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Abstract

In this thesis we study the impact of monitoring and heterogeneity on the set
of equilibria of dynamic games.

In Chapter 1 we show how heterogeneity in time preferences can help create
new intertemporal incentives. Proving the folk theorem in a game with three or
more players usually requires imposing restrictions on the dimensionality of the
stage-game payoffs. Considering a class of games in which those restrictions do
not hold, we show how to recover a folk theorem by allowing time preferences
to vary across players.

In Chapters 2 and 3 we show how a small degree of imperfection in the
monitoring technology can have large effects on the set of equilibria of dynamic
games. We study a dynamic voluntary contribution game with irreversibility
and a game with an asymptotically finite horizon. In both settings, when
monitoring is perfect, players can cooperate and obtain payoffs in the repeated
game that are strictly greater than the payoffs from the unique inefficient
stage-game equilibrium. We show however that introducing an arbitrarily
small amount of noise in the monitoring technology can cause a complete
breakdown in cooperation.

Finally in Chapter 4 we investigate how information is transmitted in a re-
vision game with one-sided incomplete information. Players aim to coordinate
on an action which depends on an unknown state of the world and players can
only revise their actions stochastically during a preparation stage, at the end of
which the prepared action profile is implemented. Miscoordination arises from
the possibility of no longer receiving revision opportunities until the deadline.
We show that close to the deadline no information is transmitted and that far
from the deadline the uninformed player prefers to be miscoordinated.
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Introduction

Repeated interactions are pervasive in economic exchanges: the same firms

compete against each other over time; consumers often use the same service

providers, go to the same shops, or eat in the same restaurants; regulators

set up long-term rules to control financial institutions or natural monopolies;

policy makers seek re-election from the same group of voters. Dynamic games

model such situations in which agents interact repeatedly over time.

Repeated interactions give rise to incentives that are not found in one-shot

interactions and can help players cooperate and coordinate. For example,

consider the Prisoner’s Dilemma presented in Figure 1. When played once,1

both players have strict incentives to play D (defect), yielding the inefficient

outcome (1,1). When repeated an infinite number of times and if players are

sufficiently patient the following “grim-trigger” strategy yields the efficient

outcome: start by playing C and play C until one of the players play D; then

play D forever. Indeed, the average payoff from this strategy is 2, while a

deviation will lead to an instantaneous gain of 1 followed by a loss of 1 in

each future period. Such a deviation is not profitable if players are sufficiently

patient.2

C D
C 2,2 0,3
D 3,0 1,1

Figure 1: The Prisoner’s Dilemma
1Or any finite number of times
2More specifically if δ ≥ 1/2.
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Introduction

In repeated games, the same strategic interaction is repeated over time.

The folk theorem then states that if players are patient enough, any feasi-

ble and strictly individually rational payoff can be obtained as the payoff

of a subgame-perfect equilibrium. In particular, intertemporal incentives al-

low players to cooperate and reach efficient outcomes where it might not be

possible in one-shot interactions, as illustrated previously with the Prisoner’s

Dilemma.

In Chapter 1 we study the role of heterogeneity in the folk theorem. In

particular, in games of three or more players, the folk theorem fails when

players have perfectly aligned preferences. This is because the individual re-

wards and punishments that are needed to provide incentives to each player

are no longer available given that all players share the same payoffs.3 The folk

theorem therefore usually requires the assumption that the set of stage-game

payoffs has non-empty interior, or full-dimensionality. In this first chapter we

consider a game with three or more players in which preferences are perfectly

aligned, so that the interior of stage-game payoffs is empty. By introduc-

ing heterogeneity in the discount rates, we are able to re-create individual

intertemporal incentives and recover the folk theorem.4

While in Chapter 1 we consider games in which players perfectly observe

each other’s actions, in many economic situations this is not the case and

players only observe noisy signals of each other’s actions. For example two

competing firms which choose how much to produce might only observe the

equilibrium market price, which can be a random function of the total quantity

produced. The folk theorem still holds in repeated games with imperfect

monitoring, provided players observe a public signal with sufficient statistical

information. In Chapters 2 and 3 we show that this is not necessarily the case

in dynamic games and illustrate how the introduction of an arbitrarily small

amount of noise generates important discontinuities in the equilibrium payoff
3This does not matter in two-player games as players have the ability to “mutually min-

max” each other. In our repeated Prisoner’s Dilemma example this is what happened.
4This chapter is based on joint work with Thibaut Lamadon and Caroline Thomas, both

Ph.D. students at UCL at the time of the research. All other chapters are sole-authored.



set. Indeed, we show that cooperation is no longer feasible.

In dynamic games, players do not necessarily face the same strategic inter-

action over time. For example, two firms might repeatedly interact in a market

with a declining demand; or players’ actions might be constrained by previous

choices, if players for example make some irreversible investments. In Chap-

ter 2 we consider a dynamic contribution game in which past contributions are

non-refundable. This irreversibility makes the dynamic game non-stationary.

In Chapter 3 we consider a repeated game in which the probability of fur-

ther interactions occuring, although always positive, declines over time, again

making the environment non-stationary. Both stage-games have a continuum

of actions and a unique and inefficient stage-game Nash equilibrium.

When players perfectly observe each other’s actions, cooperation is feasible

and player can obtain payoffs strictly higher than those of the unique stage-

game Nash equilibrium. We show that introducing an arbitrarily small amount

of smooth noise in the monitoring causes a breakdown in cooperation and that

players are reduced to playing the unique stage-game Nash equilibrium in each

period.

Repeated interactions sometimes allow for players to coordinate in order

to reach efficient outcomes. In Chapter 4 we study a revision game with

asymmetric information and look at how information is transmitted by the

more informed player. Players aim to coordinate on an action which depends

on a state of the world which is known only by one of the players. Players can

only revise their actions stochastically during a preparation stage, at the end of

which the prepared action profile is implemented. Miscoordination arises from

the possibility of no longer receiving revision opportunities until the deadline.

We show that close to the deadline no information is transmitted, and that far

away from the deadline, the uninformed player prefers to be miscoordinated.
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Chapter 1

Repeated Games with

One-Dimensional Payoffs and

Different Discount factors

This chapter is based on joint work with Thibaut Lamadon and Caroline

Thomas.

1.1 Introduction

For the folk theorem to hold with more than two players, it is necessary to

have the ability to threaten any single player with a low payoff, while also

offering rewards to the punishing players. In assuming full dimensionality

of the convex hull of the set of feasible stage-game payoffs, Fudenberg and

Maskin (1986) guarantee that those individual punishments and rewards exist.

Abreu et al. (1994) show that the weaker NEU condition (“nonequivalent

utilities”), whereby no two players have identical preferences in the stage-

game, is sufficient for the folk theorem to hold.

When the NEU condition fails, players that have equivalent utilities can

no longer be individually punished in equilibrium. Wen (1994) introduces

the notion of effective minmax payoff, which takes into account the fact that

10



Chapter 1. One-Dimensional Payoffs 1.1. Introduction

when a player is being minmaxed, another player with equivalent utility might

unilaterally deviate and best respond. The effective minmax payoff of a player

cannot be lower than his individual minmax payoff (when NEU is satisfied,

they coincide), and Wen shows that when NEU fails it is the effective minmax

that constitutes the lower bound on subgame-perfect equilibrium payoffs. He

establishes the following folk theorem: when players are sufficiently patient,

any feasible payoff vector can be supported as a subgame-perfect equilibrium,

provided it dominates the effective minmax payoff vector. We show that this

can be relaxed by allowing for unequal discounting.

As pointed out by Lehrer and Pauzner (1999), when players have different

discount factors, the set of feasible payoffs in a two-player repeated game is

typically larger and of higher dimensionality than the set of feasible stage-

game payoffs.1 In a particular three-player game in which two players have

equivalent utilities, Chen (2008) illustrates how with unequal discounting pay-

offs below the effective minmax may indeed be achieved in equilibrium for one

of the players.

In this chapter, we explore the notion that unequal discounting restores

the ability to punish players individually in an n-player game where all players

have equivalent utilities. Our result is stronger than Chen’s as we show that

all players can be hold down to their individual minmax payoff in equilibrium.

Moreover we argue that our result holds for all possible violations of NEU.
1Mailath and Samuelson (2006, Remark 2.1.4) present a simple example to show how the

set of feasible payoffs can increase when allowing for different discount factors. Consider the
game of battle of the sexes depicted in Figure 1.1 and assume that players have different
discount factors, δ1 > δ2. Consider an outcome in which (B,R) is played for T periods while
(T,L) is played in subsequent periods. That is, first the less patient player is favored while
the more patient player is rewarded subsequently. The playoffs to player 1 and 2 from this
outcome are (1− δT1 ) + 3δT1 and 3(1− δT2 ) + δT2 , which is outside the convex hull of the set
{(3, 1), (0, 0), (1, 3)} because δ1 > δ2.

L R
T 3,1 0,0
B 0,0 1,3

Figure 1.1: Battle of the sexes
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Chapter 1. One-Dimensional Payoffs 1.1. Introduction

We find that a small difference in the discount factors suffices to hold a player

to his individual minmax for a certain number of periods while still being

able to reward the punishing players. For discount factors sufficiently close to

one, any strictly individually rational payoff, including those dominated by the

effective minmax payoff, can be obtained as the outcome of a subgame-perfect

equilibrium with public correlation, restoring the validity of the folk theorem.

Although our result is stated for games where all players have equivalent

utilities, we conjecture that it extends to weaker violations of NEU, as long as

any two players with equivalent utilities have different discount factor. The

intuition behind this conjecture is that following Abreu et al. (1994) we could

design specific punishments for each group of players with equivalent utilities

and use the difference in discount factors within each group to enforce those

specific punishments.

1.1.1 An Example

L R L R
T 1,1,1 0,0,0 T 0,0,0 0,0,0
B 0,0,0 0,0,0 B 0,0,0 1,1,1

C D

Figure 1.2: A stage game with one-dimensional payoffs

Consider the stage-game in Figure 1.2, where Player 1 chooses rows, Player 2

columns and Player 3 matrices. This stage-game is infinitely repeated and the

players evaluate payoff streams according to the discounting criterion. When

the players share a common discount factor δ < 1, Fudenberg and Maskin

(1986, Example 3) show that any subgame-perfect equilibrium yields a payoff

of at least 1/4 (the effective minmax) to each player, whereas the individual

minmax payoff of each player is zero.2 The low dimensionality of the set of

stage-game payoffs weakens the punishment that can be imposed on a player

as another player with equivalent utility can deviate and best respond. The
2For example, when Player 1 plays T and Player 2 plays R, Player 3 gets a payoff of 0

whether he plays C or D.
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Chapter 1. One-Dimensional Payoffs 1.1. Introduction

inability to achieve subgame-perfect equilibrium payoffs in (0, 1/4) means that

the “standard” folk theorem fails in this case.3

We show however that if all three players have different discount factors,

there exists a subgame-perfect equilibrium in which the payoff to each player

is arbitrarily close to zero, the individual minmax, provided that the discount

factors are sufficiently close to one. Any payoff in the interval (0, 1/4) can

then be achieved in equilibrium, restoring the validity of the folk theorem in

the context of this game.

1.1.2 Notation

We consider an n-player repeated game, where all players have equivalent

utilities. We normalize payoffs to be in {0, 1} and let each player’s individual

minmax payoff be zero.4 We use public correlation to convexify the payoff set,

although we argue later that this assumption can be dispensed with. Players

have different discount factors, and are ordered according to their patience

level: 0 < δ1 < · · · < δn−1 < δn < 1.5 We use an exponential representation

of discount factors: ∀ i, δi := e−∆ρi , where ∆ > 0 could represent the length

of time between two repetitions of the stage game. As ∆ → 0, all discount

factors tend to one. The ρ’s are strictly ordered: 0 < ρn < · · · < ρ2 < ρ1. We

assume that the stage game has a (mixed) Nash equilibrium which yields a

payoff Q < 1 to all players.6

We summarize our assumptions about the game and introduce a notation

for the lowest subgame-perfect equilibrium payoff of a player i in the following

definitions:

3One may not be too concerned about our inability to achieve low payoffs. However if
the game of Figure 1.2 is part of a more general game then our inability to reach low payoffs
(that is, to punish players) might reduce the scope for cooperation in the more general game.

4We only use two payoffs as we only need to consider the minmax payoff and the maximum
possible payoff.

5Note that the result no longer holds if several but not all players have the same discount
factor. We address this point in Section 1.3.1.

6For example in the game of Figure 1.2, the mixture
{

(1/2, 1/2) , (1/2, 1/2) , (1/2, 1/2)
}

is a Nash equilibrium that yields a payoff of 1/4.

13



Chapter 1. One-Dimensional Payoffs 1.1. Introduction

Definition 1.1. Let Γ (∆) be the set of n-player infinitely repeated games

such that:

A1. The set of stage-game payoffs is one-dimensional and all players receive

the same payoff in {0, 1}.

A2. The stage game has a mixed-strategy Nash equilibrium which yields a

payoff of Q < 1 to all players.

A3. Each player’s pure action individual minmax payoff is zero.

A4. Players evaluate payoff streams according to the discounting criterion,

and discount factors are strictly ordered: 0 < δ1 < · · · < δn < 1, where

δi := e−∆ρi .

Note that the stage game of Figure 1.2 satisfies assumptions A1 to A3 of

Definition 1.1.

Definition 1.2. We denote by ai the lowest subgame-perfect equilibrium pay-

off of Player i in a game G∆ ∈ Γ (∆).

For given discount factors, the existence of the (ai)i=1,...,n is ensured by the

compactness of the set of subgame-perfect equilibrium payoffs (see Fudenberg

and Levine (1983, Lemma 4.2)).

1.1.3 Main Result and Outline of the Proof

Our main result, Theorem 1.1, states that for games in Γ (∆), the lowest

subgame-perfect equilibrium payoff of each player goes to zero (the common

individual minmax payoff) as discount factors tend to one:

Theorem 1.1. Consider an n-player infinitely repeated game G∆ ∈ Γ (∆).

Then ai ∈ O (∆) for all i.7

7That is, ∃M ≥ 0 and ∆∗ > 0 such that ai ≤M ·∆ for ∆ ≤ ∆∗.

14



Chapter 1. One-Dimensional Payoffs 1.1. Introduction

Theorem 1.1 states that for discount factors sufficiently close to one (that

is for ∆ sufficiently close to zero), the lowest subgame-perfect equilibrium pay-

off of each player i, ai, is arbitrarily close to zero. We do not provide a full

characterization of the set of subgame-perfect equilibrium payoffs but note

that any feasible and strictly individually rational payoff is a subgame-perfect

equilibrium payoff. In recent work, Sugaya (2010) characterises the set of

perfect and public equilibrium payoffs in games with imperfect public moni-

toring when players have different discount factors, under a full-dimensionality

assumption.

To prove Theorem 1.1, we first show that when stage-game payoffs are

identical, the lowest subgame-perfect equilibrium payoffs are ordered accord-

ing to the discount factors (Lemma 1.1). A player’s lowest subgame-perfect

equilibrium payoff cannot be below that of another player who is less patient.

We then show that the lowest subgame-perfect equilibrium payoffs of the two

most patient players (Player n− 1 and Player n) are arbitrarily close to each

other when discount factors tend to one (Lemma 1.2). This is done by explic-

itly constructing a subgame-perfect equilibrium of the repeated game.

In a similar way, we then construct a set of subgame-perfect equilibria (one

for each player i ∈ {2, . . . , n− 1}) (Lemma 1.3) and use those to bound the

distance between the lowest subgame-perfect equilibrium payoffs of players i

and i− 1 (Lemma 1.4). We then show by induction that the lowest subgame-

perfect equilibrium payoffs of any two players are arbitrarily close to each

other as discount factors tend to one (Lemma 1.5). Finally we show that

Player 1’s lowest subgame-perfect equilibrium payoff can be made arbitrarily

close to zero as discount factors tend to one (Lemma 1.6). We are then able

to conclude and prove Theorem 1.1.

Note that the assumption of strictly different discount factors cannot be

dispensed with. In particular our result does not hold when some but not

all player share a common discount factor. In a similar fashion to Fudenberg

and Maskin (1986, Example 3), we construct a four-player example where the
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Chapter 1. One-Dimensional Payoffs 1.2. Lowest Equilibrium Payoffs

stage game satisfies assumptions A1 to A3 but where the two “intermediate”

players share a common discount factor. That is we have δ1 < δ2 = δ3 < δ4.

This example is presented in Section 1.3.1.

1.2 Lowest Equilibrium Payoffs

1.2.1 Strategy Profiles and Incentive Compatibility Constraints

To prove Theorem 1.1, we explicitly construct several subgame-perfect equi-

libria of the repeated game. To do so, we consider strategy profiles that give

a constant expected stage-game payoff between zero and one (using public

correlation) to all players for a given number of periods, and then stage-game

payoffs of one forever:

Definition 1.3. Let σ(µ, τ, i) be the strategy profile such that:

(i) For τ periods, in each stage-game, players use a public correlating device

to generate an expected payoff of µ. When the public correlating device

generates a payoff of zero, players minmax Player i.

(ii) In all subsequent periods t > τ , players play an action profile yielding a

stage-game payoff of 1 to each player.

(iii) During the first τ periods, deviations by Player i are ignored. After that,

if Player i deviates from the equilibrium path, players play a subgame-

perfect equilibrium which gives Player i his lowest possible payoff, ai.

(iv) If a deviation by Player j 6= i occurs at any time, players then play

a subgame-perfect equilibrium which gives Player j his lowest possible

payoff, aj .

Assuming that the correlating device generates a payoff of zero at t = 0, a
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Chapter 1. One-Dimensional Payoffs 1.2. Lowest Equilibrium Payoffs

player j 6= i will not have an incentive to deviate from σ(µ, τ, i) if:8,9

(1− δj) + δjaj ≤ δj
(
(1− δτ−1

j )µ+ δτ−1
j

)
, (1.1)

which can be rewritten as

δτj ≥
1− δj + δjaj − δjµ

1− µ . (1.2)

To prove Theorem 1.1, we show that there exists a “low” µ and a large

τ such that for ∆ sufficiently close to zero, the strategy profile σ(µ, τ, i) is

subgame perfect, that is, we show that (1.2) is satisfied for any j 6= i. To do

so, we identify the player with the tightest incentive compatibility constraint as

j∗i and find the largest τ such that (1.2) is satisfied for Player j∗i (Lemma 1.3).

Notice that Player j∗i is not necessarily the player with the lowest discount

factor. By a “low” µ we mean that µ must be close to ai−1. To this end, we

choose a stage-game payoff µi that is slightly above ai−1:

Definition 1.4. For all i ∈ {1, ..., n}, let µi be such that:10

µi =


ai−1 + 1−δ1

δ1
if 2 ≤ i ≤ n,

0 if i = 1.

To illustrate, consider a player i with intermediate patience, such that

1 < i < n. The strategy profile σ(µ, τ, i) does not give him an opportunity to

deviate, as he is being minmaxed when payoffs of zero are generated. For this

reason, that strategy profile can be thought of as the other players colluding
8First note that zero is the lowest possible stage game payoff and so if it is enforceable all

other payoffs will be. Second the strategy starts by giving zeros and ones and then rewards
the players with ones forever, so the tightest incentive compatibility constraint will be when
t = 0 as for t > 0 players are closer to getting ones for ever.

