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Abstract

It is important to limit dwelling infiltration to reduce energy demand and help meet national climate

change commitments while concurrently providing sufficient ventilation to deliver adequate indoor air

quality. DOMVENT3D is a model of infiltration and exfiltration that assumes a linear pressure distribution

over any number of uniformly porous facades and integrates the airflow rate in the vertical plane to

predict the theoretically correct airflow rate through them. DOMVENT3D is a new development of an

existing two-dimensional model of infiltration that provides more opportunities for investigating a greater

number of dwellings than was previously possible. Initial testing suggests that DOMVENT3D is mathem-

atically robust and is suitable for modelling a wide variety of dwelling types and geometries to assist

engineers and policy makers.

Practical application: The modern building services engineer may be required to model airflow networks in

a building to balance the conflicting needs of energy consumption reduction and occupant health. Limiting

exfiltration is one method of reducing heat losses from a building and so there is a need to model it

accurately. This article presents a new model of infiltration and exfiltration through a uniformly porous

facade that can be incorporated within advanced complex airflow network tools or applied using a simple

spreadsheet.
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Introduction

The infiltration of cold air and the concurrent
exfiltration of conditioned air through adventi-
tious openings in the thermal envelope of a
dwelling can be a significant component of its
heating load. Measuring infiltration is technic-
ally difficult, invasive and expensive and so it is
often inferred from a measurement of air perme-
ability, the rate of airflow through the fabric of a
building measured at a steady high pressure dif-
ference, normally 50 Pa, when the effects of wind
and buoyancy forces are effectively eliminated.1

This inference is also problematic2 and so there
is a clear need to predict dwelling infiltration
theoretically, which is both cheap (in the sense
that no measurements area required) and com-
putationally quick. There are two approaches
commonly used to model infiltration. The first
approach relies on the knowledge of the location
of adventitious openings, known as air leakage
paths (ALPs), their geometry or expected losses
across them. Each ALP is specified explicitly and
appropriate leakage characteristics are derived
either from measurement or from appropriate
sources in the literature for specific building
components.3

However, it is suggested that ‘there is insuffi-
cient data available in the literature to justify
[anything] other than a uniform distribution’4

of porosity. The second approach to modelling
infiltration uses an appropriate number of
ALPs, equally spaced in the vertical plane to
account for buoyancy driven flow and sized
according to the dwelling’s permeability. This
is known as the multiple element approach5

and it is advised that 11 equally spaced ALPs
is an adequate number.2

An elegant development of this approach,
when the number of ALPs is large, is the
method proposed by Lyberg6 and Lowe.7 The
basic equations proposed by Lyberg are add-
itionally used to model airflow through large
openings5 but his formulation also handles air-
flow through envelopes with a wide range of
properties; a brief discussion of the fundamental
differences is given in ‘Initial tests’. Lowe’s two-

dimensional infiltration model, known as
DOMVENT, assumes a linear pressure distribu-
tion over a uniformly porous facade and inte-
grates the airflow rate in the vertical plane to
predict the theoretically correct airflow rate
through that facade. Deru and Burns8 have
extended this work by defining equations for
the situation where both infiltration and exfiltra-
tion occur simultaneously through a single
facade driven by natural forces. However, the
approach does not consider the effects of a
mechanical system on facade infiltration and
exfiltration rates. The simplicity of Lowe’s
DOMVENT model7 and its implementation
using bespoke MATLAB9 code means that the
calculation and post-processing time is signifi-
cantly less than that for conventional airflow
analysis tools, such as CONTAM10 and
AIDA,3 two independent validated airflow ana-
lysis tools. These tools do not have an airflow
path that specifically characterizes infiltration
and so must follow the multi-element approach
described here. The predictions of DOMVENT
have been compared against those of established
envelope flow models2 and is used to investigate
energy use and CO2 emissions in dwellings7 and
the relationship between permeability and infil-
tration in conjoined dwellings.2 Thus,
DOMVENT is a useful tool for undertaking
the simulations necessary to investigate the infil-
tration one might expect to find in a dwelling
subjected to varying weather conditions.
However, the current formulation of
DOMVENT described in the literature is exclu-
sively for a cuboid dwelling with two identical
exposed facades when internal and external tem-
peratures are unequal. This constrains its appli-
cation to the modelling of mid-terrace houses
and some apartments. Mid-terrace houses
account for only 19% of the English housing
stock,11 whereas end-terrace, semi-detached
and detached houses account for 53% of the
stock.11 Accordingly, if one is also to have con-
fidence in the predictions of infiltration in dwell-
ing types that comprise the majority of the
English stock, a more versatile form of
DOMVENT is needed that is able to consider
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any number of vertical facades with differing
geometries.

