generally differ in connectivity values

and their distribution. Just as differences in average degree for

binary graphs, the differences in weights do influence graph

measures.

Approaches to correct for the N,k-dependence
If the topology of the network under study is known, one can

immediately correct for size effects, at least when using graph

measures that allow for a closed mathematical description (e.g.,

Table 1). If the topology is unknown, however, alternative

corrections are required as illustrated numerically below. For all

simulations we generated Erdös-Rényi random networks, ring

lattices and Watts-Strogatz small-world networks with rewiring

probability 0.1, while systematically varying N and k. All results are

based on 200 repetitions.

Normalization by random graphs. In searching for N,k-

invariant analyses, several studies used random networks with the

same number of nodes and connections as (bootstrapped)

surrogates to normalize the corresponding graph measures (e.g.,

[18,37,44]). At first glance, that normalization appears elegant but

as depicted in Figure 3, the trouble is again that the N,k-

dependence of graph measures depends on network type. For fixed

k, an increase in the number of nodes N has a larger effect on the

path length L in regular networks (lattices) as opposed to random

networks. Hence, the ratio Llat/Lrand depends on N, i.e. two lattices

that differ in N will not display the same normalized values despite

the equivalence of their topologies (Figure 3A). Similarly, if N is

fixed, then the effect of adding edges and thus increasing k on the

path length L is larger for a lattice than for a random network

(Figure 3B). An even more pronounced difference between size

effects in distinct topologies is found for the clustering coefficient

(C), which is independent of N and k for lattices but not for random

networks. There, the normalization introduces a bias that was

absent in the non-normalized value. Equivalent findings hold for

the small-world index (SW, see Figure 3, lower row), a graph measure

commonly applied to assess small-world networks and relying on

the here-discussed normalization [45]: it is defined as the ratio

between normalized clustering coefficient and normalized path

length. Strikingly, SW shows a strong N,k-dependence for small-

world networks. Its linear dependence on N can be deduced from

the analytical expressions in Table 1, as was shown by [45].

Without any corrections, the small-world index can hence not be

used to compare the small-worldness of different empirical

networks.

As mentioned earlier, in experimental settings the nodes often

agree with recording sites and the number of connections is usually

influenced by the researcher’s choices. Figure S2 shows surface

plots indicating that, when either N or k is fixed, a change in

number of nodes or connections necessarily results in different

normalized values for L and C. Only if N and k are both free to

change (are independent variables) the same normalized value can

be reached. Indeed when preserving the edge density C and L

appear relatively insensitive to changes in size (Figure 3C).

However, not all graph measures benefit from a fixed density

since they show stronger dependence on network size (see below).

One may argue that we seek the extreme cases as the N,k-

dependence of L and C may differ most between lattices and

random networks. Empirical networks often resemble small-world

characteristics and, indeed, graph measures will probably have

values that lie somewhere between those of a lattice and random

network. In fact, since small-world networks are characterized by a

path length close to that of random networks even for small

rewiring probabilities, effects on normalized L are reduced. By

contrast, however, the average clustering coefficient of small-world

networks is close to that of a lattice and normalization by random

networks introduces a larger N,k-dependence than seen for the

non-normalized values. The small-world networks reported here

had a rewiring probability of 0.1 (i.e. 10% random connections).

In Figure 4 we show the N,k-dependencies of C and L for different

rewiring probabilities. As expected, for low rewiring probabilities L

is highly dependent on the number of nodes and edges, and much

less so for high rewiring probabilities. The opposite is true for C.

Remarkably, normalization by random networks only eliminates

effects of N and k when the rewiring probability approaches 1, i.e.

producing random networks. For lower rewiring probabilities,

normalized C and L are still dependent on N and k. Hence, the

exact bias introduced by differences in N and k depends on the

rewiring probability.

Creating surrogates for normalization via plain randomization

yields Erdös-Rényi random networks, which have a Poisson degree

distribution. May it be so that by virtue of its shape the degree

distribution introduces the undesired N,k-dependence outlined

above? To avoid answering this question one can generate random

surrogates that do not only match the original network’s N and k

but also have the same degree distribution [7,13,26,30,33–35]. We

here used the algorithm described by Maslov and Sneppen [46] to

generate these types of random networks and repeated all

simulations but found little to no difference between these and

plain random surrogates (see Figure 3). We note that for original

empirical networks with an asymmetric degree distribution, the

Figure 2. Imposing a fixed average degree can modify network
structure. Applying a variable threshold to obtain a fixed average
degree (k) may have consequences for the resulting network structure.
A relatively large average degree for a network with low overall
connectivity will convert non-significant values into edges. By contrast,
a relatively small k for a network with high overall connectivity will omit
a number of significant connections. Connectivity strength is indicated
using a gray scale with black indicating strong (significant) connections.
doi:10.1371/journal.pone.0013701.g002
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difference could become larger as for instance scale-free networks

show different N,k-dependencies compared to Erdös-Rényi

networks (cf. Table 1). However, we did not perform a systematic

investigation of the N,k-dependence for scale-free networks

because the preferential attachment models do not allow for a

completely independent manipulation of N and k.

