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The Magnetic Resonance Imaging (MRI) signal can be made sensitive to functional parameters that
provide information about tissues. In dynamic contrast enhanced (DCE) MRI these functional parameters
are related to the microvasculature environment and the concentration changes that occur rapidly after
the injection of a contrast agent. Typically DCE images are reconstructed individually and kinetic
parameters are estimated by fitting a pharmacokinetic model to the time-enhancement response; these
methods can be denoted as “indirect”. If undersampling is present to accelerate the acquisition,
techniques such as kt-FOCUSS can be employed in the reconstruction step to avoid image degradation.
This paper suggests a Bayesian inference framework to estimate functional parameters directly from
the measurements at high temporal resolution. The current implementation estimates pharmacokinetic
parameters (related to the extended Tofts model) from undersampled (k, t)-space DCE MRI. The proposed
scheme is evaluated on a simulated abdominal DCE phantom and prostate DCE data, for fully sampled, 4
and 8-fold undersampled (K, t)-space data. Direct kinetic parameters demonstrate better correspondence
(up to 70% higher mutual information) to the ground truth kinetic parameters (of the simulated
abdominal DCE phantom) than the ones derived from the indirect methods. For the prostate DCE data,
direct kinetic parameters depict the morphology of the tumour better. To examine the impact on cancer
diagnosis, a peripheral zone prostate cancer diagnostic model was employed to calculate a probability
map for each method.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/3.0/).
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1. Introduction

Dynamic contrast enhanced-magnetic resonance imaging
(DCE-MRI) is a common imaging biomarker of vasculature and
perfusion. DCE-MRI is mainly used for the diagnosis of cancer in
different anatomical regions such as the prostate (Buckley et al.,
2004), the head and neck (Agrawal et al, 2012), the breast
(Furman-Haran et al., 2013), the cervix (Andersen et al., 2013),
the brain (Jain, 2013) and the liver (Armbruster et al., 2014).

Briefly, in DCE-MRI a paramagnetic contrast agent (Gadolinium)
is administered via intravenous injection, resulting in shortening of
the T1 relaxation time from its native value T10.

11
Ti(r.t;w)  T10(r)
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((r, t; w) € CMJ is the concentration of the contrast agent, r is the
spatial coordinate, M is the number of spatial pixels and J is the
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number of dynamic acquisitions, w(r) are parameters related to
the contrast agent kinetics and dictate the enhancement, ry is the
relaxivity and ty is the arrival time of the bolus at the tissue. The
concentration of the contrast agent in the extracellular extravascu-
lar space (EES) can be described by the extended Tofts model (Tofts,
1997) using the tracer kinetic parameters w(r)= {vp(r), Kirans(T),

ve(r), to(r)}.
t
Cr, t;w) = vp(r) - Cp(r, t) + Kirans (1) - / Cp(r, T —to)
JOo

_Kirans (™) )
®e( o 0) g (2)

C, (mmol/L) is the arterial input function (AIF), v, is the blood
plasma volume, Kyans (min~!) is the volume transfer constant
between plasma and the EES, and 7, is the EES volume. If a popula-
tion average AIF (Parker et al., 2006) is used, the arrival time of the
bolus to the tissue is unknown hence the onset time t, will need to
be taken into account.

DCE-MRI employs fast T1 weighted sequences for which the
received signal can be modelled by
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S(k,t;w) = /x(n t;w) - exp(—j2nk - r)dr

B /So(r) sin(a) - (1 — exp (— %))

1 — cos(a) - exp <— %)

-exp(—j2nk - r)dr (3)

S(k, t) € €Y, is in the spatial frequency domain, K is the number of
spatial frequency samples, the modelled enhancement signal is
x(r, t; w), So(r) is the proton density image, TR is the repetition time
and o is the flip angle.

Some of the important microvascular exchanges occur rapidly
hence high temporal resolution is necessary to capture the
enhancement process especially immediately after the contrast
agent is injected. The temporal resolution of the acquisition can
be improved using undersampling techniques in (K, t)-space.

Parallel imaging techniques can increase the temporal resolu-
tion by reducing the number of phase encoding steps and using
knowledge of coil sensitivities in the reconstruction (Pruessmann
et al.,, 1999; Griswold et al., 2002).

