
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/28/1/13
The online version of this article can be found at:

DOI: 10.1177/1094342012474997

2013
 2014 28: 13 originally published online 10 FebruaryInternational Journal of High Performance Computing Applications

Miguel O Bernabeu, James Southern, Nicholas Wilson, Peter Strazdins, Jonathan Cooper and Joe Pitt-Francis
computational cardiac electrophysiology simulation

Chaste: A case study of parallelisation of an open source finite-element solver with applications to

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

Immediate free access via SAGE ChoiceOpen Access:

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/28/1/13.refs.htmlCitations:

 What is This?

- Feb 10, 2013OnlineFirst Version of Record

- Jan 20, 2014Version of Record >>

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/28/1/13
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/28/1/13.refs.html
http://hpc.sagepub.com/content/28/1/13.full.pdf
http://hpc.sagepub.com/content/early/2013/02/10/1094342012474997.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hpc.sagepub.com/
http://hpc.sagepub.com/

Article

Chaste: A case study of parallelisation
of an open source finite-element
solver with applications to
computational cardiac
electrophysiology simulation

Miguel O Bernabeu1,2,**, James Southern3, Nicholas Wilson3,
Peter Strazdins4, Jonathan Cooper5 and Joe Pitt-Francis5

Abstract
The simulation of cardiac electrophysiology is a mature field in computational physiology. Recent advances in medical
imaging, high-performance computing and numerical methods mean that computational models of electrical propagation
in human heart tissue are ripe for use in patient-specific simulation for diagnosis, for prognosis and for selection of treat-
ment methods. However, in order to move in this direction, it is necessary to make efficient use of modern petascale
computing resources.

This paper focuses on an existing open source simulation framework (Chaste) and documents work done to improve
the parallel scaling on a small range of electrophysiology benchmark problems.

These benchmarks involve the numerical solution of the monodomain or bidomain equations via the finite-element
method. At the beginning of this study the electrophysiology libraries within Chaste were already enabled to run in parallel
and were able to solve for electrical propagation using the monodomain or bidomain equations, but parallel efficiency
dropped rapidly when run on more than about 64 processors.

Throughout the course of the study, improvements were made to problem definition input; geometric mesh partitioning;
finite-element assembly of large, sparse linear systems; problem-specific matrix preconditioning; numerical solution of the
linear system; and output of the approximate solution. The consequence of these improvements is that, at the end of the
study, Chaste is able to solve a monodomain benchmark problem in close to real time. While some of the improvements
made to the parallel Chaste code are specific to cardiac electrophysiology, many of the techniques documented in this paper
are generic to the parallel finite-element method in other scientific application areas.

Keywords
Cardiac electrophysiology, bidomain equations, finite-element method, parallelisation, scaling analysis, hybrid linear solver

1 Introduction

The arrival of petascale computing and the advent of the

exascale era has led to a remarkable increase in computa-

tional power available to simulation scientists. This excit-

ing technological advance has paved the way to higher

complexity simulation studies in many fields of science.

The added complexity comes from: a) the use of more

accurate representations of computational domains already

under study (e.g. finer computational meshes), b) the devel-

opment of models describing larger entities, or c) model

coupling (e.g. multi-scale, multi-physics modelling). The

consequences of this technological shift are twofold.

Firstly, there has been an increase in computational

resources never seen before in the form of more CPU cores,

1 Centre for Computational Science, University College London, UK
2 CoMPLEX, University College London, UK
3 Fujitsu Laboratories of Europe Ltd, Hayes, UK
4 Research School of Computer Science, The Australian National

University, Canberra, Australia
5 Department of Computer Science, University of Oxford, UK
** With the Department of Computer Science, University of Oxford

during this study.

Corresponding author:

Miguel O Bernabeu, CoMPLEX, University College London, Gower Street,

London, WCIE 6BT, UK.

Email: miguel.bernabeu@ucl.ac.uk

The International Journal of High
Performance Computing Applications
2014, Vol. 28(1) 13–32
ª The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342012474997
hpc.sagepub.com

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com
http://hpc.sagepub.com/

larger amounts of memory, and faster interconnect technol-

ogy. Secondly, a progressive increase in the volume of

input data that algorithms need to handle must be also

considered. Operations that do not constitute a parallel bot-

tleneck at lower core counts become a major obstacle in the

petascale era. Examples are input/output operations, syn-

chronisations, and, in general, any operation requiring

sequential execution or access to non-replicated resources.

Petascale hardware is becoming more accessible to the

scientific community with a total of 20 machines––as of

June 2012––achieving a sustained LINPACK performance

of 1 petaflops (1015 floating point operations per second) or

more worldwide.1 A reduced group of high-level scientific

codes have also broken the petascale barrier (e.g. physics,

materials science, and chemistry (http://www.olcf.ornl.-

gov/2010/11/15/ornl-systems-lead-in-petascale-science/)).

To date, no code using the finite-element method (FEM)

for the solution of cardiac electrophysiology problems has

achieved this milestone. Hence, a detailed evaluation of the

current parallel technology used for FEM simulation of car-

diac electrophysiology is in order, to identify the main

computational kernels involved, propose effective paralle-

lisation approaches, and highlight where parallel bottle-

necks remain.

There exists a large body of literature concerning the

development of parallel cardiac electrophysiology solvers

(see Bordas et al. (2009); Linge et al. (2009) and Clayton

et al. (2011) for surveys). Examples of early contributions

to parallel solution approaches are Fishler and Thakor

(1991), Pollard and Barr (1991), Winslow et al. (1993), Ng

et al. (1995), Saleheen et al. (1997), Quan et al. (1998) and

Cai and Lines (2002). Common amongst most of these

works is that they considered explicit solution schemes for

the monodomain model, which can be parallelised very effi-

ciently, and that they used shared-memory architectures. An

early contribution to distributed-memory approaches was

made by Porras et al. (2000), who compared four different

parallel schemes for the two-dimensional monodomain

equations. More recently, Vigmond et al. (2002) presented

parallel computations on shared-memory architectures with

two to four processors and compared the performance of a

number of direct and iterative linear solvers.

In the context of distributed-memory architectures there

exists a number of works that use the Message Passing

Interface (MPI) standard (http://www.mpi-forum.org) and

the PETSc library (http://www.mcs.anl.gov/petsc) for the

development of parallel bidomain simulators. Early exam-

ples are Vigmond et al. (2003) and Colli-Franzone and

Pavarino (2004). A similar PETSc-based approach is used

in dos Santos et al. (2004) combined with parallel geo-

metric multi-grid preconditioning. In Murillo and Cai

(2004) the PETSc library was also used to devise a parallel

bidomain solver based on a fully implicit time discretisa-

tion. More recently, in Plank et al. (2007) the solver pre-

sented in dos Santos et al. (2004) was extended to use

algebraic multi-grid preconditioning. The same solver was

adapted for the solution of the monodomain equations in

Niederer et al. (2011), achieving close to optimal scalability

with up to 1024 cores using both explicit and semi-implicit

timestepping schemes, and achieving approximately 40%
parallel efficiency using the explicit scheme on 16,384

cores. With the same number of cores, Reumann et al.

(2009) shows 71% paralllel efficiency using an explicit

finite difference method for the solution of the monodomain

equations. Finally, in Vázquez et al. (2011) a large-scale

computational mechanics simulation platform was adapted

to solve the monodomain equations, achieving almost linear

scaling on up to 1000 processors with an explicit timestep-

ping scheme. The interested reader can refer to Keener and

Bogar (1998) for a description of the timestepping methods

mentioned here.

A performance comparison of the aforementioned

solvers is difficult. They use different numerical schemes,

are evaluated on platforms with major architectural differ-

ences, and authors do not usually release enough informa-

tion about solution timesteps and tolerances for the level of

accuracy of their solutions to be compared (the use of itera-

tive numerical methods in some of the implementations

allows for computational cost to be reduced by relaxing

tolerances). A performance metric often reported by

authors is the ratio between the time taken to perform a

simulation and the amount of time simulated (i.e. the

real––time ratio). Table 1 summarises some of the values

found in the literature.

Note that the solvers reported to run efficiently using

hundreds of processors or more (i.e. the last four in Table

1) share one or more of the following four limitations: i)

they use the monodomain model, ii) they use explicit time

discretisations, iii) they use spatial discretisation methods

that only allow the use of regular grids (e.g. finite differ-

ence method), and/or iv) they are not freely available to the

scientific community. This paper focuses on the develop-

ment of open source cardiac simulation technology that

achieves a similar degree of performance in large-scale

high-performance computing (HPC) infrastructures using

the bidomain equations and a semi-implicit time discretisa-

tion on arbitrary spatial domains pathmanathan10. The

reasons for these choices are three-fold:

� several applications of interest (e.g. human shock-

induced arrhythmogenesis (Bernabeu et al., 2010b)

and drug-induced alterations on the body-surface

ECG (Zemzemi et al., 2011)) require the use of the

bidomain equations, since the monodomain model

presents limitations for their study;

� explicit time discretisation imposes a constraint on

the maximum timestep directly proportional to the

grid edge length, so increasing the level of detail

of the geometrical models will inevitably lead to

increasingly shorter timesteps. This is likely to have

a negative impact on overall performance. Uncondi-

tionally stable methods (e.g. semi-implicit time dis-

cretisation) allow the mesh to become more detailed

without requiring shorter timesteps;

14 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

� unstructured grids allow for more realistic representa-

tion of ventricular surfaces and fine-grained features

than structured grids. The finite-element method is

preferred for the spatial discretisation of the bidomain

equations for its support of unstructured grids.

This work has been conducted in the framework of the

open source Computational Biology simulation package

Chaste (Pitt-Francis et al., 2009).

The rest of the paper is structured as follows. Section 2

gives a brief introduction to computational cardiac electro-

physiology, including the underlying mathematical models

of interest. Section 3 presents the main components of the

cardiac electrophysiology solver in Chaste. The parallelisa-

tion strategy adopted for each of these components is

described in Section 4. Section 5 describes the benchmark

used for the evaluation of the scalability improvements pre-

sented along with its results. Finally, Section 6 discusses

the results and presents the conclusions.

2 Computational cardiac electrophysiology

At a cellular level, models of cardiac electrophysiology of

different species and cell types have been successfully

developed and used for a variety of applications. The mod-

els include representation of the main mechanisms of ionic

transport across the cell membrane and between subcellular

compartments. From a mathematical point of view, the

models typically consist of systems of ordinary differential

equations (ODEs), with the most detailed ones (such as Iyer

et al. (2007)) having over 60 ODEs. These models allow

representation of the effect of mutations, drugs and disease

on ion channel function.

At a tissue level, simulating propagation of electrical

excitation through cardiac tissue (mainly myocytes)

involves solving a system of partial differential equations

(PDEs)––the bidomain equations––over an anatomically

based computational grid with realistic representation of

geometry and microstructure. The level of detail in the

models has grown due to a better characterisation of cardiac

structure provided by recent advances in medical imaging

techniques (Burton et al., 2006). It is now possible to gen-

erate highly detailed representations of cardiac structures

such as blood vessels, papillary muscles, the Purkinje net-

work and fibre orientation. Preliminary studies have pro-

vided insight into the role of previously neglected cardiac

structures on ventricular activation following electrical

pacing and shocks (Burton et al., 2006). However, this

comes at the cost of an increase in problem size and hence

computational burden.