In addition to L, C, and SW, many other graph measures are

also characterized by a N,k-dependence that depends on network

topology. In the Figure S3 we illustrate this for the number of hubs,

maximum degree, synchronizability and central point dominance. In fact,

none of the here-discussed measures were entirely insensitive to

changes in N and k, but several converged to a (almost) constant

value with increasing number of nodes (N.200) and/or edges

(k.25).

Normalization by the range of possible outcomes.

Replacing random surrogates by other kinds of networks, e.g.,

lattices, will yield equivalent normalization problems. For instance,

the aforementioned arguments around Llat/Lrand can be readily

inverted, i.e. the ‘bias via random networks’ would be replaced by

a ‘bias via lattices’ Lrand/Llat and the challenge regarding its N,k-

Figure 3. Normalized graph measures using random surrogates remain sensitive to network size and average degree. Path length (L)
and clustering coefficient (C) normalized by dividing values from a lattice and small-world network (rewiring probability = 0.1) by those of random
networks still depend on the network’s number of nodes (N) and average degree (k) because their curves as function of N and k are specific for each
type of network. Small-world networks (sw) fall in between lattices (lat) and random networks (r) and so the influence of normalization on the N,k-
dependence is smaller compared to lattices. Since L for small-world networks is close to that of random networks, normalization improves the
independence of N and k (more horizontal curves). By contrast, C is close to that of lattices and normalization introduces a bias that is larger
compared to the non-normalized measure. Because of this, the small-world index (SW) is also greatly affected by N and k. There is little to no
difference for Erdös-Rényi networks and random networks with the same degree distribution as the original network (lat-r, sw-r) and even coincide
for L. The legend for SW indicates between brackets the type of random surrogates used in the calculation. A: Effects of changes in the number of
nodes (N) while keeping the average degree constant (k = 10). B: Effects of changes in the average degree (k) while keeping the number of nodes
constant (N = 100). C: Effects of changes in the number of nodes while keeping the edge density constant (0.1). Note that k now increases with
network size. In this case, the sensitivity to network size is greatly reduced.
doi:10.1371/journal.pone.0013701.g003
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dependence would persist. Nonetheless one may try to exploit the

fact that many empirical networks appear to have small-world

characteristics and design an according normalization. Given a

small-world network with certain N and k, its values for L and C

will be somewhere between those of a lattice and a random

network. Hence one may express the observed L and C as a

fraction of the range of possible obtainable values [3,47], i.e.

~LL~
L{Lrand

Llattice{Lrand
and ~CC~

C{Crand

Clattice{Crand
,

which may improve the insensitivity to changes in N and, in

particular, k (Figure 5). As such, this approach might be useful for

empirical networks that have a small-world structure. This, of

course, limits the applicability of this normalization since the

precise topology remains unknown. Other types of networks,

however, may allow for similar approaches as the ranges of

outcome values of, e.g., L and C, are bounded; see for instance the

scale-free networks in Klemm and Eguı́luz [48].

Estimating the N,k-dependence of graph measures. We

argued repeatedly that if the N,k-dependence of graph measures

for the network under study were known, one could immediately

compensate for it, i.e. correct for a possible bias. However, the

topology of empirical networks is the very characteristic that ought

to be determined through analysis. Most likely, empirical networks

do not have the topology of one of the archetypical networks listed

in Table 1 leaving its baseline model unknown. Asymmetric

degree distributions cannot be explained by the Watts-Strogatz

small-world network (rewiring model) but by the Barabási-Albert

scale-free network (preferential attachment model). The latter does

not account for the large modularity, clustering coefficient and

degree correlations. Obviously, a proper baseline model should be

able to explain as many network features as possible, maximizing

the likelihood that the empirical network was generated from that

model. Approaches to estimate such a model will be discussed

below but, so far, the lack of a model calls for alternative estimates

of the network’s N,k-dependence. To do so one may use sampled

networks by randomly removing nodes or edges. However, this

(and other forms of) down-sampling may readily change the

network’s topology [49–53] and thus bias, or at least influence, any

estimate.

To illustrate this influence we estimated the k-dependence of L

and C for a small-world network (Figure 6). We removed edges at

random, by which k was stepwise decreased, and recalculated L

and C at each step, i.e. for each sampled network. This process was

repeated 200 times yielding a mean k-dependence of path length

and clustering coefficient. Both measures deviated from the

expected values of small-world networks and tended toward those

of a random network. Moreover the k-dependencies depended on

the size of the original network, i.e. on the number of edges that

had to be removed in order to reach a specific average degree.