Compressed sensing (CS) is an emerging theory from signal pro-
cessing (Donoho, 2006) that can recover images using a non-linear
reconstruction from undersampled data by promoting sparsity in
an image transform domain. In MRI, the artifacts due to undersam-
pling of the k-space data must be incoherent in the image trans-
form domain. Several CS techniques have been proposed for
reconstruction of dynamic MR data, a popular scheme is kt-SPARSE
(Lustig et al., 2007), which minimizes an [;-norm objective
function

min,||®z||;s.t.||Fuz — ¥, | < & 4)

where ||-|| is the l;-norm, F, is a Fourier sampling operator, y is the
acquired signal, @ is an operator that in DCE MRI reconstruction
would transform the modelled signal z(r, t) to a sparse representa-
tion (i.e. a wavelet transform in the spatial direction and a Fourier
transformation in the temporal direction) and ¢ is a small number
usually set at the noise level. Another popular sparse reconstruction
algorithm is focal underdetermined system solver (kt-FOCUSS)
based on work of Gorodnitsky et al. (1995) and modified by Jung
et al. (2007) to become suitable for dynamic MRI applications. A
more detailed description of the kt-FOCUSS algorithm follows in
the theory section. Dynamic reconstruction can also involve low
rank matrix completion techniques which are usually combined
with sparsity (Gao et al., 2011; Lingala et al., 2011). A popular rank
minimization technique is the kt-SLR algorithm proposed by
(Lingala et al., 2011) which minimizes a cost function that involves
a rank prior ¥4(z), and a sparsity prior ¥,(z).

IFuz = YIl3 + 21 W1(2) + 72 ¥2(2) (5)

For more information about temporal acceleration MR recon-
struction techniques readers can refer to a review by Tsao and
Kozerke (2012).

Traditional DCE analysis fits the pharmacokinetic parameters
w(r) related to the extended Tofts model so that the modelled
enhancement signal x(r, t; w) is close to the reconstructed dynamic
MR data z(r, t).

In this work we suggest a direct estimation of the kinetic
parameters from undersampled dynamic (K, t)-space data with a
Bayesian inference algorithm. An overview of the algorithm is
shown in Fig. 1.

The suggested scheme is evaluated on a simulated DCE MRI
abdominal phantom, and on simulated prostate DCE MRI measure-
ments for undersampling acceleration factors of 4 and 8. The
performance of the suggested scheme is compared against indirect
approaches where dynamic contrast enhanced MR data were
reconstructed using zero-filled fast Fourier transformation or

min,

kt-FOCUSS and kinetic parameters w(r) were fit to these recon-
structed images using the extended Tofts model.

2. Theory
2.1. Focal underdetermined system solver (kt-FOCUSS)

kt-FOCUSS is computationally efficient and was shown to
recover accurate solutions even for highly undersampled
(k, t)-space data. kt-FOCUSS uses a “soft ” sparse constraint
suitable for dynamic MR reconstruction, and is implemented as a
re-weighted quadratic optimization (Jung et al., 2007). kt-FOCUSS
minimizes an unconstrained cost function, which aims to recover
the space by frequency r-f image p = Hq

ming||FHg — y |13 + 2]ql3 (6)

where 1 is the Lagrangian multiplier, F is the 2D Fourier transform
along the r-f direction, H is a weighting matrix and q is the solution
of the minimization. In other words, q is minimizing the quadratic
optimization and H is re-weighting q. The r—f image p is initialized
from interleaved low-frequency (k, t)-data. The resulting low
resolution image is used to initialize the weighting matrix H and
this solution is pruned to achieve a sparser image. The image is
transformed to the r—f space because it is sparser in that domain,
especially if the signal follows a periodic motion. This process is
repeated iteratively (Jung et al., 2007).

2.2. Hierarchical Bayesian inference algorithm

2.2.1. Hierarchical Bayesian inference algorithm

The acquired T1 weighted signal y(k, t) € C©*Y, is in the spatial
frequency domain, where K is the number of spatial frequency
samples per dynamic, and J is the number of dynamic acquisitions.
The acquired signal can be modelled, S(k, t; w) as shown in (3)
based on the pharmacokinetic parameters, w(r) = {vy(r), Kirans(r),
vo(r), to(r)} of the extended Tofts model assuming Gaussian noise
o on the acquired signal.

y(k,t) ~ normal(S(k, t;w), o) (7)

The suggested Bayesian inference algorithm maximizes the
posterior probability distribution function p(x(w), oly) as a
function of w(r) and o

W, 0 = argmax,, ;p(x(w), aly) 8)
According to the Bayes theorem p(x(w), aly) is given by,

_ p(x(w),0) - plylw, o)
PXW). OW) = T w). o) - pOw o)

