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Summary
Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation,

and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers
and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as
GPR143), which is expressed exclusively in pigmented cells and mutations in which cause the most common type of ocular albinism.

When exogenously expressing PMEL, HeLa cells have been shown to form MVBs resembling early stage melanosomes. To focus on the
role of OA1 in the initial stages of melanosome biogenesis we take advantage of the absence of the later stages of melanosome
maturation in HeLa cells to determine whether OA1 activity can regulate MVB number and fate. Expression of wild-type but not OA1
mutants carrying inactivating mutations or deletions causes MVB numbers to increase. Whereas OA1 expression has no effect on

delivery of EGFR-containing MVBs to the lysosome, it inhibits the lysosomal delivery of PMEL and PMEL-containing MVBs
accumulate. We propose that OA1 activity delays delivery of PMEL-containing MVBs to the lysosome to allow time for melanin
synthesis and commitment to melanosome biogenesis.
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Introduction
The role of multivesicular bodies (MVBs) in the sorting of

lysosomally targeted growth factor receptors, such as EGF

receptor (EGFR), is well established. Lysosomally targeted

EGFRs are sorted onto the intraluminal vesicles (ILVs) of

MVBs, whereas recycling receptors, such as transferrin receptor

remain on the perimeter membrane of the MVB from where they

are recycled. When all the recycling proteins have been removed,

the mature MVB can fuse with the lysosome and the contents are

degraded (Futter et al., 1996). In more recent years, it has become

clear that lysosomal fusion is not the only possible fate for

MVBs. In pigmented cells MVBs can mature into melanosomes

(Raposo et al., 2001) and in some cell types MVBs can fuse with

the cell surface, releasing the ILVs into the extracellular space as

exosomes (van Niel et al., 2006). The relationship between the

MVBs with these different fates is not clear, but multiple

populations of MVBs can exist within the same cell type. For

example, activated EGFRs are trafficked in a separate population

of MVBs to those that carry LBPA (White et al., 2006).

Furthermore, multiple mechanisms for sorting cargo onto ILVs

and for generating ILVs have been described. The sorting of

EGFR onto ILVs depends on the endosomal sorting complexes

required for transport (ESCRT) machinery (Doyotte et al., 2005;

Razi and Futter, 2006). The sorting of the melanogenic-cell-

specific protein PMEL onto ILVs is accompanied by proteolytic

events that lead to the generation of fibrils within the immature

melanosome upon which melanin is deposited (Berson et al.,

2001), PMEL sorting to ILVs is ESCRT independent (Theos

et al., 2006) but depends on the tetraspannin, CD63 (van Niel

et al., 2011). In an oligodendroglial cell line, the sorting of the

proteolipid protein onto ILVs that can subsequently be released

as exosomes depends on the sphingomyelinase-dependent

production of ceramide (Trajkovic et al., 2008). Although these

different mechanisms of sorting and ILV formation have been

described, it is not clear to what extent the different ILV

formation mechanisms are segregated within different types of

MVB or how the relative numbers of the different MVB

subpopulations are regulated.

Our understanding of the regulation of lysosome number has

recently been increased through the identification of the

‘CLEAR’ network of lysosomal genes, whose transcriptional

upregulation causes an increase in lysosome number (Sardiello

et al., 2009). Unlike lysosomes, which can be relatively long-

lived, MVBs are not stable compartments and depend on

membrane flux from the plasma membrane and early
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endosomes and are consumed by fusion with late endosomes/
lysosomes. EGF stimulation increases not only the number of

ILVs but also the number of MVBs, indicating that the biogenesis
of at least the EGFR-containing subpopulation of MVBs can be

regulated (White et al., 2006). Melanosome biogenesis is also
subject to upregulation and downregulation; this occurs in a short
window in embryonic life in retinal pigment epithelial cells

followed by perinatal downregulation (Lopes et al., 2007),
whereas, in melanocytes, melanosome biogenesis is upregulated

following UV exposure (Imokawa, 2004). Whether upregulation
of melanosome biogenesis is accompanied by upregulation of

MVB biogenesis or diversion of MVBs from the lysosomal
pathway is not clear.

OA1 (also known as GPR143) is a seven transmembrane

protein that shares structural and functional homology with
heterotrimeric G-protein-coupled receptors (GPCRs) and is

expressed exclusively in melanogenic cells (Schiaffino et al.,
1996; Sone and Orlow, 2007). Mutations in the OA1-encoding
gene are responsible for the most common type of ocular

albinism (type 1), in which patients exhibit hypopigmentation of
the retina and iris, nystagmus and loss of visual acuity (King et al.,

1995). In multiple systems OA1 behaves like a bona fide GPCR
(Schiaffino et al., 1999; Innamorati et al., 2006; Staleva and

Orlow, 2006) and some disease-causing mutations are in residues
highly conserved in most GPCRs (d’Addio et al., 2000)
suggesting that ocular albinism type1 is caused by a loss of

GPCR activity. Loss of OA1 activity in patients and knockout
mice leads to a reduced number of enlarged melanosomes