This article addresses the limitations of
DOMVENT by developing a three-dimensional
model of infiltration and exfiltration known as
DOMVENT3D. Here the term ‘3D’ implies the
potential of the model to predict infiltration and
exfiltration in three-dimensions even if it is not
always applied in this way. In ‘Modelling infil-
tration’, the model is derived from first prin-
ciples so that it can predict the infiltration rate
of any dwelling with cuboid geometry.
Uncertainties and limitations are discussed and
the model is corroborated against the predic-
tions of CONTAM. In ‘Applications’, suitable
applications of DOMVENT3D are discussed.

Modelling infiltration

Consider a dwelling of height H (m), depth D
(m) and width W (m), with one or more exposed
facades (see Figure 1, which shows a cuboid rep-
resentation of a dwelling, and Figure 2, which
shows a cross-section through one of any
number of vertical facades). When a building
contains no mechanical ventilation system or a
perfectly balanced mechanical ventilation
system, mean infiltration and exfiltration rates
are equal in magnitude and opposite in sign.
They are a function of the geometry of the build-
ing, its local environment and the prevailing
meteorological conditions. When an unbalanced
mechanical ventilation system is present, the

rates of infiltration and exfiltration are generally
unbalanced.

A general model

Most models of infiltration and exfiltration use a
power law relationship between the pressure dif-
ference �p (Pa), across an adventitious opening,
known as an ALP, and the volume flow rate _Q
(m3/s) of air where

_Q ¼ C �p
�� ��b"ð�pÞ ð1Þ

Here, b is the flow exponent and C is a flow
coefficient (m3/s/Pab). The flow direction func-
tion "ðxÞ ¼ 1 if x4 0, "ðxÞ ¼ �1 if x5 0 or
"ðxÞ ¼ 0 if x ¼ 0. Airflow into the building is
positive in sign whereas airflow out is negative.
Etheridge1 states that a dwelling can be treated
as a single-zone space by assuming that its
rooms are interconnected and all internal
doors are open. Then, the net flow through a
system of ALPs in the thermal envelope of a
building is zero and is described by the continu-
ity equation

_Qm þ
Xj
i¼1

_Qi ¼ 0 ð2Þ

Figure 2. Vertical cross-section through a facade of

height H, under pressure from: (a) action of the wind and

(b) stack pressure. The resulting (c) linear pressure dis-

tribution gives an (d) airflow distribution with areas of

(1) infiltration and (2) exfiltration, separated by a neutral

point z0.

Figure 1. Cuboid dwelling of height H, width W and

depth D. Facades 1 and 2, dwelling front and back;

facades 3 and 5, sides (exposed if detached or internal if

terraced); facades 4 and 6, ceiling and floor.
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where _Qi is the airflow rate through the ith ALP
of a total of j and _Qm is the total airflow through
a mechanical ventilation system, such as an
extractor fan.

The modelling of specific ALPs is appropriate
if their locations are known but in most cases
they are not. In the absence of a priori know-
ledge on their locations, it is common to assume
that a vertical wall or facade is uniformly
porous.2,4 The vertical pressure distribution
over the facade of a building is a function of
the action of the wind, the difference between
internal and external air densities, known as
the stack pressure, and a change in internal pres-
sure that occurs to balance mass through all
openings in the building (see Figure 2 (a)–(c)).
Accordingly, the pressure difference across a
point on the facade at a height z (m) above
floor level is given by1

�pðzÞ ¼
1

2
�Eu

2cp � ð�E � �IÞ gz� pI ð3Þ

where pI is the internal air pressure relative to
atmospheric pressure (gauge), u is the wind
speed at height H, �E is the external air density
(kg/m3), �I is the internal air density (kg/m

3), g is
the gravitation acceleration (m/s2) and cp is the
dimensionless facade pressure coefficient. The
first two terms on the right hand side of the equa-
tion are depicted in Figure 2 by gradients (a) and
(b), where z varies between z¼ 0 and z¼H and
all other terms are constant.

A number of ALPs are defined in the vertical
plane to model a uniform distribution of poros-
ity of any number of facades. The airflow rate
through and pressure difference across each
ALP is defined by equations (1) and (3), respect-
ively. The two equations are solved by varying pI
so that equation (2) is satisfied. Accordingly, for
j ALPs, j+1 equations are required.