9The left-hand side of (1.1) is the payoff to Player j if he deviates: he get an instantaneous
payoff of 1 followed by a repeated game payoff of aj . If Player j follows the strategy he gets
a payoff of zero today, followed by τ − 1 periods during which he gets an expected payoff of
µ, after which he receives a payoff of one in each period.

10Note that for all i and for ∆ sufficiently close to zero, µi ≤ 1. Indeed, µi ≤ Q +
1−δ1
δ1
→∆→0 Q < 1.
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against player i. Lowering the payoff to player i from that strategy profile may

conflict with making it incentive compatible both for players that are more and

less patient than him. Players less patient than i must get a payoff sufficiently

higher than their lowest SPE payoff, and players more patient than i must be

promised payoffs of 1 soon enough to make them accept an early stream of

low payoffs. We show that these constraints can be reconciled with keeping

player i’s payoff very close to the lowest equilibrium payoff of the player just

less patient than him.

1.2.2 Proof of Theorem 1.1

In a first step towards Theorem 1.1 we now show that the lowest subgame-

perfect equilibrium payoffs are ordered according to the discount factors (Lemma

1.1), and that Player n’s lowest subgame-perfect equilibrium payoff is arbitrar-

ily close to Player n− 1’s for ∆ close enough to zero (Lemma 1.2).

Lemma 1.1. ∀i ∈ {2, . . . , n}, ai−1 ≤ ai.

Proof. The main idea is to find a stream of payoffs (zt)t=0,...,∞ in [0, 1]N that

minimizes Player i’s average discounted payoff, given Player i−1 is guaranteed

his lowest subgame-perfect equilibrium payoff at each stage. By definition, the

resulting average discounted payoff for Player i cannot be greater than ai. We

show that the constraints imposed by Player i − 1’s lowest subgame-perfect

equilibrium payoff must all be binding and that zt = ai−1, ∀t ≥ 0.

Formally, we solve the following minimization problem:

min
(zt)t=0,...,∞∈[0,1]N

(1− δi)
∞∑
t=0

δti zt (1.3)

subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ 0 (1.4)

We show by induction that all constraints in (1.4) will be binding, which

implies that zs = ai−1, ∀s ≥ 0. Our induction hypothesis is that the con-
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straints in (1.4) must bind for s = 0, . . . , τ and therefore, that the minimiza-

tion problem (1.3) subject to the constraints (1.4) can be rewritten as:

min
(zt)t=τ,...,∞∈[0,1]N

λτ−1 (ai−1, δi−1, δi) + (1− δi)
( ∞∑
t=τ+1

δτi

(
δt−τi − δt−τi−1

)
zt

)
(1.5)

subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ τ + 1 (1.6)

where the function λτ is recursively defined by

λ0 (ai−1, δi−1, δi) = (1− δi)
ai−1

1− δi−1

and

λτ (ai−1, δi−1, δi) = λτ−1 (ai−1, δi−1, δi) + (1− δi) δτi + (δi − δi−1) ai−1
1− δi−1

.

Initialization: τ = 0 The first constraint is the only constraint fea-

turing z0 and can be rewritten as z0 ≥ ai−1
1−δi−1

−
∑∞
t=1 δ

t
i−1 zt. Moreover, z0

enters with a positive coefficient in the objective function, therefore, the first

constraint must be binding. The constraint is then used to eliminate z0 from

the objective function: the minimization problem (1.3) subject to (1.4) can

therefore be written in the following way:

min
(zt)t=1,...,∞∈[0,1]N

(1− δi)
(

ai−1
1− δi−1

+
∞∑
t=1

(
δti − δti−1

)
zt

)

subject to

(1− δi−1)
∞∑
t=s

δt−si−1 zt ≥ ai−1, ∀s ≥ 1

This verifies (1.5) and (1.6).

Induction We assume that our minimization problem can be rewritten

as (1.5) subject to (1.6) for some τ > 1. Because δi > δi−1, zτ+1 enters with

a positive coefficient in the objective function and zτ+1 only appears in the
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constraint zτ+1 ≥ ai−1
1−δi−1

−
∑∞
t=τ+2 δ

t−(τ+1)
i−1 zt, this constraint will be binding

and the objective function can be rewritten by substituting for zτ+1 as follows:

λτ−1 (ai−1, δi−1, δi) + (1− δi)
( ∞∑
t=τ+1

δτi

(
δt−τi − δt−τi−1

)
zt

)

= λτ−1 (ai−1, δi−1, δi) + (1− δi)
(
δτi (δi − δi−1)

(
ai−1

1− δi−1
−

∞∑
t=τ+2

δ
t−(τ+1)
i−1 zt

))

+ (1− δi)
∞∑

t=τ+2
δτi

(
δt−τi − δt−τi−1

)
zt

= λτ (ai−1, δi−1, δi) + (1− δi)
∞∑

t=τ+2

(
δτi

(
δt−τi − δt−τi−1

)
− δτi (δi − δi−1) δt−(τ+1)

i−1

)
zt

= λτ (ai−1, δi−1, δi) + (1− δi)
( ∞∑
t=τ+2

δτ+1
i

(
δ
t−(τ+1)
i − δt−(τ+1)

i−1

)
zt

)
,

where the first equality is obtained by substituting for zτ+1 and the other

equalities are obtained by grouping the terms in zt (t ≥ τ + 2) together. Thus

(1.5) and (1.6) hold for τ + 1 also.

This concludes the proof by induction and so all constraints in (1.4) must

bind: (1 − δi−1)
∑∞
t=s δ

t−s
i−1 zt = ai−1, ∀s ≥ 0. We now show that this implies

that zs = ai−1, ∀s ≥ 0. Consider the constraint for some s ≥ 0:

ai−1 = (1− δi−1)
∞∑
t=s

δt−si−1 zt

= (1− δi−1)
{
zs + δi−1

∞∑
t=s+1

δ
t−(s+1)
i−1 zt

}

= (1− δi−1)
{
zs + δi−1

1− δi−1
ai−1

}
,

where the last inequality holds because the constraint is binding for s + 1.

This implies that zs = ai−1, ∀s ≥ 0.

Given the constraints imposed on stage-game payoffs by player i − 1’s

lower subgame-perfect equilibrium bound, the lowest average discounted payoff

which can be given to player i is ai−1. We therefore have ai−1 ≤ ai.

Lemma 1.2. |an − an−1| ∈ O (∆).
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Proof. Consider the strategy profile σ(µn,∞, n), where µn = an−1 + 1−δ1
δ1

. We

are going to show that this constitutes a subgame-perfect equilibrium.

First, note that in a period in which the public correlating device gener-

ates a payoff of one, no player has a one-shot profitable deviation. Secondly,

because Player n is being minmaxed in a period in which the public corre-

lating device generates a payoff of zero, he doesn’t have a profitable one-shot

deviation. Thirdly, because punishment phases consist of subgame-perfect

equilibrium strategies, no player has a profitable one-shot deviation during

one of those. Thus, to verify that σ(µn,∞, n) is subgame perfect, we only

need to check that players i ≤ n−1 do not have profitable one-shot deviations

when the public correlating device generates a payoff of zero.

A deviation from Player i ≤ n − 1 leads at most to a one-off gain of one

followed by a payoff of ai forever. Therefore, there is no one-shot profitable

deviation if (1− δi)+ δiai ≤ δi
(
an−1 + 1−δ1

δ1

)
, where the right-hand-side is the

repeated game payoff to Player i if the public correlation device indicates a

zero payoff action profile in that period. This inequality is always satisfied for

i ≤ n− 1 as ai ≤ an−1 (Lemma 1.1) and as 1−δi
δi
≤ 1−δ1

δ1
.

By definition of an, and by Lemma 1.1, we have that an−1 ≤ an ≤ an−1 +
1−δ1
δ1

. We conclude the proof by noting that an − an−1 ≤ 1−δ1
δ1

and that
1−δ1
δ1
∈ O (∆).

We have shown that the lowest subgame-perfect equilibrium payoffs of

the two most patient players are arbitrarily close as ∆ tends to zero. The

intuition behind this result is that all players can collude against Player n by

minmaxing him whenever the public correlating device generates a payoff of

zero. Since Player n− 1 is the most patient of the colluding players and since

lowest subgame-perfect equilibrium payoffs are ordered according to discount

factors, his lowest subgame-perfect equilibrium will determine by how much

Player n’s equilibrium payoff can be pushed down.

We now show that the lowest subgame-perfect equilibrium payoffs of any

two players are arbitrarily close to each other as ∆ tends to zero (Lemma
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1.5). We start by identifying bounds on Player i > 1’s lowest subgame-perfect

equilibrium payoff. To do this, we find the largest time τ ≥ 1 such that the

strategy profile σ(µi, τ, i) is a subgame-perfect equilibrium and compute its

equilibrium payoff for Player i. We then prove Lemma 1.5 by induction.

First, we introduce some useful notation. For every player i ∈ {1, . . . , n− 1},

define

N i
+ := {j > i : 1− δj + δjaj − δjµi > 0} .

When proving that for a particular τ , σ(µi, τ, i) is a subgame-perfect equi-

librium, N i
+ should be thought of as the set of players for whom profitable

deviations might exist depending on the value of τ . That is, N i
+ is the set of

players for whom the right-hand side of (1.2) (when replacing µ with µi) is

strictly positive. We will therefore choose τ to satisfy the no-deviation con-

straints of all players in N i
+. When N i

+ is not empty, we identify the player

from this set with the tightest constraint as j∗i and we define t̃i as follows:

j∗i := arg min
j∈N i

+

log
(

(1− δj + δjaj − δjµi) / (1− µi)
)

log δj
,

t̃i :=
log
((

1− δj∗i + δj∗i aj
∗
i
− δj∗i µi

)
/ (1− µi)

)
log δj∗i

.

Let t∗i :=
⌊
t̃i
⌋
be the largest integer smaller or equal than t̃i and define ri ∈

(0, 1) to be the fractional part of t̃i:

ri := t̃i − t∗i .

Note that t∗i is the longest time τ such that j∗i does not have a profitable

one-shot deviation in σ(µi, τ, i).

In Lemma 1.3 we show that for ∆ sufficiently close to zero t∗i is well defined

and arbitrarily large and that the strategy profile σ(µi, t∗i , i) is indeed subgame

perfect.
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Lemma 1.3. Let i ∈ {2, ..., n − 1}, and assume that N i
+ 6= ∅. Given j∗i , t∗i

and µi, ∃∆∗i > 0 such that for ∆ ∈ (0,∆∗i ), σ(µi, t∗i , i) constitutes a subgame-

perfect equilibrium.

Proof. For notational convenience, we omit the i subscript on j∗i , t̃i, t∗i , and

ri. First, recall that for ∆ sufficiently close to zero, µi ≤ 1.11 We now check

that t∗ is well defined. Note that ∃∆ij > 0 and ηij < 1 such that for ∆ ≤ ∆ij ,
1−δj+δjaj−δjµi

1−µi < ηij .12 Because ηij does not depend on ∆, this shows that

lim∆→0 t̃ = ∞ and ensures that ∃∆∗i > 0 such that t∗ is well defined and

strictly positive for ∆ ∈ (0,∆∗i ).

Because i is being minmaxed if the public correlating device generates

a payoff of zero, i does not have a profitable one-shot deviation. Also, no

player will have a profitable one-shot deviation during the punishment phases

of σ(µi, t∗i , i), as those are subgame perfect.

We now check that no player j 6= i has a profitable one-shot deviation,

that is, we check that (1.1) (when replacing µ with µi and τ with t∗) holds for

all players j 6= i:

(1− δj) + δjaj ≤ δj
(
(1− δt∗−1

j )µi + δt
∗−1
j

)
. (1.7)

We first check that (1.7) holds for players j ≤ i− 1 and then for players j > i:

(i) No deviation from player j ≤ i − 1: Note that because µi ∈ [0, 1], we

have that µi ≤
(
1− δt∗−1

j

)
µi + δt

∗−1
j . In order to show that (1.7) holds,

we can therefore show that (1− δj) + δjaj ≤ δjµi, which is equivalent to
1−δj
δj

+aj ≤ ai−1 + 1−δ1
δ1

. This inequality holds ∀j ≤ i−1, as 1−δj
δj
≤ 1−δ1

δ1

and aj ≤ ai−1.

11See footnote 10.
12Since aj ≤ Q, 1−δj+δjaj−δjµi

1−µi
≤ δj

Q−µi
1−µi

+ 1−δj
1−Q−(1−δ1)/δ1

. For any x in [0, 1), Q−x
1−x ≤

Q, thus the right-hand-side of the previous inequality is bounded from above by δjQ +
1−δj

1−Q−(1−δ1)/δ1
, which tends to Q < 1 as ∆ tends to zero.
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(ii) No deviation from player j > i: We can rearrange (1.7) to get

δt
∗
j ≥

1− δj + δjaj − δjµi
1− µi

. (1.8)

First, note that if j /∈ N i
+ then j has no incentive to deviate as δt∗j >

0 ≥ 1−δj+δjaj−δjµi
1−µi . Now let j ∈ N i

+. Since t∗ has been chosen such that

(1.8) is satisfied for player j∗, (1.8) is also satisfied for all other players

in N i
+, and no player j ∈ N i

+ will have an incentive to deviate.

We conclude that for ∆ sufficiently close to zero, σ(µi, t∗i , i) is a subgame-

perfect equilibrium.

Remark 1.1 (Dispensability of public correlation). In Lemma 1.3, we show

that σ(µi, t∗i , i) is a subgame-perfect equilibrium and that t∗i goes to infinity

as ∆ approaches zero. Instead of using the strategy σ(µi, t∗i , i), which relies

on public correlation, we can consider a deterministic strategy that alternates

between t∗i,1 zeros and t∗i,2 ones, where t∗i,1 + t∗i,2 = t∗i and t∗i,2/t∗i is arbitrarily

close to µi, starting with a payoff of zero. This is possible because t∗i goes

to infinity. Intuitively, as ∆ goes to zero, such a strategy will yield a payoff

to any player arbitrarily close to the payoff from σ(µi, t∗i , i), while having a

period-zero incentive compatibility constraint less stringent than (1.7) since

µi is promised on average over the first t∗i periods and the first period payoff

is a zero. This should ensure that Lemmas 1.3 and 1.4 still hold under such a

deterministic strategy. ♦

We now compute the payoff of player i from σ(µi, t∗i , i) in order to bound

the distance between ai and ai−1.

Lemma 1.4. ∀i ∈ {2, . . . , n− 1}, we have that either:

(i) ∀ j > i, |aj − ai−1| ∈ O (∆), or

(ii) |ai − ai−1| ∈ O (∆) +O
(
aj∗i − ai

)
, where j∗i > i.
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Proof. Again, for notational convenience, we omit the i subscript on j∗i , t∗i and

ri. IfN i
+ is empty we directly have an indication of the distance between aj and

ai−1 by noting that no player j > i has an incentive to deviate from σ(µi, τ, i),

irrespective of τ : if N i
+ = ∅, then ∀ j > i , 0 ≤ aj − ai−1 ≤ 1−δ1

δ1
− 1−δj

δj
, which

implies that |aj − ai−1| ∈ O (∆).

Assume now that N i
+ 6= ∅, so that σ(µi, t∗, i) is a subgame-perfect equilib-

rium. We now compute Player i’s payoff from σ(µi, t∗, i) and compare it with

his lowest subgame-perfect equilibrium payoff. The payoff to Player i from

the strategy profile σ(µi, t∗, i) is:

(1− δt∗i )µi + δt
∗
i = µi + δt

∗
i (1− µi)

= µi + δ−ri

(1− δj∗ + δj∗aj∗ − δj∗µi
1− µi

) ρi
ρj∗ (1− µi)

≥ ai,

where the last inequality holds because ai is i’s lowest subgame-perfect equi-

librium payoff. This inequality can be rewritten as

ai − µi
1− µi

≤ δ−ri
(1− δj∗ + δj∗aj∗ − δj∗µi

1− µi

) ρi
ρj∗
−1 (1− δj∗ + δj∗aj∗ − δj∗µi

1− µi

)
,

where ρi
ρj∗
− 1 > 0, as i < j∗. Recall from the proof of Lemma 1.3 that for

∆ ≤ ∆ij∗ , (1− δj∗ + δj∗aj∗ − δj∗µi) / (1− µi) < ηij∗ , where ηij∗ < 1 does not

depend on ∆. For ∆ ≤ ∆ij∗ , we therefore have:

ai − µi
1− µi

≤ δ−ri η

ρi
ρj∗
−1

ij∗

(1− δj∗ + δj∗aj∗ − δj∗µi
1− µi

)
.

The previous inequality can be rewritten as:13

ai − ai−1 ≤
1− δ1
δ1

+ δ−ri η

ρi
ρj∗
−1

ij∗ δj∗ (ai − ai−1) +

δ−ri η

ρi
ρj∗
−1

ij∗

(
1− δj∗ + δj∗ (aj∗ − ai)− δj∗

1− δ1
δ1

)
. (1.9)

13By canceling the 1−µi and adding and subtracting δj∗ai inside the term in parentheses.
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Because

lim
∆→0

δ−ri η

ρi
ρj∗
−1

ij∗ δj∗ = lim
∆→0

δ−ri η

ρi
ρj∗
−1

ij∗ = η

ρi
ρj∗
−1

ij∗ < 1,

there exists a ∆̃i ≥ 0 and an R < 1 such that for ∆ ≤ ∆̃i we have:

ai − ai−1 ≤
1− δ1
δ1

+R (ai − ai−1) +R

(
1− δj∗ + δj∗ (aj∗ − ai)− δj∗

1− δ1
δ1

)
.

To conclude, note that 1−δ1
(1−R)δ1 + R

1−R

(
1− δj∗ − δj∗ 1−δ1

δ1

)
is of order ∆,

and that R
1−Rδj∗ (aj∗ − ai) ∈ O (aj∗ − ai), as R < 1 is a fixed constant.

Recall that the difference between the two most patient players’ lowest

subgame-perfect equilibrium payoffs, an and an−1, is of order ∆ (Lemma 1.2).

Moreover in Lemma 1.4 we established a bound for the distance between ai−1

and the lowest subgame-perfect equilibrium payoff of a more patient player.

We can now establish by induction that the lowest subgame-perfect equilib-

rium payoffs of any two players are arbitrarily close to each other as ∆ tends

to zero.

Lemma 1.5. |ai − aj | ∈ O(∆), ∀ (i, j).

Proof. By Lemma 1.2, we know that this result is true for i, j ∈ {n− 1, n}. We

now prove this result by induction. Assume that ∀i, j ≥ k, |ai − aj | ∈ O(∆).

Our aim is to show that ∀i ≥ k, |ai − ak−1| ∈ O(∆).

If the first statement of Lemma 1.4 holds, then we have that ∀j > k,

|aj − ak−1| ∈ O (∆). Moreover, |ak − ak−1| ≤ |ak − aj | + |aj − ak−1| for any

j > k. By induction, |ak − aj | ∈ O (∆), thus we have |ak − ak−1| ∈ O (∆).

If the second statement of Lemma 1.4 holds then ∃ k∗ > k such that |ak −

ak−1| ∈ O (∆) + O (ak∗ − ak). From our induction hypothesis, |ak∗ − ak| ∈

O (∆), which implies that |ak − ak−1| ∈ O (∆). Using the triangle inequality,

∀i ≥ k, |ai − ak−1| ≤ |ai − ak|+ |ak − ak−1| ∈ O (∆).