Effects were relatively small for L because the path length of a

small-world network is typically close to that of a random network.

That is, for graph measures not close to that of a random network,

randomly removing edges does not lead to a correct estimation of

the k-dependence (i.e. the true k-dependence for the investigated

network type).

We note that the random removal of edges from the small-world

network does not affect the ratio between local and long-range

connections (i.e. the rewiring probability). Of the total number of

edges removed, the fraction of removed long-range connections

will be p as well. For example, a network with N = 100, k = 10 and

p = 0.1 containing 900 local connections and 100 long range

connections, removing 200 edges will on average affect 180 local

Figure 4. The sensitivity of small-world networks to size and average degree changes depends on rewiring probability. The
dependence for normalized path length and clustering coefficient (L/Lrand and C/Crand with Erdös-Rényi random networks) decreases with rewiring
probability p (stronger resemblance to random networks). A: Effects of changes in the number of nodes (N) while keeping the average degree
constant (k = 10). B: Effects of changes in the average degree (k) while keeping the number of nodes constant (N = 100).
doi:10.1371/journal.pone.0013701.g004
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connections and twenty long range connections, resulting in a

network with N = 100, k = 8 and p = 0.1. However, the analytical k-

dependence for a small-world network with k = 8 will be based on

a lattice connected to its four neighbors on each side, while the

estimated relation is based on a lattice with connections to five

neighbors. If local edges are removed, the clustering between

direct neighbors will be underestimated and, therefore, the

network becomes more random.

A fling with social sciences: comparing social networks
The problem of comparing networks with different size and

connectivity density has been recognized in other disciplines. We

here highlight social networks where the application of graph

theory has a long tradition ([54,55], and see e.g., [56,57] for recent

reviews). Social networks may significantly vary in number and

type of connections and size and type of studied population (e.g.,

friendships among high school students, advice seeking among

company employees, collaborations between movie actors,

agonistic encounters for certain animal species, etc.). We briefly

sketch four methods that have been considered useful when

comparing networks, although, strictly speaking, all these methods

are also not entirely insensitive to differences in N and k (see

[56,58,59], and references therein).

Distances and correlations between graphs. The most

direct way of comparing networks is to assess their distances [60]

or their more common covariance and correlation [56]. Distances

between graphs typically build on the Hamming distance, which is

a very general measure and forms a metric on the space of graphs,

be they directed or undirected. The Hamming distance gives the

number of elements of two graphs y1 and y2 with adjacency

matrices A(1) and A(2) that disagree, or more formally

dHamming y1, y2ð Þ~
XN

i=j

A
1ð Þ

ij =A
2ð Þ

ij

h i
;

the � � �½ � notation here reflects an indicator function that is equal to

one if its argument is true and zero otherwise. The Hamming

distance may also be viewed of as the number of addition/deletion

operations required turning the set of edges of y1 into that of y2. If

nodes are interchangeable (i.e. their locations are irrelevant and

hence their order in the adjacency matrix may be different for two

networks) the Hamming distance may yield spurious results, which

led Butts and Carley [60] to formulate the structural distance. The

structural distance between y1 and y2 is defined as

dstruct y1, y2ð Þ~ min
y y1ð Þf g, y y2ð Þf g

dHamming y y1ð Þ,y y2ð Þð Þ,

where y y1ð Þ and y y2ð Þ denote node permutations of y1 and y2 out

of the corresponding sets of all accessible permutations, i.e.

y y1ð Þf g and y y2ð Þf g, respectively.

In order to define dHamming and, hence, dstruct, the adjacency

matrices must match in size, i.e. the two networks have the same

number of nodes, which greatly limits applicability. In the specific

case that the networks agree in the number of nodes, then the

distance trivially scales with N and k. As an alternative to the distance

one may define the covariance between the graphs y1 and y2 as

cov y1,y2ð Þ~ 1

N N{1ð Þ
XN

i=j

A
1ð Þ

ij {m1

� �
A

2ð Þ
ij {m2

� �
,

where m1 and m2 are the means of the respective adjacency matrices

A(1) and A(2), e.g.,

ml~
1

N N{1ð Þ
XN

i=j

A
lð Þ

ij ,

Figure 5. Normalization of graph measures by the range of
possible values. Expressing path length (L) and clustering coefficient
(C) as a ratio of the range of obtainable values (lattice - random)
diminishes the sensitivity to changes in number of nodes N and average
degree k. Only the path length remains largely sensitive to changes in N
for a large range of rewiring probabilities p (the four curves do not
coincide here). Shown are small-world networks with either a fixed
k = 10 or a fixed N = 100.
doi:10.1371/journal.pone.0013701.g005

