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Abstract

At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific
genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above
a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and
neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed
that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the
expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA
sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles
taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and
observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that
histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely
correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the
hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows
down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype
with regards to age at disease onset, prognosis and transmission.
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Introduction

Anomalous expansion of coding CAG repeats in specific genes

is the cause of at least nine different neurodegenerative diseases

that include Huntington’s chorea, Kennedy’s Disease and various

types of spinocerebellar ataxias [1]. Despite the clinical and

genetic heterogeneity of these disorders, a common hallmark of

their pathologies is the presence of neuronal intranuclear protein

aggregates with a granular or fibrillar morphology in the affected

cells, which are strongly reminiscent of those observed in

Alzheimer or Parkinson’s diseases [2]. Although their role is still

debated, increasing evidence indicates that these inclusions and/or

their soluble precursors are highly cytotoxic and a direct cause of

disease. In vitro and in vivo studies have demonstrated that polyQ is

insoluble and that aggregation depends on the polyQ length and

concentration [3,4]. While polyQ expansion is essential for

triggering disease, other regions of the carrier proteins may

modulate the aggregation properties and the severity of the

pathology.

The age at onset and the severity of the polyQ expansion

diseases inversely correlate with the length of the polyQ tract

provided that this exceeds a threshold specific for each disease,

which is in most cases around 35–40 repeats [5–7]. It was initially

suggested that the threshold could be explained by different

structural features of polyQ when the polyQ length is above or

below it [8,9]. However, neither we nor other groups could collect

any evidence in support of different length-dependent structural

properties [10–17]. We observe instead that polyQ of different

lengths have different aggregation kinetics, suggesting that the

difference between pathology and health is determined by this

property [13].

Cases in which there are silent or missense mutations within the

polyQ tract have been observed [18–26]. The specific codon

composition that encodes polyQ tracts appears to determine the

susceptibility of an allele to expansion: while polyQ is also encoded

by the CAA codon, the polyQ tracts observed in disease-causing

genes seem to being the majority of the cases composed of long

uninterrupted repeats of CAG triplets. Interestingly, polyQ

encoded by mixtures of CAG and CAA codons seems to be less

prone to expansion.
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Interruptions strongly modulate the effect of expansion on

pathology. For instance, individuals with expanded ataxin-1, the

protein responsible for spinocerebellar ataxia type 1 (SCA1), but

carrying histidine (CAT) interruptions were reported to be

phenotypically normal [27,28], suggesting that interruptions could

alter the polyQ properties and reduce the toxic effects.

Although the presence of interruptions and their influence on

pathology has been reported for some time [27–31], there is still

little evidence that can explain their exact influence on the SCA

pathologies. It is known that interruption of the expanded allele

gives more stability during transmission, independently of the sex

of the transmitting parent. The converse applies when the CAG

tract of the expanded allele is pure [32–34]. Therefore, knowing

whether an interruption is present is crucial in genetic counselling

of patients, particularly with respect to prediction of age at onset

and progression of the disease as well as to the probability of allele

expansion when transmitted to future generations. This informa-

tion could also guide the design of future effective therapeutic

strategies.

In this study we present a detailed investigation aimed at further

understanding the role of polyQ interruptions. We carried out an

extensive genetic study on 36 individuals to understand the

sequence and length variations of the repeat region in both alleles

due to mosaicism. We also analysed parent-child transmission in

two families. The first family has a pure CAG repeat in their

expanded allele. As expected from previous studies [32,34], the

transmission from the mother led to a contraction of the repeat

tract in her son, whilst the allele underwent expansion on

transmission from her son to her grandson. The second family

has an interrupted CAG repeat tract in their expanded allele.

Surprisingly, maternal transmission of the expanded allele in this

family led not only to the loss of the interruption, but also to the

contraction of the pure CAG repeat tract in the expanded allele.

