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Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly
sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute
measurement of nanoscale displacements of such resonators remains a challenge, however, since the
optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak.
We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM)
linescans across a cantilever resonator, involving deconvolution from the vibrating resonator pro-
file using the stationary resonator profile. This enables determination of the absolute amplitude of
nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the
cantilever width. This technique is independent of any model of secondary-electron emission from
the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomo-
geneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of
radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric
actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching
the size of the primary electron-beam can be resolved. We further show that the optimum electron-
beam scan speed is determined by a compromise between deflection of the cantilever at low scan
speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for
use in precise characterization of nanomechanical resonator devices. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811740]

I. INTRODUCTION

The mass resolution of a cantilever resonator mass sen-
sor scales approximately as k−0.5M1.5 (Ref. 1), where k is
the stiffness and M is the effective mass of the resonator.
Nanoscale cantilevers, therefore, exhibit excellent mass res-
olution by comparison with the larger cantilevers typically
used in scanning probe microscopy. Nanomechanical res-
onators have been proposed for a variety of applications in-
cluding metal deposition monitors, mechanical reaction mon-
itors, biomedical sensors, and mass sensors (Refs. 2–5). These
sensors (Refs. 6 and 7) create opportunities for novel, label-
free detectors with high sensitivity and very high levels of
multiplexing. While fabrication techniques for nanomechan-
ical cantilevers are now rather mature (Refs. 8–13), mea-
surement of the nanoscale displacement remains a challenge.
For optimising the mass resolution, maximising the cantilever
stiffness is also desirable, but this is accompanied by a de-
crease in the amplitude of the oscillations and so leads to a
corresponding increase in transduction complexity. For mi-
cromechanical devices, transduction is achieved by detecting
light from a laser beam which is reflected off the surface of the

a)Current address: Neue Materialien, Institut für Physik, Humboldt-
Universität zu Berlin, Newtonstr.15, 12489 Berlin, Germany.

b)Author to whom correspondence should be addressed. Electronic mail:
p.warburton@ucl.ac.uk.

cantilever. However, the reflected amplitude from a cantilever
of sub-wavelength dimensions is vanishingly small. Alterna-
tive techniques are, therefore, being actively pursued for mea-
surement of the vibration amplitude of cantilevers with sub-
micron dimensions. Such techniques include capacitive read-
out (Ref. 14), piezoelectric read-out (Ref. 15), and hard elec-
trical contact (Ref. 16).

The scanning-electron microscope (SEM) is a widely
used tool for characterisation of the dynamic properties of
nanomechanical devices. In undriven cantilevers, the can-
tilever resonant frequency has been determined by detecting
oscillations at that frequency excited by either background
mechanical noise (Ref. 12) or thermal fluctuations (Ref. 17).
Alternatively, the cantilever may be driven at a frequency f by
(for example) a piezoelectric actuator inside the SEM vacuum
chamber, and the cantilever oscillations are observed. This
latter approach allows measurements of the full frequency-
response of the resonator which additionally enables charac-
terisation of the quality of the resonance.

For observing the cantilever oscillations, the SEM has
typically been operated with the scan-deflection plates set at
constant potential, commonly referred to as “spot mode,” with
two generic approaches described in the literature:

(i) To measure the resonant frequency f0 and the quality fac-
tor Q of the cantilever, the phase and amplitude of the
secondary-electron signal are measured using lock-in de-
tection at the drive frequency f (Ref. 18). This technique

0034-6748/2013/84(7)/075002/7/$30.00 © 2013 AIP Publishing LLC84, 075002-1
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does not, however, allow the extraction of the absolute
magnitude of the displacement amplitude.

(ii) To determine the absolute displacement amplitude, a, of
the cantilever, the primary electron beam is focussed at
the equilibrium position. In the case when a is much
larger than the cantilever half-width r, the secondary-
electron signal is inversely proportional to the cantilever
amplitude (Ref. 19).