DOMVENT3D: An integrating infiltration
model

When z is a variable and all other parameters are
constant, the pressure difference across the

facade varies linearly with z and equation (3)
has one root or equilibrium point. The height
at which the root occurs is known as the neutral
height z0 (m). When �pðz0Þ ¼ 0, an expression
for z0 is given by5

z0 ¼
1
2 �u

2cp � pI

ð�E � �IÞ g
: ð4Þ

Equation (4) shows that as pI increases, z0
decreases, and vice versa. Accordingly, an
extract fan can reduce pI below atmospheric
pressure and increase z0 above the height of
the building so that all exposed facades provide
infiltration.

The pressure difference over a facade can also
be described with reference to z0 thus

�pðzÞ ¼ �ð�E � �IÞ gðz� z0Þ: ð5Þ

When 0< z0<H, both infiltration and exfiltra-
tion occur simultaneously through a facade;
otherwise, when 0> z0>H, only infiltration or
exfiltration occurs.

If equation (1) is now assumed to be the flow
rate through an infinitesimal section dz (m) of a
facade in the vertical plane due to a pressure
difference across it, it can be rewritten to
describe the total volume flow rate of air
through the facade, _Qf (m

3/s)

_Qf ¼ C"ð�pÞ

Z H

0

�p
�� ��� �b

dz ð6Þ

Now, C can be expressed as

C ¼ EaW ð7Þ

where E is the dimensionless relative leakage
area (akin to a discharge coefficient) and
W (m) is the facade width. Note that W is inter-
changeable with dwelling depth D (m), when
the side facade of a dwelling is modelled (see
Figure 1, facades 3 and 5). The flow exponent
b normally has a value3 in the range of 0.6–0.7,
although it is often taken as 0.5 to simplify the
analysis, a corresponds to 2= ��

� �b
. By adopting
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the Boussinesq approximation,1 � n # is the
mean of the internal and external air densities.
To calculate the total mass flow rate of air
through the facade _Mf (kg/s), set
a ¼ �� 2=e ��

� �b
, so that when b¼ 0.5, then

a ¼ ð2 ��Þ0:5. This corrects a mathematical error
in Lowe’s article7 but it does not affect its pre-
dictions and conclusions.

Lowe7 states that equation (1) can be rewrit-
ten to show that the dwelling air leakage rate,
_Q50 (m

3/s), at a pressure differential of 50 Pa and
is given by

_Q50 ¼ EaA50ð50Þ
b
¼ _Qm: ð8Þ

Here, A50 is the permeable area of the enve-
lope at a pressure differential of 50 Pa, which can
vary according to dwelling type2 and is a func-
tion of all or some of H, W and D; see Jones
et al.2 for a full discussion of A50.

Equations (5), (6) and (7) are combined so
that _Qf is now given by

_Qf ¼EaW" �E � �Ið Þ

�E � �Ið Þ
�� �� g� �b þ Rmin z0,Hð Þ

0 z� z0ð Þ
bdz

�
RH
max z0, 0ð Þ

z� z0ð Þ
bdz

" #
ð9Þ

Note that for simplicity, the flow function
input is reduced to the difference between the
air densities because the difference between
these parameters governs the airflow direction.
Each of the integral limits of equation (9) are
taken to be zero if the lower limit of integration
exceeds the upper. The integration of equation
(9) describes both infiltration and exfiltration
(see Figure 2) and can be split into two separate
equations whose sum is equal to _Qf

_Q1 ¼
EaW" �E � �Ið Þ

bþ 1

�E � �Ið Þ
�� �� g� �b þzbþ10

��
z040

� z0 �Hð Þ
bþ1
���
z04H

2
4

3
5 ð10Þ

_Q2 ¼
EaW" �I � �Eð Þ

bþ 1

�E � �Ið Þ
�� �� g� �b þ H� z0ð Þ

bþ1
���
z05H

� �z0ð Þ
bþ1
���
z050

2
64

3
75 ð11Þ

when �I 5 �E, then _Q1 and _Q2 describe infil-
tration and exfiltration, respectively. When
�I 4 �E, then _Q1 and _Q2 describe exfiltration
and infiltration, respectively. When �I ¼ �E,
then equations (10) and (11) equal zero and
must be replaced by a single ALP using equa-
tion (1). It is now possible to model airflow
through multiple vertical facades of varying
geometries (where H, D and W are not
equal) by stating equations (1), (10) and (11)
for each, thus making the model fully three
dimensional.