2.1 The bidomain equations

For a bidomain simulation of cardiac tissue contained in a

conductive surrounding medium, (referred to as the bath)

the magnitudes of interest are intracellular and extracellu-

lar potentials (�iðx; tÞ and �eðx; tÞ), and their difference

(Vðx; tÞ ¼ �i � �e). The tissue � and the bath �b are dis-

joint domains with interface @�, with �i––and therefore

V––defined only in �, but �e defined throughout

� [�b. Keener and Sneyd (1998) showed that V and �e

satisfy

� C
@V

@t
þ I ion

� �
�r � �irðV þ �eÞð Þ ¼ �I

ðvolÞ
i ; in � ð1Þ

r � �irðV þ �eÞ þ �er�eð Þ ¼ 0; in � ð2Þ

r � �br�eð Þ ¼ 0; in �b ð3Þ

@u

@t
¼ f u;Vð Þ; in �

where �b is the bath conductivity, �i is the intracellular

conductivity tensor, �e the extracellular conductivity ten-

sor, � is the surface-area-to-volume ratio and C is the

membrane capacitance per unit area. The vector u contains

cell-level variables, such as ionic concentrations and

membrane-gating variables, and I ion � I ion ðu;VÞ is the

ionic current per unit surface area. I ion and f are deter-

mined by an electrophysiological cell model. The source

term I
ðvolÞ
i is the intracellular stimulus per unit volume, used

to elicit propagation.

Table 1. Ratio between the time taken to perform a simulation and the amount of time simulated.

Reference
Core
count Mesh size

Real–time
ratio Summary

Potse et al. (2006) 32 26–55 M nodes 288,000 Monodomain and bidomain; finite difference method; explicit time
discretisation; Bernus et al. cell model (2002).

ten Tusscher et al. (2007) 20 13.5 M voxels 43,200 Monodomain; finite difference method; explicit time discretisation;
ten Tusscher et al. cell model (2006).

Reumann et al. (2009) 16,384 128.9 M elements 13,180 Monodomain; finite difference method; ten Tusscher et al. cell
model (2004).

Pope et al. (2011) 16,384 128.9 M elements 2,042 Monodomain; finite difference method; explicit time discretisation;
ten Tusscher et al. cell model (2004).

Vázquez et al. (2011) 500 17 M elements 450 Monodomain; finite-element method; implicit, explicit, and Crank–
Nicolson time discretisation; FitzHugh–Naguno cell model (1961).

Niederer et al. (2011) 16,384 26 M nodes 240 Monodomain; finite-element method; explicit and Crank–Nicolson
time discretisation; ten Tusscher et al. cell model (2006).

Bernabeu et al. 15

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Appropriate boundary conditions are

n � �ir�ið Þ ¼ 0; on @� ði:e: the bath-tissue boundaryÞ ð4Þ

n � �br�eð Þ ¼ I ðEÞ; on @�bn@� ði:e: the external bath boundaryÞ
ð5Þ

where n is the outward-facing unit normal. Here I ðEÞ is a

stimulus current per unit area representing an external

current flowing into the domain and causing an electri-

cal shock on the tissue surface. The problem is stated

without any Dirichlet boundary conditions on �e and

therefore it is defined up to a constant. For a solution

to exist, input current has to be equal to output current,

i.e.
R
@�bn@� I ðEÞ dS ¼ 0.

Following the spatial discretisation of � [�b, let us

suppose the first N nodes are contained in the closure of

�, and the next M nodes are the remaining nodes in the bath

(�bn�). The semi-implicit finite-element formulation of the

bidomain equations can be shown to be (e.g. see Pathma-

nathan et al. (2010)): find Vmþ1
ð1Þ , �mþ1

ð1Þ , and �mþ1
ð2Þ such that

�C
�t

M þ K½�i� 0 K½�i� 0

0 IM 0 0

K½�i� 0 Kð1;1Þ Kð1;2Þ
0 0 Kð2;1Þ Kð2;2Þ

2
66664

3
77775

Vmþ1
ð1Þ

Vð2Þ

�mþ1
ð1Þ

�mþ1
ð2Þ

2
66664

3
77775

¼

�C
�t

MVm
ð1Þ þ cm

0

0

dm

2
6664

3
7775
gsize N

gsize M

gsize N

gsize M

ð6Þ

where, at timestep m, Vm
ð1Þ and �m

ð1Þ are vectors respectively

containing the values of V and �e at the tissue nodes, �m
ð2Þ is

a vector containing the values of �e at the bath nodes, Vð2Þ
is a list of dummy variables (independent of m and nomin-

ally representing voltage in the bath), cm is a vector repre-

senting the transmembrane ionic currents (Iion and I
ðvolÞ
i) at

the tissue nodes, and dm is a vector representing the stimu-

lus current I ðEÞ at the bath nodes. Finally, M , K½�i�, and

K½�i þ �e� ¼
Kð1;1Þ Kð1;2Þ
Kð2;1Þ Kð2;2Þ

� �
ð7Þ

are the appropriate finite-element mass and stiffness

matrices and IM is the identity matrix. Vð2Þ and IM are intro-

duced for ease of implementation in order to ensure that

there are two degrees of freedom associated with each mesh

node (regardless of location in � or �b).

For simplicity, the linear system in equation (6) can be

rewritten as

Ax ¼ A1 BT

B A2

� �
x ¼ b ð8Þ

with blocks A1 ¼
�C
�t

M þ K½�i� 0

0 IM

� �
;B ¼ K½�i� 0

0 0

� �

and A2 ¼ K½�i þ �e�

2.2 The monodomain model

Under certain circumstances (e.g. see [Keener and

Sneyd(1998)]) equations (1)–(3) can be reduced to a PDE

of a single unknown, V, coupled to the system of ODEs

describing transmembrane ionic transport. The problem

to solve, therefore, becomes

� C @V

@t
þ Iion

� �
�r � �rVð Þ ¼ �I ðvolÞ; in �

@u

@t
¼ f u;Vð Þ; in �

ð9Þ

where � is the parallel sum of intra- and extra-cellular

conductivity

� ¼ �i�e

�i þ �e

with boundary conditions

n � �rVð Þ ¼ 0; on @� ð10Þ

This simplification notably reduces the computational

burden associated with the numerical solution of the bido-

main model. However, it is not suitable for all kinds of

application studies. More precisely, More precisely, Potse

et al. (2006) concluded that, in the absence of applied cur-

rents, propagating action potentials on the scale of a human

heart can be studied with a monodomain model. However,

note that bath-loading effects are not correctly captured, as

discussed in Bishop and Plank (2011).

The final finite-element linear system to be solved for

the monodomain model at each timestep can be shown to

be: find Vmþ1
ð1Þ such that

�C
�t

M þ K½��
� �

Vmþ1 ¼ �C
�t

MVm þ cm

� �
ð11Þ

3 Large-scale cardiac electrophysiology
simulation with Chaste

Chaste is an open source computational framework for the

simulation of systems in biology, with a particular focus

on cardiac electrophysiology, cancer modelling, and tissue

growth. It aims to be extensible, robust, fast, accurate, main-

tainable and to use state-of-the-art numerical techniques, is

distributed under the LGPL and BSD licenses and can be

downloaded from www.cs.ox.ac.uk/chaste. For a detailed

description of the Chaste project, its aims and functionality,

the reader can refer to Pitt-Francis et al. (2009).

3.1 Main components of Chaste’s cardiac
electrophysiology solver

Running a cardiac electrophysiology simulation consists of

a number of different stages, illustrated in Figure 1. In the

first phase of the simulation, the simulation parameters

(including simulation duration, timesteps, tolerances, cell

models etc.) are defined, the mesh is loaded from file,

16 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

initial and boundary conditions are specified and the matrix

defined in equations (6) or (11) is assembled. Subsequently,

at each timestep, individual cell models at each mesh node

are integrated (ODE solution), the right-hand-side vector in

equations (6) or (11) is assembled and then the resulting

linear system is solved. It should be noted at this point that

although Figure 1 illustrates the stages of a cardiac electro-

physiology simulation code, there are aspects of the prob-

lem which are generic to FEM programming in general.

Nevertheless, some differences may occur: e.g. many FEM

solvers do not need an ODE solver stage, problems with a

time-varying left-hand side would require the ‘‘Assemble

matrix’’ component to be inside the time-loop rather than

in the initial phase, non-linear PDE solvers would require

the linear system stage to be inside another iterative loop,

and static problems like stress analysis would need no time

loop. In the following sections (as annotated in Figure 1)

the schemes implemented for reducing the parallel scaling

bottlenecks in the Chaste code are described.

3.2 Initial performance evaluation

In order to evaluate the performance of Chaste on large-

scale supercomputers with realistic 3D cardiac models, an

electrical propagation benchmark using a 4 million node

anatomically-based rabbit ventricular mesh (Bishop et al.,

2009) was designed. The benchmark consists of an apical

stimulus followed by simulation of 100 ms of bidomain

activity in the cardiac tissue only (i.e. there is no bath). The

choice of 100 ms as total simulation time is a compromise

between: i) simulating for a period of time that is short

enough to be tractable with the lowest core count consid-

ered (i.e. 32 cores); and ii) choosing a simulation time that

is representative of our applications of interest (e.g. hun-

dreds of ms in Bernabeu et al. (2010b) and Zemzemi

et al. (2011)). Table 2 summarises the experimental details.

The following parameters were used in equations (1)–

(5): � ¼ 1400 cm�1, C ¼ 1:0F/cm2, �i ¼ diagð1:7; 1:7;
1:7Þms/cm, and �e ¼ diagð6:2; 6:2; 6:2Þms/cm, where

diagðx; y; zÞ is a 3� 3 diagonal matrix with values x; y; z
along the diagonal. Further, since the geometry includes

no bath, �b ¼ ;. For solving the linear systems, Chaste

uses implementations of various methods (see later for

details) from PETSc 3.0.0-p8 with no changes to their

default parameter values.

Prior to making any performance improvements, the

benchmark was run on Phase 2a of the HECToR supercom-

puter, a Cray XT4 system with 3072 compute nodes (at the

Flow of control Parallel optimisation

Time < end

Post-process

Output data

Set parameters
Load mesh

Mesh load §4.2

Assemble matrix
for PDEs

Solve cell ODEs
for ionic currents

Solve PDE
linear system

Assemble RHS
for PDEs

Initial conditions
Boundary conditions

Matrix assembly §4.1

RHS assembly §4.1

Output §4.4

Fewer iterations
Less communication

§4.3

Figure 1. A schematic of the main components of the solver with cross-references to the sections describing parallel improvements
made during this study.

Bernabeu et al. 17

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

time of the study). Each compute node consisted of an

AMD 2.3 GHz Opteron Barcelona quad-core and each

quad-core socket shared 8 GB of memory and a Cray

SeaStar2 chip router with 6 links used to implement a

3D-torus network topology. Figure 2 presents, for an

increasing number of cores, the proportion of time spent

by the benchmark simulation in each of the stages

described in Section 3.1.

The first thing to note is that, as core count increases, the

time within the ‘Missing’ section starts to increase. Further

profiling confirmed that it was spent outside the main

stages cited earlier and therefore it was potentially redun-

dant. More precisely, it was identified to be unnecessary

synchronisation and disk access contention when writing

Chaste’s log files. Interestingly, this performance degrada-

tion had passed previously unnoticed when running in

small size clusters and workstations (note how it is hardly

visible for p ¼ 32). This is a good example of how certain

operations that scale well on up to a few 10s of nodes

become major bottlenecks at large scale.