Figure 6. The random removal of edges introduces a bias
towards random networks. Shown here is the estimation of the k-
dependence for a small-world network (rewiring probability = 0.1).
Edges were stepwise randomly removed from the original network and
the path length (L) and clustering coefficient (C) were recalculated. This
procedure was repeated 200 times, resulting in an average k-
dependence estimate. We started this estimation both with a original
network having k = 10 (dashed black line) and k = 12 dashed grey line).
Estimates showed a deviation from the simulated k-dependence of the
small-world network and depended on the average degree of the
original network. Effects were smaller for L compared to C since values
are already closer to those for random networks.
doi:10.1371/journal.pone.0013701.g006

Comparing Brain Networks

PLoS ONE | www.plosone.org 7 October 2010 | Volume 5 | Issue 10 | e13701



which equals the edge density of the network in the case of

unweighted graphs; recall that the self-adjacencies Aii vanish by

construction. The corresponding graph correlation is readily

obtained by normalization via the individual variances in terms of

r y1,y2ð Þ~ cov y1,y2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var y1ð Þvar y2ð Þ

p :

In words, using the graph covariance the existence of a particular

edge i«j is compared between adjacency matrices. For unweighted,

i.e. binary graphs, a correlation of 1 will be obtained if and only if all

edges in y1 also exist in y2. By contrast, a correlation of 21 will be

obtained if and only if the two graphs are completely mirrored, i.e. all

edges in y1 do not exist in y2 and vice versa.

A similar approach has been discussed by Costa and colleagues

[61], who also employed a normalization to correct for large

baseline correlations in sparse binary matrices. Expressing the

number of coinciding ones and zeros in A(1) and A(2) as a ratio of

the total number of ones and zeros in A(1) in terms of

R1~
XN

i=j

A
1ð Þ

ij \A
2ð Þ

ij ~1
h i,XN

i=j

A
1ð Þ

ij ~1
h i

and R0

~
XN

i=j

A
1ð Þ

ij \A
2ð Þ

ij ~0
h i,XN

i=j

A
1ð Þ

ij ~0
h i

,

the geometrical average between the ratios
ffiffiffiffiffiffiffiffiffiffiffi
R1R0

p
could be used

as a distance measure.

As for the distance measures, the two adjacency matrices must

again have the same size N. Since this restriction does not apply for

the mean value, a difference in the number of connections causes

the maximum correlation to be always strictly smaller than 1 (e.g.,

since edges are compared pair-wise, there is at least one edge that

exists in the graph with the highest mean that does not exist in the

graph with the lowest mean). Or, if the sum of the number of edges

in both graphs does not equal the amount of possible edges,

N(N21), then the minimum correlation is strictly smaller (less

negative) than 21. Fortunately, the maximum and minimum

obtainable correlations can be easily calculated by reordering the

values in the adjacency matrices to obtain as many overlapping or

non-overlapping edges as possible offering the possibility for

normalization with respect to the maximum correlation.

Comparison with size effects in a baseline model. To go

beyond the mere comparison of adjacencies, Anderson and others

[58] proposed to contrast networks by comparing the observed

difference in a graph measure g, i.e. D~g y1ð Þ{g y2ð Þ, with the

difference predicted by a baseline model, which is assumed to mimic

the main characteristics of both empirical networks. One generates

a random realization of the baseline model that agrees in size N

and average degree k with the first empirical network, and another

realization that matches the second empirical network in N and k.

From the two simulated networks we obtain a difference in the

graph measure Dsim~g y1,sim

� �
{g y2,sim

� �
. Repeating this process

several times leads to a probability distribution P Dð Þ, which allows

for defining a 95% confidence interval of the probability that the

observed difference has been caused by changes in N and k.

Although this method is theoretically very appealing, it is difficult

to apply because the baseline model of the empirical networks is

usually unknown. Moreover, baseline models may differ from the

to-be-compared networks, e.g., between subjects or conditions,

which certainly complicates the estimation of a common

probability distribution.

We show these difficulties by investigating examples of

anatomical networks in the human brain reported by Hagmann

and colleagues [10]. We considered a Watts-Strogatz small-world

network with fixed rewiring probability as baseline model and used

the small-world index SW as graph measure g, which we found to

be very sensitive to changes in N and k (see above). The empirical

networks contained weighted, undirected anatomical connections

(axonal pathways obtained from diffusion spectrum imaging)

between 998 regions of interest covering the entire cortex (data

were obtained from the authors of [10]). The 998-node network,

graph y1, was averaged over all five subjects. To illustrate size

effects we further averaged fiber densities within and between the

areas of a 66-node parcellation scheme yielding a corresponding

66-node network, graph y2 as was also done in the original paper.

For these two networks we found the small-world indices to be

SW = 7.84 and 1.84, for the 998 and 66-node networks

respectively, resulting in D~SW y1ð Þ{SW y2ð Þ~6:00.