This shows that ∀i, j ≥ k − 1, |ai − aj | ∈ O(∆).
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Finally, we show that the lowest subgame-perfect equilibrium payoff of

Player 1 is arbitrarily close to zero as ∆ tends to zero. This is done by using

a proof similar to the one of Lemma 1.4, and considering the strategy profile

σ(0, t∗1, 1).

Lemma 1.6. a1 ∈ O (∆) .

Proof. We follow the same line of reasoning as in the proof of Lemma 1.3 and

Lemma 1.4, using the strategy σ(0, t∗1, 1). As in Lemma 1.3, σ(0, t∗1, 1) is well

defined and constitutes a subgame-perfect equilibrium. Again, for notational

convenience, we omit the subscript 1.

The strategy profile σ(0, t∗, 1) yields a payoff of δt∗1 = δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗

to Player 1. Because a1 is player 1’s lowest subgame-perfect equilibrium payoff,

we have

a1 ≤ δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗

= δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1 (

1− δj∗ + δj∗ (aj∗ − a1)
)

+ δ−r1 δj∗ (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1
a1.

Because

lim
∆→0

δ−r1 δj∗ (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1

= lim
∆→0

δ−r1 (1− δj∗ + δj∗aj∗)
ρ1
ρj∗
−1
≤ η

ρ1
ρj∗
−1

1j∗ ,

and η
ρ1
ρj∗
−1

1j∗ < 1 there exists an R < 1 and ∆∗1 ≥ 0 such that for ∆ ≤ ∆∗1 we

have

a1 ≤ R
(

1− δj∗ + δj∗ (aj∗ − a1)
)

+Ra1,

or

a1 ≤
R

1−R

(
1− δj∗ + δj∗ (aj∗ − a1)

)
.

We know from Lemma 1.5 that aj∗ − a1 ∈ O (∆), which concludes the

proof, as R < 1 does not depend on ∆.
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We are now able to prove Theorem 1.1:

Proof of Theorem 1.1. From Lemma 1.5 and 1.6, we have that ∀i ∈ {1, . . . , n},

|ai − a1| ∈ O (∆) and a1 ∈ O (∆). Using the triangle inequality, |ai| ≤ |ai −

a1|+ |a1| ∈ O(∆).

1.3 Conclusion

In this chapter, we considered the set of games where the classical folk theorem

does not apply because of the low dimensionality of the set of stage-game

payoffs. In such setups, it is not possible to create player-specific punishments

which are necessary to sustain low values of equilibrium payoffs.

We extend the setting by allowing players to have different discount factors

and prove that player-specific punishments as close as desired to the player’s

individual minmax can be constructed. Those punishments can be used to

enforce any stage-game payoff as an equilibrium payoff. This generalizes the

folk theorem to games which violate NEU but where players have different

discount factors. They can also be used to yield equilibrium payoffs strictly

outside the convex hull of the stage-game payoffs. However, the characteriza-

tion of this multidimensional boundary for the complete equilibrium pay off

set is left for future research.

In the next sections, we first show that our result does require all players to

have different discount factors and does not hold if two “intermediate” players

share the same discount factor. We then briefly discuss subsequent research

that generalizes our result.

1.3.1 Two intermediate players have the same discount factor

In this section we confirm that our result does indeed require all players to have

different discount factors by means of a counter-example similar to the one

presented in Section 1.1.1, but with four players. We present a particular four-

player game in which player 1 and player 2 have the same discount factor δ̃ ∈
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(δ3, δ4), but such that in every stage game at least one of them is guaranteed

a payoff of 1/2.

In the game of Figure 1.3, player 1 chooses a row, player 2 chooses a

column, player 3 chooses between the two left matrices or the two right ones

and player 4 chooses between the two top matrices or the two bottom ones.

Notice that in this game, the min-max payoff of each player is 0, and there is

a mixed-strategy Nash equilibrium (1/2, 1/2, 1/2, 1) which yields a payoff of

1/2, so that assumptions A1 to A3 are satisfied.

0,0,0,0 1,1,1,1
0,0,0,0 1,1,1,1

1,1,1,1 0,0,0,0
1,1,1,1 0,0,0,0

0,0,0,0 1,1,1,1
0,0,0,0 1,1,1,1

0,0,0,0 0,0,0,0
1,1,1,1 1,1,1,1

Figure 1.3: A four-player stage game with one-dimensional payoffs

Let αi denote the probability with which player i plays his first action

(either top or left). The expected payoff to all players from strategy profile

(α1, α2, α3, α4) ∈ [0, 1]4 is

(1− α2)α3 + α2(1− α3)α4 + (1− α1)(1− α3)(1− α4).

We now show that for any stage-game action profile, at least one of player 1

or player 2 has a deviation guaranteeing him a payoff of 1/2.

Consider the payoff from a deviation for player 1. If player 1 plays the top

row (α1 = 1), his payoff is

u1
1 = (1− α2)α3 + α2(1− α3)α4,

while his payoff from playing the bottom row (α1 = 0) is

u0
1 = (1− α2)α3 + α2(1− α3)α4 + (1− α3)(1− α4).

For player 1, playing the bottom row is the best deviation (bottom indeed
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weakly dominates top).

For player 2, the payoff from playing the left column (α2 = 1) is

u1
2 = (1− α3)α4 + (1− α1)(1− α3)(1− α4),

while his payoff from playing the right column (α2 = 0) is

u0
2 = α3 + (1− α1)(1− α3)(1− α4).

We now show that max{u0
1, u

0
2, u

1
2} ≥ 1/2 for any quadruple (α1, α2, α3, α4).

First let βi = 1 − αi. We can then rewrite u0
1, u0

2 and u1
2 as β2(1 − β3) +

(1 − β2)β3(1 − β4) + β3β4 = (1 − 2β3 + β3β4)β2 + β3, β3(1 − β4) + β1β3β4

and 1 − β3 + β1β3β4, respectively. As β2 only appears in u0
1, we can first

minimize max{u0
1, u

0
2, u

1
2} with respect to β2. Moreover, u0

1 is linear in β2, so

that it’s minimum is β3 + min(0, 1− 2β3 + β3β4).

We now notice that β4 only appears in the expression β3β4 and that β1

only appears in the expression β1β3β4. Let γ4 = β3β4 and γ1 = β1γ4, our

problem is equivalent to showing that the minimum for γ1, β3 and γ4 such

that 0 ≤ γ1 ≤ γ4 ≤ β3 ≤ 1 of the maximum between β3 + min(0, 1− 2β3 +γ4),

β3 − γ4 + γ1 and 1− β3 + γ1 is greater than one half.

Consider first the case when 1 − 2β3 + γ4 ≥ 0. Our problem is to show

that max{β3, β3 − γ4 + γ1, 1− β3 + γ1} ≥ 1/2 whenever 1− 2β3 + γ4 ≥ 0 and

0 ≤ γ1 ≤ γ4 ≤ β3 ≤ 1. Given that γ1 ≤ γ4 then β3 ≥ β3 − γ4 + γ1. First,

if β3 is the maximum of those three terms then β3 ≥ 1 − β3 + γ1, so that

2β3 ≥ 1 + γ1 ≥ 1, or β3 ≥ 1/2. Second, if 1 − β3 + γ1 is the maximum of

those three terms then 1−β3 + γ1 ≥ β3, so that β3 ≤ (1 + γ1)/2 and therefore

1− β3 + γ1 ≥ 1− (1 + γ1)/2 + γ1 = (1 + γ1)/2 ≥ 1/2.

Consider now the case when 1−2β3 +γ4 ≤ 0. Our problem is to show that

max{1− β3 + γ4, β3 − γ4 + γ1, 1− β3 + γ1} ≥ 1/2 whenever 1− 2β3 + γ4 ≤ 0

and 0 ≤ γ1 ≤ γ4 ≤ β3 ≤ 1. Given that γ1 ≤ γ4 then 1− β3 + γ4 ≥ 1− β3 + γ1.

First if 1 − β3 + γ4 ≥ β3 − γ4 + γ1 then β3 ≤ 1/2 + γ4 − γ1/2, so that
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1 − β3 + γ4 ≥ (1 + γ1)/2 ≥ 1/2. Second if 1 − β3 + γ4 ≤ β3 − γ4 + γ1 then

β3 ≥ 1/2 + γ4 − γ1/2, so that γ1 + β3 − γ4 ≥ (1 + γ1)/2 ≥ 1/2.

Hence there is always one player amongst player 1 and player 2 who can

achieve a payoff of 1/2 in the stage game. Therefore for any stage-game profile

(α1, α2, α3, α4) ∈ [0, 1]4, both player 1 and player 2 are guaranteed a repeated-

game payoff of at least

(1− δ̃)1
2 + δ̃u∗,

where u∗ is the minimum payoff attainable in any subgame-perfect equilibrium

for players 1 and 2.14 If (α1, α2, α3, α4) is part of an equilibrium that gives

players 1 and 2 their lowest subgame-perfect equilibrium payoff we then have:

u∗ ≥ (1− δ̃)1
2 + δ̃u∗,

so that

u∗ ≥ 1
2 .

1.3.2 Generalization

In a more recent paper, Chen and Takahashi (2012) generalize our result.

They aggregate the stage-game dimensionality assumption with the different

discount factor assumption in a dynamic non-equivalent utility assumption

(DNEU). DNEU simply states that when players have equivalent utilities they

must have different discount factors.15 Chen and Takahashi (2012) dispense

with the pure minmax assumption that we make and provide a more explicit

construction of the dynamic player specific punishments, whereas we rely on

the compactness of the equilibrium payoff set and use this to provide bounds

on the difference between the lowest equilibrium payoffs of any two players.

We note however that Chen and Takahashi (2012) rely on the compactness of
14Note that because they have the same stage game payoffs and the same discount factor,

players 1 and 2 must have the same lowest subgame-perfect equilibrium payoff.
15In this chapter we considered a case in which all players have equivalent utilities, which

is the most problematic case for the folk theorem. DNEU therefore reduces to having all
players have different discount factors in that case.
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the set of feasible repeated-game payoffs and use the lowest feasible payoff for

each player without explicitly constructing them.
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Chapter 2

Failure of Gradualism under

Imperfect Monitoring

2.1 Introduction

In many economic settings players often have incentives to free ride and ben-

efit from the contributions of others without having to incur a private cost.

As a result, many Pareto optimal outcomes cannot be sustained as equilibria

of strategic interactions. As discussed in Chapter 1 this problem can usually

be overcome through repeated interactions, which allow players to reward and

punish each other over time. The folk theorem then tells us that any individu-

ally rational payoff profile can be obtained in equilibrium, provided players are

sufficiently patient. For example, in an infinitely repeated prisoner’s dilemma,

cooperation can be achieved with a simple grim-trigger strategy, which pre-

scribes a return to the stage-game Nash equilibrium if one player deviates from

a given cooperative path.

While the ability that players have to punish each other over time is cen-

tral to reaching cooperation, in various economic situations this ability can

be limited. In this chapter we consider two potential sources of limitations:

irreversibility and imperfect monitoring.

Irreversibility occurs when after some degree of cooperation, threats to
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return to a non-cooperative outcome can no longer be made. For example,

in dynamic contribution games, irreversibility arises as past contributions are

non refundable: players cannot threaten to reduce their overall level of con-

tributions to the public project as past contributions cannot be claimed back.

Irreversibility thus reduces the ability that players have to punish each other,

which may in turn limit the scope for cooperation.

Imperfect monitoring occurs when players do not perfectly observe each

other’s actions. As a consequence deviations by players may be more difficult

to detect, reducing the ability that players have to punish each other and again

reducing the scope for cooperation.

The constraints that irreversibility and imperfect monitoring impose on

cooperation have been studied independently and both strands of literature

show a series of positive results, where cooperation is possible in equilibrium.

We discuss those results in the following paragraphs. In this chapter we study

how those two limitations interact: actions are irreversible and players do

not perfectly observe each other’s actions. In contrast with both strands of

literature, we show that cooperation can be impossible to achieve when those

limitations are considered together.

The main insight from the literature on irreversibility is that cooperation

has to take the form of gradual increases in contribution levels over time.

Marx and Matthews (2000) study a game of dynamic voluntary contribution

to a public project where past contributions are not refundable and payoffs

are linear in cumulative contributions, with a possible extra benefit when

cumulative contributions are above a given threshold (the “completion point”).

They construct an approximately efficient subgame-perfect equilibrium when

there is little discounting. Lockwood and Thomas (2002) study a similar

setting, with no extra benefit, and characterize the efficient equilibria for any

discount factor by the means of a second-order difference equation. Gale

(2001) introduces the notion of monotone games with positive spillovers, a

more general setting, and looks at the case without discounting. All those
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papers show that there can be cooperation when actions are irreversible, but

that it has to take the form of gradual increases in contribution levels: because

of irreversibility, the only threats that can be made are the reductions of

future increases in the levels of contributions. This implies that cooperation

has to be gradual. In a bargaining setting Compte and Jehiel (2004) show

that, when players’ outside options are history dependent and players have

the option to terminate the game at any stage, equilibrium concessions will

exhibit gradualism. The option that players have of terminating the game

has the same role as the threat of discontinuing contributions to the public

project.

Admati and Perry (1991) also study voluntary contributions to a public

project and show that when past contributions are sunk players contribute

gradually. The setting however is different as players move sequentially and

do not enjoy intermediate flow payoffs. Instead, the benefit from the project

is received only once the project is completed. Compte and Jehiel (2003)

however show that when players value the project differently it can then be

completed in only two stages.

In the papers reviewed, players always perfectly observe either individual

contributions or total contributions. In particular players can condition their

actions on the level of total contributions and detect any deviation from a given

contribution path, possibly triggering a punishment phase. However, it is often

the case that players cannot perfectly monitor each other’s actions. Continuing

with the public project example, players may only be able to observe the stage

of development of the public project, which can be a noisy signal of total

contributions.

In a repeated game with finite actions and signals, when signals are pub-

licly observed and sufficiently informative, Fudenberg et al. (1994) show that

cooperation can still be achieved in equilibrium, provided players are suffi-

ciently patient, and establish a folk theorem for games with imperfect public

monitoring. Cooperation is again possible with a continuum of actions and
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signals. Green and Porter (1984) and Porter (1983) study collusion in Cournot

games with imperfect public monitoring where the action set (the quantity to

produce) and the set of signals (the market price) are a continuum. They show

that collusion is possible and Porter (1983) characterize the optimal collusive

trigger strategy. Abreu et al. (1986) study optimal strategies in the Green

and Porter (1984) model, without restricting attention to trigger strategies.

However they depart from the Green and Porter (1984) model by restricting

attention to a finite set of actions.

With a particular form of private monitoring (“network monitoring”),

Wolitzky (2013) studies the level of cooperation that can be achieved in a re-

peated public good game where players perfectly observe the actions of their

neighbours in a network but cannot observe the other players’ level of coop-

eration. As with the other papers mentioned, this paper does not consider

irreversibility constraints, so that the payoff structure remains stationary over

time.

The main question we address in this chapter is whether cooperation can

still be achieved when there is imperfect monitoring and the environment is

non-stationary due to irreversibility constraints. We show that, under certain

regularity assumptions about the payoff function and the monitoring technol-

ogy, cooperation can no longer be achieved and players must play the unique

stage-game Nash equilibrium for ever.1 This result is striking as it shows a

stark discontinuity with the perfect monitoring case: the introduction of a

little noise in the monitoring technology can render cooperation impossible.2

We consider a model in which a two-player Prisoner’s Dilemma with con-

tinuous actions is played infinitely many times. In each period players choose

a level of contribution (a number in R+). While it is strictly dominant not

to contribute in the stage game, it is mutually beneficial to do so. Actions
1We show the result for pure-strategy Nash equilibrium.
2In a recent paper Bonatti and Hörner (2011) study inefficiencies that arise in teams in a

dynamic moral hazard setting with incomplete information about the quality of the project.
Players do not observe the actions of others in their team, but only observe whether and
when the project succeeds. Under this particular monitoring structure they show that agents
will under invest in effort.
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are irreversible, so contribution levels cannot decrease over time.3 Crucially,

players do not perfectly observe each other’s actions. Instead in each period

they receive a noisy signal of the action profile played. The signal is publicly

observed by all players and drawn from a compact subset of Rk according to a

known probability distribution. When the payoff function is continuously dif-

ferentiable in actions and the monitoring technology is continuous in actions,

we show that with irreversibility there can no longer be cooperation.4

Under perfect monitoring, with irreversibility, cooperation takes place in

the form of gradual increases in contribution levels. At any point in time,

the threat of maintaining contribution levels constant forever provides the

necessary incentives to players to contribute today. That is, the losses from the

withdrawal of future increases in contribution levels offset the instantaneous

gain from a deviation.

However under imperfect monitoring this is no longer the case. If there are

strictly positive contributions in equilibrium, it can first be shown that for a

set of histories of positive measure, contributions will be arbitrarily close to an

upper bound.5 Close to this upper bound, a player will have an incentive to

deviate by slightly reducing his contribution today and then resuming to the

prescribed strategy tomorrow. The gain from this deviation is instantaneous

and of a similar order of magnitude as the deviation. The cost is two-folds:

first, the deviation affects the distribution of signals. This effect is also of

similar order as the deviation.6 Secondly, given that signals are affected, the

deviating player receives a lower continuation value. This loss is however arbi-

trarily small as contributions are arbitrarily close to an upper bound. Under
3One interpretation of irreversibility is that the payoff-relevant variable is the stock of

total contributions, which is irreversible as players can only contribute non-negative amounts
in each period. See Lockwood and Thomas (2002, Section 4) for a discussion.

4We also show that the result holds for the “linear kinked” case, when the benefit from
another player’s contribution becomes null beyond a certain level of total contributions.

5This is because in order to provide incentives for players to increase their level of contri-
butions today, contributions have to increase with strictly positive probability in the future.
As contributions will be bounded from above in equilibrium, they must converge to a finite
limit. Moreover this limit cannot be reached, as players would have an incentive to deviate
just before reaching that limit.

6When the monitoring technology is smooth with respect to actions.
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perfect monitoring this small loss is sufficient to deter deviations, as it occurs

with probability 1. Under imperfect monitoring however this loss, coupled

with the fact that a small deviation will have a small impact on the distribu-

tion of signals, will not be sufficient to provide incentives for cooperation.

We can think of a number of examples of strategic situations in which co-

operation is mutually desirable but myopic incentives are to defect and actions

are irreversible or very costly to reverse. For example in an industry with a

declining demand, competing firms might have a mutual interest in reducing

their capacity, which can be considered irreversible. However in a one-shot

game it is strictly dominant for firms not to reduce their capacity. Similarly,

parties over-exploiting a common resource might mutually benefit from a de-

struction of their capital in order to reduce over-exploitation, even though in

a one-shot interaction it is dominant for each party not to destroy capital.

Other examples include environmental cooperation, where the installation of

costly abatement technology is irreversible, and disarmament between warring

parties.7 In all these examples, it is possible that players might not perfectly

observe each other’s actions but only noisy signals of those actions.

The rest of this chapter is organized as follows: in Section 2.2 we describe

the model under the imperfect public monitoring framework; the main results

of the model with perfect monitoring are summarized in Section 2.3; in Sec-

tion 2.4 we characterize the unique public Nash equilibrium, in which players

(almost) never contribute; Section 2.5 presents a counterexample where co-

operation is possible, but where the monitoring technology is not continuous

with respect to the players’ actions; and Section 2.6 concludes.