9)
where

e p(y|w, o) is the likelihood function of y(k, t) given the model
parameters w,

pyIw. o) = (210°) " exp (—% k. t) = Sk : w)H%) (10)

e p(x(w), o) is the product of the prior probability distribution
functions of x(r, t; w) and g, i.e. p(x(w), a) = p(x(w)) x p(o).
Prior probability distribution functions p(x; w), p(o) reflect our

prior knowledge about the x(r, t; w) and ¢ parameters.

e a low rank prior on the dynamic enhancement signal x(r, t;
w) € RMY in the image domain to promote local coherence in
time,

p(x;w) = (exp(—4-[x(r, w)[[.),
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Fig. 1. Diagram illustrating the dependence of the acquired signal on the microvasculature processes as described by the extended Tofts model: Blood plasma volume v,
volume transfer constant between plasma and EES (min~') Kans, EES volume . Following the acquisition of undersampled dynamic (k-t)-data, direct parametric
reconstruction aims to recover the kinetic parameters associated with the extended Tofts model.

|||l is the nuclear norm and A € R" is a regularization parameter.
The nuclear norm of a matrix is the sum of its singular values,
Il - I, = lIsing(-)||;- The nuclear norm is the largest convex func-
tion bounded by the rank function.

e Gaussian prior for the kinetic parameters w(r). We assume that
they remain positive and within a certain range,

e an uninformative Inverse Gamma (IG) prior is used for the
unknown variance 62 of the noise,

p(0%) = IG(c?|a,b) = (b°/I(@)) -6 ¢ - exp(~bo 2),

a, b are the scale and shape parameter respectively. We set q,
b=107*. For the limit a, b — 0 it yields an improper posterior den-
sity. For low ¢ values inferences will become very sensitive to a, b
and the IG is no longer non-informative any more.

The use of additional sparsity priors in the dynamic enhance-
ment signal (I; norm of the wavelet or total variation transform)
was examined but did not benefit the algorithm.

The maximization of the aforementioned posterior probability
distribution function p(w, aly), would be similar to the problem
of minimizing the unconstrained Lagrangian version of the nuclear
norm relaxation from undersampled measurements y(k, t),

W = argmin, h(w)

. (11)

1
= argmin,, > [[y(k.t) = FuX(r.t;w)[5 + Z- [X(r, t; w)|
where F, e R . €™/ is a Fourier sampling operator, with T < K.
Cost function h is strictly convex hence its sub differential at w is
Oh(w) = {v: h(v) = h(w) + u" (v — w),Yv € RV} (12)

where uT is a subgradient of h at w, W is the optimal minimizer
W € argmin, h(w), iff 0 € oh(W).

Theorem 2.1 by Cai et al. (2008) states that the singular
shrinkage operator D,(x(r,t;w)) is the proximity operator of
A - ||x(r, t; w)]|,. The singular value shrinkage operator is defined as

D;(x) = US,(2)V"

S;(2) =sign(¥) - max(|X] — 4,0) (13)

S; is the shrinkage operator, and x = UXV* is any singular value
decomposition of x, where X is the rectangular diagonal matrix,
and U, V are the left and right singular vectors.

Combettes and Wajs (2005) provided a solution to the uncon-
strained problem of Eq. (11). Cai et al. (2008) described a simplified
version of the iterative soft thresholding algorithm (Eq. (2.10)),
which in our case can be expressed as

x(r, t; w*) = D, (x(r, t; W) (14)

WK = WK — 1 (Vux(r, 6 wX)) - FL(y(k, t) — Fux(r, t; wX)) (15)

Updates for each w parameter from the minimization of (11) are
employed in the Bayesian scheme and as aforementioned we
assume they follow Gaussian distribution.

w = normal(w, g,,) (16)

where a,, is the standard deviation for each of the modelled param-
eters u(r), Kirans(T), ve(T), to(T).

The integral [ . . p(w*,0%) cannot be calculated analytically,
consequently p(x(W), oly) is estimated with the Metropolis—
Hastings algorithm, which is a Markov chain Monte Carlo method.

From the most recent sample parameters, candidate sample
parameters are generated using a proposal density that must be
symmetric, and probability space is explored using a random walk.
The proposed density was a normal distribution.
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2.2.2. Implementation of Bayesian inference algorithm

We first initialize the pharmacokinetic parameters w(r) = {v,(r),
Kirans(T), 2e(r), to(r)}, the noise ¢ of the acquired signal, and the
noise of the model parameters, Gyp, Gkirans: Over Oto Iespectively
as follows.