It is also clear from Figure 2 that the proportion of time

spent in ‘RHS assembly’ increases with core count and

starts to dominate the total execution time for p > 128. This

is a good indicator of poor scaling and therefore it was one

of the first issues addressed (Section 4.1.2). It can also be

seen that the time spent in ‘Mesh load’ also scaled poorly.

There are two reasons for this: the sequential nature of the

algorithm used for domain decomposition (METIS) and

disk access contention. Section 4.2 describes how these two

issues were addressed.

The two stages taking most of the time at p ¼ 32 (i.e.

‘System solution’, labelled as KSP, and ‘ODE solve’) do

not show major scaling problems or, where they do, it is not

as severe as those seen with ‘RHS assembly’ or ‘Mesh

load’. For ‘ODE solve’, this is expected behaviour since the

problem is embarrassingly parallel, so will scale linearly

provided that an even distribution of the ionic models

among the available processors is generated. This part of

the code has also been tuned (see Cooper (2009)) in order

to reduce ODE solution time, but this tuning has had no

impact on overall parallel efficiency. In contrast, ‘System

solution’ involves the use of tightly coupled parallel algo-

rithms that are likely to scale suboptimally. Following the

improvements introduced in the ‘Missing’, ‘RHS assem-

bly’, and ‘Mesh load’ stages, the analysis presented in Fig-

ure 2 was repeated, showing ‘System solution’ as the next

target for improvement (results not shown here). The pro-

posed improvements are summarised in Section 4.3.

Finally, it is noted that most of the initial phases of the

solver (such as the application of boundary conditions or

the assembly of the system matrix) do not have a major

impact in parallel scalability. The post-processing phase

(which essentially involves converting data formats for

visualisation and analysing data) is application-specific and

was outside the scope of this publication.

4 Parallelisation

4.1 Linear system assembly

When solving systems of coupled PDEs with FEM, several

fields are computed at each discretisation point (two in the

case of the bidomain equations). In this context, a design

decision has to be taken regarding how unknowns are

arranged in the linear system. The options are to use either

a ‘blocked’ distribution (i.e. x ¼ ½V1;V2; . . . ;Vn; �e1;

�e2; . . . ; �en�T in equation (8), where Vi is the value of V

at the i-th mesh node and similarly with �e), an ‘inter-

leaved’ distribution (i.e. x ¼ ½V1; �e1;V2; �e2; . . . ;Vn;�en�T
in equation (8)) or some hybrid approach. In sequential

implementations, the choice has a moderate impact on per-

formance often associated with matrix bandwidth reduc-

tion. In parallel, there exists an important correlation

between the approach taken and the volume of communica-

tion required for the assembly and solution of FEM linear

systems. Some of the implications of this design decision

are discussed in this section.

Another relevant design decision concerns the way that

the computational domain is partitioned. In principle, it is

possible to partition either node- or element-wise. This

decision has important consequences in terms of load bal-

ancing. The initial performance evaluation in Section 3.2

showed that the linear system and ODE solution stages

Table 2. Benchmark configuration.

simulation duration 100:0 ms
stimulus type apical
stimulus start time 0 s
stimulus duration 0:5 ms
PDE timestep 0:01 ms
cell model Luo–Rudy (1991)
ODE timestep 0:01 ms

0%

25%

50%

75%

100%

32 64 128 256 512 1024 2048

Processors

Mesh
Assemble

ODE
Comms

RHS
KSP

I/O
Missing

Figure 2. Original time breakdown before the improvements
presented in this paper.

18 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

dominate total execution time for low core counts. In both

cases, execution time at each subdomain is a function of the

number of grid points assigned (i.e. number of degrees of

freedom and number of cell models, respectively). There-

fore, it makes sense to partition node-wise to ensure that the

number of grid points in each subdomain stays as constant

as possible. Partitioning element-wise would instead opti-

mise the element distribution (which would have a positive

impact on stages like matrix assembly). Unfortunately, it

would potentially generate a suboptimal node distribution

and therefore unbalance the stages that dominate total exe-

cution time.

Hence, mesh elements need to be distributed among the

available processors based on node ownership. For ele-

ments located at the border between two partitions (like II

and III in Figure 3) a strategy for ownership assignment is

required. Some options are: i) assigning each of them to the

processor owning the larger number of nodes within the ele-

ment, ii) allowing multiple ownership of an element or iii)

distributing them in such a way that the number of elements

owned by each processor is balanced. Some of the implica-

tions of this choice are discussed later in this section.

4.1.1 Matrix assembly. A commonly used method to assem-

ble matrix A in equation (8) is to compute the contribution

of each element and then map the coefficients of this local

matrix into the overall system matrix. In the notation of

Wathen(1989), let e ¼ 1; . . . ; ne1 be a numbering of the ele-

ments, let ne be the number of nodes in element e multiplied

by the number of fields to solve and let n be the total number

of nodes in the mesh multiplied, again, by the number of

fields to solve. Further, let Ee 2 Rne�ne be the element coef-

ficient matrix for each e and Le ¼ ½ljk � 2 Rne�n where

ljk :¼ 1; if j� th local node has global index k;
0; otherwise

�
ð12Þ

that is the Boolean matrix that maps Ee into A . Then the

global assembly process can be formulated as:

A ¼
Xnel

e¼1

LT
e EeLe ð13Þ

where the effect of pre- and post-multiplying Ee by LT
e and

Le can be seen as converting all the ne � ne matrices into a

n� n matrix.

In a parallel simulation, the nel mesh elements must be

assigned ownership according to one of the strategies

described above. For this study, multiple ownership of ele-

ments was implemented because this ensures that no data

communication is required when assembling the system

matrix, at the cost of replicating some computation. The

overhead associated with that replication was quantified

in Pathmanathan et al. (2010): for a 322; 267-element mesh

and 16 processors, the average number of elements assem-

bled by each of the 16 processors was 6.78% against a the-

oretical optimum of 6.25%.

More formally, let E be the set of mesh elements parti-

tioned into p potentially overlapping subdomains Ei such

that

" ¼
[p
i¼1

Ei; ð14Þ

jEj �
Xp

i¼1

jEij ð15Þ

and consider a row-based distribution of the system matrix

A ¼
A1

..

.

Ap

2
64

3
75 ð16Þ

where Ai 2 R
n
p
�n is the rectangular block of A owned by

processor i (assuming n ¼ kp, k 2 N for simplicity). Let

Me;i ¼ ½mi
jk � 2 Rne�n

p where

mi
jk :¼ 1; if ljk̂ ¼ 1 with k̂ :¼ ði� 1Þ n

p
þ k in ð12Þ;

0; otherwise;

�
ð17Þ

be the Boolean matrix that maps Ee into Ai (i.e. maps only

the rows of Ee that belong to processor i, if any). It can be

seen that Ai can be assembled from local data without the

need of communications, i.e.

Ai ¼
X
e2"i

MT
e;iEeMe;i ð18Þ

if and only if i) an interleaved ordering of unknowns and ii)

multiple ownership of elements are implemented.

These two design decisions imply that for an element e

owned by processor i and not located at the partition border

(e.g. I and IV in Figure 3), Ee gets mapped onto Ai rows

only. For an element e0 located at the partition border

(e.g. II and III in Figure 3), Ee0 will be assembled by all the

processes meeting at that border, but the boolean matrix

Me;i will only map onto Ai the rows of Ee0 that are locally

owned by i.

4.1.2 Right-hand side assembly. In Chaste’s original design,

vector b in equation (8) was assembled analogously to

equation (13)

b ¼
Xnel

e¼1

LT
e beLe ð19Þ

2

0

I

II

III

IV

1 4

53 P1

P2

Figure 3. Model problem geometry. Dashed line shows parallel
partition.

Bernabeu et al. 19

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

where e; nel; and Le have been previously defined and

be 2 Rne are the element-wise contributions to the right-

hand side of equations (6) or (11).

It was shown in Pathmanathan et al. (2010) that, pro-

vided Ii and Iion are known point-wise at the nodes, the

main computational kernel in equations (6) and (11) can

be conveniently recast as

�C

�t
MðVm

ð1Þ þ CmÞ ð20Þ

where Cm is a vector with the nodal values of the source

term at timestep m. This operation can therefore be imple-

mented as a vector summation followed by a matrix-vector

product, yielding a speedup by a factor of 68 over the

element-wise evaluation in equation (19) (see Pathma-

nathan et al. (2010) for more details). Another valuable

property of this formulation is that the values of Vm
ð1Þ do not

need to be communicated explicitly across processor bor-

ders for right-hand side (RHS) assembly since the matrix-

vector product will do this implicitly, thus avoiding the

usual halo communication step in FEM solvers.

One final consideration is that in the case of bidomain

RHS assembly, equation (20) only accounts for the first

N entries (out of the total size 2ðN þMÞ) of the RHS of

equation (6). However, its assembly requires solving

I ion ðun;V nÞ at each grid point (ODE system solution

stage). In order to achieve good load balance, ownership

of the grid points (and therefore each ODE system) is dis-

tributed evenly among the available processors. With the

original data layout proposed in equation (6)

b ¼

�C
�t

MðVm
ð1Þ þ CmÞ
0

0

dm

2
664

3
775 ð21Þ

and a data partition compatible with equation (16)

b ¼
b1

..

.

bp

2
64

3
75 ð22Þ

with bi 2 R
n
p being the subvector owned by processor i

(assuming n ¼ kp, k 2 N for simplicity), then processors

owning nodes N þM þ 1 to 2ðN þMÞ would have to

communicate Iion values computed locally to the proces-

sors owning the first N rows for them to finish assembling

the system right-hand side. Therefore, it is advantageous to

rearrange the equations in way that Cm is assembled from

values of Iion computed locally, therefore avoiding commu-

nication. Similarly, efficiency would increase if all the pro-

cessors cooperate in the evaluation of the matrix-vector

product, not only those owning the first N rows. Using an

interleaved unknown ordering (as described at the begin-

ning of this section (Section 4.1)) satisfies the previous two

requirements ensuring good load balance.

Finally, evaluating dm in equation (21) is a potential

source of load imbalance, since it involves computing

surface integrals over a subset of the mesh faces (i.e. appli-

cation of Neumann boundary conditions) at certain time-

steps. The size of the subset is potentially different

between simulations so generic solutions for load balancing

are difficult. Nevertheless, the subset is often small and the

operations involved considerably less expensive than equa-

tion (20).

4.1.3 Implementation details. Chaste uses PETSc parallel

data structures (Balay et al., 2010) wherever possible.

When constructing parallel matrices, PETSc allows for

data to be generated non-locally. At the last stage of con-

struction (known as assembly), PETSc will work out the

appropriate owner and migrate the data. This process

requires several rounds of parallel reductions in order to

ensure consistency among all the processes, even when

no data is being migrated. It is possible to disable this check

provided that all the data is generated locally, reducing the

number of parallel reductions required with an important

impact in parallel scalability. In PETSc version 3.0 this can

be done for matrices with the following function call:

MatSetOption(lhs_matrix, MAT_IGNORE_OFF_
PROC_ENTRIES, PETSC_TRUE) where lhs_matrix is

a parallel matrix, in this case the one storing the system

matrix A. The same consideration applies to the assembly

of vectors. In this case, the portion of vector Cm in equation

(20) owned by each process can be assembled from local

data and therefore there is no need to check for non-

locally generated data. In PETSc version 3.0 this can be

enforced with the following call:

VecSetOption(petsc_vector, VEC_IGNORE_
OFF_PROC_ENTRIES, PETSC_TRUE) where petsc_
vector is any PETSc vector.