(O’Donnell et al., 1976; Incerti et al., 2000), which also exhibit
changes in their distribution (Palmisano et al., 2008). Reduced
melanosome numbers precede the increase in melanosome size,

indicating that there is a reduction in melanosome biogenesis,
rather than simply enhanced melanosome fusion (Incerti et al.,

2000). Unlike most GPCRs, which localise to the plasma
membrane, OA1 localises to immature and mature

melanosomes and late endosomes/lysosomes in pigmented
cells, and, when expressed in cells lacking melanosomes, it
localises to MVBs and lysosomes (Schiaffino et al., 1996;

Samaraweera et al., 2001; Piccirillo et al., 2006; Gordiano et al.,
2009). This localisation, together with the reduced melanosome

number that occurs on loss of OA1, has led to the suggestion
that OA1 might regulate MVB fate. Although melanosomes
and lysosomes share constituents and a common origin, the

relationship between the pathways is complex and the regulation
of MVB fate (melanosome versus lysosome) is poorly

understood. In cultured melanocytes, depletion of OA1 induces
the formation of enlarged disorganised melanosomes that contain

lysosomal as well as melanosomal constituents (Giordano et al.,
2009). This suggests that OA1 might play a role in the early
segregation of the melanosomal and lysosomal pathways that

occurs at the level of early MVBs (stage 1 melanosomes)
(Raposo et al., 2001). This is a comparatively short-lived stage in

melanogenic cells, as delivery of melanin-synthesising enzymes
and melanin deposition rapidly occurs, making the regulation of

stage I melanosome number and fate difficult to quantify. Non-
melanogenic cells have an equivalent stage to which
melanosomal constituents, like PMEL, are targeted upon

ectopic expression (Berson et al., 2001). Here, we take
advantage of the absence of a melanogenesis pathway in HeLa

cells to determine whether OA1 expression alone can modulate
MVB number and fate. Furthermore, the absence of the

machinery for melanosome biogenesis makes it possible to

examine the direct effects of OA1 on lysosomal delivery. By
comparing the effects of expression of wild-type and OA1
proteins carrying inactivating mutations, we show that expression

of OA1 can regulate the numbers of a subset of MVBs through
inhibition of lysosomal delivery.

Results
Overexpression of OA1 increases MVB and lysosome
number

To determine the effect of overexpressing OA1 on the endocytic
pathway, HeLa cells were transiently transfected with Myc-

tagged OA1 wild-type (wt) and OA1 mutants, and the number of
MVBs and lysosomes per mm2 of cytoplasm was analysed by
electron microscopy. MVBs and lysosomes were distinguished

on the basis of morphology; MVBs have one or more discrete
ILVs (Fig. 1A) and lysosomes might contain ILVs but are also
electron dense and contain irregular membrane whorls (Fig. 1D).
Results were normalised to the average values determined

for non-transfected controls. Expression of wild-type OA1
significantly increased the formation of both MVBs and
lysosomes (Fig. 1B,E). Expression of OA1-232c (T232K),

which contains a single missense mutation found in ocular
albinism type 1 patients, and OA1-D18, which has a deletion of
18 amino acids within the i3 cytosolic loop region of OA1

responsible for its GPCR activity (Innamorati et al., 2006;
Palmisano et al., 2008) did not cause a significant increase in
MVBs, suggesting that the increased MVB number caused by

overexpression of OA1-wt is dependent on OA1 activity.
Expression of an unrelated GPCR, rhodopsin, did not affect
MVB number (supplementary material Fig. S1). Overexpression
of OA1 mutants that are inactive as GPCRs and expression of

rhodopsin did cause some increase in lysosome formation,
suggesting that this effect was independent of the GPCR activity
of OA1. We therefore analysed the effects of overexpressing the

rat lysosomal membrane protein LAMP1, which has no known
GPCR activity or homology to OA1. Consistent with a role for
OA1 activity in regulating MVB number, there was no effect of

LAMP1 overexpression on MVB number but there was a small,
although not significant, increase in lysosome number, consistent
with the possibility that expression of a lysosomal membrane
protein can increase lysosome number. Although OA1 expression

increased MVB number, there was no significant increase in
MVB size upon expression of any of the OA1 constructs tested
(Fig. 1C). Increased lysosome size was observed upon expression

of wild-type OA1 (Fig. 1F) and a smaller increase was observed
upon expression of OA1-232c, but not OA1-D18, suggesting that
OA1 activity might be required for increased lysosome size. It

was not possible to determine which individual cells had been
transfected in these experiments and thus for each construct the
quantification represents a mixed population of expressing and

non-expressing cells, although an equivalent expression
frequency (,40%) was obtained for all constructs. Therefore
any observed effects of constructs on organelle number and size
are likely to be an underestimation of the true effect of

overexpressing each form of OA1.

To determine whether the lysosomes induced by OA1
expression contained a bona fide lysosomal membrane protein,

the number of LAMP1-positive punctae per cell in cells
transfected with wild-type OA1, OA1 mutants or rat LAMP1
was quantified by immunofluorescence using an antibody
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specific for human LAMP1 that does not stain the expressed rat
LAMP construct. Overexpression of OA1, OA1 mutants and the
unrelated lysosomally targeted rat LAMP1 construct increased

the number of LAMP1-positive punctae per cell (Fig. 2).