2.2 The model under imperfect public monitoring

In this section we present the main features of the model under the assump-

tion of imperfect public monitoring. We follow the model of Lockwood and
7Those examples are taken from Marx and Matthews (2000) and Lockwood and Thomas

(2002).
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Thomas (2002) and add the assumption that actions are not perfectly moni-

tored. We start with the properties of the stage game, which has the structure

of a Prisoner’s Dilemma with continuous actions: Players choose a level of con-

tribution (for example to a public project) in R+. While it is strictly dominant

for players not to contribute in the stage game, players can both benefit from

strictly positive levels of contributions. We then present the dynamic version

of the model characterized by two main assumptions: actions are irreversible,

so that the level of contributions has to be non-decreasing; and players do not

perfectly observe each other’s actions. Instead they observe a public noisy

signal drawn from a know probability distribution on a compact subset of Rk.

We then describe the histories upon which players condition their actions and

how they evaluate future streams of random payoffs.

2.2.1 The stage game

There are two players i = 1, 2.8 Each player i chooses an action ci ∈ R+,

interpreted as his level of contribution to a public project. Both players simul-

taneously choose an action and the payoff to player i from the action profile

(c1, c2) ∈ R2
+ is π (ci, cj). It is assumed that π is continuously differentiable,

decreasing in its first argument and increasing in its second argument. There

exist contribution levels c1 > 0 and c2 > 0 such that it is mutually desirable

for both players to reach those levels, providing the game with a Prisoner’s

Dilemma structure. Furthermore, the function π(c1, c2) + π(c2, c1) is assumed

to have a unique global maximizer on R2
+. Finally the marginal cost of con-

tributing is restricted to be bounded away from zero:

Assumption 2.1 (Smoothness). The function (c1, c2) 7→ π(c1, c2) is contin-

uously differentiable.9

8The main result of this paper can be generalized to the case of n players in a straight-
forward way.

9Note that this assumption excludes the linear kinked case considered by Lockwood and
Thomas (2002). The result still holds in that case, and this is discussed in Remark 2.7.
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Assumption 2.2 (Prisoner’s dilemma structure). The function π is decreas-

ing in its first argument and increasing in its second argument: π1 ≤ 0 and

π2 ≥ 0.10 Moreover there exist c1 > 0 and c2 > 0 such that π(c1, c2) > π(0, 0)

and π(c2, c1) > π(0, 0).

Assumption 2.3 (Global maximizer). The function (c1, c2) 7→ π(c1, c2) +

π(c2, c1) has a unique global maximizer (c∗1, c∗2) on R2
+, such that π(c1, c2) +

π(c2, c1) is decreasing in c1 + c2 for c1 + c2 ≥ c∗1 + c∗2.

Remark 2.1. Note that because (c1, c2) 7→ π(c1, c2) + π(c2, c1) is symmetric,

if it has a unique maximiser then this maximiser is such that c∗1 = c∗2 = c∗. ♦

Remark 2.2. The second part of Assumption 2.3 implies that the function

(c1, c2) 7→ π(c1, c2) + π(c2, c1) is quasiconcave on the set {(c1, c2) ∈ R2
+ :

c1 + c2 ≥ c∗1 + c∗2}. This assumption rules out the possibility that beyond

the optimum, more contributions could be beneficial. In the example of en-

vironmental cooperation, it could be the case that even though players have

over-invested, further contributions will produce a technological breakthrough

for which the incremental benefit will outweigh the incremental cost.

This assumption can be dispensed with when focusing on symmetric equi-

librium. ♦

Assumption 2.4 (Strictly positive marginal cost). π1(x, y) < 0 for x > 0.

Example 2.1. The benefit function π(c1, c2) = − c21
2 + c2 satisifies assump-

tions 2.1 to 2.4. ♦

2.2.2 The dynamic game and monitoring structure

The stage game is played infinitely many times. In each period t = 0, 1, . . .

both players simultaneously choose an action cti ∈ R+ that cannot be lower

than the action chosen in the previous period. One interpretation is that the

payoff-relevant variable is the sum of all contributions and that increments in
10We use subscripts to denote the partial derivatives of π: π1(x, y) = ∂π(x, y)/∂x and

π2(x, y) = ∂π(x, y)/∂y.
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contributions have to be non-negative, so that the total level of contribution

of each player will be non-decreasing:

Assumption 2.5 (Irreversibility). cti ≥ ct−1
i , i = 1, 2, t ≥ 1.

There is a common discount factor δ ∈ (0, 1) and the players evaluate

payoff streams using discounting. The sequence of action profiles (cti, ctj)∞t=0

generates a payoff for player i of:

(1− δ)
∞∑
t=0

δtπ(cti, ctj).

We consider a game with imperfect public monitoring: at the end of each

period, players only observe a public signal y drawn from a compact set Y ⊂

Rk, k ≥ 1. If k = 1 for example, the signal observed could be the sum

of the players’ contributions plus some random noise. If k = 2, the public

signal could have a component for each of the players’ actions. We denote

by PY (· | c1, c2) the probability measure on Y induced by the public signal,

conditional on contribution levels c1 and c2, so that for any measurable E ⊂ Y

we have:

P(y ∈ E | c1, c2) =
∫
E
PY (dy | c1, c2).

If PY (dy | c1, c2) can be written as f(y | c1, c2)dy then the monitoring tech-

nology is absolutely continuous with respect to the Lebesgue measure with

probability density function f(y | c1, c2), but this is not necessarily the case.

We assume that the probability measure PY is continuous with respect to

contribution levels, so that the distribution of signals cannot change too much

if changes in contribution levels are small:

Assumption 2.6 (Feller continuity). There exists a constant K such that

|P(E | c1 +∆, c2)−P(E | c1, c2)| ≤ K∆ and |P(E | c1, c2)−P(E | c1, c2 +∆)| ≤

K∆ for any measurable set E ⊂ Y .11

11For example, if the monitoring technology is continuous with respect to the Lebesgue
measure, we could impose the following restriction on its probability density function f :
there exists a constant K such that |f(y | c1 + ∆, c2) − f(y | c1, c2)| ≤ K∆ and |f(y |
c1, c2)− f(y | c1, c2 + ∆)| ≤ K∆ for any y ∈ Y .
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Example 2.2. The public signal y = min{c1 + c2 + ε,M},12 where ε is a

uniform random variable on the interval [a, b] ( a < b ∈ R) and M > 0 would

satisfy assumption 2.6. ♦

The public signal y is the only information each player has about his op-

ponent’s play. Therefore if player i receives payoffs at the end of each period

they cannot convey additional information about the other player’s action:

the realized payoff π∗ is a function of one’s own contribution and the public

signal. The ex ante payoff function π is then the expectation of the ex post

payoff:

π (ci, cj) =
∫
Y
π∗ (ci, y)PY (dy | c1, c2), ∀ci, cj . (2.1)

Remark 2.3. Note that we do not provide assumptions on π∗ and PY such

that π will satisfy assumptions 2.1 to 2.4, and it is not clear that for every π

and every PY we can find a π∗ that satisfy (2.1). The advantage of working

with the ex ante payoff rather than the ex post payoff is that it allows us

to remain agnostic about the link between actions and signals - besides the

continuity assumption 2.6. In particular we do not have to make likelihood

ratio assumptions, such that higher actions are statistically associated with

higher signals. As our result is a negative one it makes it more powerful.

Here is however a simple example that would satisfy our assumptions:

π(ci, cj) = −c2
i /2 + cj , y = (yi, yj) such that EY (y | ci, cj) = (ci, cj) and

π∗(ci, y) = −c2
i /2 + yj .13

A possible alternative that would not require to define ex post payoffs π∗

would be to interpret the discount factor δ as the probability with which the

interaction will terminate. Players then only receive their payoff once the

interaction has ended. ♦

Remark 2.4. Even though we consider actions in each period as being the
12The truncation of the public signal if c1 + c2 + ε ≥ M is made in order to respect the

compactness assumption of the support of y. This is not restrictive asM could be arbitrarily
large, and as we show that in equilibrium players’ contribution levels must be bounded from
above (Lemma 2.3).

13EY (y | ci, cj) = (ci, cj) would occur on a finite range to accommodate with the compact
support assumption.
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level of total contributions, another interpretation is that players choose a non-

negative increment to their level of contribution. Marx and Matthews (2000)

formulate their model in such a way, and this is also discussed in Lockwood

and Thomas (2002, Section 4). In this setting, it may be natural to consider

a public signal that does not depend on the total stock of contributions but

on the increments in contributions. We could then interpret benefits as being

a sum of incremental benefits, each increment depending on one’s incremental

contribution and the public signal. ♦

2.2.3 Private and public histories

In each period, players only observe the public signal and the action they have

played. A private history for player i is a sequence of actions and signals

hti = (c0
i , y

0; c1
i , y

1; . . . ; ct−1
i , yt−1), and the set of all private histories for player

i is Hi := ∪t≥0(R+ × Y )t, where (R+ × Y )0 = ∅. A public history ht is a

sequence of t public signals: ht = (y0, y1, . . . , yt−1) ∈ Y t. The set of all public

histories is H := ∪t≥0Y
t. We will also use the notations Ht and Hti to denote

the set of public and private histories of length t respectively.

A pure strategy σi for player i is a measurable function that specifies a

level of contribution σi
(
hti
)
after any hti ∈ Hi and that satisfies irreversibility:

σi :


Hi −→ R+

hti 7−→ σi
(
hti
) ,

such that for any hti ∈ Hi and any y ∈ Y we have σi
(
hti; ct−1

i , y
)
≥ ct−1

i ,

where hti; ct−1
i , y denotes the concatenation of histories hti and ct−1

i , y. For any

strategy σi, player i’s continuation strategy induced by hti ∈ Hti is denoted by

σi|hti such that σi|hti (h) := σi
(
htih

)
, ∀h ∈ Hi.

Remark 2.5 (Pure vs. mixed strategies). In this chapter we focus on pure

strategies. An important characteristic of pure strategies is that on the equi-
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librium path, they are realization equivalent to a public strategy.14 (See for

example Mailath and Samuelson 2006, Lemma 7.1.2.) This plays an important

role in the proof of Theorem 2.1, which relies on the fact that players know

each other’s contribution levels on the equilibrium path. This property will no

longer hold when considering mixed strategies if players rely on their private

information, and the proof Theorem 2.1 cannot be extended to this case.

As on the equilibrium path pure strategies depend only on the public

history, all statements apply to public histories, as the aim is to characterize

the set of pure-strategy Nash equilibria. ♦

2.2.4 Stochastic process of public signals

Let Ω := Y N be the space of infinite sequences of public signals. Along with

a monitoring technology, a pure strategy profile σ = (σ1, σ2) determines re-

cursively a stochastic process of public signals, which induces a probability

distribution on Ω that we denote by Pσ. Expectations with respect to that

probability distribution will be denoted by Eσ.

An element ω ∈ Ω is an infinite sequence of public signals and we denote by

ht(ω) the first t elements of ω. Let V (σi, σj) be the expected payoff of player i

from the strategy profile σ = (σ1, σ2) and V (σi, σj | hτ ) be the continuation

payoff from σ after the public history hτ :15

V (σi, σj) := (1− δ)Eσ
[ ∞∑
t=0

δtπ(σi(ht(ω)), σj(ht(ω)))
]
,

V (σi, σj | hτ ) := (1− δ)Eσ
[ ∞∑
t=0

δtπ(σi(ht+τ (ω)), σi(ht+τ (ω))) | hτ
]
.

A profile of pure strategies (σ1, σ2) is a Nash equilibrium if for any i ∈

{1, 2} and any strategy σ′ we have that V (σi, σj) ≥ V (σ′, σj), provided that
14Off path, the irreversibility constraint will imply that players may have to use their

private information.
15 Even though any finite history occurs with probability zero because there is a continuum

of signals, the probability conditional on a history hτ is well defined as it is the probability
measure induced by the continuation strategy profile σ |hτ .
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V (σi, σj) is well defined.16

2.2.5 Notation

For ease of readability we will use the following notations in the rest of the

paper:

π(σi, σj | ht) := π(σi(ht), σj(ht)),

and

PY (dy | σi, σj , ht) := PY (dy | σi(ht), σj(ht)).

We also denote by ht|τ , 1 ≤ τ ≤ t− 1, the τ -truncation of a public history

ht: If ht = (y0, y1, . . . , yt−1) then ht|τ = (y0, y1, . . . , yτ−1).

2.3 Main Results under Perfect Monitoring

In this section we briefly summarize the main result from the model with

perfect monitoring, as in Lockwood and Thomas (2002). They first show that

in any equilibrium with positive contributions contributions never reach their

limit. They then show that in a symmetric equilibrium, any efficient path of

contributions must solve the following difference equation:

π(ct, ct+1) = 1
δ

[π(ct−1, ct)− π(ct, ct)] + π(ct, ct), t > 0, (2.2)

They then show that for any given discount factor, contribution levels in any

equilibrium will be bounded from above by a bound strictly lower than the

first-best level of contributions. However this inefficiency vanishes as the dis-

count factor tends to one.
16As we have not made the assumption that π is bounded, it could be the case that V is

not finite.
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2.4 Failure of Cooperation in Equilibrium

In this section we show that the only pure-strategy Nash equilibrium of the

dynamic game presented in Section 2.2 is to play (0,0) (no contribution) after

almost every history: cooperation cannot be achieved with positive probability.

In Section 2.5, Assumption 2.6 is relaxed and it is shown that cooperation is

again possible in equilibrium.

Theorem 2.1. Let σ = (σ1, σ2) be a pure-strategy Nash equilibrium of the

dynamic contribution game with imperfect public monitoring. Then σi
(
ht
)

=

0, i = 1, 2, for almost every public history ht ∈ H, under Assumptions 2.1 to

2.6.

Remark 2.6 (Nash equilibrium vs. subgame perfect equilibrium). Statements

are made almost surely with respect to the probability measure Pσ. Hence

the analysis that follows occurs on the equilibrium path. ♦

In Section 2.4.1 we provide a brief discussion of the proof. Section 2.4.2

introduces some preliminary results, while the formal proof is presented in

Section 2.4.3.

2.4.1 Outline of the Proof

The main idea behind the proof of Theorem 2.1 is to consider, in each period,

the essential supremum of a player’s level of contribution. Contributions can

only take values above the essential supremum on set of measure zero and there

always exists a set of histories of positive measure for which contributions are

arbitrarily close to the essential supremum.

It is first shown that at any point in time, there is a set of histories of posi-

tive measure for which contribution levels are close to their essential supremum

(for one of the players) and for which contributions are expected to increase

in the future. Because of irreversibility, the only way to provide incentives

for players to contribute today is through the promise of future increases in

contributions. No longer increasing contributions after histories for which
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contributions are close to the essential supremum would mean that along such

histories there will be a last time where contributions increase, giving players

an opportunity to profitably deviate. This result is analogous to Lockwood

and Thomas (2002, Lemma 2.1 (ii)), who show that in an equilibrium with

positive contributions, contributions cannot become constant after a certain

time.

As the essential supremum of contributions converges (it is a sequence of

increasing numbers bounded from above in equilibrium), we can consider a

time after which it is arbitrarily close to its limit. The previous intuition

now tells us that along histories for which contributions are close to the limit

of the essential supremum, players are expected to increase contributions in

the future. However as contributions are close to their upper bound, they

cannot be expected to increase by a significant amount. To prove Theorem 2.1

we, then, show that along such histories a player can profitably deviate by

increasing his contribution levels by less than what is prescribed in a putative

equilibrium with positive contributions.

The gain from such a deviation consists of the instantaneous gain from

reducing contribution levels. The cost is two-folds: first, a deviation will

affect the distribution of signals; secondly, given that signals are affected, the

deviating player will receive different (lower) continuation values.17 However,

when the monitoring technology is continuous with respect to players’ actions,

a small deviation will have an impact on the distribution of public signals of a

similar order to the gain.18 Furthermore, as contributions of the other player

are close to an upper bound, losses from lower future continuation values will

be arbitrarily small. Hence the cost of deviating consists of one element that

is of similar order to the gain and another element that is arbitrarily small,

making the deviation profitable.
17Note that the use of the word “lower” might suggest that some assumption has been made

about the informativeness of the signals (such as a monotone likelihood ratio assumption).
The proof does not rely on any such assumption. However if the player expects higher
continuation values after deviating then the proof becomes trivial.

18With perfect monitoring, the impact of a small deviation is large, as this small deviation
is detected with probability 1.
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2.4.2 Preliminary Results

In this section we present some general properties of the possible equilibria of

the game described in Section 2.2.

First we show that after almost every public history where contributions

have increased, contributions are again expected to increase in the future.

That is, the only force that provides incentives for players to increase their

contributions today is the expectation of future increases in contributions from

the other player.

Lemma 2.1. In equilibrium, for almost every history ht ∈ Ht such that

σi(ht) > σi(ht|t−1), i ∈ {1, 2}, both players are expected to increase their

levels of contributions in the future:

Pσ
(
{h ∈ H : σj(hth) > σj(ht)} | ht

)
> 0, j ∈ {1, 2}.19

Proof. Assume first that there is a set of histories of positive measure and

length t such that σi(ht) > σi(ht|t−1) but such that Pσ({h ∈ H : σj(hth) >

σj(ht)} | ht) = 0.20 Even though player i has increased his contribution,

he does not expect player j to do so in the future. As contributing is strictly

dominated, player i could profitably deviate by not increasing his contribution.

If player i increases his contribution, he then expects player j to also do

so in the future. But if player j increases his contributions it is because he

similarly expects player i to increase his contributions in the future. Hence we

also have Pσ({h ∈ H : σi(hth) > σi(ht)} | ht) > 0.

The next lemma shows that in equilibrium the value function of players

is bounded from below by their current flow payoff. If this was not the case

a player could always choose to maintain his contribution level constant. As
19Recall from footnote 8 that we can condition on finite histories even though any finite

history has measure zero, as a continuation strategy induces a probability distribution on
the set of continuation histories.

20Note that if a certain property holds for a set of histories of positive measure, then from
the σ-additivity of Pσ and because time is countable, there will be a certain t and a set of
histories of positive measure and length t such that this property holds for those histories.
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payoffs are non-decreasing in the other player’s contribution, which cannot

decrease due to irreversibility, this would guarantee a future payoff of at least

the current flow payoff.

Lemma 2.2. If (σ1, σ2) is an equilibrium, then for almost every y ∈ Y and

almost every ht ∈ H we have that V (σi, σj | hty) ≥ π(σi, σj | ht). Furthermore

V (σi, σj | ht) ≥ π(σi, σj | ht).

Proof. Assume that there is an equilibrium where V (σi, σj | hty) < π(σi, σj |

ht) for a set of histories of positive measure and a given t. Consider the

strategy σ′ for player i that coincides with σi except after a history ht where

V (σi, σj | hty) < π(σi, σj | ht), in which case player i stops contributing

forever: σ′(hth) = σi(ht). Then for any h ∈ H, π(σ′, σj | hth) ≥ π(σi, σj | ht).

Hence V (σi, σj | hty) ≥ π(σi, σj | ht), a contradiction.

Moreover,

V (σi, σj | ht) = (1− δ)π(σi, σj | ht) + δEσ
[
V (σi, σj | hty) | ht

]
≥ (1− δ)π(σi, σj | ht) + δπ(σi, σj | ht)

= π(σi, σj | ht),

which completes the proof.

In the next lemma we show that in equilibrium players’ contributions are

bounded from above.

Lemma 2.3. In equilibrium, for almost every history h ∈ H we have σ1(h) +

σ2(h) < 2c∗.