4.2 Mesh load and partitioning

The first step in running a simulation is to read in the mesh

representing the system geometry from a file. In a parallel

simulation it is then also necessary to partition this mesh

between the available processes. In general, this one-time

cost is relatively low for a sequential simulation––and,

hence, little consideration has been given to optimising it.

At the beginning of this work, Chaste used the METIS-

based mesh partitioning algorithm described in Pathma-

nathan et al. (2010). This method requires each process to

perform a sequential partition of the mesh in order to deter-

mine which nodes it owns. This makes METIS unsuitable

for partitioning meshes that are too large to fit into memory

on a single core. Further, since each process calls METIS

sequentially and the temporal cost of the partitioning algo-

rithm is a function of the number of partitions, the overall

time to obtain the partition increases (even for a fixed

mesh) with the number of processes. Hence, for HPC simu-

lations, Amdahl’s law (Amdahl, 1967) means that the cost

of loading the mesh rapidly increases relative to all other

parts of the code (the work for which can be distributed).

Modifying the algorithm to use ParMETIS (Schloegel

20 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

et al., 2002), the parallel version of METIS, is relatively

straightforward (in Chaste, ParMETIS is instead accessed

via PETSc wrapper functions that provide the functionality

required to partition based on nodes that is absent when

calling ParMETIS directly).

A good mesh partitioning will not only balance the

amount of geometry on each compute node (and thus bal-

ance the work load), but will also minimise the communi-

cation boundaries and reduce the skyline of the main

matrix. The effect of the mesh partition on the matrix struc-

ture results in improvements to the matrix assembly (Sec-

tion 4.1.1), to the RHS assembly (Section 4.1.2) and the

system solution (Section 4.3). We have previously quanti-

fied these improvements in Pathmanathan et al. (2010).

The importance of the mesh partitioning step has been

previously acknowledged in the literature (e.g. see Devine

et al. (2005) and Teresco et al. (2006)). Furthermore, it has

become of increasing interest due to the substantial incre-

ment in the number of cores available in emerging architec-

tures (Devine et al., 2006; Zhou et al., 2012). In particular,

the use of ParMETIS-based partitioning algorithms for par-

allel finite-element method simulations has been widely

reported in the literature (Piggott et al., 2008; Sahni et al.,

2009; Bekas et al., 2010; Shadid et al., 2010; Niederer

et al., 2011). In the current section, we also consider an often

neglected aspect of the problem: the design of a scalable

algorithm that, given a ParMETIS partition, reads the mesh

from disk and creates the relevant data structures.

The original file format used in Chaste to represent

meshes consisted of separate ASCII files containing

lists of node coordinates (.node file), a list of the nodes

contained in each element (.ele file) and a list of the nodes

contained in each surface element (.face file). For large

meshes these files can grow to be very large, e.g. for a mesh

containing approximately 4 million nodes and 24 million

elements the file sizes are 129 MB (node), 958 MB (ele-

ment) and 33 MB (face). Further, non-constant field length

in ASCII files makes it difficult to implement random

access, so it is necessary for each process to read the three

files in their entirety, determine what information it needs

to retain and discard the rest. In practice––since the soft-

ware must be able to deal with files that are too large to fit

in the memory available to a single process––the element

file must be read several times, as can be seen in Algo-

rithm 1, which shows the initial Chaste mesh load algo-

rithm (excluding the face file read, which is equivalent to

the final element file read).

In order to reduce the amount of data that each process

was required to read, the files were converted to binary for-

mat. This has two consequences: the files are smaller (and

hence can be read in less time) and each entry is a fixed size

(allowing random access, meaning that each process can

jump straight to the entries it needs to read). However,

since a process owns an element if it also owns one or more

of its nodes, it is necessary for that process to interrogate

each element in turn to determine whether or not it owns

it––and (as seen in the first loop over elements in

Algorithm 1) this necessitates a complete pass through the

element file (generally the largest of the mesh files). Even

when using a binary file format this is expensive and does

Algorithm 1: Original mesh load algorithm (omitting loading of boundary element files). ASCII file format requires the mesh reader to
visit every entry of a file, even when the node or element it relates to is owned by a different process. Constructing the mesh requires
two loops over the entire element file and one loop over the entire node file. Performing the METIS partitioning requires a further loop
through the element file.

Input: Mesh files (ASCII format): list of nodes (.node), list of elements (.ele).
Output: Chaste mesh object, including node objects for local and halo nodes, element objects (with pointers to contained nodes) for

local elements.
1 ComputeMetisPartitioning();
2 for element ¼ 0 to num_elements – 1 do /* Loop over all elements */
3 ReadNextElementFromFile();
4 for element_node¼0 to num_nodes_per_element do
5 if element_node 2 owned_nodes then ownedElements.insert(element);
6 else possible_halo_nodes.insert(elememt_node);
7 if element 2 owned_elements then haloNodes.insert(possible_halo_nodes);
8 for node ¼ 0 to num_nodes – 1 do /* Loop over all nodes */

// Previous element file loop identifies halo nodes.
9 ReadNextNodeFromFile();

10 if node 2 ownedNodes then ConstructNode(node);
11 else if node 2 haloNodes then ConstructHaloNode(node);
12 ResetElementFile();
13 for element ¼ 0 to num_elements – 1 do /* Loop over all elements */

// Previous node file loop creates node objects to be pointed to.
14 ReadNextElementFromFile();
15 if element 2 ownedElements then
16 ConstructElement(element);
17 for element_node¼0 to num_nodes_per_element do
18 SetupPointerFromElementToContainedNode(element_node);

Bernabeu et al. 21

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

not scale in parallel. Thus, a fourth (binary) mesh file was

introduced for the largest meshes. This is the reverse of

the element file: containing a list of which elements each

node is contained in (known as the node-connectivity list

or .ncl file). Each process can then access the parts of the

.ncl file that correspond to the nodes that it owns and very

rapidly construct a list of the elements that it owns. The

process is then able to access directly only the parts of the

element file that it needs to. Note that for a simulation on n

processes, each process can be expected to own around

1=n-th of the total number of elements––so introducing

the node-connectivity file is key to making the mesh load

scale. The latest Chaste mesh load algorithm is shown in

Algorithm 2.

The improvements presented in this section only refer to

algorithmic problem considerations, that is, ensuring that

the volume of data read by each process decreases with the

number of processes involved (for a fixed problem size).

The authors believe that the techniques presented are gen-

eric enough to be usable by other parallel finite-element

codes. However, we also acknowledge that achieving a

good interaction with the underlying parallel file system

will greatly influence the algorithm implementation perfor-

mance. Such a task requires substantial knowledge of the

underlying parallel file system and architecture and is

beyond the scope of this work.

4.3 Linear system solution

Most authors choose the conjugate gradient (CG) algorithm

for the solution of mono/bidomain FEM linear systems

(e.g. Colli-Franzone and Pavarino (2004), Plank et al.

(2007), Pennacchio and Simoncini (2009) and Pathma-

nathan et al. (2010)). However, other Krylov subspace

methods such as GMRES (e.g. Whiteley (2006)) or Bi-

CGSTAB (e.g. Potse et al. (2006)) have been successfully

applied as well. In order to study the parallel efficiency of

different iterative solvers, the different computational ker-

nels involved must be considered individually. In the case

of Krylov subspace methods, these are: i) vector inner prod-

ucts, ii) vector–vector linear combination (axpy) opera-

tions, iii) matrix–vector products, and iv) preconditioner

application. axpy operations do not compromise parallel

scalability since they can be performed without need of

communication (assuming a consistent parallel distribution

of all the vectors involved). Matrix–vector products

require a certain degree of communication, but, as shown

in Pathmanathan et al. (2010), reduction of the matrix

bandwidth through the use of graph-based domain decom-

position techniques increases scalability. The scalability

of the preconditioning step is determined by the precondi-

tioning technique of choice: preconditioners such as point

Jacobi or block Jacobi with incomplete factorisation at

each subblock do not require communications. Whole

matrix incomplete factorisation or multigrid techniques

are tightly coupled algorithms that require a higher degree

of communication. Finally, vector inner products are

communication-intensive operations as they are often

implemented as parallel reductions. Parallel reductions

are also required when checking for convergence if the

stop criteria are based on the evolution of the l2-norm of

the residual.

Algorithm 2: New mesh load algorithm (ommitting loading of boundary element files). Binary file format allows random file access and
.ncl file provides a fast way of determining locally owned elements. Constructing the mesh requires locally owned elements to be read
from file twice each, locally owned nodes to be read from file twice each and halo nodes to be read from file once each. Performing the
ParMETIS partitioning requires further file accesses to the element file—but does not require each process to read the entire file.

Input: Mesh files (binary format): list of nodes (.node), list of elements (.ele), list of elements containing each node (.ncl).
Output: Chaste mesh object, including node objects for local and halo nodes, element objects (with pointers to contained nodes) for

local elements.

1 ComputeParmetisPartitioning();
2 for local_node ¼ 0 to num_local_nodes – 1 do /* Loop over local nodes */
3 elements_containing_node ¼ GetContainingElementsFromNclFile(local_node);
4 ownedElements.insert(elementscontainingnode);
5 for local_element ¼ 0 to num_local_elements – 1 do /* Loop over local elements */
6 ReadElementFromFile(local_element);
7 for element_node¼0 to num_nodes_per_element do
8 if element_node =2 owned_nodes then haloNodes.insert(element_node);
9 for local_node ¼ 0 to num_local_nodes – 1 do /* Loop over local nodes */

10 ReadNodeFromFile(local_node);
11 ConstructNode(local_node);
12 for halo_node ¼ 0 to num_halo_nodes – 1 do /* Loop over halo nodes */
13 ReadNodeFromFile(halo_node);
14 ConstructHaloNode(halo_node);
15 for local_element ¼ 0 to num_local_elements – 1 do /* Loop over local elements */
16 ReadElementFromFile(local_element);
17 ConstructElement(local_element);
18 for element_node ¼ 0 to num_nodes_per_element do
19 SetupPointerFromElementToContainedNode(element_node);

22 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4.3.1 Inner product reduction. Several authors (e.g. Barrett

et al. (1994) and Gutknecht and Röllin (2002)) have pro-

posed the use of the Chebyshev Iteration (CI) method

(Golub and Van Loan, 1996) for the solution of the sym-

metric linear systems

Ax	 ¼ b; A 2 Rn�n; x	; b 2 Rn ð23Þ

hence avoiding inner products which often become a perfor-

mance bottleneck in parallel hardware. The method requires

enough knowledge about the spectrum of the preconditioned

operator M�1A that an interval ½a; b� enveloping all the

eigenvalues can be defined. More precisely, given the pre-

conditioned system

M�1Ax	 ¼ M�1b ð24Þ

with M 2 Rn�n and its spectral factorisation

M�1A ¼ Q�QT ð25Þ

where

QQT ¼ I ; � ¼ diagð�1; �2; . . . ; �nÞ; �1 � �2 � . . . � �n

ð26Þ

the method requires knowledge about the interval ½a; b�
such that

a � �1 � �2 � . . . � �n � b ð27Þ

With this information, the method defines a family of

Chebyshev polynomials pi for the interval ½a; b�, scaled so

that pið0Þ ¼ 1. Based on the three-term recurrence relation

for pi and an initial guess x0, the method computes a

sequence of approximations xi; i
 1 that converge to x	.
A detailed description is given in Manteuffel (1977).