Although LAMP1 is a lysosomal membrane protein, in some
cell types it can also be found in earlier endocytic structures,
raising the possibility that some of the LAMP1-positive structures

quantified by immunofluorescence could be MVBs. Cryo-
immunoelectron microscopy (supplementary material Fig. S2A)
revealed that lysosomes contained an ,2-fold higher density of

LAMP1 than do MVBs (supplementary material Fig. S2B). OA1 is
also distributed between MVBs and lysosomes. The same number
(,70%) of OA1-positive structures stain for LAMP1 by

immunofluorescence and have the morphology of lysosomes as
determined by electron microscopy studies (supplementary
material Fig. S2C–E). We conclude therefore that, despite the
presence of small amounts of LAMP1 on MVBs, the density is

insufficient under the conditions of our immunofluorescence
experiments for them to be detected; hence, our quantitative
LAMP1 immunofluorescence predominantly measures lysosomes.

The use of LAMP1 as a lysosomal marker to determine effects
of OA1 expression on lysosome biogenesis and delivery relies on
OA1 expression not altering the distribution of LAMP1. The

density of LAMP1 immunostaining on MVBs and lysosomes was
therefore compared in OA1-expressing and control cells. LAMP1
density was unaffected by OA1 expression (supplementary

material Fig. 2B), further justifying its use as a lysosomal
marker in analysis of the effects of OA1 activity on lysosome
biogenesis and delivery.

OA1-wt and mutant OA1-D18 and OA1-232c localise to
MVBs and lysosomes

Some disease-causing missense mutations in OA1 cause it to fail

to exit the ER, whereas other OA1 mutants localise to the
endocytic/melanosomal pathway like the wild-type protein
(d’Addio et al., 2000). We selected the D18 and 232c mutants
of OA1 because they had previously been shown to localise to the

endocytic pathway. However this did not preclude the possibility
of subtle changes in the localisation of these mutant proteins
compared to the wild type. We therefore analysed the localisation

of OA1-wt and the mutants by cryo-immunoelectron microscopy.
Immuno-gold labelling of samples using an antibody to the Myc
epitope showed that the majority of wild-type and mutant forms

of OA1 localised to MVBs and lysosomes and the morphology of
the labelled organelles appeared very similar for each form of
OA1 (Fig. 3A). Quantification of the relative distribution of OA1
between MVBs and lysosomes did, however, reveal differences

in the distribution of wild-type and mutant proteins. Although, as
described above, ,70% of wt-OA1-positive structures are
lysosomes, quantification of the density of OA1 labelling on

MVBs versus lysosomes revealed that less than 50% of the gold
particles labelling OA1 were present on lysosomes (Fig. 3B).
There was an increased amount of D18 and 232c mutants of OA1

present on lysosomes, suggesting enhanced delivery of these
mutants to lysosomes (Fig. 3B). Quantification of the distribution
of the gold particles labelling OA1 on the perimeter membrane of

the MVB versus the intraluminal vesicles revealed that ,70% of
OA1-wt and the 232c mutant remained on the perimeter
membrane. An increased percentage of the D18 mutant

Fig. 1. Expression of wild-type OA1 in HeLa cells increases MVB and lysosome number. HeLa cells were transiently transfected with OA1-wt, OA1

mutants or rat LAMP1 and processed for conventional electron microscopy. The numbers of MVBs per unit cytoplasm, and the diameter of MVBs (A–C) and

lysosomes (D–F) were measured. A representative MVB and lysosome are shown in A and D. Results are means6s.e.m. of three experiments. *P,0.05,

**P,0.01. There is a significant increase in the number of MVBs in HeLa cells expressing OA1-wt but not OA1 mutants, whereas there are increased lysosome

numbers in cells expressing both OA1-wt and OA1 mutants. OA1 expression has no effect on MVB diameter but there is a significant increase in lysosome

size on expression of OA1-wt and the OA1-232c mutant. Scale bars: 100 nm.

OA1 regulates multivesicular body number 5145
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remained on the perimeter membrane, suggesting that this mutant

was deficient in targeting to the intraluminal vesicles (Fig. 3C).

Together, these findings indicate that the mutant forms of OA1

are trafficked to the same organelles as the wild-type protein,

despite some differences in their relative distributions. Therefore

the disease phenotype that arises from these mutations within

OA1 probably results from a reduced/lack of interaction with a

single or multiple regulatory substrate(s) within the i3 OA1

domain.