As an alternative to this “spot-mode” method, Nonaka et al.
(Ref. 17) introduced a technique based upon analysis of the
secondary-electron signal from an electron beam which is lin-
early scanned across the oscillating resonator. This circum-
vents the limitations of the “spot-mode” approaches, in that
it gives an absolute measurement of the amplitude a even
in the case that a is less than the cantilever half-width r.
Their method entails fitting the measured secondary-electron
response to a model specific to the detailed material proper-
ties – in their particular case they assumed a cylindrical res-
onator with radially uniform material properties. In this pa-
per we give a systematic description of a technique based
on using a linearly scanned electron-beam. This technique is
generically applicable and model-independent; it can, there-
fore, be straightforwardly applied to resonators with inhomo-
geneous materials properties and with arbitrary geometry. The
accuracy with which the absolute amplitude can be measured
in our approach is ultimately limited by the size of the fo-
cussed electron beam. Our method is likely to be important in
the development of resonators with high stiffness (and hence
high resonant frequency) for applications in high-resolution
mass measurements. It is particularly suited to resonators of
nanoscale cross-sectional dimensions in which the materials
properties have not been well-characterised in advance.

II. SECONDARY-ELECTRON RESPONSE
FROM AN OSCILLATING CANTILEVER

To provide a foundation for understanding the results we
obtain with the experimental setup which we will describe in
Sec. III, we begin by analysing the secondary-electron sig-
nal expected when an electron beam is incident upon a har-
monically driven cantilever. The geometry is shown in Fig. 1:
the cantilever, of width 2r, is oriented along the y-direction
and oscillates in the xy plane at a frequency f. The electron
beam, which is oriented along an axis out of the xy plane,
is scanned continuously at a fixed value of y across a length
Lx in the x-direction over a time τ x at a constant speed dx/dt
= Lx/τ x. We denote the amplitude of the cantilever oscillation
at this value of y as a. If the electron-beam scan speed is much
lower than the maximum speed of the cantilever (i.e., dx/dt
� 2π fa), then we may make the following quasistatic ap-
proximation: the secondary-electron signal at any position x
along the linescan is equal to that from a stationary electron
beam at the same position.

The voltage generated by the secondary-electron detec-
tor is sampled at a rate 1/τ s. To sample the oscillations of
the cantilever adequately, and to maximise the signal-to-noise
ratio, the measured voltage is obtained by integrating over
N � 1 linescans, over a time τ int. We now define a response

FIG. 1. Schematic diagram of the geometry of the electron beam and the
nanowire. The nanowire oscillates in the xy plane. The electron beam is ori-
ented towards the xy plane and scanned in the x direction.

function g(x) as the instantaneous secondary-electron (SE)
voltage when the electron beam is scanned across the sta-
tionary cantilever. If the cantilever is driven with amplitude
a at frequency f, the instantaneous secondary-electron volt-
age is g(x − a sinθ ), where θ = 2π ft. Since N � 1 and
provided that f � 1/τ int and that f is not commensurate with
1/τ s or 1/τ linescan, where τ linescan is the time between the start
of successive linescans, the measured signal will be the time-
averaged secondary-electron voltage over all possible posi-
tions of the nanowire:

〈VSE(x)〉 = 1

2π

∫ 2π

0
g (x − a sin θ )dθ. (1)

In principle, this allows the measured signal to be calculated
for any arbitrary response function g(x). It is important to note
that g(x) can be determined by measurements on the station-
ary cantilever. In the case where g(x) is a “top hat” function
(i.e., where g(x) can take only two values: g(x) = Von when
the electron beam is incident upon the cantilever and g(x)
= Voff when it is not), 〈VSE(x)〉 can be calculated
analytically as follows.