Our work strongly suggests the importance of directly assessing the

expanded CAG repeat allele in diagnosis. We show for the first

time that alleles with interruptions are not necessarily stable. This

is at variance with current diagnostic tests for SCA1 which rely on

fragment sizing SCA1 alleles, a method that does not discriminate

between interrupted and uninterrupted alleles. We complemented

the genetic data by in vitro studies both using cellular models and

biophysical methods. Our results clarify the mechanism of

aggregation and show that the presence of interruptions affects

fibre formation stability.

Results

SCA1 patient clone analysis
A detailed strategy was devised for cloning the CAG repeat

region from alleles of the gene responsible for SCA1 (ATXN1) into

a plasmid vector, from which the repeat configuration could be

determined by sequencing. Cloning rather than direct sequencing

of the CAG repeat region was necessary because the mosaicism

caused by the repeats results in a mixed population of repeat

lengths [21,32]. A high-fidelity proof-reading DNA polymerase

(Phusion) was used to minimise potential errors when amplifying

the CAG repeat region from patient DNA. PCR primers used for

amplifying the CAG repeat region for ATXN1 were designed to

incorporate BamHI and XhoI restriction sites for cloning into a

pcDNA3.1+ plasmid vector. Pathogenic and normal alleles for

each patient were gel-purified and cloned individually into the

plasmid vector. To avoid point-mutations from DNA exposure to

UV during gel-purification, a counterion-dye DNA staining

method with crystal violet and methyl orange was used to post-

stain gel-purification gels and visualise DNA by normal white light.

Initial experiments involved the cloning of the pathogenic allele for

SCA1 patient #1 using the standard E. coli cloning strain DH5a
and a strain, Stbl3, where the rate of homologous recombination is

reduced so direct repeats should be stably replicated. When cloned

into DH5a, the pattern of repeats/interruptions varied signifi-

cantly with interruption patterns that could only be explained by

artefacts of homologous recombination in this strain. The

sequence of the repeat region was more stable in Stbl3 E. coli.

This strain was therefore used for subsequent cloning experiments.

For the majority of alleles cloned, a minimum of five colonies from

the bacterial transformation plate were analysed to determine a

range of the individual repeat sequences. Normal and pathogenic

alleles of 36 individuals (35 SCA1 patients and one SCA3 patient

with a borderline SCA1 expansion) were cloned and sequenced. A

total of 800 clones were generated from these patients, comprising

101 unique repeat region clones (40 uninterrupted and 61

interrupted CAG repeat regions, see Table S1).

Since the number of clones sequenced for each individual

differed, clone numbers were expressed as a percentage to account

for clone depth (see Table S2). For all patients we observed a

diverse distribution of lengths both for the normal and the

expanded allele with some patterns being significantly more

represented than others. The majority of uninterrupted clones

(93%) had an allele size above the pathogenic threshold of 39

repeats or greater, whilst the majority of interrupted clones (90%)

had an allele size below the pathogenic threshold. The most

frequent uninterrupted allele sequence (CAG)47 was seen in 5% of

all clones whilst the most frequent interrupted allele sequences

were [(CAG)12(CAT)(CAG)(CAT)(CAG)14] and [(CAG)12(CAT)(-

CAG)(CAT)(CAG)15], comprising 16% and 14% of all clones,

respectively. Interruptions were observed in both normal and

pathogenic alleles. For 88% of clones with interrupted sequences,

the interruption pattern was [(CAT)(CAG)(CAT)] while a single

CAT interruption was observed in 10% of interrupted clones.