Proof. Assume that this is not the case and there is a set of histories of pos-

itive measure and length t such that σ1(ht) + σ2(ht) ≥ 2c∗. The sum of the

players’ value functions, given ht, is a discounted sum of terms π(σ1, σ2 |

hth) + π(σ2, σ1 | hth), h ∈ H. We consider in turn two cases.

First assume that players increase their contributions with positive prob-

ability after such histories. As π(c1, c2) + π(c2, c1) is above its global max-
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imum (Assumption 2.3) it is decreasing in c1 + c2. Therefore π(σ1, σ2 |

hth) + π(σ2, σ1 | hth) ≤ π(σ1, σ2 | ht) + π(σ2, σ1 | ht) ∀h ∈ H, where the

inequality is strict on a set of histories of positive measure. This implies that

V (σi, σj | ht) < π(σi, σj | ht) for at least one i ∈ {1, 2}, a contradiction with

Lemma 2.2.

Secondly if instead contributions remain constant then for each ht such

that σ1(ht) + σ2(ht) ≥ 2c∗ there is a time s, 0 ≤ s < t, at which one of the

players makes a last increase. This is a contradiction with Lemma 2.1, which

states that if one player increases his contribution, contributions are expected

to increase again in the future.

Lemma 2.3 implies that in equilibrium each player will not contribute above

2c∗. We define this upper bound as c̄ := 2c∗.

2.4.3 Proof of Theorem 2.1

Assume that there is a pure-strategy equilibrium σ = (σ1, σ2) where players

make strictly positive contributions. Without loss of generality, in equilibrium,

at least one of the players contribute in period 0.21 Suppose σ1(∅) > 0.

In what follows we consider the essential supremum of contribution levels,

which is the supremum except on a set of measure zero and is defined as

follows:22

ess supht∈Ht σi(ht) := inf
{
a ∈ R : Pσ({ht ∈ Ht : σi(ht) > a}) = 0

}
.

Let (σ̂it)∞t=0, i = 1, 2, be the deterministic sequence of a player’s essential

supremum contribution:

σ̂it = ess supht∈Ht σi(ht), ∀t ≥ 0, i = 1, 2. (2.3)

By definition there always exists a set of histories of positive measure for which
21Consider a history ht at which the first increase in contribution levels occurs. Then

(σ1|ht , σ2|ht) is also an equilibrium of the original dynamic game.
22For a brief discussion of the essential supremum, see for example Doob (1994, Part V.17).
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contributions are close to the essential supremum. We denote by Htiε the set

of histories of length t for which contributions of player i are within ε of the

essential supremum:

Htiε :=
{
ht ∈ Ht : |σ̂it − σi(ht)| ≤ ε

}
∀t, i = 1, 2. (2.4)

Note that Pσ(Htiε) > 0 and that the set of histories for which contributions

are strictly higher than the essential supremum is of measure zero.

Lemma 2.4. In equilibrium, the deterministic sequence (σ̂it)t converges to a

limit σ̂i∞ <∞, i = 1, 2.

Proof. The sequence (σ̂it)t is weakly increasing, because of irreversibility, and

bounded from above by c̄. It therefore converges.

In the next lemma we show that for any time t there is a set of histories of

positive measure for which contributions are close to the essential supremum

and will continue to increase in the future.

Lemma 2.5. In an equilibrium where players contribute with positive proba-

bility, for any i ∈ {1, 2}, ε > 0 and t, there is a set of histories H̃tiε of length

t and of positive measure such that:

(i) Contributions of player i are close to their essential supremum: |σi(ht)−

σ̂it| ≤ ε, ∀ht ∈ H̃tiε; and

(ii) Player i increases his contribution with strictly positive probability in the

future:

Pσ
(
{h ∈ H : σi(hth) > σi(ht)} | ht

)
> 0, ∀ht ∈ H̃tiε,

where σ̂it is the essential supremum of player i’s contribution in period t, as

defined in (2.3).

Proof. Let (σ1, σ2) be a pure-strategy Nash equilibrium with positive contri-

butions. Assume that the result does not hold and consider the set Htiε of
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histories of length t for which player i’s contribution is within ε of his essen-

tial supremum contribution, as defined in (2.4): |σi(ht)− σ̂it| ≤ ε, ∀ht ∈ Htiε.

Recall that Pσ(Htiε) > 0. If Lemma 2.5 does not hold then there exists a time

t and an ε > 0 such that Pσ
(
{h ∈ H : σi(hth) > σi(ht)} | ht

)
= 0, for almost

every history in Htiε. We now consider in turn two cases.

First assume that for almost every ht ∈ Htiε we have σi(ht) = σi(∅) >

0 (recall that we assumed players contributed with positive probability in

equilibrium). From irreversibility, for every ht ∈ Ht, σ(ht) ≥ σ(∅). Therefore

∀ht ∈ Ht we have |σi(ht) − σ̂it| ≤ ε, so that Ht ⊆ Htiε. As Htiε ⊆ Ht we

have Htiε = Ht: Player i keeps his contribution level constant at σi(∅) with

probability one. As player i never increases his contribution, player j will

best respond by also maintaining his contribution constant throughout the

game. But then player i has an incentive to deviate and keep his contribution

constant at zero in the first period, a contradiction with the fact that (σ1, σ2)

is an equilibrium.

Assume now that there is a positive measure subset of Htiε such that for

histories in that subset σi(ht) > σi(∅). Then for each of such history there is a

time s < t such that σi(ht|s) < σi(ht|s+1) = . . . = σi(ht|t−1) = σi(ht). Player i

makes his last increase along history ht at time s, but would then have an

incentive to deviate and not perform that last increase, again a contradiction

with the fact that (σ1, σ2) is an equilibrium.

The following corollary ensues:

Corollary 2.1. In any equilibrium where players contribute with positive prob-

ability, for any i ∈ {1, 2} and any ε > 0, there exists a finite t and a set of

histories Ht?iε of positive measure such that:

(i) |σi(ht)− σ̂i∞| ≤ ε, ∀ht ∈ Ht?iε ; and

(ii) Player j 6= i increases his contribution at ht: σj(ht) > σj(ht|t−1), ∀ht ∈

Ht?iε .
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Proof. Consider a time t′ such that |σ̂it′ − σ̂i∞| ≤ ε/2 and the set H̃t′iε/2 in-

troduced in Lemma 2.5. We know that this set has positive measure, and

that for any history in that set |σi(ht
′) − σ̂it′ | ≤ ε/2. As t′ is such that

|σ̂it′ − σ̂i∞| ≤ ε/2, by the triangle inequality we have that |σi(ht
′)− σ̂i∞| ≤ ε,

∀ht′ ∈ H̃t′iε/2. Lemma 2.5 tells us that player i increases his contribution with

positive probability after histories in H̃t′iε/2. By Lemma 2.1 this also implies

that player j will increase his contribution with positive probability at a time

t ≥ t′.

We now complete the proof of Theorem 2.1 by showing that it is profitable

to deviate for (say) player 1 after a history in Ht?2ε, where player 1’s strategy

specify an increase in contribution levels while player 2’s contribution level is

ε-close to its upper bound:

Ht?2ε :=
{
ht ∈ Ht : |σ2(ht)− σ̂2∞| ≤ ε and σ1(ht) > σ1(ht|t−1)

}
.

To do so we consider a deviation σ′ from σ1 which prescribes lower increases

in contribution levels after histories in Ht?2ε but agrees with σ1 otherwise:23

σ′(ht) =


σ1(ht)− ν(ht) if ht ∈ Ht?2ε,

σ1(ht) otherwise.

To show that σ = (σ1, σ2) cannot be an equilibrium, we will show that player 1

can profitably deviate to σ′ after any history in Ht?2ε:

V (σ′, σ2 | ht)− V (σ1, σ2 | ht) > 0, ∀ht ∈ Ht?2ε, (2.5)

where

V (σ, σ2 | ht) = (1− δ)π(σ, σ2 | ht) + δ

∫
Y
V (σ1, σ2 | hty)PY (dy | σ, σ2, h

t),

23For example we could take ν(ht) = σ1(ht)−σ1(ht|t−1)
2 > 0.
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σ ∈ {σ1, σ
′}.

Note that for any y0 ∈ Y we have that

∫
Y
V (σ1, σ2 | hty)

[
PY (dy | σ1, σ2, h

t)− PY (dy | σ′, σ2, h
t)
]

=∫
Y

[
V (σ1, σ2 | hty)−V (σ1, σ2 | hty0)

][
PY (dy | σ1, σ2, h

t)−PY (dy | σ′, σ2, h
t)
]
,

as ∫
Y
V (σ1, σ2 | hty0)

[
PY (dy | σ1, σ2, h

t)− PY (dy | σ′, σ2, h
t)
]

= 0.

A deviation to σ′ is profitable for player 1 if (2.5) holds, which can be rewritten

as:

∫
Y

[
V (σ1, σ2 | hty)− V (σ1, σ2 | hty0)

]
×

[
PY (dy | σ1, σ2, h

t)− PY (dy | σ′, σ2, h
t)
]
<

1− δ
δ

[
π(σ′, σ2 | ht)− π(σ1, σ2 | ht)

]
, y0 ∈ Y. (2.6)

We now look for an upper bound of the left-hand side of (2.6). From

Lemma 2.2 we know that the next period’s value function is bounded from

below by current flow payoffs. Hence we have the following inequality:

V (σ1, σ2 | hty)− V (σ1, σ2 | hty0) ≤

π(σ1(ht), σ̂2∞)− π(σ1(ht), σ2(ht)), ∀y ∈ Y. (2.7)

Using the Mean Value Theorem (recall from Assumption 2.1 that π is con-

tinuous and differentiable), there exists a σ̃2 ∈ (σ2(ht), σ̂2∞) ⊆ R+ such

that π(σ1(ht), σ̂2∞) − π(σ1(ht), σ2(ht)) = (σ̂2∞ − σ2(ht))π2(σ1(ht), σ̃2). As

ht ∈ Ht?2ε, we have that σ̂2∞ − σ2(ht) ≤ ε. Moreover there is an upper

bound γ on π2(σ1(ht), σ̃2) that is independent of ht, so that π(σ1(ht), σ̂2∞)−

π(σ1(ht), σ2(ht)) ≤ γε. This is because π2 is a continuous function (Assump-

tion 2.1) that, in equilibrium, takes values on the compact set [0, c̄] × [0, c̄]
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(Lemma 2.3). Combining this with (2.7), we have the following upper bound

for left-hand side of (2.6):

γε

∫
Y

∣∣∣PY (dy | σ1, σ2, h
t)− PY (dy | σ′, σ2, h

t)
∣∣∣. (2.8)

From Feller continuity (Assumption 2.6), the integral in (2.8) is bounded

from above by 2K(σ1(ht)−σ′(ht)).24 We can now bound the left-hand side of

(2.6) from above (in absolute value) by 2Kγε(σ1(ht) − σ′(ht)). Hence, (2.6)

holds if

2Kγε(σ1(ht)− σ′(ht)) < 1− δ
δ

[
π(σ′, σ2 | ht)− π(σ1, σ2 | ht)

]
.

Again by the Mean Value Theorem there exists a σ̃ in (σ′(ht), σ1(ht)) ⊆ R+

such that

π(σ′, σ2 | ht)− π(σ1, σ2 | ht) = −π1(σ̃, σ2(ht))(σ1(ht)− σ′(ht)),

so that (2.6) holds if

2Kγε < −1− δ
δ

π1(σ̃, σ2(ht)). (2.9)

The right-hand side of (2.9) is positive as π is decreasing in its first ar-

gument. Moreover it is bounded away from zero, independently of ht. This

is because π1 is continuous and (σ̃, σ2(ht)) take values on the compact set

[σ1(∅), c̄] × [0, c̄], on which it is strictly negative (Assumption 2.4), as σ1(∅)

was assumed to be strictly positive (see the beginning of Section 2.4.3).

For ε small enough (2.9) therefore holds, which ensures that (2.6) holds

and that σ = (σ1, σ2) cannot be an equilibrium, as player 1 has a profitable

deviation on the set of histories in Ht?2ε. This concludes the proof of Theo-
24Let Y + (resp. Y −) be the set such that PY (dy | σ1, σ2, h

t) − PY (dy | σ′, σ2, h
t) is

positive (resp. negative). Then
∫
Y

∣∣∣PY (dy | σ1, σ2, h
t) − PY (dy | σ′, σ2, h

t)
∣∣∣ =

∫
Y+[PY (dy |

σ1, σ2, h
t) − PY (dy | σ′, σ2, h

t)] +
∫
Y− [PY (dy | σ′, σ2, h

t) − PY (dy | σ1, σ2, h
t)]. From Feller

continuity, each integral is bounded from above by K(σ1(ht)− σ′(ht)).
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rem 2.1, and the only pure-strategy Nash equilibrium is when players do not

cooperate and contribution levels remain constant at zero.

Remark 2.7 (The linear kinked case). The smoothness assumption (Assump-

tion 2.1) excludes the “linear kinked” case discussed in Lockwood and Thomas

(2002), where payoffs are as follows:

π(c1, c2) =


π1c1 + π2c2 if c1 + c2 ≤ 2c∗,

π1c1 + π2(2c∗ − c1) if c1 + c2 > 2c∗,

where π1 < 0, π2 > 0 and π1 + π2 > 0. Under the linear kinked case most

of the proof still holds, with the following simplifications: the right-hand side

of (2.6) becomes 1−δ
δ

[
π(σ′, σ2 | ht)− π(σ1, σ2 | ht)

]
= 1−δ

δ π1
[
σ′(ht)− σ1(ht)

]
;

and the right-hand side of (2.7) becomes π(σ1(ht), σ̂2∞)− π(σ1(ht), σ2(ht)) =

π2(σ̂2∞ − σ2(ht)).25 Therefore (2.6) holds if

2Kπ2ε < −
1− δ
δ

π1,

which is satisfied for ε sufficiently small, as K, π1, π2 and δ are constants. ♦

2.5 A Counterexample: All-or-Nothing Monitoring

In this section we consider an example where the monitoring does no longer

have the Feller continuity property (Assumption 2.6): in each period, with

probability 1 − ε, both players observe each other’s actions; with probability

ε, players do not observe each other’s actions. Note that this monitoring

structure is public. We refer to this setting as the ε-almost perfect monitoring
25Note that in equilibirum Lemma 2.3 tells us that σ1(ht) + σ2(ht) < 2c∗, so that

π(σ1(ht), σ2(ht)) = π1σ1(ht) + π2σ2(ht).
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game and will show that cooperation can again be achieved.26, 27

Let us consider a possible contribution path c := (c0, c1, . . .) and the fol-

lowing strategy profile σc: first, both players play c0 in period 0. Then in

period t both players play ct if ct−1 was observed in period t − 1. Otherwise

players do not increase their levels of contributions from the previous period.

The strategy profile σc prescribes that players keep their levels of con-

tributions constant forever after observing a deviation from the prescribed

contribution path c, or when not being able to observe the previous period’s

contributions. Given this strategy profile, we can interpret ε as being the

probability of a breakdown in cooperation. Hence in this particular setting,

the effect of imperfect monitoring is to render players less patient than in the

perfect monitoring case.

Let Vt denote the value from the strategy σc at time t when players have

observed the sequence of action profiles ((c0, c0), . . . , (ct−1, ct−1)) up to time

t.28 After observing ((c0, c0), . . . , (ct−1, ct−1)), players should play the action

profile (ct, ct) in period t, yielding a current flow payoff of π(ct, ct). With

probability (1 − ε), players then observe that the action profile (ct, ct) was

played, leading to a continuation payoff of Vt+1. With the complementary

probability, players do not observe the action profile (ct, ct) and then play

(ct, ct) forever. Hence we can express Vt as a function of Vt+1 as follows:

Vt = (1− δ)π(ct, ct) + δ{(1− ε)Vt+1 + επ(ct, ct)}.

The strategy profile σc is an equilibrium of the ε-almost perfect monitor-

ing game if there are no profitable one-shot deviations. Here we only consider

deviations after histories of the type ((c0, c0), . . . , (ct−1, ct−1)), as after other
26This monitoring technology is similar to the “network monitoring” considered in

Wolitzky (2013), where players connected in a network will only observe the actions of
their neighbors. In Wolitzky (2013) however the network monitoring is private, whereas it
remains public in this example.

27In order to have a signal with compact support, we could assume that observations are
truncated for very large level of contributions. See footnote 12.

28This history occurs with probability (1− ε)t.

57



Chapter 2. Gradualism 2.5. All-or-Nothing Monitoring

histories players maintain their contributions constant, which is an equilib-

rium. The best one-shot deviation possible after such a history is not to

increase at all the contribution level between time t and t + 1, as after a de-

viation players continue to cooperate with probability zero. Such a one-shot

deviation is not profitable after history ((c0, c0), . . . , (ct−1, ct−1)) if:

(1− δ)π(ct−1, ct) + δπ(ct−1, ct) ≤ (1− δ)π(ct, ct) + δ{(1− ε)Vt+1 + επ(ct, ct)}.

(2.10)

The left-hand side of (2.10) is the payoff from deviating. The current payoff

is π(ct−1, ct), and since there is a zero probability of observing the profile (ct, ct)

the contribution levels become constant forever, yielding a continuation value

of π(ct−1, ct). The right-hand side of (2.10) is the payoff from following the

prescribed strategies, which is Vt.

Proposition 2.1. There exists a δ > 0, an ε ∈ (0, 1) and a sequence c :=

(c0, c1, . . .) such that σc is an equilibrium of the ε-almost perfect monitoring

game such that there is a strictly positive probability of players contributing.

The sequence (ct)t satisfies the following difference equation:

π(ct, ct+1) = 1
δ(1− ε) [π(ct−1, ct)− π(ct, ct)] + π(ct, ct), t > 0, (2.11)

with initial conditions c̄−1 = 0 and c̄0 = c0.

Proof. Recall that the strategy σc is an equilibrium of the ε-almost perfect

monitoring if there are no one-shot deviations, that is if (2.10) holds for t ≥ 0

(where c−1 = 0). First let us rewrite (2.10) both for t and t+1, assuming that

the inequalities hold with equality:

π(ct−1, ct) = (1− δ)π(ct, ct) + δ{(1− ε)Vt+1 + επ(ct, ct)}, (2.12)

and

π(ct, ct+1) = Vt+1. (2.13)
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Multiplying (2.13) by −δ(1− ε) and adding it to (2.12), we obtain:

π(ct−1, ct)− δ(1− ε)π(ct, ct+1) = (1− δ)π(ct, ct) + δεπ(ct, ct).

Rearranging the terms then leads to (2.11).

Note that (2.11) is similar to the difference equation (2.4) of Lockwood and

Thomas (2002) (see also (2.2) in this chapter) but with a modified discount

factor δ̃ = δ(1 − ε). Indeed, as was argued previously, the effect of ε in this

setting is to render players less patient than in the perfect monitoring setting.

Figure 2.1 shows two different paths that solve the difference equation (2.11)

when π(x, y) = −x2/2 + y, δ = 0.8 and ε = 0.10, with initial values for c0

being 0.36 and 0.4.29 The function π and the value of δ have been chosen

as in the example of Lockwood and Thomas (2002, Figure 1). Note that the

solution to (2.11) does not converge when the initial value is 0.4 and that the

limit of the sequence when the initial value is 0.36 (the highest initial value

consistent with convergence) is 0.72, that is, δ(1− ε).