OA1 does not affect fusion of EGFR-containing MVBs with
the lysosome

EGF is trafficked in a subset of MVBs whose numbers increase

upon EGF stimulation. To determine whether OA1 is trafficked

in the same MVBs as EGF, colocalisation of EGF–Alexa-Fluor-

488 (EGF-488) with OA1-wt was measured over time. After

25 minutes of EGF stimulation, when the majority of EGF is in

MVBs, EGF was predominantly localised to a different subset of

endosomes to those containing OA1 (Fig. 4A,B). However, after

incubating HeLa cells for at least 60 minutes with EGF-488,

when a substantial amount of EGF has reached lysosomes, there

was increased colocalisaton of EGF with OA1. Thus, EGF and

OA1 appear to be trafficked in largely separate MVBs but meet

in lysosomes. As we had previously found that LBPA is also

trafficked in largely separate MVBs from those that carry EGF

but that EGF and LBPA meet in the lysosome (White et al.,

2006), we investigated colocalisation between OA1 and LBPA

and found greatly increased colocalisation between OA1 and

LBPA, compared with that between OA1 and EGF internalised

for 25 minutes (supplementary material Fig. S3).

Increased numbers of MVBs could arise from an upregulation

of MVB formation or reduced MVB consumption. In HeLa cells

lacking a melanogenic pathway, the primary route for MVB

consumption is fusion with the lysosome. EGF degradation

depends on fusion of EGFR-containing MVBs with lysosomes.

As described above OA1 and EGFR appear to be trafficked in

separate populations of MVBs but meet in the lysosome. To

determine whether there is a general inhibition of MVB–

lysosome fusion by OA1 activity the effect of OA1 expression

on the uptake and rate of EGF-488 degradation was determined.

Expression of OA1 in HeLa cells had no significant effect on the

uptake of EGF during a 25-minute pulse and, after a 2-hour

chase, there was substantial loss of EGF-488 that was not

significantly affected by expression of OA1 (Fig. 4C,D).

Previous studies using this assay have demonstrated that loss of

EGF-488 signal with time is prevented by pre-incubation of the

cells with the protease inhibitor, leupeptin and under these

conditions EGF accumulates in lysosomes, indicating that loss of

EGF-488 signal represents lysosomal degradation (Eden et al.,

2010). This suggests that OA1 expression has no effect on fusion

of EGFR-containing MVBs with the lysosome.

OA1 expression inhibits the delivery of fluid-phase probes
to lysosomes

As OA1 was found to associate with a different subset of

endocytic organelles to those containing EGF and EGFR, the rate

of delivery of OA1-containing endosomes/MVBs to lysosomes

could not be determined using EGF-488 alone. To determine

whether the delivery or fusion to lysosomes was altered for OA1-

containing MVBs, two experiments were performed using the

fluid-phase marker BSA to follow the delivery of all populations

of endosomes to lysosomes. In confocal experiments DQ-BSA

was used as it only emits (at ,515 nm wavelength) when

hydrolysed in active lysosomes (Fig. 5) and for electron

microscopy BSA tagged to 5-nm gold was used (Fig. 6). For

both experiments the BSA markers were pulsed for 2 hours to

allow adequate uptake before chasing with non-conjugated BSA

for 4 hours to allow movement of the marker to the lysosome.

The time periods used in this experiment were based on previous

research showing that this is adequate to chase a fluid-phase

marker from endosomes and for it to accumulate in lysosomes

(Futter et al., 1996). An indicator of restricted or inhibited

delivery to lysosomes is reduced DQ-BSA signal in LAMP1

positive lysosomes and increased numbers of MVBs positive for

5-nm-gold-tagged BSA. In non-transfected HeLa cells and cells

transfected with mutant forms of OA1, almost all LAMP1-

positive lysosomes were also positive for DQ-BSA signal,

whereas in cells transfected with OA1-wt, a proportion of

LAMP1-positive lysosomes did not contain the DQ-BSA signal

(Fig. 5B). This could reflect reduced delivery of DQ-BSA to

Fig. 2. Expression of lysosomal associated membrane

proteins increases lysosome number. (A) Representative

confocal images showing punctate localisation of human

LAMP1 in addition to nuclear DAPI staining (blue) in

HeLa cells expressing either rat LAMP1 or various forms

of OA1 (green). (B) Quantification of the number of

LAMP1-positive punctae in the cells described in A.

Results are means6s.e.m. of five experiments. **P,0.01.

In HeLa cells expressing OA1, OA1 mutants or rat

LAMP1 there is a significant increase in the number of

LAMP1-positive punctae when compared to mock-

transfected cells. Scale bar: 50 mm.

Journal of Cell Science 126 (22)5146
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lysosomes or reduced activity of lysosomes, rendering them less

efficient at proteolytic activation of the DQ-BSA signal. We

therefore investigated the effect of OA1 expression on delivery of

BSA-gold to lysosomes and found that, although the majority of

lysosomes contained BSA–gold whether or not the cells had been

transfected with OA1, there was a significant increase in the
number of MVBs containing 5-nm-gold-tagged BSA gold in

OA1-wt-transfected cells compared to mock-transfected cells and
cells transfected with the OA1-D18 mutant (Fig. 6C). Taken
together, the two experiments provide evidence for a reduction or

slowdown of delivery of fluid-phase markers to lysosomes.