For iteration i = 0 and Vr € R"*/

i. %) =0.05, ¢{Q(r)=0.1.
ii. K{Qns(r) = 0.5, 6tkans(r) = 0.1.
iii. 2.9(r)=0.7, 6(r) = 0.1.
iv. t(r), o@(r) will depend on the bolus injection time.
v. 62=1G(a=10"% b=107%).

The aforementioned initializations have been used throughout
the paper.

The nuclear norm minimization described in Eq. (3) is employed
to generate the recent x(r, t; w'Y), recent model parameters w'” are
estimated separately using Eqgs. (14) and (15). The enhancement
signal is formulated as a Casorati matrix, which is likely to be
low rank because there is an expected correlation between images
(columns of the Casorati matrix). This prior is incorporated to
ensure that the algorithm can handle undersampled data. If the
algorithm was solely a nuclear norm minimization, then the noise
of the acquired data would not be modelled and it could not ben-
efit from the convergence properties of the Bayesian inference
algorithm used here (Gelman and Shirley, 2011). From each of
the model parameters w(", separate candidate sample parameters
w1 were generated using a proposal density Qw*Dw®),
QW Dw) must be symmetric and explore probability space
using a random walk. Although the selection of proposal density
is not trivial and can affect convergence (Rosenthal, 2010), normal
proposal distributions usually work well in practice and this is why
they were chosen in this scheme.

i. 5,(r) ~ normal(v,(r), o{}(r)).

ii. Kg‘:ul'l)s(r) ~ normal(K(tpans(r)v Ug(i%rans(r))-
iii. 2.*(r) ~ normal(v,(r), a{i)(r)).
iv. t§*1(r) ~ normal(t§(r), o{i(r)).

Acceptance thresholds are calculated for each sample parame-
ter separately, and candidate sample parameters are rejected or
accepted

threshold = p(w'™*", a®|y)/p(w®, a"ly)

If threshold < rand then wt™* = w(? (i.e. reject candidate)
else if threshold > rand then accept candidate

where rand is a pseudorandom number generated from standard
uniform distribution on the open interval (0, 1).
Sample ¢! is updated using the probability density function

p(alw™ Y, y) ~ p(a) x plyw™?, o),

oW .y~ 0008 exp (L Iyihet) - S0 )
(17)
This is a form of a gamma distribution, G(a*, b*) with

K-J
a=a+—
M

The prior probability distribution p(w) depends on hyper-
parameters {oyp, Oktranss Oves Ot} that are tuned automatically.
For each hyper-parameter an acceptance probability is defined as
the percentage of the times the respective candidate sample

parameters (one of v(r), Kirans(T), 2(r), to(r)) has been accepted.

and b* = b+ o ly(ie.t) ~ S(k. 1) (18)

If the acceptance probability falls within a certain range [0.3, 0.6]
the hyper-parameters are kept the same, otherwise they are
modified (scaled).

It is assumed that Markov chain reaches the target distribution
after a number of iterations (denoted as burn-in iteration); hence
the variables from the early iterations are thrown away. To reduce
sample correlations, thinning was used and only every thin™ draw
(thinning iteration) from the Markov chain was kept. If for example
the thinning variable is equal to 5, only the samples from the
mod(i, 5) equal to zero iteration will be kept.

3. Materials and methods
3.1. Optimization details

The techniques described were implemented in MATLAB (The
Mathworks Inc., Natick, MA).

The proposed Bayesian inference algorithm was implemented
as a Metropolis—Hastings algorithm. Section 2.2.2 describes how
the involved parameters were initialized. The total number of
iterations was 500, burn-in iterations were 300, thinning equal to
5, and tune iteration (number of iterations for tuning) was 67.

This approach was compared against techniques that fit the
modelled enhancement signal to the reconstructed dynamic
enhancement images and are denoted as “indirect”. For the
indirect techniques, DCE images were reconstructed with either
fast Fourier transformation after zero-filling (denoted as “Indirect
(ZF-FFT)”), or kt-FOCUSS (denoted as “Indirect(ktFOCUSS)”). The
parameter settings for kt-FOCUSS (Jung et al., 2007) were 40 inner
iterations, 2 outer iterations, weighting matrix power factor 0.5,
and initial estimate corresponding to low-frequency values.

The fitting algorithm minimizes the [;-norm (Press et al., 1984)
between the reconstructed measured data and the modelled
enhancement signal with a simplex algorithm (fminsearch in
MATLAB). To avoid local minima, the onset time ty was randomly
initialized 20 times and the pharmacokinetic parameters that best
fit the data were reported.

