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Abstract
Background: The estimation of a distance between two biological sequences is a fundamental
process in molecular evolution. It is usually performed by maximum likelihood (ML) on characters
aligned either pairwise or jointly in a multiple sequence alignment (MSA). Estimators for the
covariance of pairs from an MSA are known, but we are not aware of any solution for cases of pairs
aligned independently. In large-scale analyses, it may be too costly to compute MSAs every time
distances must be compared, and therefore a covariance estimator for distances estimated from
pairs aligned independently is desirable. Knowledge of covariances improves any process that
compares or combines distances, such as in generalized least-squares phylogenetic tree building,
orthology inference, or lateral gene transfer detection.

Results: In this paper, we introduce an estimator for the covariance of distances from sequences
aligned pairwise. Its performance is analyzed through extensive Monte Carlo simulations, and
compared to the well-known variance estimator of ML distances. Our covariance estimator can be
used together with the ML variance estimator to form covariance matrices.

Conclusion: The estimator performs similarly to the ML variance estimator. In particular, it shows
no sign of bias when sequence divergence is below 150 PAM units (i.e. above ~29% expected
sequence identity). Above that distance, the covariances tend to be underestimated, but then ML
variances are also underestimated.

Background
The estimation of evolutionary distances between gene/
protein sequences is one of the most important problems
in molecular evolution. In particular, it lies at the heart of
most phylogenetic tree construction methods. The estima-
tion of such distances is a two step process: first, homolo-
gous characters are identified, then the distances are
estimated from the character substitution patterns. The
most accurate matching of homologous characters is
obtained by multiple sequence alignments (MSAs).
Indeed, by considering all sequences simultaneously,

MSAs yield a consistent and in principle optimal grouping
of the homologous characters. Unfortunately, MSAs are
hard to compute optimally (time complexity exponential
in the number of sequences), and thus are in practice
computed using heuristics. Alternatively, the sequences
can be analyzed exclusively on the basis of pairs of
sequences, using an algorithm such as Smith-Waterman
[1] that yields optimal pairwise alignments (OPAs). This
approach is often taken by large-scale comparative
genomics analysis such as MIPS, OMA or RoundUp [2-4],
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which analyze the sequences pairwise due to computa-
tional constraints.

Once the homologous characters are identified, the sec-
ond step of distance estimation can proceed. The method
of choice is a maximum likelihood (ML) estimation based
on some model of evolution. There too, the distances can
either be estimated simultaneously from all sequences
using a combination of tree topology inference and joint
optimization of all branches, or pairwise, by estimating
the distances between every pair of sequences. Joint esti-
mation requires MSAs, while pairwise distance estimation
can be done from either OPAs or from the pairwise align-
ments induced by an MSA (IPAs). Fig. 1 provides an over-
view of the different approaches.

In all cases, the estimation of evolutionary distances is
subject to inference uncertainty, which is commonly
quantified by their variances and covariances. Indeed, the
distance variance information can be used to build confi-
dence intervals around the estimate; covariances of pairs

of distances can be used to build the confidence intervals
of combinations of distances. Examples of applications
include generalized least squares (GLS) phylogenetic tree
building [5] construction of confidence sets of trees [6],
test for monophyly using likelihood ratios [7], compari-
son of evolutionary distances for orthology inference [3],
or distance-based lateral gene transfer detection [8]

Variance estimates are provided by ML theory in both
joint and pairwise distances estimation. However, ML the-
ory only provides covariance estimates if all distances are
estimated jointly. Covariance estimates for distances com-
puted from IPAs in the context of specific parametric sub-
stitution models have been reported by Hasegawa et al.
[9] and Bulmer [6], and were generalized by Susko [10] to
all Markovian models of evolution. Furthermore, the cov-
ariance of distances from IPAs can also be estimated
(though much more slowly) through bootstrapping [11].
As for the covariance of distances obtained from OPAs,
the main difficulty in computing them is that, since
sequence pairs are aligned individually, they usually have