Remark 2.8 (Benefit jump and project completion). A key ingredient in

the proof of Theorem 1 is that in a putative equilibrium with positive con-

tributions, increments in contribution levels decrease to zero while remaining

strictly positive on a set of histories of positive measure. When the monitoring

technology is smooth, small deviations will be hard to detect when increments

are close to zero, while consequences will be limited, giving players incentives

to deviate and reduce their level of contributions. In this section we presented

a counterexample where the monitoring distribution was not smooth and the

result of Theorem 2.1 did not hold.

Another way to depart from the assumptions of Section 2.2 would be to

consider a jump in the payoff function when the project is completed, as in

Marx and Matthews (2000). In their paper the benefit of contributions to

player i is λiX, where X is the sum of contributions, if X is below a certain
29Note that the function π(x, y) = −x2/2 + y satisfies Assumptions 2.1 to 2.4.
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Figure 2.1: Two solutions to the difference equation (2.11)
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threshold X∗ (the “completion point”) and Vi ≥ λiX
∗ when X is above the

completion point. If Vi − λiX
∗ > 0 then it is possible that in a putative

equilibrium with positive contributions, increments are bounded away from

zero (before the project is completed). The type of deviation considered in

the proof of Theorem 2.1 might then no longer be profitable. ♦

2.6 Conclusion

In a dynamic game where players can contribute to a public project and con-

tributions are irreversible, we have showed that under imperfect public mon-

itoring, when the monitoring technology is sufficiently smooth, cooperation

cannot be achieved and players do not contribute in equilibrium. This finding

is in stark contrast with the perfect monitoring case, in which there exist equi-

libria with strictly positive contribution levels. However when the monitoring

distribution is no longer smooth, small changes in contribution levels can be

detected and cooperation is again possible.

The result relies on one player’s knowledge that contributions of the other
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player are close to an upper bound. Such an argument cannot be used in the

case of private monitoring, where contributions on the equilibrium path are no

longer known. A possible approach in that case would be to consider conditions

under which player’s contributions converge uniformly. If contribution levels

converge uniformly then there would then be a certain time after which player’s

cannot expect the other player’s contribution to increase by more than an

arbitrarily small amount, regardless of the past history. Our proof would then

hold for private monitoring, or mixed strategies in the public monitoring case.

While we do not know whether contributions converge uniformly, Egorov’s

theorem tells us that if a sequence of random variables converges almost surely

then for any ε > 0, there exists a subset of B ⊂ Ω of measure no more than ε

and such that the convergence on Ω\B is uniform.
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Chapter 3

Repeated Games with

Asymptotically Finite

Horizon and Imperfect

Monitoring

3.1 Introduction

Games that have a unique stage-game Nash equilibrium have the undesirable

property that when repeated a finite number of times, the only subgame-

perfect equilibrium is the repetition of the stage-game Nash equilibrium. That

is, there are no intertemporal incentives and players often end up along an

inefficient path, such as in the finitely repeated prisoner’s dilemma.

Infinitely repeated games provide a satisfying answer to this problem. An

infinite number of repetitions gives rise to new intertemporal incentives as

there is no longer a last period from which incentives unravel. The folk theorem

then tells us that every feasible and strictly individually rational payoff can

then be supported as the outcome of a subgame-perfect equilibrium.

With constant discounting, infinitely repeated games are stationary. In
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particular, the expected duration of the continuation game is the same at any

time.1 One might however argue that even though a game may not have de-

terministic ending, its expected length should decrease as time passes. For

example, two competitors facing a declining demand might expect the proba-

bility of interacting to decline over time due to increasing risks of shutdowns.

Accordingly, Bernheim and Dasgupta (1995) introduce repeated games with

asymptotically finite horizons. In each period, there is a strictly positive prob-

ability that the game continues to the next period. However this probability

converges to zero.

Bernheim and Dasgupta (1995) study a stage game in which action sets

are compact and continuous and which has a unique interior and locally inef-

ficient Nash equilibrium. The game is infinitely repeated and δt, the discount

factor applied from period t to period t + 1, is such that δt > 0 for all t and

limt→∞ δt = 0. They show that, provided discount factors do not converge

to zero too fast, it is possible to have subgame-perfect equilibria in which in

each period players receive a payoff strictly higher than the stage-game Nash

equilibrium payoff. However, they also show that in any such equilibria, action

profiles will converge to the stage-game Nash equilibrium. As time progresses,

intertemporal incentives become weak because discount factors decline. To re-

duce the myopic incentives to deviate from a cooperative equilibrium, action

profiles will then have to approach the stage-game Nash equilibrium.

In this chapter we show that when introducing an arbitrarily small amount

of smooth noise, all the non-degenerate equilibria of Bernheim and Dasgupta

(1995) break down, and the only equilibrium of the dynamic game is the infi-

nite repetition of inefficient stage-game Nash equilibrium. The main difference

with Chapter 2 is that we now consider games with an interior stage-game

Nash equilibrium. This changes the order of magnitude of gains from devi-

ations along any non-degenerate equilibrium path, as in any non-degenerate

equilibrium actions will have to converge to the interior stage-game Nash equi-
1If the discount factor is interpreted as the probability that the interaction continues in

the next period.
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librium.

3.2 Perfect monitoring

In this section we briefly present the model of Bernheim and Dasgupta (1995)

and discuss their main results.

3.2.1 The stage game

There are two players, i = 1, 2.2 Let Ai denote player i’s action set and ui :

Ai×Aj → R denote his utility function. We summarize below all assumptions

on the stage game:

Assumption 3.1. Ai := [ai, ai] is a compact subset of R. There is a unique

stage-game Nash equilibrium aN which is contained in the interior of A := A1×

A2. Each payoff function ui : A→ R is twice continuously differentiable in a

and strictly quasi-concave in ai. Each player’s best reply function φi : Aj → Ai

is continuously differentiable in a neighborhood of aN .3 The Jacobian matrix

of partial derivatives Du has full rank at the stage-game Nash equilibrium.4

Remark 3.1. Note that assumption 3.1 exclude from the analysis games with

a corner Nash equilibrium, such as the continuous-action prisoner’s dilemma

studied in Chapter 2. In such games, even as action profiles approach the

stage-game Nash equilibrium, myopic incentives to deviate are too high. They

are of order one, whereas when the stage-game Nash equilibrium is interior

they are of second order from the envelope theorem.

Consider for example the game of Chapter 2 with the following payoff

function: π(ci, cj) = π1ci + π2cj , where π1 < 0 and π2 > 0. The difference
2This is only to simplify exposition, but all results extend to the case of n players.
3Because ui is strictly quasi-concave in ai, each player i has a unique best response to

any action aj .
4In the case of two players, the Jacobian matrix evaluated at the Nash equilibrium will be

Du(aN ) =
(

0 ∂u1
∂a2

(aN )
∂u2
∂a1

(aN ) 0

)
. The full rank assumption then reduces to the assumption

that at the Nash equilibrium ∂u1
∂a2

and ∂u2
∂a1

are non-zero.
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equation (2.2) then reduces to ∆ct = (−π1
π2

)t 1∏t−1
τ=0 δτ

c0. By taking logs we can

see that limt→∞ δt = 0 implies that increments in contribution levels must

become increasingly large, that is that limt→∞∆ct =∞. ♦

Assumption 3.2. Utility functions ui are three times continuously differen-

tiable in a neighbourhood of aN , D2ui(aN ) is negative definite, i = 1, 2 and

Dφ(aN )− I is non-singular.

Remark 3.2. While Bernheim and Dasgupta (1995) assume that utility func-

tions are three time continuously differentiable, we only use the fact that they

are twice continually differentiable in what follows. Moreover we will not re-

quire that D2ui(aN ) is negative definite but only that ∂2ui/∂a
2
i < 0 at the

Nash equilibrium. ♦

Example 3.1. A Cournot duopoly with linear inverse demand and constant

marginal cost satisfies assumptions 3.1 and 3.2. Let A1 = A2 = [0, q̄], where

q̄ is sufficiently high, and let ui(qi, qj) = max{0, qi(1 − qi − qj)}, i = 1, 2,

j 6= i. ♦

3.2.2 The dynamic structure

Time is discrete and the game is played infinitely many times: t = 0, 1, . . ..

Players share a common sequence of discount factors (δt)t≥0, where δt ∈ (0, 1)

is the discount rate from period t to t + 1. The game has an asymptotically

finite horizon in the sense that limt→∞ δt = 0.

Payoff streams are evaluated using unnormalized discounting. The payoff

to player i from a stream of payoffs (u0
i , u

1
i , . . .), evaluated in period k, k ≥ 0

is:5

∞∑
t=k
{
t−1∏
τ=k

δτ}ut = uk + δkuk+1 + δkδk+1uk+2 + δkδk+1δk+2uk+3 + . . .

Players discount the future in the sense that
∑∞
t=0{

∏t−1
τ=0 δτ} < ∞. For

5With the convention that
∏k−1
τ=k δτ = 1.
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ease of notation we define βtk :=
∏t−1
τ=k δτ to be the rate at which period t

payoffs are discounted in period k, k ≤ t.

3.2.3 Cooperation in repeated games with asymptotically fi-

nite horizons and perfect monitoring

In this section we briefly present the main results of Bernheim and Dasgupta

(1995). First, they find a sufficient condition on the rate of convergence of dis-

count factors to zero to guarantee the existence of a non-degenerate subgame-

perfect equilibrium, that is an equilibrium in which players obtain a payoff

strictly greater than the stage-game Nash equilibrium payoff in each period.

More specifically, the log of discount rates must grow, in absolute value, faster

than 2k:

Assumption 3.3. There exist c > 0 and Λ > 0 such that
∏τ−1
k=0 δ

2τ−1−k
k ≥

cΛ2τ , τ ≥ 1. This is equivalent to having limτ→∞
∑τ−1
k=0

1
2k+1 ln(δk) > −∞.6

Theorem 3.1 (Bernheim and Dasgupta 1995). Under assumptions 3.1 and

3.3, there exists a subgame-perfect equilibrium in which players receive a payoff

strictly higher than the stage-game NE payoff in each period.

Under the additional regularity assumption 3.2 Bernheim and Dasgupta

(1995) show that assumption 3.3 is not only sufficient but necessary for the

existence of non-degenerate subgame-perfect equilibria.

They also establish a folk theorem. More specifically they prove the exis-

tence of a time T ∗ such that for any T , if discount factors are above a certain

threshold for T +T ∗ periods and only then start declining (at the rate implied

by assumption 3.3) then for any feasible, interior and strictly individually ra-

tional payoff v there is a subgame-perfect equilibrium in which players get v

for at least T periods. That is, the decline of the discount factor in the distant

future will not affect current behaviour is current discount factors are close to

one.
6We can see that this assumption is indeed not satisfied in Remark 3.1.
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3.3 The model under public monitoring

We now introduce imperfect public monitoring to the model. This section is

similar to Section 2.2 and therefore the discussion is kept to a minimum.

At the end of each period, and conditional on an action profile a, players

observe a public signal y drawn from a compact set Y ⊂ Rm (m ≥ 1) according

to a probability measure PY (· | a). For any measurable E ⊂ Y we have:

P(y ∈ E | a) =
∫
E
PY (dy | a).

As in Chapter 2 we assume that the probability measure PY is continuous

with respect to action profiles:

Assumption 3.4 (Feller continuity). There exists a constant K such that

|P(E | a1+∆, a2)−P(E | a1, a2)| ≤ K∆ and |P(E | a1, a2)−P(E | a1, a2+∆)| ≤

K∆ for any measurable set E ⊂ Y .

We denote player i’s realized payoff by u∗i , which is a function of his cur-

rent action and the public signal. The ex ante utility function ui is then the

expectation of the ex post payoff:

ui (ai, aj) =
∫
Y
u∗i (ai, y)PY (dy | a1, a2), ∀ai, aj . (3.1)

As in Chapter 2 we restrict attention to pure public strategies (see re-

mark 2.5 for a discussion).7 A pure public strategy σi for player i is a mea-

surable function that specifies an action σi
(
ht
)
∈ Ai after any public history

ht ∈ H:

σi :


H −→ Ai

ht 7−→ σi
(
hti
) .

The monitoring technology, along with a strategy profile σ = (σ1, σ2),

induce a probability distribution on Ω := Y N that we denote by Pσ. Expecta-
7Although we argue that our result would hold in the case of private monitoring, or public

monitoring with private mixed strategies.
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tions with respect to that probability distribution will be denoted by Eσ.

Let Vi (σi, σj) be the expected payoff of player i from the strategy profile

σ = (σ1, σ2) and Vi (σi, σj | hτ ) be the continuation payoff from σ after the

public history hτ :8

Vi (σi, σj) := Eσ
[ ∞∑
t=0

βt0ui(at)
]
,

Vi (σi, σj | hτ ) := Eσ
[ ∞∑
t=0

βτ+t
τ ui(aτ+t) | hτ

]
.

A profile of pure strategies (σ1, σ2) is a Nash equilibrium if for any i ∈ {1, 2}

and any strategy σ′ we have that V (σi, σj) ≥ V (σ′, σj).9

3.4 Breakdown of cooperation with public monitor-

ing

As in Chapter 2, cooperation breaks down under “smooth” imperfect public

monitoring, even for an arbitrarily small amount of noise. There are however

two different effects that now go in opposite directions. First, as discount

factors converge to zero, intertemporal incentives eventually become weak,

which should facilitate deviation from cooperative outcomes. Second, myopic

incentives to deviate will be weaker than in Chapter 2. This is because in

Chapter 2 contributing was strictly dominated. Here we will see that in any

non-degenerate subgame-perfect equilibrium action profiles must converge al-

most surely to the stage-game Nash equilibrium, making potential gains from

deviations only of second order from the envelope theorem. However, with

imperfect public monitoring myopic incentives eventually take over:

Theorem 3.2. Consider an infinitely repeated game with asymptotically finite

horizon and imperfect public monitoring that satisfy assumptions 3.1, 3.2, 3.3
8 Even though any finite history occurs with probability zero because there is a continuum

of signals, the probability conditional on a history hτ is well defined as it is the probability
measure induced by the continuation strategy profile σ |hτ .

9Given that ui is bounded, Vi is well defined.
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and 3.4. Then with probability one the only Nash equilibrium is the infinite

repetition of the unique stage-game Nash equilibrium:10

Pσ{at = aN} = 1, ∀t ≥ 0.

3.4.1 Preliminary results

First, we show that in any non-degenerate Nash equilibrium of the dynamic

game, for any t, there must be a set of histories of length at least t for which

stage-game payoffs are strictly higher than the stage-game Nash equilibrium

payoff. That is, incentives for cooperation must be maintained at all times.

If that was not the case then there would be a time after which only the

stage-game Nash equilibrium would be played. Unravelling would then occur

through backward induction and our equilibrium would have to consist of an

infinite repetition of the stage-game Nash equilibrium. This lemma is similar

to Lemma 2.1 of the previous chapter, which stated that contribution levels

had to always increase with positive probability.

Lemma 3.1. Let (σ1, σ2) be a non-degenerate Nash equlibrium of the dynamic

game. Then for any t ≥ 0, there exists t′ ≥ t such that Pσ(at′ 6= aN ) > 0.

Proof. Assume this is not the case and let T ≥ 0 be the smallest integer

such that for any t′ ≥ T we have Pσ(at′ 6= aN ) = 0. Given that the Nash

equilibrium is non-degenerate it must be that T > 0. There is then a set of

histories of positive measure such that an action profile different than aN is

played in period T − 1 while aN is played with probability one in the future.

Some players will therefore have an incentive to deviate in period T − 1, a

contradiction with the fact that (σ1, σ2) is an equilibrium.

Note that there can still be histories after which the stage-game Nash

equilibrium is played indefinitely. This set of histories however is of measure

less than one.
10Note that because time is countable, this is equivalent to saying Pσ{at = aN , ∀t ≥ 0} =

1.
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Lemma 3.1 tells us that intertemporal incentives must remain throughout

the game. However, as players are not mutually best-responding, there will

be myopic incentives to deviate. As discount factors become low those myopic

incentives become more significant relative to intertemporal incentives. To

mitigate this action profiles have to approach the stage-game Nash equilibrium.

The next lemma is the probabilistic version of Bernheim and Dasgupta (1995,

Lemma 2.1.).

Lemma 3.2. Let (σ1, σ2) be a non-degenerate Nash equilibrium of the dynamic

game. Then the sequence of action profiles converges almost surely to the

stage-game Nash equilibrium: Pσ(limt→∞ a
t = aN ) = 1.

Proof. In any equilibrium, the instantaneous gain from a deviation must be

lower than the maximal punishment incurred after a deviation: that is, for any

t ≥ 0 and i = 1, 2 we have that 0 ≤ maxa′i ui(a
′
i, a

t
j)−ui(at) ≤

∑∞
k=0 β

t+1+k
t (ūi−

ui) a.s., where ūi = maxa∈A ui(a) and ui = mina∈A ui(a). As δt converges to

zero, for any ε > 0 there exists Tε such that for t ≥ Tε we have βt+1+k
t ≤ ε1+k,

k ≥ 0. Therefore |maxa′i ui(a
′
i, a

t
j) − ui(ati, atj)| →t→∞ 0 a.s., i = 1, 2. By

the maximum theorem aj 7→ maxai∈Ai ui(ai, aj) is continuous. As A is com-

pact and there is a unique stage-game Nash equilibrium, this implies that

Pσ
{

limt→∞ a
t = aN

}
= 1.

Corollary 3.1. For any ε > 0 and µ > 0, there exists Tε,µ ≥ 0 such that for

t ≥ Tε,µ (i) δt < ε and (ii) ‖at − aN‖ ≤ µ (a.s.).11

We denote by Hε,µ the set of histories of length Tε,µ that satisfy the two

properties of corollary 3.1. The first condition tells us that that discount

factors are arbitrarily close to zero while the second condition tells us that

action profiles are arbitrarily close to the stage-game Nash equilibrium.

Finally, we will make use of the following lemma which gives us a lower

bound on the instantaneous gains from a deviation when the action profile is

close to the stage-game Nash equilibrium:
11Note that all norms in R2 are equivalent.
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Lemma 3.3. Under assumption 3.2, there exists b, µ̄ > 0 such that for all a

with ‖a− aN‖ < µ̄ we have that

max
x∈A1

u1(x, a2)− u1(a) + max
y∈A2

u2(a1, y)− u2(a) ≥ b‖a− aN‖2

Lemma 3.3 tells us that as action profiles approach the stage-game Nash

equilibrium, the sum of gain from each player best responding is at least of

order two. The proof is given in Section 3.6

3.4.2 Proof of theorem 3.2

The idea behind the proof of theorem 3.2 is similar to the proof of theorem 2.1,

although orders of magnitude are different. In Chapter 2 the gain from a

deviation was of order one, whereas here it is only of order two as action profiles

approach the interior stage-game Nash equilibrium. The cost from a small

deviation will nonetheless be smaller than the gain: first, as the monitoring

technology is continuous, a small deviation induces a small change in future

payoffs; second as action profiles are close to the stage-game Nash equilibrium,

future losses are small; last, discount factors are arbitrarily close to zero.

Let us assume there is a non-generate equilibrium (σ1, σ2) of the asymptot-

ically finite repeated game with imperfect monitoring. We will show that there

exist a profitable deviation for histories in Hε,µ when ε and µ are sufficiently

small.