3.2. Generation of simulated abdominal DCE (k, t)-data

A normal volunteer underwent a fast gradient echo DCE-MRI
protocol (flip angle 10°, repetition time 2.3 ms). Informed consent
and ethical approval was obtained.

T1-weighted abdominal images were acquired in multiple time
frames without contrast injection. The first time-frame was manu-
ally segmented into: liver, bowel, right and left heart, aorta, portal
vein. Such segmentation was used as a map to simulate contrast
enhancement using the extended Tofts model and a population
arterial input function (Parker et al., 2006). T1 values were taken
from (Tofts, 2010) and pharmacokinetic parameters for each organ
were chosen in agreement with a previous study (Melbourne et al.,
2008). Fifty DCE images were generated from the ground truth
kinetic parameters with temporal resolution 3 s; and were trans-
formed to (k, t)-space with fast Fourier transformation. The noise
of complex valued (K, t)-space MR data can be reasonably modelled
by an additive white Gaussian distribution on both real and imag-
inary components (with i.i.d. random variables) (Gudbjartsson and
Patz, 2005). The level of noise was adjusted to achieve a signal to
noise ratio (SNR) similar to the one reported in liver studies in
the literature (Banerji et al., 2012). In practice the SNR is not
known and here the SNR of the abdominal images was determined
using a noise estimation algorithm (Coupe et al.,, 2010; Dikaios
et al.,, 2013a). One of the advantages of modelling noise in the
acquired (K, t)-space domain is that it does not suffer from spatial
variations that are caused by image reconstruction.
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Fig. 2. Axial multi-parametric MR images from the prostate patient ((a) T2 weighted, (b) b = 1400 s/mm? DW image, (c) Apparent diffusion coefficient map, and (d) early post
contrast T1 DCE). Yellow arrows indicate the area of peripheral zone prostate cancer. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

For the undersampling pattern, phase encoding lines were ran-
domly selected per volume and per time frame from a distribution
where the centre of k-space was more densely sampled. Under-
sampling patterns for 4 and 8-fold acceleration were generated
using a Monte-Carlo algorithm to generate a sampling pattern with
minimum peak interference (Lustig et al., 2007).

3.3. Generation of prostate DCE (k, t)-data

The local institutional review board approved the study and
waived the requirement for individual consent for the retrospec-
tive analysis of patient data collected as part of clinical trials/rou-
tine care (R&D No: 12/0195 date: 16/7/2012).

A prostate patient with significant peripheral zone prostate can-
cer (definition for clinically significant cancer was >Gleason 3 +4
or >4 mm cancer core length) underwent prostatic multi-para-
metric MRI (T2, DCE and diffusion weighted MRI; Fig. 2) prior to
template-prostate-mapping (TPM) biopsies as part of standard of
care.

Imaging used a 1.5 T static magnet (Avanto, Siemens, Erlangen,
Germany) and pelvic phased array coil. 0.2 mg/kg (maximum
20 mg) of spasmolytic (Bucsopan; Boehringer Ingelheim, Germany)
was administered intravenously to reduce peristalsis. DCE-MRI
was performed with a T1 weighted volumetric FLASH sequence
with TR/TE 5.61/2.5 ms, flip angle 15°, field of view 269 mm, slice
thickness 3 mm, temporal resolution of 16 s, and number of time
points 35.

The original DCE images were then projected to (K, t)-space
with fast Fourier transformation where normally distributed noise
was added; undersampling masks for 4 and 8-fold acceleration
were generated as described in Section 3.2. Noise was added
directly to (k, t)-space MR data. Note that noise in the original

magnitude MR images is considered as signal when used in simu-
lations. Similar to the abdominal data, the level of applied noise
was adjusted to match the noise level of prostate images.

3.4. Quantitative evaluation

The proposed direct method was compared with the Indi-
rect(ZF-FFT) and the Indirect(ktFOCUSS) methods. All comparisons
were conducted for fully sampled (FS), 4 and 8-fold undersampled
(US4 and US8 respectively) (k, t)-data.

For the abdominal DCE phantom the kinetic maps from the dif-
ferent methods were compared using an entropy similarity metric
(mutual information) to assess which method matches the ground
truth kinetic parameters best. Similarly we examined which DCE
images (reconstructed with ZF-FFT, kt-FOCUSS or estimated from
the parameters w for the direct method) best matched the DCE
images generated from the ground truth kinetic parameters.

For the prostate data where no ground truth kinetic maps were
available, an experienced radiologist assessed the derived kinetic
maps to examine which method depicts cancer best.