Overview of approaches to estimate evolutionary distances and their covariancesFigure 1
Overview of approaches to estimate evolutionary distances and their covariances. A set of n sequences can be 

aligned jointly to obtain an MSA or in a pairwise optimal manner resulting in  optimal pairwise alignments (OPAs). Given 

a hypothesis of character homology, distance estimation per ML can essentially be done in two ways: jointly on a tree or pair-
wise. In the first case a tree's branch-lengths are estimated simultaneously. This requires an MSA. In the second case pairwise 
distances are estimated either from MSA induced pairwise alignments (IPAs) or from the OPAs. The distance estimators are 
afflicted with an error expressed by their variances and covariances. In all cases, the covariances can be modeled as a function 
of shared branch lengths, but this requires a phylogenetic tree. When distances are estimated based on an MSA, the variances 
and covariances can be obtained from ML theory or by bootstrapping over the MSA's columns. In the case of OPAs, these 
techniques cannot be directly applied (see Methods). We have previously presented a covariance estimator for the case where 
the two OPAs in question share a sequence (i.e. for triplets). In this paper, we introduce an estimator for the general case.
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inconsistencies in their inference of the homologous char-
acters (or else, computing an MSA from pairwise align-
ments would be trivial). Thus, the alignments cannot be
partitioned in consistent "columns" of characters, and
neither Susko's method nor resampling approaches such
as bootstrapping can be applied. Indeed, in the case of
analyses relying exclusively on pairwise comparison and
distance estimation, i.e. where no MSA computation can
be afforded, we are not aware of any previously published
estimator for the covariance of distances estimates from
pairwise alignments.

We have shown in a previous article [12] a numerical
approximation for the constrained case of the covariance
of two OPA distances involving a common sequence (i.e.
on a triplet of sequences), for empirical substitution mod-
els such as PAM or JTT. In this article, we present an esti-
mator for the covariance of ML distances estimated from
OPAs that works on triplets and quartets of sequences.
This solves the problem of sets of sequences of arbitrary
size, because each covariance involves at most four
sequences at a time. Thus, the full covariance matrix is nat-
urally obtained through quartet analysis. We analyze the
performances of the estimator in terms of bias and vari-
ance. Finally, we compare the results obtained on triplets
of sequences to our previous work.

Results and Discussion
In the following, we present and analyze the perform-
ances of the estimator for the covariance of two distances.
For this purpose, it is informative to analyze the results
separately for the following three different underlying
topological relations, illustrated in Fig. 2:

Case of dependence
The two distances are estimated between four distinct
sequences, and they have some evolution in common (i.e.
the two distance involve a common branch on the tree).

With such an evolutionary history, the two distances esti-
mates covary positively.

Case of independence
The two distances are estimated between four distinct
sequences, but they have no evolution in common (i.e.
the two distance involve distinct branches on the tree).
This case is informative, because a central assumption in
most evolutionary models is that evolution on different
branches is independent [13]. With no branch in com-
mon, the distances should not covary [6]. Thus, such a
topology can be used to test the estimators as negative
control.

Case of triplet
The two distances involve a common sequence, and have
some evolution in common. This case is of special inter-
est, because we have previously presented an alternate
estimator for this particular case using a different
approach [12]. Thus, we can compare our results to this
approach, hereafter called "the numerical approxima-
tion".

Note that the covariances are estimated using the same
algorithm in all three cases: we only distinguish them
from each another for the purpose of this analysis.

To assess the performance of the covariance estimator, it
was compared against the Monte Carlo covariance estima-
tor. In short, each point shown in the figures was obtained
from 40,000 sets of sequences mutated along a random
quartet subtree of the tree of life (see Methods below). That
way, the evaluation is based on tree samples that are dis-
tributed as closely as possible to real biological data. To
account for gene families with varying rates, each quartet
was scaled with a random factor uniformly distributed
between 0.5 and 2. Note that results corresponding to very
large distance constitute extreme cases; for instance, when
sequences are 150 PAM units apart, each position has, on
average, mutated 1.5 times.