Note that at least one of the players must have myopic incentives to deviate

for histories in Hε,µ, given that the action profile is different from the stage-

game Nash equilibrium. Consider the following deviations for player i, i = 1, 2:

σ′i(ht) =


φi(σj(ht)) if ht ∈ Hε,µ,

σi(ht) otherwise.

Strategy σ′i prescribes best responding to player j for any history in Hε,µ,

while agreeing with σi otherwise. We now show that at least one of σ′1 or σ′2
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must be a profitable deviation on Hε,µ, that is that:

Vi(σ′i, σj | ht)− Vi(σi, σj | ht) > 0, ∀ht ∈ Hε,µ, (3.2)

for at least one of the players, where for σ ∈ {σi, σ′i},

V1(σ, σj | ht) = ui(σ, σj | ht) + δt

∫
Y
Vi(σi, σj | hty)PY (dy | σ, σj , ht).

To do so we show that

∑
i

{
Vi(σ′i, σj | ht)− Vi(σi, σj | ht)

}
> 0, ∀ht ∈ Hε,µ, (3.3)

which implies that (3.2) holds for at least one player.

Equation (3.3) can be rewritten as follows, for y0 ∈ Y :

∑
i

δt

∫
Y

[
Vi(σi, σj | hty)− Vi(σi, σj | hty0)

]
×

[
PY (dy | σi, σj , ht)− PY (dy | σ′i, σj , ht)

]
<
∑
i

{
ui(σ′i, σj | ht)− ui(σi, σj | ht)

}
. (3.4)

From Lemma 3.3 we know that for µ sufficiently small the right-hand side

of (3.4) is bounded from below by bµ2, while the integrals on the left-hand

side of (3.4) are bounded from above by aµ2, a > 0, from Feller continuity

(assumption 3.4) and because all action profiles are within µ of aN (Corol-

lary 3.1). As δt is arbitrarily small (3.4) holds, which implies that at least one

of the players has a profitable deviation.

3.5 Conclusion

In this chapter we consider the class of repeated games with asymptotically

finite horizons introduced by Bernheim and Dasgupta (1995) and show that

non-degenerate equilibria are not robust to the introduction of an arbitrarily
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small amount of smooth noise in the monitoring. Below we briefly discuss in

turns two questions related to this chapter and the previous one. First, we

question what other games exhibit the property that non-degenerate equilibria

break down with the introduction of an arbitrarily small amount of smooth

noise. Second, we discuss the challenges with extending our results to the

private monitoring case.

3.5.1 Tapering off

Takahashi (2005) introduces the notion of “tapering-off” for K-coordination

games:

Definition 3.1 (Takahashi (2005)). A K-coordination game tapers off if the

greatest payoff variation conditional on the first t periods of an efficient history

converges to 0 at a rate faster than K−t.12

What drives our results in Chapters 2 and 3 is a condition similar to

the above tapering-off condition. In Chapter 2, because of irreversibility, the

greatest payoff variation conditional on the first t periods converges to zero.

This implies that the greatest variation in continuation values also converge

to zero. In this chapter, because discount factors converge to zero, it is also

the case that the greatest variation in continuation values converges to zero.

When the greatest variation in continuation values converges to zero, the size

of punishments available to players also converge to zero over time. While this

might not be a problem to induce cooperation under perfect monitoring, with

an arbitrarily small amount of smooth noise in the monitoring technology there

will be a time for which punishment become too small to offset deviations.

Small deviations will have small impacts on the monitoring technology, while

future consequences will also be minimal.
12A K-coordination game is a game in which each player can decrease other player’s payoff

by at most K times his own cost of punishment.
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3.5.2 Private monitoring

In Chapter 2 the proof of our main result relies on the essential supremum

of contribution levels and the knowledge that one player has about the other

player being close to his essential supremum. Therefore the proof could not

be extended to private monitoring, although we argued that if we had uniform

convergence it could. In this chapter the closeness of action profiles to the

unique stage-game Nash equilibrium depends on the rate of convergence of

discount factors to zero, which is common knowledge. Therefore action profiles

in any non-degenerate equilibrium converge uniformly to the stage-game Nash

equilibrium. This suggests that the result of this chapter can be extended to

private monitoring.

3.6 Proof of Lemma 3.3

Let udi (ai, aj) : A → R be the function which returns the highest payoff

player i can get by deviating from action profile (ai, aj), that is udi (ai, aj) =

ui(φi(aj), aj). Consider the following second order Taylor expansions around

aN :

u1(a1, a2) = u1(aN ) + (a2 − aN2 )∂u1
∂a2

(aN ) + (a1 − aN1 )2 1
2
∂2u1
∂a2

1
(aN )

+ (a2 − aN2 )2 1
2
∂2u1
∂a2

2
(aN ) + (a1 − aN1 )(a2 − aN ) ∂2u1

∂a1∂a2
(aN )

+ o(‖a− aN‖2),
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where the first order term in a1 is zero from the first order condition ∂u1
∂a1

(aN ) =

0 and

ud1(a1, a2) = u1(φ1(a2), a2)

= u1(φ1(aN2 ), aN2 ) + (a2 − aN2 )
[∂u1
∂a1

(φ(aN2 ), aN2 )φ′1(aN2 ) + ∂u1
∂a2

(φ(aN2 ), aN2 )
]

+ (a2 − aN2 )2 1
2
[ ∂2u1
∂a1∂a2

(φ(aN2 ), aN2 )φ′1(aN2 ) + ∂2u1
∂a2

2
(φ(aN2 ), aN2 )

]
+ o(‖a− aN‖2)

= u1(aN ) + (a2 − aN2 )∂u1
∂a2

(aN )+

(a2 − aN2 )2 1
2
[ ∂2u1
∂a1∂a2

(aN )φ′1(aN2 ) + ∂2u1
∂a2

2
(aN )

]
+ o(‖a− aN‖2),

where the last equality is obtained because from the envelope theorem we have

that ∂u1
∂a1

(φ(aN2 ), aN2 ) = 0.

Therefore

ud1(a1, a2)− u1(a1, a2) = (a2 − aN2 )2 1
2
∂2u1
∂a1∂a2

(aN )φ′1(aN2 )

− (a1 − aN1 )2 1
2
∂2u1
∂a2

1
(aN )− (a1 − aN1 )(a2 − aN2 ) ∂2u1

∂a1∂a2
(aN ) + o(‖a− aN‖2),

which can be further simplified into

ud1(a1, a2)− u1(a1, a2) = −1
2
∂2u1
∂a2

1
(aN )

[
(a2 − aN2 )2(φ′1(aN2 ))2

+ (a1 − aN1 )2 − 2(a1 − aN1 )(a2 − aN2 )φ′1(aN2 )
]

+ o(‖a− aN‖2),

by noting that ∂2ui
∂ai∂aj

= −φ′i(aN2 )∂2ui
∂a2
i

from differentiating the first order con-

dition.

We obtain a similar expression for ud2(a1, a2) − u2(a1, a2) and sum both

75



Chapter 3. Asymptotically Finite Horizon 3.6. Proof of Lemma 3.3

gains to obtain:

ud1(a)− u1(a) + ud2(a)− u2(a) =
1
2(a− aN )t[Dφ(aN )− I]tU [Dφ(aN )− I](a− aN ) + o(‖a− aN‖2),

where

Dφ(aN )− I =

 −1 φ′1(aN )

φ′2(aN ) −1

 ,
and

U = −

 ∂2u1
∂a2

1
(aN ) 0

0 ∂2u2
∂a2

2
(aN )

 .
The matrix [Dφ(aN )−I]tU [Dφ(aN )−I] is positive definite as we know that

when a 6= aN then at least one player has a profitable deviation and therefore

ud1(a) − u1(a) + ud2(a) − u2(a) > 0. Moreover its determinant is non-zero as

Dφ(aN )− I and U are non-singular. U is non-singular as utility functions are

strictly concave at the Nash equilibrium, so that ∂2ui
∂a2
i

(aN ) 6= 0, i = 1, 2. Let

λmin denote the smallest eigenvalue of [Dφ(aN )− I]tU [Dφ(aN )− I], which is

strictly positive. We then have the following inequality:

ud1(a)− u1(a) + ud2(a)− u2(a) ≥ 1
2λmin‖a− a

N‖2 + o(‖a− aN‖2).
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Chapter 4

Revision Games with

One-Sided Incomplete

Information

4.1 Introduction

In this chapter we study a revision game with asymmetric information. Revi-

sion games (see Kamada and Kandori, 2011 and Calcagno et al., 2013) model

a situation in which players can prepare their actions during a pre-play phase.

At the deadline, the action profile last prepared by players is implemented and

players receive the corresponding stage-game payoff. Revision opportunities

are stochastic and arrive according to independent Poisson processes. There is

therefore a positive probability that a player might no longer be able to revise

his prepared action before the deadline. While Kamada and Kandori (2011)

show that with a continuum of actions the addition of a pre-play phase can

increase the set of equilibrium payoffs, Calcagno et al. (2013) show that it can

also narrow it down in finite games. In particular in coordination games with

two Pareto ranked Nash equilibria the pre-play preparation phase select the

Pareto dominant equilibrium, even when it is risk-dominated.

In this chapter we introduce incomplete information and consider a re-
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vision game with one-sided incomplete information in which players seek to

coordinate on an action which depends on a state of the world known only to

Player 1.

We show that equilibria in which information is transmitted to the un-

informed player exist if and only if the preparation phase is sufficiently long

and characterize such equilibria: first, Player 1 will not signal his private in-

formation close to the deadline (Proposition 4.1); second, far away from the

deadline, Player 2 can prefer to be miscoordinated with Player 1, provided

Player 1 has not yet signalled the state of the world (Proposition 4.2).

The intuition behind Proposition 4.1 is that close to the deadline the in-

formed player strictly prefers to be coordinated on the wrong action rather

than being miscoordinated: as time to the deadline approaches, the risk of

miscoordination becomes too important relative to the benefit from being co-

ordinated, since the probability of at least one player receiving a subsequent

revision opportunity is small.

Proposition 4.2 tells us that there is an option value from being misco-

ordinated early on in the game for the uninformed player. This occurs even

though Player 2’s belief about Player 1’s action being the correct action is

strictly greater than one half.1 The intuition for this result is that when play-

ers are miscoordinated, it requires only one revision opportunity to coordinate

on the correct action. When players are already coordinated, it requires either

zero or two revision opportunities for players to coordinate on the correct state

of the world. When the beliefs of the uninformed player are still close to the

(1/2,1/2) prior he will prefer to be miscoordinated.

We note however that as time to the deadline becomes arbitrarily large, the

length of time during which Player 2 prefers to be miscoordinated will remain

finite, leaving enough subsequent time for players to coordinate on the correct

action. In particular, in an informative equilibrium payoffs will converge to
1We start from uniform priors and symmetric payoffs (that is, payoffs do not depend

on which state of the world is correct but only on whether players coordinate or not on
the correct action). In an informative equilibrium, Player 2’s belief about Player 1’s initial
action will therefore weakly increase until Player 1 eventually changes his prepared action.
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the Pareto-optimal payoffs as time to the deadline becomes arbitrarily large.

4.2 Setting

A B A B
A d,d 0,1 A 1,1 1,0
B 1,0 1,1 B 0,1 d,d

ω = a ω = b

Figure 4.1: A Bayesian coordination game (d > 1)

In this section we describe the characteristics of a revision game with one-

sided incomplete information in which players seek to coordinate on an action

that depends on the state of the world. We first describe the Bayesian game

and preparation stage. We then illustrate how the uninformed player revises

his beliefs. Finally we describe histories, strategies, and define the equilibrium

concept used in the Bayesian revision game.

4.2.1 The Bayesian game

We consider the following Bayesian game, presented in Figure 4.1. There are

two players, N = {1, 2}, two states of the world Ω = {a, b} and two actions

for each player: S1 = S2 = {A,B}. Players weakly prefer to be coordinated

than not coordinated, and would like to coordinate on the correct state of the

world. We assume that Player 1 knows the state of the world while Player 2 is

uninformed and has a uniform prior belief: p(a) = p(b) = 1/2. Note that both

states play an interchangeable role as payoffs in both matrices are similar and

prior beliefs are uninformative.

4.2.2 Timing and revision opportunities

Time goes from −T < 0 to 0. The game is played at t = 0. A positive

time t > 0 denotes the time remaining until the deadline, while a negative

time −t ∈ [−T, 0] denotes the time in the game. At −T , an action pro-

file (s1, s2) ∈ S1 × S2 is exogenously given. From −T to 0, players receive
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opportunities to revises their actions according to two independent Poisson

processes with arrival rates λ1 and λ2. In particular, the probability that

revision opportunities are simultaneous is zero.

4.2.3 Belief updating of Player 2

We now assume that the first revision from Player 1 is interpreted as a signal

about the correct state of the world to illustrate how Player 2’s beliefs evolve.

Let X ∈ {A,B} denote the initial action of Player 1 and let px(t) denote

Player 2’s belief that the state is x ∈ {a, b} when t > 0 is remaining until the

deadline. If Player 1 has revised his action, given that this is interpreted as a

signal, Player 2’s belief falls to px(t) = 0.

Consider now the case in which Player 1 has not revised his action since

the beginning of the game (that is, for a time interval of length T − t). If

Player 1 has not yet revised his prepared action, it could be because (i) the

state is x, which occurs with probability 1/2, or (ii) the state is y and Player 1

did not get a revision opportunity, which occurs with probability 1
2e
−λ1(T−t).2

Therefore from Bayes rule we have that:

px(t) = 1
1 + e−λ1(T−t) . (4.1)

The beliefs of Player 2 when Player 1 has not revised his prepared action

are illustrated in Figure 4.2 for a preparation phase of length 1 and when

Player 1 has on average either 0.5, 1 or 2 revision opportunities per unit of

time. Note that when Player 1 has not revised his prepared action we have

that:
1− px(t)
px(t) = e−λ1(T−t), (4.2)

and
∂px(t)
∂t

= −λ1p
x(t)(1− px(t)). (4.3)

2If x ∈ {a, b} we use y to denote {a, b}\{x}, and similarly for X and Y in {A,B}.
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Figure 4.2: Player 2’s beliefs when Player 1 has not revised his prepared
action (T = 1, λ1 = 0.5, 1, 2)

c0 = 0.36

c0 = 0.40

−1 −0.75 −0.5 −0.25 0

0.25

0.5

0.75

-t

px(t)

4.2.4 Histories

Let −tki be the time at which Player i receives his kth revision opportunity,

and −t0i := −T and let ki(t) be the number of revision opportunities received

by Player i in [−T,−t). Let Xk
i ∈ {A,B} be the action prepared by Player i

at time −tki and Xi(t) be the action prepared by Player i at time −t. Finally

let ri(t) ∈ {0, 1} indicate whether Player i received a revision opportunity at

time −t.

A history of the revision game when at time −t takes the following form:

h(t) =
{

(tk1, Xk
1 )k1(t)
k=0 , (t

k
2, X

k
2 )k2(t)
k=0 , r1(t), r2(t)

}
.

That is, a history indicates all the revision opportunities received up to and

including time −t and specifies the prepared actions up to, but not including,

time −t.

A player only knows about revision opportunities of the other player if

he observes a change in the prepared action. Therefore a private history for
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player i is take the form of:

hi(t) =
{

(tki , Xk
i )ki(t)k=0 , (t

f(k)
j , X

f(k)
j )kj(t)k=0 , ri(t)

}
.

where f(0) = 0 and t
f(k)
j is the first time after tf(k−1)

j such that Xf(k)
j 6=

X
f(k−1)
j . The set of all private histories for Player i is denoted by Hi.

4.2.5 Strategies

A strategy for player i is a mapping σi : Hi → {∅}×∆(Si) such that σi(hi(t)) =

∅ if ri(t) = 0. (That is, a player can choose an action only when having a

revision opportunity.) A pair of strategies (σ1, σ2), along with the Poisson

processes, generate a measure Pσ1,σ2 on the set of prepared actions at the

deadline, (X1(0), X2(0)).

4.2.6 Equilibrium

A strategy profile (σ∗1, σ∗2) is a perfect Bayesian equilibrium of the revision

game if for any history hi(t) such that ri(t) = 1 and any strategy σi, we have

that

Eσ∗1 ,σ∗2
[
ui(Xi(0), Xj(0)) | hi(t)

]
≥ Eσ1,σ∗2

[
ui(Xi(0), Xj(0)) | hi(t)

]
,

i = 1, 2, and Player 2’s beliefs are derived from Bayes’ rule whenever possible.

4.3 Informative equilibria

We focus on “informative equilibria”, in which Player 1 signals the state of

the world through his prepared action. We show that such equilibria exist if

and only if the preparation stage is sufficiently long.

Theorem 4.1. There exists τ1 > 0 such that an informative equilibrium exists
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if and only if T ≥ τ1. Moreover τ1 is given by:

τ1 = 1
λ1 + λ2

ln
[ λ1 + λ2d

(d− 1)λ2

]
. (4.4)

We then characterize informative equilibria when the preparation stage

is sufficiently long. First, we show that close to the deadline Player 1 does

no longer signal the state of the world (Proposition 4.1). Therefore there is

always a positive probability that player 1 chooses to disregard his private

information. This shows why there cannot be an informative equilibrium if

the preparation stage is too short. Second, we characterise Player 2’s behavior

in an informative equilibrium. We show that if the time to the deadline is

sufficiently long, the uninformed player will prefer to be miscoordinated with

the informed player, provided that the informed player has not revised his

prepared action (Proposition 4.2). This shows that an informative equilibrium

exists.

4.3.1 No signalling close to the deadline

We first show that close to the deadline, Player 1 will prefer to be coordinated

on the wrong action rather signal the correct state of the world. This is because

close to the deadline the probability that a future revision opportunity arises

is too small relative to the benefit of being coordinated on the correct action.

Note that this result implies the only-if part of Theorem 4.1, that is that

there cannot be an informative equilibrium when T ≤ τ1.

Proposition 4.1. In any equilibrium, there is a time left to the deadline τ

such that for t ≤ τ Player 1 prefers to be coordinated with Player 2 on the

wrong action than being miscoordinated. Moreover τ ≥ τ1, where τ1 is given

by (4.4).

Proof. Let us assume that at any revision opportunity Player 2 seeks to coor-

dinate with Player 1. This is the most favourable case for Player 1 and will

therefore gives us the lower bound τ1.
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Let us assume that Player 2 is choosing the wrong action and let V (c, 0, t)

denote Player 1’s value when players are coordinated on the wrong action

and let V (nc, 1, t) denote Player 1’s value when players are miscoordinated

and Player 1 is preparing the correct action. We find V (c, 0, t) and V (nc, 1, t)

using dynamic programming. In a short time interval dt:

• Player 1 receives a revision opportunity with probability 1 −

e−λ1dt ∼ −λ1dt. He can then choose between being coordinated on

the wrong action or signal the correct state of the world.

• Player 2 receives a revision opportunity with probability 1 −

e−λ2dt ∼ −λ2dt and will coordinate with Player 1 if players are mis-

coordinated.

Therefore the value of being coordinated on the wrong action for Player 1

satisfies the following equation:

V (c, 0, t) ∼ λ1dtmax{V (c, 0, t−dt), V (nc, 1, t−dt)}+ (1−λ1dt)V (c, 0, t−dt).

By subtracting V (c, 0, t − dt) from both sides, dividing by dt, and letting dt

go to zero, we obtain the following Bellman equation:

Vt(c, 0, t) = λ1 max{V (nc, 1, t)− V (c, 0, t), 0}, (4.5)

where Vt(c, 0, t) is the derivative of V (c, 0, t) with respect to the time left until

the deadline.