4. Results
4.1. Abdominal simulated DCE phantom

Kinetic maps of v, Kirans, v are shown in Figs. 3-5. Fig. 3 shows
the ground truth kinetic parameters and the ones derived from the
Indirect(FFT) and the direct method for fully sampled data. Figs. 4
and 5 show kinetic parameters of the Indirect(ZF-FFT), Indi-
rect(ktFOCUSS) and the direct method derived from 4 and 8-fold
undersampled data. Figs. 3-5 illustrate better correspondence of
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Fig. 3. Top row illustrates ground truth kinetic maps o, Kians, % used to generate the abdominal simulated DCE phantom. Second and third rows show the kinetic maps v,
Kirans, Ve derived from the Indirect(FFT) and direct methods for fully sampled (k, t)-data.

the direct kinetic parameters with the ground truth kinetic param-
eters than the other two methods. This was verified quantitatively
as shown in Table 1. Direct kinetic parameters yield consistently
higher mutual information (similarity with the ground truth
kinetic parameters) than the Indirect(ZF-FFT) or Indirect
(ktFOCUSS) kinetic parameters.

Fig. 6 illustrates reconstructed DCE images with ZF-FFT,
kt-FOCUSS and the direct method. For the direct method DCE
images are calculated indirectly via the kinetic parameters. Table 2
shows that direct method provided a better match (higher mutual
information) to the ground truth DCE images than kt-FOCUSS
reconstructed DCE images.

To examine how reproducible the results of the direct method
are, we ran the direct method for 8-fold undersampled abdominal
DCE (k, t)-space data for 10 different initialization combinations
where initial values of the kinetic parameters ranged from 0 to 0.3
for v, from 0.24 to 0.8 for Kirans and from 0.2 to 0.8 for .. To examine
how much the results varied given different initializations, we

calculated the relative standard deviation rstd, of the residual
|y(k,t) — S(k,t)|> and, the median of relative standard deviations
median(rstd,p), median(rstdgrans) and median(rstd,.) across each
kinetic map separately. The calculated relative standard deviations
were rstdy =0.8%, median(rstd,,)=7%, median(rstdgrans)= 5%,
median(rstdy.) = 4%.

4.1.1. Motion incorporation

To illustrate how the current algorithm (and the Indirect(ktFO-
CUSS) approach) would be affected by respiratory motion, we
regenerated the abdominal DCE phantom including motion
derived from non-rigid registration (Rueckert et al., 1999) of the
free breathing T1 weighted time series. The range of motion was
[2.87 2.63] pixels x 1.95 mm in the right-left and [8.35 1.81]
pixels x 1.95 mm in the superior inferior directions. Since an
image registration step could be easily incorporated prior to DCE
analysis, DCE images reconstructed with kt-FOCUSS were regis-
tered using RDDR algorithm (Hamy et al., 2014) which was
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Fig. 4. Kinetic maps v, Kians, v derived from the Indirect(ZF-FFT), Indirect(ktFOCUSS) and direct methods for 4-fold undersampled (US4) data of the abdominal simulated

DCE phantom.

developed specifically for DCE registration. Fig. 7 illustrates the
kinetic maps of the direct and the Indirect(ktFOCUSS) method with
and without the registration step for 8-fold undersampling. All the
kinetic maps have degraded due to motion (compare to Figs. 3 and
5) but direct kinetic maps exhibit some resilience to motion.

4.2. Prostate data

Kinetic maps of Kians are illustrated in Fig. 8, where the Indi-
rect(ZF-FFT), Indirect(ktFOCUSS) and the direct methods are com-
pared for fully sampled, 4 and 8-fold undersampled (k, t)-space
data. Dikaios et al. (2013b) showed that K., is better at classify-
ing peripheral zone prostate cancer compared to v, and v,; hence
this was selected for illustration. Kinetic maps from the direct
reconstruction depict the peripheral zone prostate cancer better
than the Indirect(ZF-FFT) and Indirect(ktFOCUSS) methods.

DCE images calculated from the direct kinetic parameters were
compared with DCE images reconstructed with ZF-FFT and
kt-FOCUSS (Fig. 9). Direct DCE images have good contrast between

different features, and resemble the original DCE image shown in
Fig. 2(d) even for high undersampling factors. Although not easily
visible direct DCE images in Fig. 9 are contaminated by high
frequency noise.

5. Discussion
5.1. Functional imaging

Functional parameters related to the pathophysiology (e.g. per-
fusion, vessel permeability, metabolism) or the tissue (e.g. diffu-
sion, T1 and T2 relaxation times) are classifiers of diseases.
Parametric maps are usually estimated indirectly via images.