Fig. 3a shows the mean of our estimator versus the Monte
Carlo estimator in nine scatterplots arising from combin-
ing the topologies mentioned above (rows) with three dif-
ferent sequence lengths (columns). In the case of
dependence, the first row, we see that our estimator lies in
about 80% of the cases within the 95% confidence inter-
val of the Monte Carlo estimator. In the case of independ-
ence, both estimators are close to zero, though our
estimator shows a minor upward bias in some cases. The
third row gives the result of both the covariance estimator
introduced here, as well as the numerical approximation
from our previous study [12]. Here, we see that though the
former performs well in cases of lower covariance values,
it shows a clear downward bias in cases of larger covari-

Possible topological relations of sequencesFigure 2
Possible topological relations of sequences. For two 
pairwise distances, one can distinguish three possible under-
lying topological configurations relating them. If they are esti-
mated between four sequences, there are two possible 
configurations. Either they share some common evolution (a) 
or they are independent (b). In the third configuration, the 
two distances are estimated from two OPAs that share a 
sequence (c).
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ances. The numerical approximation does not present any
apparent sign of bias, which is hardly surprising, given
that it was obtained through regression. What is however
surprising, is that, given its simple structure, it performs
better than the covariance estimator, which takes into

account more data and is backed by a more detailed
model.

It is instructive to compare the absolute bias of the covar-
iance estimator to the well-known ML variance estimator

Comparison of the covariance estimator and the ML variance estimator with their Monte Carlo counterpartsFigure 3
Comparison of the covariance estimator and the ML variance estimator with their Monte Carlo counterparts. 
Error-bars indicate 95% confidence intervals. a) Monte Carlo covariance estimator vs. average of the covariance estimator for 
sequence lengths of {200, 500, 800} AA. In the dependence case, the estimator appears unbiased in most cases. In the inde-
pendence case, the estimator shows a slight upward bias, but the absolute values are close to zero. In the triplet case, a down-
ward bias with increasing covariance is visible. b) Monte Carlo variance estimator vs. average of ML variance estimator. A 
downward bias with increasing variance is visible.
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(see e.g. [14]). As can be seen in Fig. 3b, the ML variance
is also biased for high variance values. We conjecture that
this is mainly due to mis-aligned positions, which cause
model violations in the parameter estimation. This prob-
lem is also likely to affect the covariance estimator. Even
more directly, the ML variance estimator is a factor in the
expression of the covariance estimator (see Methods), so
any error in the ML variance is propagated to the covari-
ance estimator. At this point, improving the ML estimator
for cases of high divergence is likely to require better align-
ments, or an explicit modeling of the mis-aligned posi-
tions, which is beyond the scope of the present work.

Further, to put the bias of the covariance estimator into
perspective, we compared it to the standard deviation of
the estimator. Fig. 4 presents the bias and standard devia-
tion as function of the average number of anchors for
sequence length of 500. The anchors are the positions that
are consistently aligned in the OPAs involved (see meth-
ods for the precise definition). Both bias and standard
deviation strongly depend on the fraction of anchors,
which can be thought of as a measure of alignment qual-
ity. Fig. 5 depicts the dependency between percentage of
anchors and average distance. As one would expect, the
fraction of anchors decreases as divergence increases. For
a fraction of anchor positions below 60%, the average of
the two distances involved in the covariance computation
is always greater than 150 PAM. In Fig. 4, we first consider
the bias and standard deviation for the case of depend-
ence. When the fraction of anchor positions is above 60%
(this is the case for approximately 85% of the quartets of
sequences in families of orthologs in OMA [3], data not
shown), the bias is far smaller than the standard devia-
tion, and is therefore likely to have little negative impact
in practice.

In the case of triplets, the bias exceeds the standard devia-
tion already when the fraction of anchors is about 80%.

The ML variance estimator has this transition around 75%
of anchors. In the case of independence, where we expect
our covariance estimator to be zero, its bias is always
much smaller than its standard deviation (data not
shown).

Most applications of the covariance estimator involve the

covariance matrix. Let  be an approximation to the

matrix A. We refer to  as the relative error in ,

where ||·||2 denotes the two-norm. Fig. 6 shows the rela-

tive error of the 2 × 2 variance-covariance matrices com-
puted with the ML variance estimator in the diagonal
entries and our covariance estimator in the off-diagonal
entries, and the same 2 × 2 matrices with only diagonal
entries. The plots show that for the dependence case the
the matrices with both covariance and ML variance esti-
mators have a equal or lower relative error than the matri-
ces with the ML variance only, except for a few cases in the
region with a high fraction of anchors. In the triplet case,
the variance-covariance matrices have always lower error
then variance matrices. Finally, in the case of independ-
ence, the matrices with covariance do not always have
lower relative error, but this is expected, because the true
covariance is null in this special case.