The following result will be useful in later discussion:

let ri ¼ b� Axi; i
 0 be the residual vectors, and express

r0 in the basis of the eigenvectors qj 2 Rn;Q ¼ ½q1; . . . ; qn�

r0 ¼
Xn

j¼1

�jqj ð28Þ

Then, it can be shown (e.g. see Calvetti et al. (1994)) that

ri ¼
Xn

j¼1

�jpið�jÞqj ð29Þ

Based on a survey of the literature, it appears that the CI

method has never been successfully applied to the solution

of the mono/bidomain equations using modern parallel

hardware. Two possible reasons for this are: i) the intrinsic

difficulty of estimating ½a; b� for large matrices, and ii) the

fact that in practice CG may converge to the solution more

quickly than CI due to its superlinear convergence proper-

ties, which cannot be expected from CI templates. This

reduction in the total number of iterations required may

compensate for the inferior scalability, yielding an overall

shorter execution time. Also note that, in realistic 3D simu-

lations, A is on the order of millions of degrees of freedom

and therefore explicitly computing the eigenfactorisation in

equation (25) is unfeasible. Iterative methods such as the

Lanczos algorithm can compute a subset of � at a much

more reduced cost.

In Calvetti and Reichel (1996) a hybrid iterative method

that alternates CG and Richardson iterations for the solu-

tion of symmetric positive definite linear systems is pro-

posed. The method starts by performing m CG iterations

and, thanks to the well-known relationship between CG and

the Lanczos algorithm (e.g. see see Golub and Van Loan

(1996)), also computes a tridiagonal matrix Tm 2 Rm�m that

can be used to approximate �. The eigenvalues of Tm, f�̂k
i g,

satisfy

�1 � �̂k
1 � �̂k

2 � . . . � �̂k
m � �n ð30Þ

(with associated eigenvectors q̂i) where k is the number of

times that CG has been used to approximate the spectrum.

After that, the interval ½ak ¼ �̂k
1; b

k ¼ �̂k
m� is used to initia-

lise the Richardson iteration and iterate until the solution is

found or until slow convergence is detected. A degradation

in convergence rate after, say, p iterations indicates that the

residual rmþp is orthogonal to all, or almost all, the eigen-

vectors q̂i, i.e. pmþpð�̂iÞ ¼ 0 in equation (29). At this point,

m new CG iterations will be performed in order to generate

a new interval ½akþ1; bkþ1� such that

�1 � akþ1 � ak ; bk � bkþ1 � �n ð31Þ

The Richardson iteration is then resumed with the new

interval. The hybrid scheme alternates between CG and

Richardson iterations as described until a sufficiently con-

verged solution of equation (23) is found. Note that the def-

inition of m has been intentionally left out from the

discussion—a discussion and an empirical evaluation of the

optimal number can be found in Calvetti and Reichel (1996).

In the current work, this idea is extended to the solution

of linear systems with multiple—but not simultaneously

available—right-hand sides, as is the case in the FEM solu-

tion of the mono/bidomain equations and other systems of

PDEs including time derivatives. Interleaving complete CG

and CI solves is proposed, rather than interleaving CG and

Richardson iterations within the same solve. This is moti-

vated by the fact that efficient parallel implementations

of CG and CI solvers are readily available and can be used

as black boxes. In this case, CG is used both for solving the

first timestep (and possibly later ones) and for computing (via

the aforementioned Lanczos connection) the interval ½a; b�
that is used to initialise subsequent CI solves. The width of the

interval—and therefore the proportion of the spectrum con-

tained in it—depends on the number of CG iterations per-

formed. Unlike the algorithm in Calvetti and Reichel

(1996), a fixed number of CG iterations is not specified here.

Rather, iterations continue until jjrijj < rtol, with rtol being the

tolerance specified for the solution of the FEM linear systems.

Table 3 tabulates �̂l
1, �̂l

m and jjrljj after l CG iterations for a

bidomain simulation with a realistic 3D geometry.

The choice of ½a; b�, driven in this case by the choice

of rtol in the first CG solve, determines the convergence

Bernabeu et al. 23

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

rate of subsequent CI solves. Underestimating �, by not

including eigenpairs (�̂j, q̂j) associated with large values

of �j in equation (28), can lead to convergence stagna-

tion. Overestimating it can lead to slow convergence due

to the need to compute polynomials of higher degree.

Table 4 shows the number of iterations taken by the first

CI solve initialised with ½a ¼ �̂l
1; b ¼ �̂l

m� for a range of

values of l.

It can be observed that the minimum number of itera-

tions is achieved with a ¼ �̂16
1 ; b ¼ �̂16

m . One may think that

the optimal choice of parameters a and b is somehow

arbitrary or at best requires an expensive tuning process.

However, it can be seen in Table 3 that after 16 iterations

jjrjj <10�4, which corresponds to the tolerance used in the

Chebyshev linear solver. It can, therefore, be concluded

that the optimal choice of parameters a and b corresponds

to the values of �̂l
1; �̂

l
m computed by CG when configured to

solve to the same accuracy as the Chebyshev linear solver.

Finally, it cannot be expected that the choice of para-

meters a and b will remain optimal throughout the whole

simulation, especially if sudden changes to jjrijj happen.

Therefore, the interval ½a; b� needs to be reevaluated every

certain number of timesteps. In Calvetti and Reichel

(1996), this is done by monitoring jjrijj evolution. Here,

however, the intention is to minimise the number of jj � jj
operations since they require global reduction operations

which compromise parallel scalability. The following sub-

section describes the approach taken to achieve this.

4.3.2 l2-Norm reduction. Even in the cases when an inner-

product free iterative method (such as CI) is used, one glo-

bal reduction per iteration is required when the stop criteria

of the method is based on the evolution of the l2-norm of

the residual. The current work proposes an algorithm that

overcomes this bottleneck by interleaving: a) solves with

default stop criteria and b) solves where a fixed number

of iterations is performed—therefore avoiding l2-norm

computation—with a 1 : s ratio (i.e. s consecutive CI solves

with fixed number of iterations per each CI solve with

default stop criteria). This approach is based on the evi-

dence that, for accurate enough values of a; b, the number

of iterations required by successive CI solves varies

smoothly as shown in Figure 4. Note that this may require

periodic reevaluations of ½a; b� as already mentioned.

Sudden changes in iteration count are triggered by

events such as stimuli application (both user-defined and

coming from self-stimulating cells), the presence in the

domain of polarisation/repolarisation wavefronts and, in

general, any event inducing sudden changes in jjrijj. For

some of these events, the precise moment when they occur

is known at the beginning of the simulation. Therefore, it is

possible to reset the 1 : s ratio so that solution is not under-

approximated. For others, such as the beginning of a repo-

larisation wavefront, there is no easy way of anticipating

them and the solution will be under-approximated until the

next convergence-based solve.

4.3.3 A hybrid CG–Chebyshev method. Algorithm 4.3.3 sum-

marises the techniques presented in Sections 4.3.1 and 4.3.2

for the reduction of inner products and l2-norms required

by standard Krylov subspace methods. Note the two differ-

ent uses of the CI linear solver: in line 7, the algorithm iter-

ates until jjrijj < rtol and records the number of iterations

Table 4. Number of iterations taken by CI initialised with

½a ¼ ll
1; b ¼ ll

m� for a range of values of l (from Table 3). Second
simulation timestep.

l number of iterations

3 30
5 25
16 21
19 28
22 40
54 45
58 101

3

4

5

6

7

8

9

10

11

0 1000 2000 3000 4000 5000

nu
m

be
r

of
 it

er
at

io
ns

timestep number

Figure 4. Number of iterations taken by CI (rtol ¼ 10�6) at each
PDE timestep for a bidomain simulation with the University of
California, San Diego (UCSD) rabbit model (Vetter and McCul-
loch, 1998.)

Table 3. Solution residual jjrljj after l CG iterations, smallest
eigenvalue (ll

1), and largest eigenvalue (ll
m) simultaneously

computed with the Lanczos algorithm. First simulation timestep.

l l̂l
1 l̂l

m jjrljj

1 0.696 0.696 141.10
2 0.525 0.965 39.13
3 0.481 1.048 12.49
4 0.451 1.181 4.79
5 0.425 1.336 1.62
10 0.380 1.510 0.0257
15 0.3667 2.203 0.000124
16 0.3662 2.237 0.0000529
20 0.117 2.243 0.0000168
25 0.0924 2.24485 0.00000206
30 0.0878 2.24487 0.000000273
40 0.085868 2.59049 0.00000000389

24 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

num its taken, whereas in line 9 a fixed number of itera-

tions num_its is performed.

In order to evaluate the error introduced by the use of a

fixed number of iterations, a benchmark consisting of 500

ms of bidomain activity following an apical stimulus on the

UCSD rabbit model (Vetter and McCulloch, 1998) was

designed. Figure 5(a) plots the infinity norm of the error

against time for a range of values of 1 : s when compared

with a reference solution computed with CG. It can be seen

that for the largest portion of the simulation, the error stays

within the linear solve tolerance, rtol ¼ 10�6 in this case.

Only during periods when depolarisation and repolarisation

wavefronts travel through the domain is the error induced is

larger than rtol, mainly within one order of magnitude.

Once these events have ended the error goes below rtol

again, which indicates that error is not accumulated in time.

Figure 5(b) shows that there is not a huge variation in the

error induced for the different values of s studied.

4.3.4 Preconditioning. Bidomain preconditioning has become

an active field of research over the past years (dos Santos

et al., 2004; Pennacchio and Simoncini, 2009; Plank

et al., 2007; Pavarino and Scacchi, 2008). Algebraic

multi-grid (AMG) preconditioning has been successfully

applied to the efficient solution of bidomain linear systems.

However AMG does not exhibit mesh-independent con-

vergence properties, i.e. the convergence rate of an

AMG-preconditioned linear solver will deteriorate with

refinement of the computational domain. In order to

address this issue, mesh-independent bidomain precondi-

tioners have been proposed (Pennacchio and Simoncini,

2009; Bernabeu et al., 2010a). In Bernabeu et al.

(2010a), we propose a preconditioner that exploits the

block structure of the matrix in order to reduce computa-

tion time and achieve mesh-independent convergence. In

a more recent publication (Bernabeu and Kay, 2011), we

present scalable parallel implementations of the tech-

niques described in Bernabeu et al. (2010a) and identify

a dependency of the most efficient bidomain precondi-

tioner on the coefficient between the PDE solution time-

step and the square of the spatial discretisation (�t=h2).