Next, the rewiring probabilities of the two networks were

individually estimated by simulating small-world networks with the

same weights as the original networks. This was done by randomly

placing the weights of the empirical networks in a ring lattice and

subsequent rewiring to create long-distance connections. The

rewiring probability was determined through least squares

optimization of the respective SW [45]. The first problem was

that the optimization revealed different rewiring probabilities for

the two networks, namely prewire y1ð Þ~0:2668 for N = 998 versus

prewire y2ð Þ~0:1293 for N = 66. That is, strictly speaking the two

networks had different baseline models rendering a subsequent

comparison that builds on one of the models doubtful. Nonetheless

we proceeded with the rewiring probabilities at hand and

generated for both of them different sets of small-world networks

with 998 and 66 nodes (y1,sim and y2,sim with 2000 realiza-

tions each), and computed the distribution of differences

Dsim~SW y1,sim

� �
{SW y2,sim

� �
.

For prewire = 0.1293 and 0.2668 we found the corresponding

confidence interval as D [ 9:34,10:29½ � and 6:04,6:80½ �, respec-

tively, implying that in both cases the observed difference cannot

be exclusively admitted to mere size effects, i.e. the baseline model

may be altered and, hence, topology is not necessarily preserved.

The mismatch for prewire = 0.1293 is even stronger because

changing the rewiring probability has a larger effect on SW in

the case of large networks than for small networks – recall that

prewire = 0.1293 was determined from N = 66, that is, in this case we

used the baseline model of the smaller network to mimic the larger

one.

It should be evident that a proper interpretation of this

comparison requires great confidence in the validity of the

underlying baseline model. In our example the two networks

might have differed in topology. We note that down-sampling is

indeed known to affect network characteristics [49–53]. And even

if the networks do have the same topology one may question

whether a Watts-Strogatz rewiring model is actually the proper

baseline (e.g., how about the networks’ degree distribution,

modularity, etc.?). Of course, some uncertainty about the baseline

model will persist. After all, if the empirical network would

perfectly agree with a known (theoretical) baseline model, its N,k-

dependence might directly be accessible, i.e. one can generate an

according invariance by algebraic means rendering the here-

discussed problems immaterial.

Exponential random graph models. In the absence of an

accurate model description one may estimate the likelihood that a

certain parameterized model provides reasonable if not proper

estimates. Also known as ‘p*’ models, exponential random graph

models are models that describe the probability of a number of
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statistics gm to be present in graph y [62–64]. These statistics may

be any of the here-discussed average graph measures like k, C, L,

SW, the degree distribution, the Hamming distance to another

network, but also other structural properties like certain motifs

(e.g., edges, stars, triangles; see also below and Figure S4). The

incidences of the statistics are given by a set of parameters hm that

can be determined via maximizing the likelihood of the model

[65]. This maximum likelihood estimate agrees with a con-

ventional maximum entropy approach constraint by the

aforementioned statistics where the parameters become

Lagrange parameters [66]. Put differently, exponential random

graph models are baseline models of a network by assuming that

all realized networks are maximally ‘random’ given the average

values of their statistics [56]. More formally one may write

P Y~yð Þ~ 1

n hð Þ exp
X

m
hmgm yð Þ

n o
,

where P Y~yð Þ denotes the probability that the empirical

network, i.e. graph y, belongs to the class of networks Y that are

characterized by the set of parameter values h = h1,h2,h3, …. As

said, these parameters hm are varied in order to specify the model

that is most probable to underlie y, i.e. they weigh the presence of

the statistics gm. The normalizing constant n depends on the

parameter values h and ensures that the distribution of Y describes

a probability (i.e. its integral equals one). Finding parameter values

h can be realized via Markov chains or other maximum (pseudo-

)likelihood methods (see e.g., [65] for details). If a certain hm turns

out to be large and positive, the corresponding statistics gm can be

considered a major ingredient of the empirical network under

study. If hm is negative, the corresponding statistic is less prevalent

than might be expected by chance. In both cases a significant hm

reveals an important deviation from the null model (random

network) and, hence, contributes to the network’s topology. In

order to compare networks, model fits are obtained for all

networks using a common set of statistics – see below. Once the

optimal parameter values have been determined for all empirical

networks, either parameter values could be directly compared

between networks, or when dealing with multiple networks, the

resemblance between networks could be investigated by

comparing predicted probabilities based on parameter values

from other networks [59]. In the following paragraph we illustrate

the application of exponential random graph models by

contrasting it with motif counting.