A. Small amplitude, a < r

First, we consider the case when the amplitude of the os-
cillations a is less than the half-width of the cantilever, r, as
shown in Fig. 2(a). For |x| < (r − a) the electron beam hits the
cantilever for all θ , so the average secondary-electron voltage
is 〈VSE〉 = Von. For |x| > (r + a), the electron beam misses the
cantilever for all θ , so the average secondary-electron voltage
is 〈VSE〉 = Voff. For (r − a) < |x| < (r + a), the e-beam hits
the cantilever when θ1 < θ < θ2 (as shown by the horizontal
dashed line in Fig. 2(a)) and misses the cantilever for the rest
of the full cycle. Hence,

〈VSE〉 = 1

2π
{Von(θ2 − θ1) + Voff (2π − (θ2 − θ1))}, (2)
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FIG. 2. The position of the central axis x0 and edges x+ and x− of a cantilever of width 2r as a function of a time coordinate θ = 2π ft. In (a) the amplitude a of
the oscillation is smaller than r; the horizontal dashed line shows an illustrative electron-beam scan for the case (r − a) < |x| < (r + a). In (b) the amplitude a
of the oscillation is larger than r; the horizontal dashed line shows an illustrative electron-beam scan for the case |x| < (a − r).

where θ1 = sin−1{(x − r)/a} and θ2 = π − θ1. Therefore,
defining a normalised voltage, vN :

νN ≡ 〈VSE〉 − Voff

Von − Voff

= 1

2π

[
π − 2 sin−1

( |x| − r

a

)]

[a < r, (r − a) < |x| < (r + a)]. (3)

An illustration of the dependence of the resulting time-
averaged secondary-electron signal upon the electron-beam
position x is shown in Fig. 3 for the case a/r = 0.4. There is a
discontinuity in the gradient at two (pairs of) positions of the
electron beam. The corresponding x positions at which these
discontinuities occur are marked in Fig. 2, and the distance

FIG. 3. Calculated time-averaged normalised secondary-electron voltage as
the electron beam is scanned across a cantilever of width 2r oscillating with
amplitude a. The inset shows, to the same scales, the assumed response of a
stationary cantilever – a top-hat function. Blue line: a = 0.4r; red line: a =
2.4 r. XAA, XBB, XCC, and XDD are the distances between pairs of points A,
B, C, and D, respectively, which mark gradient discontinuities in the voltage
(see text for details).

between these two positions is independent of r:

XCC − XDD = 4a, (4)

and can, therefore, be used experimentally to determine the
vibration amplitude.

B. Large amplitude, a > r

We now turn to the case when the amplitude of the oscil-
lations a is greater than the half-width of the cantilever, r, as
shown in Fig. 2(b). For |x| > (r + a), the electron beam misses
the cantilever for all θ , so the average secondary-electron volt-
age is 〈VSE〉 = Voff. For (a − r) < |x| < (a + r), the analysis
is identical to the case when a < r and (r − a) < |x| < (r
+ a) discussed above and the SE voltage can be determined
by Eq. (3).

For |x| < (a − r), the e-beam hits the cantilever when θ3

< θ < θ4 (as shown by the horizontal dashed line in Fig. 2(b))
and misses the cantilever for the rest of the half-cycle:

〈VSE〉 = 1

π
{Von(θ4 − θ3) + Voff (π − (θ4 − θ3))}, (5)

where θ3 = sin−1{(x − r)/a} and θ4 = sin−1{(x + r)/a},
giving

νN = 1

π

[
sin−1

(
x + r

a

)
− sin−1

(
x − r

a

)]

[a > r, |x| < (a − r)]. (6)

An illustration of the resulting time-averaged secondary-
electron signal is shown in Fig. 3 for the case a/r = 2.4. As in
the case for a < r, the separation between the gradient discon-
tinuities in 〈VSE(x)〉 may be used to determine the amplitude,
this time through the relation a = (XAA + XBB)/4.