OA1 expression inhibits delivery of PMEL to lysosomes

Using BSA as a fluid-phase marker does not allow the distinction
between different populations of MVBs. To identify a cargo for
the MVBs that accumulate upon OA1 expression HeLa cells were

transfected with PMEL. PMEL was an attractive potential cargo
because it localises to MVBs both in melanogenic cells and when
expressed in non-melanogenic cells. It is required for normal

melanosome biogenesis and has previously been shown to
colocalise with OA1 in melanogenic cells. We found that
PMEL localises to both MVBs and LAMP1-positive lysosomes

when expressed in HeLa cells (Figs 7 and 8). In common with
OA1, PMEL shows only limited colocalisation with EGF
internalised for 25 minutes but shows extensive co-staining
with OA1 when the two proteins are co-expressed

(supplementary material Fig. S3). This indicates that, in HeLa
cells, PMEL is largely trafficked to the lysosome in the same
subpopulation of MVBs as OA1, which is distinct from the

subpopulation that carries the majority of the EGFR. We
reasoned that if OA1 induces a reduction or slowdown in
fusion between PMEL-containing MVBs and lysosomes then

there should be reduced colocalisation of PMEL with the
lysosomal marker LAMP1 when OA1 is co-expressed. Indeed
this was found to be the case in HeLa cells overexpressing OA1-
wt; less PMEL colocalised with LAMP1 in these cells than in

HeLa cells expressing mutant forms of OA1, the LAMP1
construct or in non-transfected cells (Fig. 7). Similarly
expression of OA1-wt reduced the co-staining of co-expressed

PMEL with lysotracker (supplementary material Fig. S4). This
suggests that OA1 activity inhibits the fusion of a subset of
MVBs that contain expressed PMEL with the lysosome. This

would be expected to cause PMEL-containing MVBs
to accumulate in OA1-expressing cells and, hence, cryo-
immunoelectron microscopy was performed on mock-

transfected and OA1-wt-transfected cells and the number of
PMEL-positive MVBs per unit of cytoplasm quantified. As
shown in Fig. 8, in OA1-transfected cells there is a more than 2-
fold increase in the number of PMEL-positive MVBs compared

with the number in control cells.

Discussion
Regulation of lysosome number by overexpression of
lysosomal membrane proteins

We found that expression of two unrelated lysosomal membrane
proteins, LAMP1, which is a single transmembrane domain
protein with a large heavily glycosylated luminal domain, and

OA1, which is a seven transmembrane domain GPCR, both led to
an increase in lysosome number. That increased numbers of
lysosomes can be caused by mutant forms of OA1 that do not

induce detectable increases in MVB number suggests that the
increased lysosome numbers are not simply due to increased
membrane flux to the lysosome but are a response to the presence

of increased resident protein copy number within the lysosomal
membrane. This upregulation of lysosome number was evident
within 24 hours of transfection with the lysosomal protein and

Fig. 3. Wild-type OA1 and OA1 with a point-mutation (232c) or deletion

of 18 amino acids (D18) in the i3 cytosolic loop localises to MVBs and

lysosomes. (A) HeLa cells were transfected with Myc-tagged OA1 and OA1

mutants and embedded for cryo-immunoelectron microscopy. Thawed

cryosections were stained with anti-Myc antibody. OA1-wt and mutants

localised to morphologically similar MVBs and lysosomes. (B) The number

of gold particles (gold-labelled anti-Myc antibody) in lysosomes were

quantified and compared with numbers in MVBs. A smaller percentage of

OA1-wt localised to lysosomes, compared with the inactive OA1 mutants.

(C) The number of gold particles localising to the perimeter membrane and

the ILVs of MVBs were quantified. More OA1-D18 was found on the

perimeter membrane than OA1-wt or 232c. Scale bar: 200 nm.

OA1 regulates multivesicular body number 5147
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represents an interesting example of how increasing membrane

cargo increases the size of a compartment. The molecular detail

of how lysosome number can be regulated by lysosomal content

is beginning to be resolved. The Rag GTPase senses lysosomal

amino acids, and regulates the activity of the mammalian target

of rapamycin (mTOR) complex on the lysosomal membrane,

which, in turn, regulates the starvation- and stress-induced

nuclear translocation of transcription factor EB (TFEB) and the

subsequent transcription of lysosomal genes (Settembre et al.,

2012). Our data suggests that increased expression of lysosomal

membrane proteins can also be sensed, although the mechanism

of sensing is unclear.

OA1 expression caused an increase in lysosome size,

consistent with previous data showing an increase in the

diameter of LAMP2-positive compartments upon OA1

expression in Cos cells (Shen et al., 2001). Interestingly the

increased lysosome number observed on expression of

lysosomally targeted constructs was not inevitably accompanied

by an increase in lysosome size because expression of the

inactive mutant OA1-D18 caused an increase in lysosome

number without an increase in size. Paradoxically OA1 activity

acts in melanogenic cells to limit melanosome size as loss of

OA1 causes formation of enlarged melanosomes, suggesting that

effects of OA1 on lysosome size might reflect a different function

of OA1 to that that regulates melanosome size. OA1 expression

has previously been shown to modulate the distribution of

mannose-6-phosphate receptor (Shen et al., 2001). Therefore,

defects in lysosomal retrieval pathways could lead to lysosome

enlargement. Alternatively delayed delivery of degradative

enzymes via MVB–lysosome fusion could lead to reduced

degradative capacity and consequent lysosomal enlargement.