Counting motifs. To detect the primary building blocks of

empirical networks Sporns and colleagues [3,67] suggested to

simply count different motifs and evaluate their relevance through

a post-hoc bootstrapping statistics. Put differently, histograms

(‘frequency spectra’) of motifs are compared with those of random

surrogates by which the probability for the presence of a certain

motif can be estimated including a corresponding significance

value. As such this approach is closely related to the afore-

discussed comparison of Anderson and others [58] when the graph

measure is restricted to the occurrence of a motif and the random

network is chosen as baseline model; in [67] the networks were

also contrasted with a lattice but this comparison is ‘only’

descriptive as no statistics could be performed. Connected motifs

were categorized by conventional graph theoretical means, i.e.

ordered by their number of nodes N into dyads (N = 2; for directed

graphs there are 2 distinct connected dyads: asymmetric and

mutual), triads (N = 3; for directed graphs there are in total 16

triads but only 13 are connected), et cetera. This yielded structural

motifs, which can contain a set of so-called functional motifs. For

instance, a mutual dyad contains two asymmetric dyads, a

mutually connected triangle may contain 2-stars (in-, out-,

mixed-stars), cyclic triples, and so on. Put differently, a

functional motif can appear via different structural motifs, i.e.

the structural motifs form the base on which functional motifs may

emerge. Interestingly, it has been hypothesized that brain networks

maximize both the number and the miscellany of functional

motifs, while the stock of structural motifs remains small – note

that by construction the latter must be smaller. In fact, when

constraining a random network model by the functional motif

number, network topologies have been simulated that resemble

various graph measures of the empirical networks under study

[67].

Counting motifs is closely related to the exponential random

graph models, at least when restricting to the identification of

motif fingerprints [3]. However, the first requires a post-hoc

statistical assessment whereas for the latter statistical testing is

immanent so that result may readily differ. We investigated this

contrast by optimizing several exponential random graph models

in 10 iterative steps each with 105 networks that were randomly

drawn from the distribution on the set of all networks;

optimization was realized via a Monte Carlo Markov chain

methods using the Metropolis-Hastings algorithm with 103

proposals, see the Statnet software package [68,69] for more

details. In the exponential random graph models the sign of the

parameter values is determined relative to a random network with

edge probability of 0.5 whereas Sporns and Kötter [67] chose the

edge probability so that the degree of their random graph matched

with the empirical network. We only used the average degree of

the empirical network to constrain the Monte-Carlo optimization.

We used data of the anatomical connections in the macaque

visual cortex consisting of a directed, unweighted graph with 30

nodes, and 311 edges (available at http://www.brain-connectivity-

toolbox.net). According to Sporns and Kötter [67], in this network

the frequency of only five structural motifs appeared significantly

increased when optimizing a random network that was con-

strained by the number of estimated functional motifs (see

Figure 3B and Table 4 in [67]). Since we did not intend to

replicate these results to all extent but rather want to highlight

differences between methods we here only considered motifs with

up to three nodes, which left a single triad, namely triads census

201 ([59,70], see also Figure 7 and S4), i.e. the mutually connected

two-path (ID = 9 in [67]). Interestingly, however, the counts of six

other motifs with three nodes where significantly decreased but not

further discussed in [67], although the reduced frequency of such

mostly directed motifs is certainly as interesting as the increased

count of triad census 201. The combination of these in total seven

motifs led to the first exponential random graph model that was

unfortunately degenerate [71]. We therefore reduced the model a

Figure 7. Graphical representation of our four exponential
random graph models. The triads are given conventional number-
ing; see Figure S4 for a complete overview of all possible dyads and
triads.
doi:10.1371/journal.pone.0013701.g007
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priori to

P Y~yð Þ! exp h1g1 yð Þzh2g2 yð Þf g,

with g1 referring to triad 201 and g2 to 021C (see Figure 7).

Optimizations revealed that in this model #1 both parameters

were significant and, in agreement with [67] (Table 2, z-scores of

the simulation with random networks) h1 was positive and h2

negative. We re-analyzed this further aiming for an optimal model

fit by means of minimizing Akaike’s information criterion (AIC) as

heuristic for model selection [72]; the AIC-values were determined

via the approximated log-likelihood that the empirical network

was drawn from the distribution of the corresponding exponential

random graph model with optimized parameters h.

First, we compared this to the model of Sporns and Kötter [67],

which we here called model #2 formalized as

P Y~yð Þ! exp h1g1 yð Þf g:

Again, h1 was significant and positive but the model yielded a

larger AIC-value rendering this single motif model less accurate

than model #1 (Sporns and Kötter’s choice for this model also

included comparison with other empirical networks, so that for the

macaque visual cortex alone it might not perform optimal). Next,

we supplemented model #1 by a simple, asymmetric dyad (g0)

P Y~yð Þ! exp h0g0 yð Þzh1g1 yð Þzh2g2 yð Þf g

and found that this model #3, in fact, had a very low AIC-value

but not all parameters reached significance. Therefore, we tested

this further against another reduced model #4 that contained only

two statistics, namely,

P Y~yð Þ! exp h0g0 yð Þzh1g1 yð Þf g,

which provided a less optimal fit when looking at its AIC value. All

results are summarized in Table 2 and for the goodness-of-fit

assessments see Figure S5.