Figure 4 shows the calculated time-averaged secondary-
electron voltage as a function of position across a cantilever of
width 2r as the amplitude a increases from 0 to 2.8r, assuming
a “top-hat” response function g(x). Note that, provided the
amplitude is small enough (i.e., a ≤ 2r), all the linescans pass
through the points |x| = r, vN = 0.5.
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FIG. 4. Calculated time-averaged normalised secondary-electron voltage as
the electron-beam is scanned across a cantilever of width 2r. The oscillation
amplitude a varies from 0 to 2.6r in steps of 0.2r. The static response is
assumed to be a top-hat function (see the a = 0 curve).

Note also that at x = 0 there is a local minimum given by

νN = 2

π
sin−1

( r

a

)
. (7)

In the limit a � r, this approximates to

νN = 2r

πa
. (8)

Hence, the inverse of the time-averaged secondary-electron
signal at the equilibrium position x = 0 in the limit of
large amplitude oscillations is a direct measure of the oscil-
lation amplitude. This was noted previously by Nishio et al.
(Ref. 19) in the context of carbon nanotube mechanical res-
onators.

III. EXPERIMENTAL SETUP

Our experimental configuration for measuring the fre-
quency response of nanomechanical resonators in a SEM is

FIG. 5. Schematic diagram of the experimental setup. (SE: secondary-
electron; DAQ: data acquisition card.)

FIG. 6. SEM images of a nanowire of length 58 μm, (a) nominally station-
ary, and (b) driven by the piezoelectric actuator at its resonant frequency (here
25.6 kHz).

shown in Fig. 5. The resonator is mounted on a piezoelectric
film which is oriented at an angle of 45◦ with respect to the
primary electron beam. The piezoelectric film is polyvinyli-
dene fluoride (PVDF) with thin-film gold electrodes. The
primary electron beam is oriented along an axis out of the
cantilever oscillation (xy) plane (Fig. 1); due to geometrical
constraints, this is not perpendicular to the oscillation plane.
The electron-beam energy was typically 10 keV. A digital-to-
analogue converter (National Instruments PCI 6035E) with
a maximum sampling rate of 390 000 samples/s was used to
acquire the real-time signal from the secondary-electron de-
tector. The secondary-electron response from 256 linescans
was collected in order to ensure adequate sampling in forming
the average response at each position. To satisfy the condition
f � 1/τ int, discussed above, measurements were restricted to
f > ∼3 kHz.

In order to test our measurement technique, we have
grown nanowires using focussed-ion-beam-assisted deposi-
tion. The nanowires are deposited on a silicon substrate us-
ing a Carl Zeiss XB1540 FIB system operated in spot mode
so that the nanowires grow vertically, and tungsten hexa-
carbonyl [W(CO)6] was used as a precursor gas (Ref. 20).
The gallium ion beam energy and current were 30 keV and
1 pA, respectively. The nanowires typically have a length be-
tween 20 and 60 μm and a radius between 60 and 140 nm.
Figure 6(a) shows an electron micrograph of a static nanowire
of length 58 μm. Figure 6(b) shows the same nanowire being
harmonically driven by the piezoelectric film.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 7 shows two experimentally measured linescans
of oscillating cantilevers, one with smaller-amplitude vibra-
tions and one with larger-amplitude vibrations. Comparison
to the analytical results shown in Fig. 3 shows very good
qualitative agreement. This agreement is further seen by com-
parison of the analytical results shown in Fig. 4 with Fig. 8,
which shows more detailed measurements in which the
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FIG. 7. Measured secondary-electron response as a function of x position
across a vibrating nanowire of diameter 233 nm, length 61 μm, and resonant
frequency 26.55 kHz. Blue points: nanowire driven at 26.70 kHz. Red points:
nanowire driven at 26.59 kHz. The detuning �f ≡ f − f0 is indicated. The
inset shows, to the same scales, the stationary response of the nanowire. The
lines in the main plot show fits to Eq. (1) using this stationary response, as
described in the text, and the corresponding fitted amplitude is indicated.