Regulation of MVB number by OA1 activity

The demonstration of the upregulation of MVB number by OA1-

wt but not inactive OA1 mutants in HeLa cells demonstrates that

OA1 is not only recognised by trafficking machinery but also

retains some activity when expressed in non-melanogenic cells.

The only previously described ligand for OA1 is L-DOPA (Lopez

et al., 2008), which is generated by tyrosinase, an enzyme not

expressed in HeLa cells. This suggests that the specific effects of

OA1-wt in HeLa cells might depend either on the presence of

alternative ligands able to activate the receptor or on its

considerable constitutive activity (Innamorati et al., 2006).

Furthermore, the increase in MVB number as a result of OA1

activity occurs without expressing MART1, which has previously

been shown to stabilise OA1 (Giordano et al., 2009).

Fig. 4. OA1 expression does not affect delivery of EGF to the lysosome. (A) Confocal images of HeLa cells pulsed with EGF-488 for 10, 30, 60 and

90 minutes. (B) There was very little colocalisation between EGF and OA1 until 60–90 minutes when EGF reaches lysosomes. (C) OA1 expression had no effect

on the uptake of EGF after pulsing HeLa cells for 25 minutes with EGF-488. (D) After chasing with unlabelled EGF there was a reduction in EGF-488

fluorescence which was unaffected by OA1 overexpression. Results are means6s.e.m. of three experiments. Scale bar: 50 mm.
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We have previously shown that signalling from activated

EGFR causes an increase in the number of EGFR-containing

MVBs. Here, we show that increased MVB number can also be

caused by signalling from OA1. As MVBs are not stable entities,

the regulation of their number is complex and represents a

balance between their biogenesis and their fusion with their target

membrane. In this study we show that, unlike EGFR signalling

from the endosome, which is likely to promote lysosomal

delivery, signalling from OA1 at the level of the endosome

inhibits lysosomal delivery, leading to the accumulation of a

subset of MVBs. We cannot exclude the possibility that OA1 also

upregulates MVB biogenesis in HeLa cells. The MVBs that

accumulate upon OA1 expression do not appear to be the same

MVBs that deliver endocytosed EGF to the lysosome, as OA1

expression neither inhibits the lysosomal delivery of EGF nor

localises to EGFR-containing MVBs. In contrast, when PMEL is

expressed in conjunction with OA1, to identify MVBs that in

melanogenic cells could become melanosomes, PMEL is targeted

to the MVBs that accumulate upon OA1 expression. A simple

interpretation of these data would be that EGFR signalling and

OA1 signalling upregulate the numbers of separate populations of

MVBs, EGF stimulation promoting the formation of an EGFR-

containing subset, and OA1 activity inhibiting the lysosomal

delivery of a different subset of MVBs. EGFR is sorted onto the

ILVs of MVBs for subsequent lysosomal delivery by the ESCRT

machinery, whereas PMEL utilises ESCRT-independent

machinery for sorting onto ILVs. However ESCRT-mediated

ILV formation and the formation of PMEL-containing ILVs are
unlikely to occur in entirely separate MVBs as the C-terminal

fragment of PMEL that remains after proteolytic cleavage is
delivered to lysosomes in an ESCRT-dependent manner,
suggesting that ESCRT-dependent and ESCRT-independent
budding can occur on contiguous membranes (van Niel et al.,

2011). Furthermore, OA1 itself has been shown to be capable of
undergoing ubiquitylation and ESCRT-dependent sorting onto
ILVs (Giordano et al., 2011). It is possible that the ESCRT

machinery plays a role in the segregation of ESCRT-dependent
lysosomally directed cargos from those that have other
destinations, such as melanosomes, and that ubiquitylation of

OA1 regulates its activity by removing it from immature
melanosomes. The inability of the inactive OA1 mutants to
increase MVB number was not owing to increased targeting to
ILVs because wild-type OA1 and the patient mutation (232c)

were targeted to ILVs with equal efficiency, and the OA1
mutation carrying an 18 amino acid deletion was less efficiently
targeted to ILVs. It is possible that this deletion affects OA1

ubiquitylation.

We have shown that delivery of a subset of cargo to lysosomes
is inhibited upon OA1 expression and that this inhibition is

accompanied by an accumulation of MVBs. MVB cargo is
delivered to lysosomes either by direct fusion (Futter et al., 1996)
or by a ‘kiss and run’ process (Bright et al., 2005). The increased

MVB number upon OA1 expression suggests that OA1 delays
MVB–lysosome fusion. This is a process that depends on the
Rab5 to Rab7 switch, the Rab7-dependent recruitment of the
HOPs complex and a VAMP7-containing trans-SNARE complex

(Luzio et al., 2010). OA1 could regulate one or more components
of this machinery. Alternatively OA1 could delay MVB–
lysosome fusion through effects on MVB or lysosome motility.