In our example adding more statistics often led to so-called

‘model degeneracy’; for instance, when for certain parameter

values h, the exponential random graph model yields a

distribution, in which only a handful of graphs have nonzero

probability, which renders optimization unstable and model fits

unreliable [73]. A detailed discussion about this important

limitation of the (blind) applicability of exponential random graph

models is, however, beyond the scope of the current illustration, so

that we rather refer to the existing literature [71,74–77]. Here it

appears that the combination of counting motifs and according

statistical results can certainly provide starting points for choosing

proper exponential random graph models.

Because motif counts as well as exponential random graph

models are based on probability estimates, they appear very useful

to compare networks of different size. With increasing connectivity

density, however, some motifs might become more likely to occur

than others. For example, in a sparsely connected network isolated

nodes and asymmetric connections will dominate the topology,

whereas more complicated ones (e.g., 3-stars) are more likely in a

densely connected graph. To avoid this ‘bias’ one could try to

extend the set of statistics with other graph properties like the

nodal degree or measures related to distance and centralization. As

mentioned above, exponential random graph models do allow for

incorporating further statistics like the average graph measures

(e.g., k, C, L, SW) but also the degree distribution and so on. As

such the exponential random graph model approach appears

more general and more adjustable than mere motif counting and

subsequent categorization. The restriction to motifs, however,

yields readily interpretable results in terms which combination of

structural building blocks (i.e. motifs) yields which topological

characteristic.

Discussion

The application of graph theory can provide very valuable

insights in the structural and functional organization of neural

networks. Its use for comparing network topologies, however, is

not without challenges. The major difficulty arises from the fact

that graph measures depend on the number of nodes and edges in

a way that is specific for the type of network topology. To our best

knowledge, satisfactory methods to correct for size and connec-

tivity density dependent effects do not exist, yet. Because

experimental data yield networks whose topologies do not

necessarily agree with the frequently discussed archetypical

networks (e.g., lattices, small-world with a certain rewiring

probability, or fully random networks), it remains tricky to

estimate how graph measures are influenced by changes in N

and k for the empirical network. That is, discriminating between

differences in graph measures in the two networks that are due to

their N,k-dependence or caused by ‘true’ effects of experimental

conditions is not easy, if at all possible. Not only can significant

effects be introduced by the N,k-dependence, true effects may also

be masked due to opposite effects. We have shown that some

methods are less sensitive to changes in N and k than others but

there is a clear need for a further search for proper measures.

The sensitivity varies across measures, with specifically large

effects for the commonly used measures C/Crand and the small-

world index SW, contrasting less affected measures as L/Lrand and

the non-normalized clustering coefficient C. Effects were partic-

ularly large for small-size networks like the ones typically obtained

from M/EEG recordings, region-of-interest approaches, or

physiologically tracked networks. The normalized path length

and the non-normalized clustering coefficient, for instance, are less

susceptible to changes in network size. We illustrated these N,k-

dependencies for network types with a symmetrical degree

distribution. However, there is no reason to believe that effects

will disappear for networks with a more realistic, asymmetric

degree distribution.

Table 2. Parameter estimates and model performance for the
exponential random graph models.

Model Motif hm DAIC
Akaike
weights

Explained
deviance (df)

#1 201 0.07223*** 88 0.00 390 (2)

021C 20.60012***

#2 201 0.237444*** 286 0.00 190 (1)

#3 asym 21.16814*** 0 1.00 480 (3)

201 20.26603**

021C 20.03130

#4 asym 22.23637*** 22 0.00 457 (2)

201 20.12503***

Significance levels: *,0.05, **,0.01, ***,0.001. Akaike weights were calculated
according to [81]. The total degrees of freedom (df) equals the number of
possible edges, n(n21) = 870. The null deviance was 1206 (870).
doi:10.1371/journal.pone.0013701.t002
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Despite all these difficulties we would like to point out that

graph theory can be very beneficial not only for determining

network topologies but also for pinpointing other important (local)

network features that can be compared between networks, e.g.,

regions of interest by detecting the location of hubs or the

occurrence of communities (modules) in the network. Likewise, the

distribution of nodal values for a particular graph measure can be

very insightful. For example, one may ask if the nodal clustering

coefficients are uniformly distributed, whether there are a few

nodes that display exceptional large values, or if the shape of the

distribution differs between networks. In a similar way, the average

degree, path length, and other measures can be addressed yielding

respective values per individual node. In order to compare

between conditions and/or subjects, a normalization of the

distributions will most certainly be necessary.

Interestingly, the problem of comparing networks has not

received much attention in neuroscience literature. This does not

mean that graph analysis has not been used to compare network

topologies. On the contrary, it has gained a lot of interest in recent

years and is increasingly being applied in both functional and

anatomical studies, which makes it even more important to

recognize the numerous pitfalls involved in comparing networks.