Conclusion
We have presented a method to estimate the covariances
of distances estimated from pairwise alignments. It does
not require the construction of MSAs, which are hard to
compute and therefore are only approximated in practice.
Furthermore, it does not rely on phylogenetic trees as it is
the case with covariance estimation from joint ML, or in
covariance estimation methods that model the covari-
ances as a function of shared branch lengths [15,16]. Tree
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Bias and standard deviation of the covariance and ML variance estimatorsFigure 4
Bias and standard deviation of the covariance and ML variance estimators. Average percentage of anchors vs. bias 
and standard deviation of the covariance estimator for sequence length of 500 AA. Error-bars indicate the 95% confidence 
intervals. The bias increases with decreasing fraction of anchors. The bias is smaller than the standard deviation when percent-
age of anchors is greater than 65% (dependence), 80% (triplet) and 75% (ML variance).
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building is not only a costly process, but is also subject to
inference errors.

The accuracy of our estimator is comparable to the ML var-
iance estimator. Both estimators are biased but in both
cases the bias is, for distances below 150 PAM, far smaller
than their standard deviation. The bias of the covariance
estimator (as well as the ML variance, and to some extent
the distance estimators) becomes worse with declining
percentage of anchors. These biases arise because the
alignment positions under scrutiny do not constitute an
unbiased subsample of the true homologous positions.
Note that misaligned positions are likely to affect dis-
tances from MSAs too. A solution to this problem would
lead to better distance estimates in the first place. In the

meanwhile, it is probably best to issue a warning if the
percentage of anchors falls below some threshold.

The estimation of evolutionary distances is a very impor-
tant process in molecular evolution, and therefore the
covariance estimator presented here will be of use for var-
ious applications, such as the construction of GLS trees on
OPA distances, the construction of confidence sets of trees
based on the GLS test statistic, relative-rate tests, distance-
based lateral gene transfer detection, and in general in any
process that needs to estimate confidence of distance
combinations.

Methods
Covariance of distances from OPAs
In this section we derive a covariance estimator for ML dis-
tances from OPAs.

Preliminaries
The columns of an MSA are a consistent hypothesis of
character homology for a set of sequences. With OPAs on
the other hand, we have the problem that for a set
sequences, the resulting pairwise alignments are not
always consistent in their inference of the homologous
characters. Fig. 7 depicts an example. Let si,j be the charac-
ter at position j in a sequence si. Only characters in bold,
for example {s1,1, s2,1, s3,1, s4,1}, are consistently aligned in
the OPAs. We call such a consistent set of characters an
anchor. On the other hand, s1,2 is aligned to s2,2 and to s3,2,
so in a consistent situation it would follow that s2,2 and s3,2
should be aligned, but it is not the case.

Given m sequences, the anchors can formally be defined

as follows: Define a graph G({si}) with  vertices

labeled by si,j . We join vertices  and  if the cor-

responding characters are aligned in the . The

sii

m∑
si j1 1, si j2 2,

OPA( ),s si i1 2

Relation between distance and percentage of anchorsFigure 5
Relation between distance and percentage of 
anchors. Horizontal axis: Average of the two distances for 
which the covariance has been estimated. Vertical axis: Aver-
age percentage of anchors. The Quartet labels refer to the 
dependence case. The fraction of anchors decreases with 
increasing distance.
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set of anchors for the  OPAs is defined as the set of

all cliques of size  in G({si}). By construction, the

sub-alignments induced by the anchors define an MSA. In
the derivation of our covariance estimator, we assume that
the anchor positions are correctly aligned. For the non-
anchor positions, we know that some proportion is

wrongly aligned in at least one of the  OPAs. We do

not know, though, which positions and in which align-
ments. In this paper we are interested in the covariance of
distances from two OPAs. In each case the anchors are
determined from the particular sequences involved in the
corresponding covariance estimation. If the two OPAs
share a sequence m = 3, otherwise m = 4. The following
pseudocode shows how the anchors can be found for m =

4. It uses a function  which returns the index

j2 of the character  of si2 aligned to  in

.