4.4 Output

Output of the results of a massively parallel simulation is

not as straightforward as in the sequential case or for a

small number of processes. In these cases periodically writ-

ing the values of the variables of interest to a single file is

likely to be relatively cheap compared to the cost of com-

puting the solution. However, this strategy does not scale

as the number of processes increases: each process in turn

has to open the file, write its data and then close the file—

and, hence, the time required to do this increases for a

larger number of processes. This problem can be com-

pounded if the computational resource being used has a dis-

tributed file system (e.g. Lustre or NFS), requiring

additional time to be spent communicating the data to the

location at which it is to be stored. So, small tasks (such

as updating a file that tracks the progress of the simulation)

that can be completed in a very small time by each process,

and barely show up in profiling in parallel, even when using

10 s of processes can become very severe bottlenecks at

larger scales as processes compete to write to disk. Hence,

where possible, global information should be calculated

and written to file by a single process (without communica-

tion) even though this may lead to other processes remain-

ing idle and may result in less readable code.

However, for output of the simulation’s variables

(which are distributed over all processes), bandwidth lim-

itations mean that it is not efficient to concentrate data on

a single process for output. Hence, Chaste was designed

to make use of the HDF5 parallel I/O library (http://

www.hdfgroup.org/HDF5). Based on MPI-IO, this pro-

vides a set of routines that efficiently write complex data

structures to disk in parallel. The results of this have proved

to be mixed: while the use of HDF5 does seem to prevent

the time required to perform I/O from increasing signifi-

cantly as the number of processes increases, the code does

not appear to scale in parallel when used within Chaste and

timings (on any number of processes) are extremely

inconsistent.

5 Results

Following the initial performance evaluation presented in

Section 3.2 and the description of the proposed improve-

ments in Section 4, we now turn our attention to the evalua-

tion of those improvements.

5.1 Scalability improvements

5.1.1 Mesh load. Figure 6 shows the time taken by the mesh-

load stage against the number of cores for five different

versions of the code. In the original version, the mesh-

load time increased rather than decreased with the number

Algorithm 3: Hybrid CG–Chebyshev method for symmetric
systems with multiple, not simultaneously available, right-hand
sides.

Input : System matrix A 2 Rn�n, initial guess x�1 2 Rn, tolerance
rtol, number of timesteps nt, 1:s ratio.

Output: fxig : Axi ¼ bi, 0 � i < nt

1 for i ¼ 0 to nt – 1 do
2 bi :¼ assemble_rhs(i, xi –1);
3 switch i (mod s) do
4 case 0
5 [xi, a, b] :¼ CG(A, bi, rtol);
6 case 1
7 [xi, num_its] :¼ Chebyshev1(A, bi, a, b, rtol);
8 otherwise
9 xi :¼ Chebyshev2(A, bi, a, b, num_its);

10 end
11 end
12 end

Bernabeu et al. 25

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

of processors. There were two reasons for this: i) mesh files

were read in their entirety by all the processors and ii) a

sequential algorithm was used to compute the partitions.

In this scenario, mesh-load time will, at best, remain con-

stant. However, the fact that all the processors were concur-

rently accessing the entire set of files produced disk access

contention due to the large number of read operations

issued at large core counts. Further, in the case of ii) the

asymptotic cost of the algorithm is directly proportional

to the number of partitions to be generated (i.e. to the num-

ber of processors running the simulation).

Following the introduction of a binary file format, mesh-

read times were reduced by a factor of 4.21 on average,

mainly due the fact that data representation was more com-

pact and direct access could be performed on the node file.

However, scalability still remained an issue. Next, the addi-

tion of PETSc-based partitioning (instead of raw calls to

METIS) allowed for the partitioning step to be performed

in parallel, greatly reducing the execution time for large

core counts: a factor of 2.23 for p ¼ 4096. Nevertheless,

it was still necessary for the element file to be read in its

entirety by all the processors, introducing a sequential por-

tion of code that dominated the total execution time. Next,

the introduction of .ncl files allowed for parallelisation of

the element file read. It can be seen from Figure 6 that the

total mesh-read time scales well up to 128 processors when

using binary file format, PETSc-based partitioning and .ncl

files. However, for larger core counts the mesh-read time

increases again due to disk access contention.

In the final version of the code (labelled ‘‘Binary þ
PETScþ NCL þ File preload’’ in Figure 6) a warm-up run

is performed before the actual simulation being timed in

order to validate the hypothesis about the file access con-

tention. The rationale behind this is that the files will be

cached by the distributed file system before the time the

second run starts, therefore reducing latency and hiding

disk access contention. When compared with the previous

version, it can be seen that the mesh-load time stays fairly

constant for p ¼ 32 (46 s vs 42 s) but is greatly reduced for

larger core counts: scalability is very good up to 1024

cores, achieving 92% and 80% scalability for 64 and 128

cores respectively. It can be seen that the total read time

saturates at around 6 s for p ¼ 1024 and slightly increases

for p >1024. This is due to some portions of this stage not

being parallelised and to the fact that the problem is of

fixed size and, therefore, the proportion of halo nodes and

elements increases with p, making the use of large numbers

of cores ineffective if the ratio of number-of-nodes to

number-of-processors becomes too small. Hence, if the

mesh size in the benchmark was increased good scalability

up to p ¼ 4096 and beyond would be expected.

5.1.2 Right-hand side assembly. The time taken by the RHS

assembly stage is plotted against number of cores for three

different versions of the code in Figure 7. In the original

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

0 1000

(a) (b)

2000 3000 4000 5000

||e
|| in

f

timestep number

Solver tolerance
1:256
1:128
1:64
1:32
1:16
1:8
1:4
1:2

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

0 1000 2000 3000 4000 5000

||e
|| in

f

timestep number

Solver tolerance
1:256

1:2

Figure 5. Error introduced by several configurations of the ratio 1 : s in the hybrid CG–CI algorithm compared with a reference
solution computed with CG. Panel (a) shows the error for a values of s between 2 and 256. Panel (b) focuses on the configurations
presenting the largest and smallest error.

 1

 10

 100

 1000

32 64 128 256 512 1024 2048 4096

t(
s)

number of cores

Original
Binary file format

Binary + PETSc domain decomposition
Binary + PETSc + NCL extra file

Binary + PETSc + NCL + File preload

Figure 6. Mesh load time for different numbers of cores.

26 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

implementation, it can be seen that execution time

remained constant no matter how many cores were used.

Recall that this problem had been identified in Figure 2.

The poor scaling resulted from the distributed vector con-

taining the solution at the previous timestep (Vm
ð1Þ and Vm

in the bidomain and monodomain formulation, respec-

tively) having to be explicitly gathered on each processor

involved in the simulation at the beginning of the assembly

phase. During earlier stages of development, this design

had been proved to scale well on low core counts, making

it a valid alternative to the more complex task of program-

ming an explicit halo-value exchange across subdomain

borders for low core counts. However, the results presented

here demonstrate that it did not scale beyond a few 10s of

processes.

Even for low core counts, the original implementation

turned out to be one order of magnitude slower than later

improvements. The first of these improvements (plotted

as ‘‘Matrix-based assembly’’ in Figure 7) comes from the

elimination of global gather operations and from the switch

from element-wise assembly to matrix-based assembly

described in Section 4.1.2. It can be seen that the solution

scales well for up to 512 cores; however for larger core

counts, the execution time increases. Further profiling

showed that this was due to the increasing time spent per-

forming parallel reductions during the assembly of Cm in

equation (20) in the monodomain case. This scalability

issue is also identified in Tallent et al. (2009). In order to

reduce the number of global reduction operations required,

the optimisation described in Section 4.1.3 was used. Note

that this optimisation is only possible due to the use of the

permutation described at the beginning of Section 4.1,

which ensures that all the entries of Cm are generated

locally.

5.1.3 System solution. At the beginning of this work, CG was

Chaste’s default linear solver. However, when the code was

ported to HECToR other available linear solvers were eval-

uated. It was found that PETSc’s implementation of the

SYMMLQ algorithm was competitive. Finally, the hybrid

CG–Chebyshev algorithm presented in Section 4.3 was

also successfully ported.

Table 5 shows the time taken by the system solution

stage against the number of cores for the three linear

solvers mentioned. It can be seen that the SYMMLQ algo-

rithm is faster than CG for 1024 or more cores. This was

unexpected since SYMMLQ needs to perform extra work

to overcome the potential indefiniteness of the linear sys-

tem. The magnitude of the difference in time suggests that

this speedup is most likely to be due to implementation

characteristics. Further profiling needs to be performed in

order to validate this hypothesis. The hybrid CG–Cheby-

shev method is faster than any of the previous methods for

all the core counts considered. For p ¼ 64 the method is

around 15% faster than CG. This shows that for low core

counts the gains from the reduction in the number of inner

products and jj � jj operations are modest and mainly due to

fewer arithmetic operations being performed. For large

core counts (e.g. p ¼ 4096), the hybrid method is around

52% faster than CG and 35% faster than SYMMLQ. This

demonstrates that as the number of cores increases the pro-

portion of time spent performing inner products and jj � jj
operations increases, mainly due to the fact that the time

required to perform a global reduction is a function of p.

Figure 8 evaluates this time reduction in terms of speedup

improvement.

5.2 Final time breakdown

Following optimisation, the proportion of time spent by the

benchmark simulation in each of the stages described in Sec-

tion 3.1 is shown, for a range of processor counts, in Figure 9.

This figure is exactly equivalent to the analysis before opti-

misation shown in Figure 2.

Firstly, note that the time initially reported as ‘Missing’

has been successfully removed. Secondly, the ‘RHS assem-

bly’ stage has been greatly improved: it now takes no more

than 8.6% of the total execution time (against 25–65% in

the original time breakdown) and also scales almost linearly

up to 1024 cores, degrading only slightly for 2048 and 4096

cores. Thirdly, the proportion of time spent reading in the

mesh has been greatly improved, being almost unnoticeable

for 32–1024 cores. However, the increasing proportion of

 10

 100

 1000

 10000

32 64 128 256 512 1024 2048 4096

t(
s)

number of cores

Original
Matrix-based assembly

Matrix-based assembly + reduction free

Figure 7. Right-hand side assembly time for different numbers of
cores.

Table 5. Linear solve time (s) for different numbers of cores and
the three linear solvers considered.

Number of
processors CG SYMMLQ

Hybrid CG–
Chebyshev 1 : 16

64 619 666 535
128 313 337 262
256 145 159 123
512 78.8 80 65.8
1024 48.4 48 35.9
2048 30.8 29.4 22.4
4096 28.6 25.5 18.8

Bernabeu et al. 27

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

time spent for 2048 and 4096 cores highlights the fact that

the absolute time spent in this stage is actually higher than

for 1024, indicating that the execution is probably suffering

from file access contention. Nevertheless, the ‘Mesh’ time

for p ¼ 4096 has been reduced by a factor of 60 when com-

pared with the initial execution. Next, it can seen that linear

system solution (‘KSP’) and ‘ODE’ scale well and ‘KSP’

now takes the greatest proportion of total execution time,

as one would expect from a bidomain simulation with a

fairly simple ionic model, like the Luo–Rudy model (Luo

and Rudy, 1991).