Ordinarily, equations (1), (2), (10) and (11)
are solved numerically but there are three
situations when an explicit solution is possible
for a naturally ventilated cuboid dwelling
whose external facades are of equal height.
First, when u¼ 0m/s and infiltration is
solely attributable to buoyancy forces,
z0¼H/2m. Second, when a building has two
exposed facades, the mean of the neutral
heights on the windward and leeward facades
equal H/2 m. Finally, a single-sided dwelling
has a neutral height of z0¼H/2m for all
environmental conditions. These situations
are true because: (a) an average value of air
density is used in equation (7) and (b) the
permeability of the exposed facades is con-
sidered to be uniformly distributed and so
the area of exposed facades that provide infil-
tration must equal the area of exposed
facades that provide exfiltration.

DOMVENT3D only requires three equations
to model the airflow rate through a uniformly
porous facade and a maximum of two equations
are required at one time. This represents a con-
siderable simplification of the multiple element
approach and a development of the original
DOMVENT model.

Jones et al. 5
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Model limitations

The application of equation (1) to airflow
through a single ALP and to airflow through a
whole building, characterised by a number of
ALPs, is an approximation. The coefficients
that describe the airflow through such a building
are, in reality, not always constant but the
assumption of constant values is not a signifi-
cant obstacle to the use of this fundamental
equation in the way proposed by Lyberg.6

Furthermore, the power law relationship
described by equation (1) is the most widely
used method of interpolating between measure-
ments of air leakage rates2 and so is used here. It
is noted that the quadratic relationship is con-
sidered to be more accurate at operational pres-
sure differences1 and so a future version of
DOMVENT3D may incorporate this approach.

Equation (3) assumes that pI and �E are uni-
form and u and cp are not a function of z when
z�H. These assumptions restrict equation (2) to
low-rise buildings. Here, Liddament12 suggests
that mean pressure coefficients are appropriate
for low-rise buildings of up to three storeys and
so this limit is adhered to here. The authors are
unaware of any empirical evidence of tempera-
ture distributions in dwellings that could be used
to add another density term to equation (3) to
accurately describe stratification. Moreover, the
consideration of stratification increases the com-
putational complexity of the model. Thus, it is
acknowledged that although ignoring the effects
of stratification introduces uncertainty into the
model, it is nevertheless considered to be an
acceptable trade-off between model complexity
and prediction accuracy.5

Initial tests

The theory that underpins this article can handle
envelopes in which flow varies continuously
from turbulent (b¼ 0.5) to laminar (b¼ 1); see
equation (1). It can therefore be configured for
comparison against the two-way single-opening
ventilation element (TWSO) that is used to
model airflow through large doors and windows
by CONTAM,10 a validated multi-zone

ventilation and pollutant transport model. The
TWSO requires input of the width of the open-
ing, height and discharge coefficient, Cd (akin to
E, the relative leakage area). The flow exponent
is fixed at b¼ 0.5 and the minimum value of Cd

is 10�3. These restrictions make the TWSO
unsuitable for modelling a porous facade
because b is too small— for adventitious
cracks3 b is between 0.6 and 0.7— and Cd is
too big; for example,2 E¼ 1.64� 10�4 for an
archetypal apartment with a permeability of
10m3/h/m2. Nevertheless, a numerical corrobor-
ation of DOMVENT3D against the TWSO
element is possible and so a single DOMVENT
facade and TWSO element are modelled when
Cd, E, W and H are set to unity, b¼ 0.5,
g¼ 9.81m/s2 and u¼ 0m/s. The internal and
external air temperatures are TI¼ 292.15K and
TE¼ 282.15K, respectively. The air density is
given by � ¼ P=RT where atmospheric pressure
P¼ 101325 Pa and the gas constant,
R¼ 287.055 J/(kg K), so that �E¼ 1.251 kg/m3

and �I¼ 1.208 kg/m3. These calculations of air
density are almost identical to those of
CONTAM and the mass flow rate (kg/s) of air
predicted by DOMVENT3D, using equations
(2), (5), (7), (10) and (11), is 0.07% above that
of CONTAM. Next, two facades are considered
when TI¼ 292.15K and TE¼ 282.15K and a
wind pressure is applied to each facade that is
equal in magnitude and opposite in sign so that
0:5�Ecpu

2 ¼ �1 Pa. The airflow rate predicted
by DOMVENT3D is 0.02% above that of
CONTAM.

The differences between the predictions of
CONTAM and DOMVENT3D for both buoy-
ancy-driven flow and combined wind- and buoy-
ancy-driven flow are negligible and so can be
said to be in agreement.