Anchors ← {}

for j1 ← 1 to length(s1) do

j2 ← M(s1, s2, j1); j3 ← M(s1, s3, j1); j4 ← M(s1, s4, j1)

if M(s2, s3, i2) = j3 and M(s2, s4, i2) = j4

   and M(s3, s4, i3) = j4 then

Anchors ← Anchors ∪ 

end

end

Formulation of the covariance estimator

Let p(Xj, d) denote the probability of a homologous char-

acter-pair Xj for the j-th OPA when the distance is taken to

be d. We assume that the gap-positions have been
removed from the alignments and that the j-th OPA has

length nj . Denote  the distance obtained by ML and dj

the true distance. It is well known from ML theory (see e.g.
[14]) that under appropriate smoothness conditions, the

variance of  is

Let the score function for the j-th OPA be

where xj,l is the realization of Xj at position l. To abbrevi-

ate, we set . As mentioned by

Susko [10], ML results yield

Based on equation (3) we derive now an expression for

the covariance of two distance estimates  and .

Along this paper, variables with a superscript A refer to
anchors, N refer to non-anchors. Since virtually all Mark-
ovian models of evolution assume independent posi-
tions, we can split the score functions in a part
corresponding to the anchor positions and a non-anchor
part:

We assume that the sums in  and  are ordered

such that  and  are part of the same anchor
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Example of anchors. The six pairwise alignments of four 
example sequences (left) and the corresponding graph-repre-
sentation (right). The consistent positions are in bold.
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iff l = m. Since, up to high order terms, (  - dj) is equal to

-Vjuj (dj) we can write for the covariance of  and 

Correlations between distance arise from common muta-
tion events (on common branches on the "true" tree). As
mentioned above, positions in a sequence are stochasti-
cally independent from one another. We assume that the
anchors are correctly aligned. Consequently, characters in
the anchor and non-anchor parts cannot be homologous

to each other. Therefore  and

 are both zero. The expression

becomes

where nA is the number of anchors. Because of the correct-

ness assumption of the anchors, all pairs that are not part
of the same anchor are non-homologous, and therefore,

their covariance is zero, i.e. for l ≠ m,

 and we get

We assumes that the  are i.i.d. We denote the cor-

responding random variables . The assumption is jus-

tified due to the Markov model and the correctness

assumption of the anchors. As to the  some pro-

portion may be homologous, but we do not know which
one. Determining the homologous pairs would solve the
problem of MSA construction (known to be hard and not
our goal here). Instead, we take the working assumption

that the  and  do not covary. With the

two assumptions the expression of the covariance approx-
imation becomes:

By using the form of equation (12), we obtain an estima-
tor for the covariance. The variance Vj is estimated by

The estimate for the covariance of the anchor part is the
well-known unbiased estimator

where  denotes the sample mean.

Simulation methods
To evaluate the performance of the covariance estimator
we performed a Monte Carlo simulation on quartets and
compared our estimator to the sample covariance (also
referred to as the Monte Carlo covariance).

Sampling of quartets
The quartets were sampled uniformly from a variance
weighted least squares (WLS) tree on 352 species. The
WLS tree was inferred by the LeastSquaresTree function in
Darwin [17]. To obtain the input distance and variance
matrices for LeastSquaresTree we used data from the OMA
project [3]. The inter-species distances were determined as
average PAM distances over sets of groups of orthologs. A
total of 100 quartets were sampled, each one contributing
one data-point to the plots shown here.

Simulation procedure for one quartet
To explore the branch-length space, while preserving the
relative branch-length structure given by the WLS tree we
applied an uniformly distributed U(0.5,2) expansion/
contraction factor on each quartet. Then, we generated
40,000 times three random sequences of length m = {200,
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500, 800} and mutated each of them along the dilated
model quartet. We assumed a Markovian model of evolu-
tion using the updated PAM matrices [18] and introduced
gaps of Zipfian distributed length [19].

We applied our covariance estimator on each of the
40,000 quartets and estimated its expected value and var-
iance to compare it against the sample covariance which
we also refer to as Monte Carlo covariance. In the analysis
of the results, we treated the sample covariance as a refer-
ence value, as it constitutes an unbiased estimator for the
true covariance. The biases reported in the result section
are defined as the estimate of the expected value of our
covariance estimator minus the Monte Carlo covariance.
Note that being an estimator itself, the sample covari-
ance's variance had also to be taken into account in the
analysis of the results.
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