In this work we derived the parametric maps directly from the
measurements (i.e. from (K, t)-space for DCE MRI). Direct paramet-
ric reconstruction has been applied in dynamic PET (Tsoumpas
et al., 2008) and demonstrated better recovery of the associated
parameters.
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A Bayesian inference algorithm is suggested to perform direct
parametric reconstruction from highly undersampled DCE-MRI
measurements. The proposed algorithm (denoted as direct) is
based on a complete noise model of the measured data, and
employs a low-rank prior to ensure local coherence in time.

5.2. Summary of results

Direct kinetic maps of the abdominal DCE phantom accurately
recovered the ground truth kinetic parameters even for highly
undersampled (K, t)-space data (up to 8-fold), outperforming indi-
rect schemes (using ZF-FFT and kt-FOCUSS reconstruction).
Abdominal DCE images estimated from direct kinetic maps were
also more accurate than abdominal DCE images reconstructed with
ZF-FFT or kt-FOCUSS. The bias of the direct method varies across
different organs (Fig. 3), this is clearly visible in areas with different
kinetics (i.e. heart, aorta) where the bias is approximately 10 times

higher than the rest of the organs. This has also been observed in
PET direct reconstruction (Tsoumpas et al., 2008; Rahmim et al.,
2012), where the strong correlation between the two temporal
basis functions of the Patlak plot slows down the convergence.
To overcome this problem, PET direct algorithms that decouple this
temporal correlation were suggested (Rahmim et al., 2012), similar
ideas could be investigated for the proposed direct algorithm.

Direct kinetic maps of the prostate (i.e. Kirans) depict peripheral
zone cancer better than indirect schemes with a clearer benefit at
higher undersampling factors. The differences between the direct
and the indirect schemes can be identified as follows:

i. Indirect schemes (using either FFT or ktFOCUSS reconstruc-
tion) employ non-linear fitting (i.e. simplex algorithm) to
derive the kinetic maps. Non-linear fitting is prone to hit
local minima in the presence of noise (and aliasing artefacts
related to undersampling).
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Table 1

Similarity measurements (based on mutual information) between ground truth kinetic parameters and kinetic parameters derived from the indirect methods using ZF-FFT or kt-
FOCUSS and the direct method for the abdominal simulated DCE phantom. Results are shown for fully sampled data (FS) and for undersampling factors 4 (US4) and 8 (US8).

Correspondence is best when mutual information is increased.

U Kirans Ve to
FS Indirect(FFT) 0.433 0.597 1.194 1.330
Direct 0.441 0.632 1.236 1411
us4 Indirect(ZF-FFT) 0.267 0.383 0.693 1.202
Indirect(ktFOCUSS) 0.379 0.550 1.105 1.305
Direct 0.429 0.603 1.120 1.368
uss Indirect(ZF-FFT) 0.246 0.351 0.636 1.179
Indirect(ktFOCUSS) 0.344 0.540 0.944 1.251
Direct 0.416 0.585 1.118 1.307
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Fig. 6. Reconstructed DCE images of the abdominal simulated DCE phantom using ZF-FFT, kt-FOCUSS and the direct method for 4-fold (US4) and 8-fold (US8) undersampling.

Table 2

Similarity measurements (based on mutual information) between ground truth
dynamic contrast enhancement images (DCE) and DCE images reconstructed with ZF-
FFT, kt-FOCUSS and the Direct method (where the DCE images are estimated
indirectly from the kinetic parameters) for the abdominal simulated DCE phantom.
Results are shown for fully sampled data (FS) and for undersampling factors 4 (US4)
and 8 (US8). Correspondence is best when mutual information is increased.

Reconstructed DCE images

FS Indirect(FFT) 3.370
Direct 4.430
us4 Indirect(ZF-FFT) 2.185
Indirect(ktFOCUSS) 3.204
Direct 4215
us8 Indirect(ZF-FFT) 1.933
Indirect(ktFOCUSS) 2.760
Direct 3.865

ii. The direct method allows for a complete modelling of the
noise (of the acquired data) in the parameter estimation
process.

iii. The direct method has been implemented in a Bayesian
inference framework (using MCMC), which has a theoretic
guarantee to converge if run long enough (Gelman and
Shirley, 2011).

5.3. Methodological limitations

One of the limitations of the suggested direct algorithm is that it
does not explicitly account for patient motion, and may thus be
more suitable for organs such as the prostate, where motion is of
low magnitude. Results (Fig. 7) indicate that whilst indirect
methods can incorporate a registration step, the direct approach
has an inherent robustness to motion.
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Fig. 7. Kinetic maps v, Kians, v derived from simulations of 8-fold undersampled data reconstructed with Indirect(ktFOCUSS) - no registration, Indirect(ktFOCUSS + RG) -

using RDDR registration, and. the direct method with no explicit motion correction.