This seems unlikely, however, as OA1 activity favours
accumulation of melanosomes in the perinuclear region
(Palmisano et al., 2008), which would be the type of movement

likely to favour MVB–lysosome fusion. Alternatively OA1
expression could affect luminal pH of the MVBs to which it is
localised and, thereby, inhibit MVB–lysosome fusion.

What is the purpose of delayed lysosomal fusion induced by

OA1 expression? Delivery of PMEL to MVBs does not require
the presence of OA1 as PMEL is targeted to MVBs in HeLa cells
in the absence of OA1 (Berson et al., 2001). Delivery of PMEL is

a comparatively early event in melanosome biogenesis. Delivery
of the melanin-synthesising enzymes to maturing melanosomes is
a later event that allows the deposition of melanin on pre-formed

PMEL-dependent striations (Raposo et al., 2001). Delay in
lysosomal fusion might allow time for delivery of melanin-
synthesising enzymes and subsequent melanin deposition before

lysosomal fusion. This could be of particular importance given
the parallel role for OA1 in the regulation of melanosome
maturation through the retention of immature melanosomes in the
cell centre (Palmisano et al., 2008) bringing them into close

proximity with lysosomes.

Lysosomal delivery of OA1 and PMEL was not completely
blocked in HeLa cells given that some BSA–gold, expressed

PMEL and OA1 could reach lysosomes in OA1-expressing cells.
In melanogenic cells, the deposition of melanin might further
inhibit lysosomal delivery or render the melanosome resistant to

the effects of lysosomal fusion. Consistent with this hypothesis is
our previous demonstration that inhibition of melanin deposition
within melanosomes in RPE cells, either through inhibition of

Fig. 5. Expression of OA1 reduces delivery of active DQ-BSA, the fluid-

phase marker to the lysosomes. HeLa cells transfected with Myc-tagged

OA1 and OA1 mutants were subjected to a 2-hour pulse of DQ-BSA,

followed by a 4-hour chase. (A) A representative confocal image of a HeLa

cell fluorescently labelled with the active lysosomal marker DQ-BSA (red),

LAMP1 (green) or a combined image including nuclear DAPI staining (blue).

(B) Quantification of the subpopulation of DQ-BSA-negative lysosomes after

DQ-BSA incubation of HeLa cells transfected with the indicated protein.

Overexpression of wild-type OA1 increases the portion of DQ-BSA-negative

lysosomes. Results are means6s.e.m. of five experiments. Scale bar: 20 mm.
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delivery of melanin-synthesising enzymes or through tyrosinase

deletion, results in instability of immature melanosomes, which

are then lost postnatally (Lopes et al., 2007). In melanogenic

cells, OA1 deletion would be expected to enhance the fusion of

PMEL-containing MVBs with lysosomes. This is difficult to

measure directly but Giordano et al. (Giordano et al., 2009)

Fig. 6. Expression of OA1 increases the number

of the BSA-gold positive MVBs after chasing to

lysosomes. HeLa cells transfected with Myc-tagged

OA1 were subjected to a 2-hour pulse of DQ-BSA,

followed by a 4-hour chase. (A) Representative

electron micrograph image of lysosomes containing

BSA–gold. (B) Representative electron micrograph

image of MVBs containing BSA–gold.

(C) Quantification of BSA–gold-positive MVBs in

the cytoplasm. Results are means6s.e.m. of five

experiments. *P,0.05, ** P,0.01. There are

significantly increased numbers of MVBs containing

gold in HeLa cells expressing OA1 compared to

mock- and OA1-D18-transfected cells. Scale bar:

100 nm.

Fig. 7. The delivery of the melanosome-associated protein

PMEL to lysosomes is reduced in OA1-expressing HeLa

cells. (A) A representative confocal image of a HeLa cell

overexpressing PMEL fluorescently stained for PMEL (red)

and LAMP1 (green). (B) Quantification of PMEL and

LAMP1colocalisation using the Manders coefficient. Results

are means6s.e.m. of three experiments. *P,0.05,

***P,0.001. Expression of OA1-wt significantly reduced

PMEL and LAMP1 colocalisation compared to mock-, OA1-

232c- and OA1-D18-transfected cells. Therefore, only the

wild-type form of OA1 is able to restrict delivery of PMEL to

lysosomes. Scale bars: 20 mm.

Journal of Cell Science 126 (22)5150



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

showed that deletion of OA1 in melanocytes resulted in increased

mixing of melanosome and lysosome markers, consistent with an

enhanced fusion of immature melanosomes with lysosomes. This

impaired, though did not prevent, melanin deposition.