Finally, two operations that were almost unnoticeable in

the initial time breakdown increase their presence at large

core counts: ‘I/O’ and ‘Comms’ (which cover writing out

the simulation results and performing certain synchronisa-

tions and distributed error checks). There are two reasons

for this: i) both operations involve either synchronisation

or access to resources with a low degree of replication

(such as Lustre I/O nodes), and ii) the benchmark used

consists of around 8 million degrees of freedom, at

p ¼ 4096—so the number of degrees of freedom per core

is only around 2000, which may not be enough to ensure

full utilisation of all the functional units available. This sit-

uation is common when performing strong scaling analysis

(i.e. quantifying how the solution time varies with number

of processors for a fixed problem size). In fact i) is also

a direct consequence of ii), since operations like ‘I/O’,

‘Comms’ or ‘Mesh’, and in general any task that is intrin-

sically sequential or with an asymptotic cost greater than

Oðn=pÞ, will take an increasing proportion of total time

as the number of degrees of freedom per processor

decreases.

6 Discussion and conclusions

In this paper, effective parallelisation strategies for Chas-

te’s bidomain solver have been described. The code was

initially ported to HECToR (the UK’s high-end computa-

tional resource), where simulations could be run using two

orders of magnitude more processors than ever before. Ini-

tial profiling highlighted a number of scalability issues only

identifiable at a large scale (e.g. mesh read, RHS assembly,

linear system solution). Section 4 describes the techniques

implemented to address these issues, including novel com-

putational and numerical techniques as well as techniques

at the interface between them. Of particular interest is the

novel hybrid CG–Chebyshev linear solver presented in

Section 4.3. Although the hybrid concept was first intro-

duced in the late 1980s, a literature survey indicates that the

Chebyshev Iteration method has not been successfully

applied to the reduction of linear system solution time using

modern parallel hardware.

Figure 10 compares parallel speedup before and after the

work presented in Section 4. It can be seem that in the code

described in Section 3.2 (solid red line), speedup saturated at

around 100 no matter the number of processors used. The

optimisations allowed for speedups of over 1400 (compared

 0

 500

 1000

 1500

 2000

 2500

64 256 512 1024 2048 4096

sp
ee

du
p

number of cores

CG
SYMMLQ

hybrid CG-Chebyshev
linear speedup

Figure 8. Parallel speedup for the three linear solvers considered
and an increasing number of processors.

0%

25%

50%

75%

100%

32 64 128 256 512 1024 2048 4096
Processors

Mesh
Assemble
ODE

Comms
RHS

KSP
I/O

Figure 9. Final time breakdown after the improvements pre-
sented in this paper.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

sp
ee

du
p

Original speedup
Paper improvements

Linear speedup

64 256 512 1024 2048 4096

number of cores

Figure 10. Chaste’s scalability for a typical bidomain simulation
before (solid red line) and after (broken green line) the
improvements presented in Section 4.

28 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

to sequential execution) and resulted in optimal or near-

optimal scalability for up to 512 cores. They yield a com-

bined improvement (compared to the initial code) by a factor

of over 140 in the fastest possible execution time for the

benchmark, meaning that Chaste’s bidomain solver is now

two orders of magnitude faster than at the beginning of the

work described here. Further optimisations relating to

sequential performance (with no impact on parallel scaling)

have also been described in Southern et al. (2011). Table 6

summarises the real–time ratios achieved as a result of all the

optimisations. The values represent an improvement with

respect to those in Table 1. One limitation of our work is that

scalability is only examined under sinus rhythm propagation

and not during reentry. During reentry multiple wavefronts

coexist and interact in the domain. How this affects load bal-

ancing and scalability needs to be determined.

It can, therefore, be concluded that this work has

brought Chaste to the level of parallel performance neces-

sary to run simulation studies with state-of-the-art whole-

organ geometrical models (including human ventricular

models). As a result of the improvements described here,

it has been possible to conduct further studies (Bernabeu

et al., 2008, 2009; Zemzemi et al., 2011) that would other-

wise have been impossible due to the prohibitive computa-

tional expense required. Furthermore, given that Chaste is

one of the first open source software platforms for bido-

main simulation, the improvements are likely to have an

immediate impact in the community, by making large-

scale computational cardiac electrophysiology simulation

more accessible, thus avoiding the overhead of developing

multiple, often repetitive, in-house codes.

Acknowledgements

The authors would like to thank Dr Martin Bishop for

providing some of the geometries used in this study, HEC-

ToR’s helpdesk, and the Chaste development team (http://

www.cs.ox.ac.uk/chaste/theteam.html).

Funding

The work of Miguel O Bernabeu, James Southern, Nicholas

Wilson, Jonathan Cooper and Joe Pitt-Francis, part of the

preDiCT project, was supported (entirely or partially) by

a grant from the European Commission Directorate Gen-

eral for the Information Society (grant number 224381).

The work of Jonathan Cooper was also partially supported

by the European Commission under the VPH NoE project

(grant number 223920).

Note

1. According to www.top500.org.

References

Amdahl GM (1967) Validity of the single processor approach to

achieving large scale computing capabilities. In: spring joint

computer conference (AFIPS ‘67), Atlantic City, USA,

18–20 th April 1967, vol. 30, pp. 483. New York: ACM Press.

Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD,

Kaushik D, et al. (2010) PETSc users manual. Technical

Report ANL-95/11, Argonne National Laboratory, USA.

Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J,

et al. (1994) Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. Philadelphia: SIAM.

Bekas C, Curioni A, Arbenz P, Flaig C, Van Lenthe GH, Müller

R, et al. (2010) Extreme scalability challenges in micro-finite

element simulations of human bone. Concurrency and Compu-

tation: Practice and Experience 22(16): 2282–2296.

Bernabeu MO, Bishop MJ, Pitt-Francis J, Gavaghan D, Grau V

and Rodriguez B (2008) High performance computer simula-

tions for the study of biological function in 3D heart models

incorporating fibre orientation and realistic geometry at

para-cellular resolution. In: computers in cardiology, Bologna,

Italy, 14–17 September 2008, vol. 35, pp. 721–724. Piscat-

away: IEEE Press.

Bernabeu MO, Corrias A, Pitt-Francis J, Rodriguez B, Bethwaite

B, Enticott C, et al. (2009) Grid computing simulations of ion

channel block effects on the ECG using 3D anatomically-

based models. In: computers in cardiology, Park City, USA,

13–16 April 2009, pp. 213–216. Piscataway: IEEE Press.

Bernabeu MO and Kay D (2011) Scalable parallel preconditioners

for an open source cardiac electrophysiology simulation pack-

age. Procedia Computer Science 4: 821–830.

Bernabeu MO, Pathmanathan P, Pitt-Francis J and Kay D (2010a)

Stimulus protocol determines the most computationally effi-

cient preconditioner for the bidomain equations. IEEE Trans-

actions on Biomedical Engineering 57(12): 2806–2815.

Bernabeu MO, Wallman M and Rodriguez B (2010 b) Shock-

induced arrhythmogenesis in the human heart: A computa-

tional modelling study. In: IEEE annual international confer-

ence of the engineering in medicine and biology society

(EMBC), Buenos Aires, Argentina, 31 August–4 September

2010, pp. 760–763. Piscataway: IEEE Press.

Bernus O, Wilders R, Zemlin CW, Verschelde H and Panfilov AV

(2002) A computationally efficient electrophysiological model

of human ventricular cells. American Journal of Physiology:

Heart and Circulatory Physiology 282(6): 2296–2308.

Bishop MJ and Plank G (2011) Representing cardiac bidomain

bath-loading effects by an augmented monodomain approach:

Application to complex ventricular models. IEEE Transac-

tions on Biomedical Engineering 58(4): 1066–1075.

Bishop MJ, Plank G, Burton RA, Schneider JE, Gavaghan DJ,

Grau V et al. (2009) Development of an anatomically-

Table 6. Ratio between the time taken to perform a simulation and the amount of time simulated.

Solver Core count Mesh size Real–time ratio Architecture

Chaste bidomain 4096 3.7 M nodes 210 HECToR Phase 2a
Chaste monodomain 4224 3.7 M nodes 45 HECToR Phase 2b

Bernabeu et al. 29

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

detailed MRI-derived rabbit ventricular model and assessment

of its impact on simulation of electrophysiological function.

American Journal of Physiology: Heart and Circulatory Phy-

siology 298(2): 699–718.

Bordas R, Carpentieri B, Fotia G, Maggio F, Nobes R, Pitt-Francis

J et al. (2009) Simulation of cardiac electrophysiology on

next-generation high-performance computers. Philosophical

Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences 367(1895): 1951–1969.

Burton R, Plank G, Schneider J, Grau V and Ahammer H, Keeling

S et al. (2006) 3-D models of individual cardiac histo-

anatomy: tools and challenges. Annals of the New York Acad-

emy of Sciences 1380: 301–319.

Cai X and Lines GT (2002) Enabling numerical and software tech-

nologies for studying the electrical activity in human heart. In:

6th international conference on applied parallel computing

advanced scientific computing (PARA ‘02), Espoo, Finland,

15–18 June 2002, pp. 3–17. London: Springer-Verlag.

Calvetti D, Golub G and Reichel L (1994) An adaptive Chebyshev

iterative method for nonsymmetric linear systems based on

modified moments. Numerische Mathematik 67: 21–40.

Calvetti D and Reichel L (1996) A hybrid iterative method for

symmetric positive definite linear systems. Numerical Algo-

rithms 11: 79–98.

Clayton R, Bernus O, Cherry E, Dierckx H, Fenton F, Mirabella

L, et al. (2011) Models of cardiac tissue electrophysiology:

Progress, challenges and open questions. Progress in Biophy-

sics and Molecular Biology 104(1–3): 22–48.

Colli-Franzone P and Pavarino LF (2004) A parallel solver for

reaction-diffusion systems in computational electrocardiol-

ogy. Mathematical Models and Methods in Applied Sciences

14(6): 883–912.

Cooper J (2009) Automatic validation and optimisation of biolo-

gical models. PhD Thesis, University of Oxford, UK.

Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco

JD, Faik J, et al. (2005) New challenges in dynamic load bal-

ancing. Applied Numerical Mathematics 52(2–3): 133–152.

Devine KD, Boman EG and Karypis G (2006) Partitioning and

load balancing for emerging parallel applications and architec-

tures. In: Heroux M, Raghavan A and Simon H (eds) Frontiers

of Scientific Computing. Philadelphia: SIAM.

dos Santos R, Plank G, Bauer S and Vigmond E (2004) Parallel

multigrid preconditioner for the cardiac bidomain model.

IEEE Transactions on Biomedical Engineering 51(11):

1960–1968.

Fishler MG and Thakor NV (1991) A massively parallel computer

model of propagation through a two-dimensional cardiac syn-

cytium. Pacing and Clinical Electrophysiology 14(11):

1694–1699.

FitzHugh R (1961) Impulses and physiological states in theoreti-

cal models of nerve membrane. Biophysical Journal 1(6):

445–466.

Golub GH and Van Loan CF (1996) Matrix Computations. Balti-

more: Johns Hopkins University Press.

Gutknecht MH and Röllin S (2002) The Chebyshev iteration

revisited. Journal of Parallel Computing 28(2): 263–283.

Iyer V, Hajjar R and Armoundas A (2007) Mechanisms of

abnormal calcium homeostasis in mutations responsible for

catecholaminergic polymorphic ventricular tachycardia.

Circulation Research 100(2): e22–31.

Keener J and Sneyd J (1998) Mathematical Physiology. New

York: Springer.

Keener JP and Bogar K (1998) A numerical method for the solution

of the bidomain equations in cardiac tissue. Chaos 8(1): 234.