If the motion field during the acquisition is known, it could be
easily incorporated into the direct method by modelling the
enhancement signal accordingly

X (r,t;w) = D°'x(r, t; w)

D' is a motion matrix that warps the pixels from motion state s
(reference image) to the motion state at time t.

Rigid motion can be estimated with optical tracking devices but
estimating non-rigid motion in advance is less trivial. There is
ongoing work using motion models (e.g. King et al., 2012) that
could be applicable in DCE imaging. Alternatively, motion fields
could be estimated in a joint reconstruction scheme during the
minimization process, where besides the kinetic parameters, the
motion field will also be updated (Jacobson and Fessler, 2003;
Odille et al., 2008) where he proposed a joint reconstruction
scheme for motion correction in PET.

The current implementation assumes that the pharmacokinet-
ics are described by the extended Tofts model. The forward signal
model in the direct approach should reflect signal changes
throughout the entire field of view and the Tofts model with a sin-
gle bolus input may not be adequate in the liver, where a dual
input signal compartment model is preferred (Materne et al.,
2000). The effect of having organs with enhancement that is not
adequately described by the kinetic model used has been discussed
by Kotasidis et al. (2011). To apply the direct approach on clinical
abdominal DCE MR, the algorithm could be modified to identify
organs where the Tofts model is inadequate and apply the correct
pharmacokinetic model. Indirect approaches process image pixels
independently and an incorrect model would affect only the image
regions where the model is not applicable.

The direct method is more computationally expensive than the
indirect methods (depending on the number of iterations). For the
current settings it can be up to 7 times slower. The computational
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Fig. 9. Reconstructed DCE images of the prostate data using ZF-FFT, kt-FOCUSS and the direct method for fully sampled (FS), 4-fold (US4) and 8-fold (US8) undersampling.

cost of the direct method will depend of course on the number of
tuning iterations, but with the aforementioned settings (using
Matlab 7.12.0 on a Xeon 1.6 GHz with 12 GB RAM) results were
achieved in approximately 17 h.

5.4. Clinical implications

Pharmacokinetic parameters related to the enhancement have
been advocated as a biomarker of cancer. For prostate cancer local-

ization DCE-MRI remains the mainstay of commercial computer
aided diagnostic software (Engelbrecht et al., 2003, Puech et al,,
2004). Dikaios et al. (2013a,b) proposed the following logistic
regression diagnostic model for peripheral zone prostate cancer
based on an early enhancement image (Eeary) and a Kirans map that
predicts cancer with a receiver operator characteristic (ROC) area
under curve (AUC) of 0.754 (following leave-one-out analysis)

©—583+1.29 Krrans+3.2-Eeanry

Pez (19)

= e 583129 Kuans 132 Eany 1
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Fig. 10. Prostate cancer predictive probability maps estimated from kinetic parameters (Ecarly, Kirans) derived from the (ZF-FFT), Indirect(ktFOCUSS), and the direct methods
for fully sampled (FS-1st row), 4-fold (US4-2nd row) and 8-fold (US8-3rd row) undersampling. An early enhancement DCE Ee,;y image that depicts the area of the cancer
(yellow arrows) is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where Pp; is the predictive probability. Fig. 10 illustrates predictive
probability maps calculated from an E.,y image and a Kirans map
derived from the direct and indirect methods. An experienced radi-
ologist reviewed the probability maps (after reviewing the multi-
parametric MRI images (i.e. T2 weighted, apparent diffusion
coefficient, b=1400s/mm? diffusion weighted, and an early
enhancement image)). The probabilities within the tumour for the
direct parameters are higher than the ones for indirect methods.
In addition the morphology of the tumour is retained within the
probability map of the direct kinetic parameters, even for 8-fold
undersampling of the (K, t)-space data.

6. Conclusion

The concept of direct parametric reconstruction from (K, t)-
space data is a promising challenge as it extracts the functional
information which dictates the signal alterations directly from
the measurements. This paper provides a Bayesian inference
framework to accurately estimate pharmacokinetic parameters
from undersampled (k, t)-space data. Results on a simulated
abdominal DCE phantom and prostate data indicate that the pro-
posed scheme recovers accurate parametric kinetic maps, and in

an example prostate cancer case, represents better the tumour
morphology, even for highly undersampled measurements.
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