Most of the remaining interrupted clones had three CAT

interruptions in the pattern [(CAT)(CAG)(CAT)(CAG)(CAT)]

whilst a single case had four CAT interruptions in the pattern

Author Summary

Spinocerebellar ataxia type 1 (SCA1) is a progressive
neurodegenerative disorder resulting in loss of coordina-
tion and balance. It is caused by an expanded repeated
DNA sequence (CAG) in the gene ATXN1. The CAG repeat
region is normally interrupted by the DNA sequence CAT.
Loss of this interruption is believed to cause instability
whereby the CAG repeat expands beyond a key threshold
resulting, ultimately, in polyglutamine protein aggregation
and cell death. Here we examine how interruptions
influence pathology in patients and establish a cellular
model to support our findings. We distinguish our patients
into two sub-groups based on whether or not their
expanded CAG repeat stretches contained an interruption.
This is not possible with conventional diagnostic tech-
niques. Differentiating the sub-group with no interruptions
led to improved accuracy in predicting their age at onset.
The other sub-group, with interruptions, reveals a delay in
age at onset that shows greater alignment with the
longest stretch of CAG repeats. These findings are
significant for genetic counselling and prognosis. Our
cellular model and in vitro studies confirmed the relation-
ship between disease severity and uninterrupted repeat
length and showed that interruptions do not significantly
affect the polyglutamine protein aggregation, but do slow
down the aggregation rate.

The Role of Interruptions in polyQ Aggregation
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[(CAT)(CAG)(CAT)(CAG)(CAT)(CAG)(CAT)]. Patient 9 had a

single clone (out of 19) with a novel single AAG interruption. This

is however probably due to a PCR or sequencing artefact.

Finally, the most important observation arising from these data

is that we have different examples of interrupted expanded

pathogenic alleles in which uninterrupted regions are well above

the pathological threshold. Such an observation has been reported

only once before for a SCA1 patient with an interrupted expanded

pathogenic allele of a total length of 58 repeats and with 45 repeats

in the longest uninterrupted stretch [35]. However, in this

reported case the total number of repeats in the interrupted allele

and the longest uninterrupted CAG stretch was much shorter than

the cases presented here. For instance, patient #3 had a single

clone of total length 83 repeats with the sequence [(CAG)70(-

CAT)(CAG)(CAT)(CAG)10] whilst patient #1 had multiple clones

of total length ranging in size from 64–69 repeats with the

sequences [(CAG)51–56(CAT)(CAG)(CAT)(CAG)10]. To our

knowledge, these are the longest interrupted pathogenic alleles

reported to date.

Influence on the age at disease onset of polyQ
interruptions in the pathogenic allele

Having this unprecedented number of sequences, we checked

the dependence of age at onset on the repeat lengths and

compared our results with those obtained by fragment sizing, the

method commonly used in diagnostic laboratories. This method

does not allow for a differentiation of interrupted and uninter-

rupted pathogenic alleles, since the supplemental step of SfaNI

digestion to detect CAT interruptions is not routinely performed

on large pathogenic alleles. When plotting the age at disease onset

against the pathogenic allele size as determined by fragment sizing

(Figure 1A) we found a correlation with a Pearson correlation

coefficient r = 20.490 (significant at the 0.01 level). Such

correlation is in keeping with previous studies [20,34], however

the quality of fit to the linear model is low (A = 20.577,

b = 66.910, adjusted R2 = 0.212).

The clone sequencing approach allows patients to be sub-

divided based on whether or not they have an interrupted

pathogenic allele. For the purposes of this study, the allele size for

interrupted alleles is the total length of the polyQ tract, including

CAT interruptions. When we plot the age at disease onset against

mean uninterrupted pathogenic allele size as determined by clone

sequencing (Figure 1B, crosses) we found a significant correlation

to the pathogenic allele size, having a Pearson correlation

coefficient r = 20.825 (significant at the 0.01 level). The quality

of fit to the linear model greatly increases (A = 21.764,

b = 124.817, adjusted R2 = 0.670) as compared to the fragment

sizing data (0.670 compared to 0.212). This indicates that this

model describes the data better and therefore the clone-sequencing

data predict much more accurately the age at disease onset. The

steeper slope determined by the clone-sequencing derived fit also

indicates a more sensitive determination of the age at disease onset

from the pathogenic allele size. As in Jodice et al. (1994) [20,34],

our data showed a slightly better fit to the linear model compared

to the exponential model (adjusted R2 = 0.670 compared to 0.641,

data not shown), probably due to the lack of subjects with

extremely early or late ages at disease onset.