driving frequency is swept towards the resonant frequency
of the cantilever, thereby changing the amplitude of the can-
tilever oscillations. Due to the stiffness of this cantilever, the
amplitude at resonance is not significantly larger than its ra-
dius. The good qualitative agreement with the calculations
is shown, for example, in the clear reproduction in the ex-
perimental data of the predicted intersection of all the lines-
cans at |x| = r, at a normalised secondary-electron voltage
of 0.5. There are some quantitative differences, however. The
gradient discontinuities are somewhat less marked in the ex-
perimental data; this is associated with the measured signal
from a (nominally) stationary cantilever departing from the
“top-hat” function we assumed in Sec. II. We also observed
that the measured secondary-electron signal from an oscil-
lating cantilever depends upon the speed dx/dt at which the

FIG. 8. Measured secondary-electron response as a function of frequency,
for the same resonator as shown in Fig. 7. The detuning and fitted value of
the oscillation amplitude are indicated in the legend.

primary electron beam scans across it. We now discuss how
each of these features impacts upon the interpretation of the
measurements.

A. Static response function

The secondary-electron signal measured during a lines-
can with no voltage applied to the piezoelectric actuator has
an appreciably more rounded form than for the “top-hat”
function used in the analysis in Sec. II. The inset of Fig. 7
shows one such measurement. The difference between the
shapes is caused by a number of factors. Since the nanowires
are circular in cross section, secondary electrons generated
near x = ±r are on average more likely to escape from the
nanowire than those generated near x = 0. This leads to an in-
crease in the secondary electron response near x = ±r as de-
scribed in Nonaka et al. (Ref. 17). In addition, even in the ab-
sence of any oscillating potential applied to the piezoelectric
actuator, the nanowires display small oscillations at the reso-
nant frequency which are excited by background mechanical
noise and/or thermal fluctuations. This broadens the edges of
the measured “stationary” response.

B. Driven response: Extraction of oscillation
amplitude and its resolution

Figure 7 shows the response of the cantilever when driven
at two frequencies close to its resonant frequency. Since the
static-response function is rounded (Fig. 7, inset) we cannot
straightforwardly extract absolute measurements of the oscil-
lation amplitude using the separation of the gradient disconti-
nuities (Sec. II B and Fig. 3), but instead extract the amplitude
by numerically fitting the measured dynamic response func-
tion to Eq. (1), using the measured static response g(x). The
amplitude a is used as a fitting parameter. The black lines in

FIG. 9. Frequency response of a resonator with length 43 μm and diame-
ter 275 nm. The blue points are extracted from the experimental measure-
ments as described in the text and the red line is the best Lorentzian fit to the
data in the range 73.04–73.63kHz, corresponding to a resonant frequency of
73.31 kHz and a Q-factor of 425.
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FIG. 10. Scan-speed dependence of linescans across a nanowire of length 25 μm and diameter 120 nm with resonant frequency 94.96 kHz. Green triangles
correspond to when the resonator is nominally stationary; red circles to when it is driven at a frequency of 95.04 kHz, a detuning of 80 Hz. Departures from
desirable behaviour in (a) and (c) are described in the text.

Fig. 7 show the least-squares best fits to the measured dy-
namic responses using this method. The fit gives an excellent
match to the experimental data (Ref. 21). Note that the fit is
good across the whole range of x and that the fitting procedure
is independent of any model of how electrons interact with
the nanowire, so it was not necessary to account for changes
in these interactions across the wire associated with the likely
gallium-rich core of the nanowire (Ref. 17).

By fitting the measured response of the cantilever over
a range of drive frequencies (shown in Fig. 8) to Eq. (1) us-
ing the measured static response, we extract the vibration am-
plitude as a function of the driving frequency; this is shown
in Fig. 9. There is a clear peak and the vibration amplitude
is well fitted by a Lorentzian. The extracted resonant fre-
quency of 73.31 kHz agrees reasonably well with the value of
79.5 kHz calculated using the theory of bending mechanics,
assuming circular cross section and representative values for
the density and Young’s modulus of the FIB-deposited tung-
sten (Ref. 22). Away from the resonant peak, the noise floor
of the technique is reached. The amplitude value at the noise
floor decreases as N increases. For our measurements, with
N = 256, shown in Fig. 9, the minimum resolvable oscilla-
tion amplitude is ≈8 nm.