Without doubt, the application of graph analysis to experimental

data is a less established research field than its mathematically-

driven, theoretical counterpart. Analytic expressions are often only

valid in the limit of large graph size but most empirical studies on

brain networks use graphs with N,200 (some exceptions include

[10,12,16,78]). All graph measures investigated here through

simulations showed a N,k-dependence that cannot be neglected in

this range. By and large, empirical studies rarely account for N,k-

dependent biases when estimating graph measures. As said, we are

convinced that graph theory is a valuable tool for analyzing brain

networks but its use has its challenges asking for great care when

interpreting results.

To compare empirical networks, choosing equal size and

density has become more popular so that differences in graph

measures appear solely through structural changes. However, this

can only be achieved by taking a fixed number of nodes and

imposing a desired average degree by adjusting the binary

threshold. Obviously, this has the disadvantage of manipulating

the empirical network by over- or underrating connections [79].

Hence, either applying a fixed N and k or comparing networks

with different N and k will lead to a certain bias. As both

approaches appear complementary it might be useful to consider

both networks with varying and fixed degree, and, if possible,

supplement this with the several alternative methods summarized

in this paper. The specific research question at hand may channel

the proper decision for the most appropriate measure and the most

reliable approach for comparison. One should not forget that

differences in overall connectivity between subjects and conditions

could be a very profound experimental result instead of a mere

confounder. In any case, potential size-induced biases in graph

measures should not be underestimated, in particular in the case of

reasonably small networks, even if size differences between

networks are small. These subtleties require great accuracy when

applying methods and great caution when interpreting results.

Supporting Information

Text S1 Formal definitions of graph measures.

Found at: doi:10.1371/journal.pone.0013701.s001 (0.05 MB

PDF)

Figure S1 Graph measures depend on network topology but

also on network size and average degree. Shown here are Erdös-

Rényi random networks with corresponding path lengths (L) and

clustering coefficients (C). A: Increasing the number of nodes (N)

results in an increase in L and a decrease in C. B: Increasing the

average degree (k) results in a decrease in L and an increase in C.

C: Increasing the number of nodes while preserving the same edge

density keeps C and L approximately constant.

Found at: doi:10.1371/journal.pone.0013701.s002 (0.80 MB TIF)

Figure S2 3D surface plots of the relation between changes in

network size and average degree. Increasing only the number of

nodes (N) or average degree (k) introduces a change in (normalized)

path length (L) and clustering coefficient (C). Same values can only

be reached by adjusting both the number of nodes and average

degree at the same time. Shown here for a small-world network

with a rewiring probability of 0.1. Contour lines are plotted on top

for better visualization.

Found at: doi:10.1371/journal.pone.0013701.s003 (3.76 MB TIF)

Figure S3 Sensitivity of other graph measures to changes in

network size and average degree. The path length, clustering

coefficient and small-world index in the main text’s Figure 3 are

not the only graph measures showing N,k-dependencies that are

specific to the type of network. The number of hubs (NHUBS)

scales linearly with the number of nodes in a network. The

occurrence of hubs in lattices here for the right plot results from

the fact that the average degree is adapted for each N to preserve

the fixed edge density. The k-values on the x-axis are rounded, the

real values are non-integers leaving some nodes to have one edge

extra than others and as a consequence are classified as ‘hubs’.

The maximum degree (MAXD) naturally increases with the

number of edges in the network. Synchronizability (S) and central

point dominance (CPD) mainly depend on the network’s average

degree, so that a fixed wiring cost cannot reduce the independence

from changes in network size. For all measures with N,k-

dependencies that are specific to the type of network, normaliza-

tion by random graphs will by construction lead again to N,k-

dependent measures. Networks here either have a fixed average

degree k = 10, fixed number of nodes N = 100 or a fixed edge

density = 0.1. lat, lattice; lat-r random network with uniform

degree distribution; sw, small-world network with a rewiring

probability of 0.1; sw-r, random network with same degree

distribution as sw; r, Erdös-Rényi random network. Exact

definitions of all measures can be found in Text S1.

Found at: doi:10.1371/journal.pone.0013701.s004 (5.98 MB TIF)

Figure S4 Examples of directed network motifs. Shown are all

possible dyads, triads and examples of k-instars, k-outstars and k-

cycles. The number of possibilities rapidly increases for motifs with

more than 3 nodes. These and other motifs could in principle all

be used for both exponential random graph models and motif

counting.

Found at: doi:10.1371/journal.pone.0013701.s005 (5.96 MB

TIF)

Figure S5 Goodness-of-fit diagnostics for the four exponential

random graph models. The red lines represent the statistics of the

observed network. The distribution of 100 networks simulated

with the estimated parameter values of the model is indicated by

the boxplots. The grey lines represent 95% confidence intervals.

For the order of the triad census, see Figure S4.

Found at: doi:10.1371/journal.pone.0013701.s006 (6.99 MB TIF)
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