Note that Vt(c, 0, t) ≥ 0, so that the value weakly decreases as the deadline

approaches.

Similarly, we have the following Bellman equation for V (nc, 1, t):

Vt(nc, 1, t) = λ1 max{V (c, 0, t)− V (nc, 1, t), 0}+ λ2[d− V (nc, 1, t)]. (4.6)

The second term corresponds to Player 2 having a revision opportunity, in

which case he will coordinate with Player 1 on the correct action, yielding a
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payoff of d for both players. Note that we also have Vt(nc, 1, t) ≥ 0.

When V (c, 0, t)−V (nc, 1, t) ≥ 0, it is optimal for Player 1 to be coordinated

with Player 2 on the wrong action. In that case, (4.5) and (4.6) become

Vt(c, 0, t) = 0, (4.7)

and

Vt(nc, 1, t) = λ1[V (c, 0, t)− V (nc, 1, t)] + λ2[d− V (nc, 1, t)]. (4.8)

Because V (c, 0, t) is constant and V (nc, 1, t) is decreasing as the deadline

approaches, if V (c, 0, t) − V (nc, 1, t) ≥ 0 then V (c, 0, t′) − V (nc, 1, t′) ≥ 0 for

t′ ≤ t: when it is optimal for Player 1 to remain coordinated on the wrong

action, it continues to be so as the deadline approaches. This implies that

V (c, 0, t) = V (c, 0, 0) = 1, (4.9)

and we can therefore rewrite (4.8) as

Vt(nc, 1, t) + (λ1 + λ2)V (nc, 1, t) = λ1 + λ2d. (4.10)

Along with the terminal condition V (nc, 1, 0) = 0,3 this gives us

V (nc, 1, t) = λ1
λ1 + λ2

(1− e−(λ1+λ2)t) + λ2
λ1 + λ2

(1− e−(λ1+λ2)t)d. (4.11)

With probability λ1
λ1+λ2

(1− e−(λ1+λ2)t), Player 1 gets the first revision op-

portunity before the deadline and chooses to coordinate on the wrong action.

With probability λ2
λ1+λ2

(1−e−(λ1+λ2)t) Player 2 gets the first revision opportu-

nity before the deadline and coordinates with Player 1 on the correct action,

yielding a payoff of d. Finally with the complementary probability no player

gets a revision opportunity before the deadline and Player 1 gets a payoff of
3See either the top-right entry of the left matrix or the bottom-left entry of the right

matrix in Figure 4.1.
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0.

The time τ1 after which Player 1 prefers to be coordinated on the wrong

action is then defined by V (nc, 1, τ1) = V (c, 0, τ1) = 1, that is:

λ1
λ1 + λ2

(1− e−(λ1+λ2)τ1) + λ2
λ1 + λ2

(1− e−(λ1+λ2)τ1)d = 1, (4.12)

which gives us

τ1 = 1
λ1 + λ2

ln
[ λ1 + λ2d

(d− 1)λ2

]
. (4.13)

Note that Player 1 is willing to remain miscoordinated longer as revision

opportunities become more frequent, that is ∂τ1
∂λ1

< 0 and ∂τ1
∂λ2

< 0.4 If λ1 in-

creases then Player 1 will have more opportunities to coordinate with Player 2

in the future and is therefore willing to remain uncoordinated longer. Simi-

larly, if λ2 increases then there are more chances that Player 2 will be able

to coordinate on the correct action with Player 1 in the future and therefore

Player 1 is willing to signal the correct action longer.

Proposition 4.1 tells us that close to the deadline Player 1 will prefer to be

coordinated with Player 2 on the wrong action rather than signal the correct

action through miscoordination. This is because close to the deadline the risk

of miscoordination becomes too important, as it is unlikely that Player 2 will

have a revision opportunity and be able to coordinate with Player 1 on the

correct action. Therefore if given a revision opportunity Player 1 will prefer

to coordinate with Player 2 on the wrong action.

Note that Proposition 4.1 also gives us Player 2’s best reply in an infor-

mative equilibrium when Player 1 deviates from his equilibrium behaviour (by

changing his prepared action a second time before −τ1):
4We have that ∂τ1

∂λ2
= − 1

(λ1+λ2)2 ln(λ2d+λ1
λ2d−λ2

)− λ1
λ2(λ1+λ2)(λ2d+λ1) < 0. Furthermore ∂τ1

∂λ1
=

1
(λ1+λ2)2

[
λ1+λ2
λ1+λ2d

+ ln (d−1)λ2
λ1+λ2d

]
. The term in brackets is a strictly increasing function of d for

any λ1 > 0, λ2 > 0 and limd→∞
λ1+λ2
λ1+λ2d

+ ln (d−1)λ2
λ1+λ2d

= 0. Therefore ∂τ1
∂λ1

< 0 for any d > 1,
λ1 > 0 and λ2 > 0.
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Corollary 4.1. In an informative equilibrium, when Player 1 has signalled

the state of the world, Player 2 will choose to prepare the corresponding action

until τ2 is left to the deadline, irrespective of Player 1’s prepared action, where

τ2 is given by

τ2 = 1
λ1 + λ2

ln
[ λ2 + λ1d

(d− 1)λ1

]
. (4.14)

4.3.2 The uninformed player can prefer miscoordination

We now characterise Player 2’s behaviour in an informative equilibrium. In

particular, we show that Player 2 might choose to be miscoordinated with

Player 1 early on in the game. This is because when players are miscoordi-

nated, coordination on the right action requires only one revision opportunity.

When players are coordinated, coordination requires either zero revision op-

portunities or two revision opportunities. Early on in the game both cases

occur with probability close to one half and the uninformed player will prefer

to be miscoordinated.

Proposition 4.2. Consider an informative equilibrium. There exists a length

of time T ∗ such that for any T ≥ T ∗, there is a unique time t∗2(T ) such that

for t ≥ t∗2(T ) Player 2 prefers to be miscoordinated with Player 1, if Player 1

has not yet revised his initial action. The values of t∗2(T ) and T ∗ are given by

(4.24) and (4.25) and limit beliefs at the threshold t∗2(T ) satisfy

lim
T→∞

px(t∗2(T )) = 1
2
[
1 + U(X,Y, 1, τ1)

d

]
>

1
2 , (4.15)

where X is Player 1’s initial prepared-action, U(X,Y, 1, τ1) is the payoff to

Player 2 when τ1 is remaining to the deadline, the prepared action profile is

(X,Y ) and Player 2 believes the state is x.5

Equation (4.15) gives us the limit threshold belief after which Player 2 will
5That is, the third variable in U(X,Y, 1, τ1) is either 1 if Player 1’s prepared action is

correct and 0 otherwise. Note however that Player 2 cannot know for sure that the state is
X given that if the state is X Player 1 will not revised his initial action.
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want to coordinate with Player 1 if Player 1 has not yet revised his initial

prepared action. This threshold does not depend on the length of the prepa-

ration phase, which tells us that limT→∞ T − t∗2(T ) is a constant and that

limT→∞ t
∗
2(T )− τ1 =∞.

Proof. Consider the following strategy for Player 1: prepare the correct action

until τ1 remains to the deadline, after which try to coordinate with Player 2.

That is,

σ1(ht) =


match the state of the world if t ≥ τ1 and r1(t) = 1,

x2(t) if t < τ1 and r1(t) = 1.

Note that this strategy is optimal for Player 1 as long as Player 2 is willing

to coordinate with Player 1 for t ∈ [τ1, τ1 + ε), ε > 0.6 We will show that

this is always the case, and therefore that an informative equilibrium exists,

proving the if part of Theorem 4.1.

Let U(X1(t), X2(t), p(t), t) denote Player 2’s value function when t is left

until the deadline, the prepared action profile is (X1(t), X2(t)) and Player 2’s

belief about X1(t) is p(t). Let X denote Player 1’s initial action. We first look

at Player 2’s best responses when the deadline is close, and then when it is

far.

Case 1: the deadline is close

We first consider times close to the deadline, that is t ≤ τ1. We know that

Player 1 will try to coordinate with Player 2 irrespective of the state of the

world. When Player 1 has revised his prepared action before τ1 and therefore

signalled the state of the world to Player 2, we have

U(Y, Y, 1, t) = d, (4.16)
6This is because from Proporision 4.1 τ1 is the last time Player 1 is willing to prepare the

correct action given that Player 2 will coordinate with Player 1.

88



Chapter 4. Revision Games 4.3. Informative equilibria

and

U(Y,X, 1, t) = λ2
λ1 + λ2

(1− e−(λ1+λ2)t)d+ 1− λ2
λ1 + λ2

(1− e−(λ1+λ2)t). (4.17)

With probability λ2
λ1+λ2

(1−e−(λ1+λ2)t) Player 2 is the first to obtain a revision

opportunity and will coordinate to get a payoff of d. With the complementary

probability either Player 1 revises his action first or no player receives a revision

opportunity, in which case Player 2’s payoff at the deadline is 1.

If Player 1 has not revised his action before τ1 then Player 2’s belief is

given by px(t) = px(τ1) = 1
1+e−λ1(T−τ1) ∈ (1/2, 1) and Player 2’s value is

U(X,X, px(τ1), t) = px(τ1)d+ py(τ1). (4.18)

We now check that when Player 1 has not revised his action prior to τ1

then Player 2 prefers to be coordinated with Player 1 for t ≤ τ1. Indeed, we

have

U(X,Y, px(τ1), t) = λ2
λ1 + λ2

(1− e−(λ1+λ2)t)
[
px(τ1)d+ 1− px(τ1)

]
+

λ1
λ1 + λ2

(1− e−(λ1+λ2)t)
[
px(τ1) + py(τ1)d

]
+

(1− e−(λ1+λ2)t)px(τ1). (4.19)

If Player 2 is the first to have a revision opportunity then he will coordinate

with Player 1 onX and have the expected payoff px(τ1)d+1−px(τ1). If Player 1

is the first to have a revision opportunity then he will coordinate with Player 2

and the expected payoff will be px(τ1) + py(τ1)d < px(τ1)d + 1 − px(τ1) since

px(τ1) > 1/2. Finally if no player can revise then Player 2 gets a payoff of

1 only if the state is x. Hence U(X,Y, px(τ1), t) < U(X,X, px(τ1), t) for any

t ≤ τ1.

Note that what we have done until now is enough to guarantee the existence

of an informative equilibrium, therefore proving Theorem 4.1, even though we

have not yet established the best response of Player 2 when the deadline is
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far.

Case 2: the deadline is far

Let us now consider times far from the deadline, that is t ≥ τ1. As above we

still have U(Y,Y,1,t) = d. When Player 1 has signalled the state by changing

his prepared action, we know that he will now wait until τ1 is left before trying

to coordinate with Player 2 on the wrong action again. Therefore if Player 2

obtains a revision opportunity before −τ1 his payoff will be d. If not his payoff

will be U(Y,X, 1, τ1), where U(Y,X, 1, τ1) is given by (4.17), and we have that

U(Y,X, 1, t) = (1− e−λ2(t−τ1))d+ e−λ2(t−τ1)U(Y,X, 1, τ1). (4.20)

To find Player 2’s value functions when Player 1 has not revised his pre-

pared action yet, U(X,X, px(t), t) and U(X,Y, px(t), t), we first assume that

if Player 2 has a revision opportunity he will choose to remain coordinated

with Player 1: U(X,X, px(t), t) ≥ U(X,Y, px(t), t). We know that this is

true for t = τ1. We then get the following partial differential equation for

U(X,X, px(t), t):

Ut(X,X, px(t), t) + λ1p
y(t)U(X,X, px(t), t) = λ1p

y(t)U(Y,X, 1, t),

where Ut(X,X, px(t), t) = ∂U(X,X,px(t),t)
∂t . This is because in a small time

interval dt, Player 2 expects Player 1 to change action if the state is y and

if Player 1 receives a revision opportunity, which occurs with probability ∼

py(t)λ1dt. If that is the case then Player 2 gets the value U(Y,X, 1, t), which
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is given in (4.20). Given the the boundary condition (4.18) we obtain:7

U(X,X, px(t), t) = px(t)d+

py(t)
{[

1− λ1
λ1 − λ2

e−λ2(t−τ1) + λ2
λ1 − λ2

e−λ1(t−τ1)
]
d+

λ1
λ1 − λ2

(e−λ2(t−τ1) − e−λ1(t−τ1))U(Y,X, 1, τ1)+

e−λ1(t−τ1)
}
. (4.21)

If the state is x then players will receive a payoff of d. We now explain

the term within braces, which corresponds to the payoff when the state is y.

The first term in brackets is the probability that during a time interval of

length t − τ1 Player 1 obtains a revision opportunity and Player 2 obtains a

subsequent revision opportunity, in which case players receive a payoff of d.

With probability λ1
λ1−λ2

(e−λ2(t−τ1) − e−λ1(t−τ1)), Player 1 will have a revision

opportunity while Player 2 will not get a subsequent revision opportunity, in

which case Player 2’s payoff is his value from being uncoordinated and choosing

the wrong action at time τ1, U(Y,X, 1, τ1). Finally, with probability e−λ1(t−τ1)

Player 1 does not get a revision opportunity during that time interval and

players remain coordinated on the wrong action, which yields a payoff of 1.

We now find U(X,Y, px(t), t), while still assuming that U(X,X, px(t), t) ≥

U(X,Y, px(t), t), so that if Player 2 has a revision opportunity he will change

his prepared action and coordinate with Player 1. Again with probability

∼ py(t)λ1dt Player 1 will change his prepared action to y, this time giving a

payoff of d. We therefore obtain the following partial differential equation for
7Note that this expression is well defined when λ1 = λ2 as

lim
λ1→λ

1
λ1 − λ

(λ1e
−λz − λe−λ1z) = e−λz(1 + λz)

and
lim
λ1→λ

λ1

λ1 − λ
(e−λz − e−λ1z) = λze−λz.
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U(X,Y, px(t), t):

Ut(X,Y, px(t), t) + (λ1p
y(t) + λ2)U(X,Y, px(t), t)

= λ1p
y(t)d+ λ2U(X,X, px(t), t).

Along with the boundary condition for U(X,Y, px(τ1), τ1) given by (4.19)

we find that

U(X,Y, px(t), t) = U(X,X, px(t), t) + e−λ2(t−τ1)×{
px(t)

[
U(X,Y, 1, τ1)− d+ e−λ1(T−τ1)[U(X,Y, 0, τ1)− d− 1−U(Y,X, 1, τ1)]

]
+

py(t)
[
d+ U(Y,X, 1, τ1)

]}
. (4.22)

We now consider the difference U(X,Y, px(t), t)− U(X,Y, px(t), t):

U(X,Y, px(t), t)− U(X,Y, px(t), t) = e−λ2(t−τ1)×{
px(t)

[
U(X,Y, 1, τ1)−d+e−λ1(T−τ1)[U(X,Y, 0, τ1)−d−1−U(Y,X, 1, τ1)]

]
+

py(t)
[
d+ U(Y,X, 1, τ1)

]}
. (4.23)

We can see that if U(X,Y, px(t), t)−U(X,Y, px(t), t) < 0 then U(X,Y, px(t′), t′)−

U(X,X, px(t′), t′) < 0 for any t′ < t. That is, if the uninformed player prefers

to be coordinated with the informed player, he will continue to do so in the

future. This is because the term in braces is the average of a negative term,

weighted by px(t),8 and a positive term, weighted by py(t). As t decreases

px(t) increases, and therefore U(X,Y, px(t′), t′) − U(X,X, px(t′), t′) remains

negative.

Given that U(X,Y, px(τ1), τ1) − U(X,X, px(τ1)τ1) < 0, this shows that if

there exists a time for which U(X,Y, px(t), t)− U(X,Y, px(t), t) > 0 then this
8It is negative since d is the highest payoff possible.
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will still be the case further away from the deadline. Therefore if t∗2(T ) of

Proposition 4.2 exists it is unique and given by the equation

px(t∗2(T ))
[
U(X,Y, 1, τ1)−d+e−λ1(T−τ1)[U(X,Y, 0, τ1)−d−1−U(Y,X, 1, τ1)]

]
+ py(t∗2(T ))

[
d+ U(Y,X, 1, τ1)

]
= 0. (4.24)

Note that since limT→∞ e
−λ1(T−τ1) = 0 and U(X,Y, 1, τ1) = U(Y,X, 1, τ1),

if t∗2(T ) exists its limit then satisfies (4.15):

lim
T→∞

px(t∗2(T )) = 1
2
[
1 + U(X,Y, 1, τ1)

d

]
.

We now show that when T is sufficiently large then Player 2 will prefer

to be miscoordinated with Player 1 close to T . To do so consider again the

difference U(X,Y, px(t), t)− U(X,X, px(t), t) when t = T (at the start of the

game, when px = 1/2)

U(X,Y, px(T ), T )− U(X,Y, px(T ), T ) =

1
2e
−λ2(T−τ1) ×

{
U(X,Y, 1, τ1) + U(Y,X, 1, τ1)+

e−λ1(T−τ1)
[
U(X,Y, 0, τ1)− d− 1− U(Y,X, 1, τ1)

]}
.

The sign of U(X,Y, px(T ), T ) − U(X,X, px(T ), T ) is similar to the sign

of the term in braces, which is an increasing function of T as the bracket

is negative, and converges to U(X,Y, 1, τ1) + U(Y,X, 1, τ1) > 0 as T → ∞.

Therefore there is a unique T ∗ such that when T ≥ T ∗ then Player 2 prefers

to remain miscoordinated with Player 1 close to T . Moreover, T ∗ is given by

U(X,Y, 1, τ1) + U(Y,X, 1, τ1)+

e−λ1(T ∗−τ1)[U(X,Y, 0, τ1)− d− 1− U(Y,X, 1, τ1)] = 0 (4.25)
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Propositions 4.1 and 4.2 therefore prove the existence of an informative

equilibrium when T ≥ τ1. Player 1’s strategy is such that:

• At any revision opportunity such that t ≥ τ1, prepare the action that

corresponds to the correct state of the world.

• At any revision opportunity such that t ≤ τ1, coordinate with Player 2.

Player 2’s strategy is such that:

• If his belief about a state of the world is 1, play the corresponding action

until τ2 remains to the deadline. After that coordinate with Player 1.

• If Player 2’s beliefs are interior:

– Miscoordinate with Player 1 if t ≥ t∗2.

– Coordinate with Player 1 if t ≤ t∗2.

Player 2’s beliefs jump to zero or one if Player 1 changes his prepared action

before τ1 is left until the deadline. When Player 1 does not revise his pre-

pared action then Player 2’s belief is given by (4.1) until τ1 and then remains

constant.

Moreover the payoffs from such an informative equilibrium converge to

the efficient payoff, d, as T becomes arbitrarily large. This is because as T

becomes arbitrarily large then so does t∗2 − τ1.

4.4 Conclusion

In this chapter we study a revision game with one-sided incomplete informa-

tion in which players seek to coordinate on an action which depends on the

state of the world. We show that close to the deadline, the informed player will

not signal his private information, while far away from the deadline, the unin-

formed player prefers to be miscoordinated with the informed player. While it

would be interesting to introduce two-sided incomplete information and have

players stochastically receive information about the true state of the world,
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the model and value functions quickly become intractable. It would also be

interesting to look at other classes of games, such as opposing interest games

or zero-sum games. In particular, in such games, no information transmission

should occur unless the deadline is relatively close.
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