It is worth noting that the presence of oscillations in the
stationary response (see Sec. IV A) does not affect the validity
of our fitting procedure – the extracted amplitude represents
the amplitude of oscillations additional to those present in the
“stationary” response (Ref. 23). In particular, the amplitude of
driven oscillations may be measured even in the presence of
(perhaps much larger) low-frequency mechanical oscillations.

In principle, using our technique the minimum resolv-
able amplitude is ultimately limited to amplitudes similar to
the lengthscale over which the steepest changes in secondary
electron signal occur for a stationary cantilever – related to
the size of the electron beam in the case of a truly station-
ary cantilever. A second limitation is that features on length-
scales smaller than the step size τ sdx/dt in the linescan data
are not resolved and this affects, in particular, the fits to small-
amplitude oscillations such as those seen at the edges of the
peak in Fig. 9. This step size can be decreased by decreasing
the beam speed – although not to arbitrarily smaller values,
as discussed in Sec. IV C – or by increasing the sampling fre-
quency. Thus, the intrinsic resolution of the technique could
be reached by using a larger sampling frequency than that
used for Fig. 9.

C. Effect of electron-beam scanning speed

There is a range of scanning speeds for which the
secondary-electron signal provides data matched well by the
model we have described in Sec. II. The measurements shown
in Figs.7–9 were all made using dx/dt ∼ 2 nm/μs. In fact,
it is important to choose the scan speed carefully. Figure 10
shows the secondary-electron signal as the primary electron
beam is scanned in the x-direction at different constant scan-
ning speeds dx/dt across a cantilever with resonant frequency
94.96 kHz. For the green curves, the cantilever is nomi-
nally stationary (i.e., the voltage across the piezoelectric ac-
tuator stage is zero); for the red curves, the cantilever is
driven by applying a sinusoidal voltage of amplitude 20 V
and frequency 95.04 kHz to the piezoelectric actuator. At low
scanning speeds, there is a marked asymmetry in the mea-
sured secondary-electron signal. This asymmetry results from
beam-induced deflection of the nanowire. On the other hand,
at very high scanning speeds when τ sdx/dt � a breaks down,
the finite maximum sampling rate results in a loss of spa-
tial resolution. We find that an optimum compromise between
these two effects is obtained with a scanning speed of around
2 nm/μs; this gives negligible beam-induced deflection and a
measurement spacing (1 nm) which is less than the electron-
beam full width at half maximum (∼1.5 nm). For amplitudes
and frequencies reported here, this scan speed keeps our mea-
surements in the quasi-static limit, i.e., dx/dt is an order of
magnitude smaller than 2π fa as discussed in Sec. II.

V. CONCLUSIONS

We have experimentally demonstrated that, by perform-
ing electron linescans of oscillating cantilevers in a scanning-
electron microscope, it is possible to measure absolute
nanoscale displacements of the oscillation amplitude even
when the displacement is significantly less than the cantilever
radius. No prior knowledge of the cantilever geometry is re-
quired, nor need its materials properties be radially homoge-
neous. The resolution of our technique is likely to prove useful
for detailed investigations of the dynamics of nanomechanical
resonator vibration, for the more accurate modelling of these
systems through the determination of realistic boundary con-
ditions and homogeneity of the mechanical properties. Since
maximising the mass resolution of a nanomechanical mass
balance by maximising its stiffness also means a decrease in
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the amplitude of the oscillations, this technique is likely to
be of particular significance for calibrating displacements of
nanomechanical resonators with high stiffness and, therefore,
small amplitude. This SEM linescan method will be a useful
tool in the development of nanomechanical resonators with
high stiffness (for example, nanoscale silicon cantilevers) for
applications in mass sensing.
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