Applications

When comparing DOMVENT3D to most
models of infiltration, its consideration of the
physics is relatively complex because it assumes
a linear pressure distribution over a uniformly
porous facade and integrates the airflow rate in
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the vertical plane to predict the theoretically
correct airflow rate through that facade; yet,
its application is simple. Thus,
DOMVENT3D can be used to make many pre-
dictions quickly, making it an ideal tool for
predicting the infiltration rates one might
expect in a stock of buildings in reasonable
computational time. DOMVENT3D’s limita-
tions (see ‘Model limitations’) constrain its
application to the evaluation of low-rise build-
ings, such as houses. In England, there are
some 22.3 million dwellings;11 yet the number
of measurements of dwelling air permeability
made in the existing stock is limited.13,14

Although the air leakage testing of all new
dwelling developments is now mandatory,
88% of the stock was built before 199011

when tests were not required. Therefore, the
government formulates its policy on the retro-
fitting of energy efficiency measures designed to
meet climate change mitigation commitments
using a limited quantity of data. A forthcoming
article by the authors uses DOMVENT3D to
investigate infiltration rates in English dwellings
following a study of infiltration rates in the
U.S. housing stock using CONTAM.4 The
latter study4 assumes uniform porosity, which
means that it applied the multiple element
approach, although this is not stated.
Accordingly, the accuracy of their predictions
could be improved if the TWSO element is
amended to allow 1 � b � 0:5 and a Cd or E
value that is at least an order of magnitude
smaller than is currently acceptable.

ALPs in horizontal facades (floors and ceil-
ings) can be defined by equations (1) and (3) and
incorporated within DOMVENT3D using equa-
tion (2). When a simple single zone airflow
model is required, equations (10) and (11) can
be easily incorporated within AIDA3 or placed
into an Excel spreadsheet and solved using its
‘Goal Seek’ command.

To demonstrate the potential of
DOMVENT3D, it is used to estimate the
range of infiltration rates one might expect to
find in a typical UK detached house15 located
in open, rural and urban terrain. The house has

dimensions W¼ 6m, D¼ 8m, and H¼ 4.8m, a
volume of 230.4m3, an envelope area of
230.4m2 and an air permeability of 10m3/h/
m2. The house has a loft and a suspended floor
and so the entire thermal envelop is assumed to
be permeable at a pressure differential of 50 Pa.
A typical flow exponent3 of b¼ 0.66 is applied
and so, using equation (8), the relative leakage
area is calculated to be E¼ 1.52� 10�4 when
��¼ 1.225 kg/m3. Distributions of pressure coef-
ficients for the vertical surfaces of a cuboid
building with less than three stories are given
by Liddament12 and are applied for open, rural
and urban terrain. The floor and ceiling are
assumed to be completely shielded from the
effects of the wind. The greatest infiltration
rates are predicted by DOMVENT3D with the
wind normal to the front of the house and so
this angle of incidence is used to generate an
infiltration rate performance envelope for tem-
perature differences of 5, 10 and 15K following
Liddament12 (see Figure 3). Figure 3 shows that
the infiltration rate is dominated by the differ-
ence between internal and external temperatures
for building height wind speeds of up to �4m/s
and thereafter the wind is the dominant driving
force. Accordingly, in a climate where the mean
building height wind speed is less than 4m/s and
the temperature differential is less than 15K, the
infiltration rate of this detached house is likely
to be buoyancy driven and to be less than 0.5 air
changes per hour (ac/h) on average. This is sig-
nificant because 0.5 ac/h is the threshold venti-
lation rate (recommended by many European
countries) above which negative health effects
reduce.2 Figure 3 suggests that this house
could require additional purpose provided ven-
tilation, which when applied with other mitigat-
ing measures15 would help to reduce risks to the
health of its occupants. This type of finding
should be of interest to both engineers and
policy makers.

Conclusions

This article presents a brief analysis of
approaches used to model infiltration in low-rise

Jones et al. 7
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buildings, such as dwellings, and describes a new
general model of infiltration known as
DOMVENT3D. The theory that underpins
this article can handle any number of facades
where airflow through them varies continuously
from turbulent to laminar and the pressure dif-
ferences across them are caused by both mech-
anical and natural forces. The model was tested
against CONTAM with encouraging results. It
is shown that two simple modifications to
CONTAM’s TWSO ventilation element would
allow it to make improved predictions of infil-
tration rates. Finally, with increased confidence
in it predictions, it is proposed to use
DOMVENT3D to investigate the infiltration
rates one might expect to find in UK houses
and thus to help policy makers make informed
decisions on the installation of energy efficiency
measures in houses.
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