Linge S, Sundnes J, Hanslien M, Lines G and Tveito A (2009)

Numerical solution of the bidomain equations. Philosophical

Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences 367(1895): 1931–1950.

Luo CH and Rudy Y (1991) A model of the ventricular cardiac

action potential - depolarisation, repolarisation and their inter-

action. Circulation Research 68: 1501–1526.

Manteuffel TA (1977) The Tchebychev iteration for nonsym-

metric linear systems. Numerische Mathematik 28: 307–327.

Murillo M and Cai XC (2004) A fully implicit parallel algorithm

for simulating the non-linear electrical activity of the heart.

Numerical Linear Algebra with Applications 11(2–3):

261–277.

Ng KT, Hutchinson SA and Gao S (1995) Numerical analysis of

electrical defibrillation: The parallel approach. Journal of

Electrocardiology 28(1): 15–20.

Niederer S, Mitchell L, Smith N and Plank G (2011) Simulating

human cardiac electrophysiology on clinical time-scales.

Frontiers in Physiology 2: 14.

Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A,

Pitt-Francis JM, et al. (2010) A numerical guide to the solution

of the bidomain equations of cardiac electrophysiology. Prog-

ress in Biophysics and Molecular Biology 102(2–3): 136–155.

Pavarino LF and Scacchi S (2008) Multilevel additive schwarz

preconditioners for the bidomain reaction-diffusion system.

SIAM Journal on Scientific Computing 31(1): 420–443.

Pennacchio M and Simoncini V (2009) Algebraic multigrid pre-

conditioners for the bidomain reaction–diffusion system.

Applied Numerical Mathematics 59(12): 3033–3050.

Piggott MD, Gorman GJ, Pain CC, Allison PA, Candy AS, Martin

BT, et al. (2008) A new computational framework for multi-

scale ocean modelling based on adapting unstructured meshes.

International Journal for Numerical Methods in Fluids 56(8):

1003–1015.

Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper

J, Fletcher AG, et al. (2009) Chaste: A test-driven approach to

software development for biological modelling. Computer

Physics Communications 180(12): 2452–2471.

Plank G, Liebmann M, dos Santos RW, Vigmond EJ and Haase G

(2007) Algebraic multigrid preconditioner for the cardiac

bidomain model. IEEE Transactions on Biomedical Engineer-

ing 54: 585–596.

Pollard A and Barr R (1991) Computer simulations of activation

in an anatomically based model of the human ventricular con-

duction system. IEEE Transactions on Biomedical Engineer-

ing 38(10): 982–996.

Pope B, Fitch B, Pitman M, Rice J and Reumann M (2011) Per-

formance of hybrid programming models for multiscale

30 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

cardiac simulations: Preparing for petascale computation.

IEEE Transactions on Biomedical Engineering 58(10):

2965–2969.

Porras D, Rogers J, Smith W and Pollard A (2000) Distributed

computing for membrane-based modeling of action potential

propagation. IEEE Transactions on Biomedical Engineering

47(8): 1051–1057.

Potse M, Dubé B, Richer J, Vinet A and Gulrajani RM (2006) A

comparison of monodomain and bidomain reaction-diffusion

models for action potential propagation in the human heart.

IEEE Transactions on Biomedical Engineering 53(12):

2425–2435.

Quan W, Evans S and Hastings H (1998) Efficient integration of a

realistic two-dimensional cardiac tissue model by domain

decomposition. IEEE Transactions on Biomedical Engineer-

ing 45(3): 372–385.

Reumann M, Fitch B, Rayshubskiy A, Keller D, Seemann G,

Dossel O, et al. (2009) Strong scaling and speedup to 16,384

processors in cardiac electro-mechanical simulations. In: IEEE

annual international conference of the engineering in

medicine and biology society (EMBC), Minneapolis, USA,

2–6 September 2009, pp. 2795–2798. Piscataway: IEEE Press.

Sahni O, Zhou M, Shephard MS and Jansen KE (2009) Scalable

implicit finite element solver for massively parallel processing

with demonstration to 160 k cores. In: 22nd conference on

high performance computing networking, storage and analysis

(SC ‘09), Portland, USA, 14–20 November 2009, article no.

68. New York: ACM Press.

Saleheen H, Claessen P and Ng K (1997) Three-dimensional

finite-difference bidomain modeling of homogeneous cardiac

tissue on a data-parallel computer. IEEE Transactions on Bio-

medical Engineering 44(2): 200–204.

Schloegel K, Karypis G and Kumar V (2002) Parallel static and

dynamic multi-constraint graph partitioning. Concurrency and

Computation: Practice and Experience 14(3): 219–240.

Shadid J, Pawlowski R, Banks J, Chacón L, Lin P and Tuminaro R

(2010) Towards a scalable fully-implicit fully-coupled resis-

tive MHD formulation with stabilized FE methods. Journal

of Computational Physics 229(20): 7649–7671.

Southern J, Bernabeu MO, Cooper J, Wilson N and Pitt-Francis J

(2011) Progress towards real-time simulation of cardiac elec-

trophysiology for in silico drug testing. In: international

supercomputing conference (ISC‘11), Hamburg, Germany,

19–23 June 2011.

Tallent NR, Mellor-Crummey JM, Adhianto L, Fagan MW and

Krentel M (2009) Diagnosing performance bottlenecks in

emerging petascale applications. In: 22nd conference on high

performance computing networking, storage and analysis (SC

‘09), Portland, USA, 14–20 November 2009, article no. 51.

New York: ACM Press.

ten Tusscher KH, Hren R and Panfilov AV (2007) Organization of

ventricular fibrillation in the human heart. Circulation

Research 100(12): e87–e101.

ten Tusscher KHWJ, Noble D, Noble PJ and Panfilov AV (2004)

A model for human ventricular tissue. American Journal of

Physiology: Heart and Circulatory Physiology 286(4):

1573–1589.

ten Tusscher KHWJ and Panfilov AV (2006) Alternans and spiral

breakup in a human ventricular tissue model. American Jour-

nal of Physiology: Heart and Circulatory Physiology 291(3):

1088–1100.

Teresco JD, Devine KD and Flaherty JE (2006) Partitioning and

dynamic load balancing for the numerical solution of partial

differential equations. In: Bruaset AM, Tveito A, Barth TJ,

Griebel M, Keyes DE, Nieminen RM, Roose D and Schlick

T (eds) Numerical Solution of Partial Differential Equations

on Parallel Computers. Berlin: Springer, vol. 51, pp. 55–88.

Vázquez M, Arı́s R, Houzeaux G, Aubry R, Villar P, Garcia-

Barnés J, et al. (2011) A massively parallel computational

electrophysiology model of the heart. International Journal

for Numerical Methods in Biomedical Engineering 27(12):

1911–1929.

Vetter FJ and McCulloch AD (1998) Three-dimensional analysis

of regional cardiac function: a model of rabbit ventricular

anatomy. Progress in Biophysics and Molecular Biology

69(2–3): 157–183.

Vigmond EJ, Aguel F and Trayanova NA (2002) Computational

techniques for solving the bidomain equations in three dimen-

sions. IEEE Transactions on Biomedical Engineering 49(11):

1260–1269.

Vigmond EJ, Hughes M, Plank G and Leon LJ (2003) Computa-

tional tools for modeling electrical activity in cardiac tissue.

Journal of Electrocardiology 36(1): 69–74.

Wathen AJ (1989) An analysis of some element-by-element

techniques. Computer Methods in Applied Mechanics and

Engineering 74(3): 271–287.

Whiteley J (2006) An efficient numerical technique for the solu-

tion of the monodomain and bidomain equations. IEEE

Transactions on Biomedical Engineering 53: 2139–2147.

Winslow RL, Kimball AL, Varghese A and Noble D (1993)

Simulating cardiac sinus and atrial network dynamics on the

connection machine. Physica D: Nonlinear Phenomena

64(1–3): 281–298.

Zemzemi N, Bernabeu MO, Saiz J and Rodriguez B (2011) Simu-

lating drug-induced effects on the heart: From ion channel to

body surface electrocardiogram. In: Metaxas DN and Axel L

(eds) Functional Imaging and Modeling of the Heart. New

York: Springer, vol. 6666, pp. 259–266.

Zhou M, Sahni O, Xie T, Shephard M and Jansen K (2012)

Unstructured mesh partition improvement for implicit finite

element at extreme scale. The Journal of Supercomputing

59: 1218–1228.

Author biographies

Miguel O Bernabeu received his DPhil degree in Compu-

tational Biology from the University of Oxford, UK, in

2011 and his MSc and BEng degrees from the Universitat

Politècnica de València, Spain, in 2005 and 2007. He is

currently a 2020 Science Research Fellow at the Centre for

Computational Science and CoMPLEX, University Col-

lege London, UK. He has worked on various UK and EU

projects developing HPC software for different aspects of

Bernabeu et al. 31

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

cardiovascular modelling and simulation. His research

interests include software engineering, parallel computing,

and numerical methods with applications to cardiac elec-

trophysiology and brain haemodynamics.

James Southern received his BA, MSc, MA and DPhil

degrees from the University of Oxford in 2001, 2002,

2005 and 2007, respectively. He is currently a Principal

Researcher in the Technical Computing Research Division

at Fujitsu Laboratories of Europe, Hayes, UK, where his

research interests are in HPC simulations and the develop-

ment of advanced numerical algorithms for massively par-

allel application software.

Nicholas Wilson received his MA degree in Chemistry

from the University of Oxford and a PhD in Theoretical

Chemistry from the University of Birmingham. He is cur-

rently a Principal Researcher in the Technical Computing

Research Division at Fujitsu Laboratories of Europe. His

research interests mainly focus on performance optimiza-

tion of scientific applications.

Peter Strazdins received his PhD in Computer Science

from The Australian National University in 1990. Since

then he has been with the Department of Computer Science

at the Australian National University, and was closely asso-

ciated with the ANU–Fujitsu CAP Parallel Computing Proj-

ect over the years 1990–2002. His research interests include

parallel numerical algorithms and libraries, computer archi-

tecture and operating systems for high-performance comput-

ers, and computer simulation, modelling and performance

analysis. He is currently a Senior Lecturer and the Associate

Director of Education at the Research School of Computer

Science.

Jonathan Cooper is interested in the application of soft-

ware engineering to computational biology—using tech-

nology well to enable better science. In particular, he

looks at the use of domain-specific languages to describe

mathematical models of biology, and the tools required to

make these usable for researchers. His current research

interests lie in developing the concept of ‘‘functional cura-

tion’’, which supports the specification of experiments

through a protocol language, allowing an in silico version

of a wet lab experiment to be run on a range of alternative

models and the results compared. He is active in all areas of

the Chaste project, developed support for the use of CellML,

and contributes Cþþ , Python, and software design exper-

tise, as well as having been largely responsible for develop-

ing the project infrastructure.

Joe Pitt-Francis received a first class degree in mathematics

from Queen Mary and Westfield College, London, UK, in

1990 and received a PhD degree in mathematics (applied to

fluid dynamics) from the University of Oxford in 1994. He

is currently a Research Fellow in the Computational Biology

Group within the Department of Computer Science. His

research interests include software development, plastic

deformation, robot path-planning, geometric modelling, par-

allel computing, and computational physiology.

32 The International Journal of High Performance Computing Applications 28(1)

 at University College London on August 1, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