Roles for OA1 in regulating melanosome number, size and

transport have been identified through studies of melanogenic

cells. To what extent these are independent functions remains

unclear. The use of non-melanogenic HeLa cells in the present

study has allowed the identification of a role for OA1 in the

negative regulation of a specific transport step, namely MVB–

lysosome fusion. The machinery recognising targeting signals

of melanogenic proteins is conserved in non-melanogenic

cells (Vijayasaradhi et al., 1995; Höning et al., 1998;

Blagoveshchenskaya et al., 1999; Calvo et al., 1999; Simmen

et al., 1999, Berson et al., 2001, Shen et al., 2001), and HeLa

cells have MVBs equivalent to an early stage melanosome that

carries the machinery necessary for sorting and proteolytic

processing of PMEL and fibril formation (Berson et al., 2001;

Theos et al., 2006). It seems reasonable to assume, therefore, that

the delay in lysosome fusion that we have observed in HeLa cells

would be conserved in melanogenic cells. Identifying the

downstream effectors in HeLa cells that mediate the effects of

OA1 on MVB number could provide targets that could be

manipulated to determine the relationship between the different

roles of OA1 in melanogenic cells and their relative importance

in the prevention of ocular albinism.

Materials and Methods
Transfection

The OA1, OA1-232, OA1-D18 and rat LAMP1 constructs were generated as

previously described (Palmisano et al., 2008). The OA1 constructs were cloned

into pcDNA 3.1/Myc-His plasmids to allow comparable expression levels of each

construct. The PMEL construct was prepared by Michael Marks at the University

of Pennsylvania (Berson et al., 2001). HeLa cells were transfected using

Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s

guidelines, for 48 hours with OA1–Myc, OA1-232–Myc, OA1-D18–Myc, PMEL
or LAMP1. Before undertaking any experiments, the numbers of cells expressing

each construct was determined by immunofluorescence using anti-Myc antibody to
ensure equivalent transfection efficiencies.

Electron microscopy

BSA was coupled to 5-nm colloidal gold as previously described (Slot and Geuze,
1985). After the pre-incubations indicated in the text, HeLa cells cultured on 3-cm
dishes were fixed in 2% paraformaldehyde/2% glutaraldehyde followed by 1%
osmium tetroxide/1% potassium ferrocyanide. Cells were dehydrated using
increasing concentrations of ethanol and were then removed from plastic dishes
using propylene oxide. Cells were recovered by centrifugation and cell pellets
were then embedded in epon resin. Sections (70-nm thick) were cut through the
full thickness of the pellet and examined using a Joel 1010 TEM. MVBs and
lysosomes were counted in random sections. Vacuoles greater than 200 nm in
diameter and having one or more ILVs in random sections and no irregular
membranes were classified as MVBs, and electron-dense vacuoles greater than
200 nm in diameter containing irregular membranes were classified as lysosomes.
At least 20 cells were quantified for each sample and the area of cytoplasm was
measured for each cell section using ImageJ. Organelle diameters were measured
using ImageJ, taking the mean of the longest and shortest diameter of each
organelle.

Cryo-electron microscopy

HeLa cells were prepared for cryo-immuno-electron microscopy by fixing with 4%
paraformaldehyde in 0.1 M phosphate buffer at pH 7.4 and pelleting in 12%
gelatin. Subsequently, after infusion with 2.3 M sucrose, 80-nm sections were cut
at 2120 C̊ and collected in 1:1 2.3 M sucrose/2% methylcellulose. The sections
were immuno-labelled by incubating with anti-Myc (Millipore), anti-PMEL
(HMB45 from Dako) or anti-LAMP1 (DSHB at the University of Iowa) antibodies
and 10-nm-gold-tagged protein A (UMC Utrecht) as described previously (Slot
et al., 1991).

Fluorescence

HeLa cells were transfected for 48 hours with OA1–Myc, OA1-232–Myc, OA1-
D18–Myc, PMEL or LAMP1. In some incidences cells were incubated with either
(1) DQ-BSA red (Invitrogen) for 2 hours before unconjugated BSA for 4 hours or
(2) EGF-488 for 25 minutes followed by unlabelled EGF for 2 hours. The cells
were fixed in 2% paraformaldehyde and labelling using anti-Myc (Millipore and
Abcam), HMB45 (Dako), ly1c6 (Enzo Life Sciences), LAMP1 (DSHB at the
University of Iowa), CD63 (Santa Cruz Biotechnology) and LBPA (from J.
Gruenberg, University of Geneva) antibodies. Image acquisition was performed on
a Leica SP2 confocal, using the FITC and TRITC channels. To quantify the
number of stained organelles in confocal slices and to measure colocalisation using
the Manders’ coefficient, ImageJ was used. Student’s t-tests were performed to
determine statistical significance.

Fig. 8. Expression of wild-type OA1 in HeLa

cells increases the number of PMEL-positive

MVBs. HeLa cells were transiently transfected

with either PMEL or a combination of PMEL and

OA1-wt, and processed for cryo-immunoelectron

microscopy. Approximately 93% of cells

expressing PMEL also expressed OA1 when

transfecting with both constructs, as determined by

parallel immunofluorescence. (A–C) Cryosections

were stained with PMEL antibody and the number

of PMEL-positive MVBs and lysosomes were

measured. (B) Cells expressing OA1-wt had more

PMEL-positive MVBs per unit of cytoplasm.

(C) The number of PMEL-positive lysosomes was

not affected by OA1-wt expression. Scale bar:

100 nm.
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