Interrupted pathogenic alleles (Figure 1B, open circles) form a

distinct cluster outside the prediction bounds at the 95%

confidence level of the uninterrupted pathogenic allele linear

model. Interruption of the pathogenic allele is known to delay age

at onset in agreement with the shift to a later age at onset observed

here. If instead the mean longest contiguous stretch of CAG

Figure 1. Correlation between polyQ length expansion and age at disease onset. Pathogenic allele size as determined via diagnostic sizing
(A, n = 35) and by clone sequencing (B, n = 35). Interrupted alleles are indicated on the diagnostic sizing graph by bold crosses for reference only,
since these cannot be differentiated by this method. The clone sequencing approach further sub-divided the patient group into those with primarily
uninterrupted (crosses, n = 31) and interrupted (open circles – total allele length; filled circles – longest CAG stretch, n = 4) allele repeats; these subsets
are not distinguished via conventional sizing. A linear model was used to relate the patient’s age at disease onset to their indistinguishable
pathogenic allele (A) or uninterrupted pathogenic allele (B) size. The solid lines depict the fit result while the dashed lines show the prediction
bounds at the 95% confidence level. Sequencing of cloned patient alleles produces a higher quality fit with tighter prediction bounds. The data used
to prepare this figure may be found in Table S3.
doi:10.1371/journal.pgen.1003648.g001

The Role of Interruptions in polyQ Aggregation
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repeats is plotted against age at disease onset (Figure 1B, filled

circles), these points shift to fall within the linear model for the

uninterrupted pathogenic alleles.

To determine whether there is a statistical significance in the

difference between the fragment sizing and sequencing models we

compared the magnitude of the residuals, i.e. the difference

between the age at onset data and that predicted by each model. A

two sample, one-tailed t-test was performed with the null

hypothesis (H0) that the mean of the absolute residuals of the

sizing fit was not greater than those of the sequencing fit. The

variances were not assumed to be equal following a Levene’s test

(P = 0.016). The null hypothesis could be rejected with P = 0.041.

Most of our clones were also analysed by diagnostic fragment

sizing. We see very little difference between repeat sizes from both

methods (Figure S1). The sizing of the clones by the two methods

are very significantly correlated with a Pearson correlation

coefficient r = 0.999 (significant at the 0.01 level) and high quality

of fit to the linear model (A = 0.952, b = 20.822, adjusted

R2 = 0.999). The maximum difference between the two methods

was about 5 repeats. This is in keeping with the repeat differences

between pathogenic alleles that were diagnostically fragment sized

from patient DNA and the mean size from sequenced clones.

Our studies indicate the importance of clone-sequencing in

improving the estimation of age at disease onset, which must be

estimated from the longest uninterrupted CAG stretch rather than

from the total length of polyQ when these are interrupted.

Patients with interrupted CAG repeat tracts in their
expanded alleles

When interpreting the prognosis for patients, knowing the

repeat pattern appears to be particularly critical. Our analysis

shows that interruption in the expanded allele seems to markedly

delay the age at disease onset. Subject #1 was of particular interest

as this individual had an allele with the pattern (CAG)51–

56(CAT)(CAG)(CAT)(CAG)10. Despite the interruptions, the

length of the uninterrupted 59 stretch is well above the threshold.

The patient was initially examined when she was 46 years old.

Both her mother and a sibling were affected by SCA1. Using the

linear model for sequenced uninterrupted pathogenic alleles

described here, one would predict an age at disease onset of 16

years old 612 years for this patient’s total allele repeat size

(indeed, individual #17 had a similar sized uninterrupted repeat

with an age at onset of 15 years), so one would expect the patient

to have already developed the disease. The patient instead had a

history of only four years of gait disturbance and numbness in her

legs. Ataxia was affecting her four limbs and she had dysarthria,

poor sleep and impaired swallowing. Her ankle reflexes were

absent and plantar responses were extensor. The patient was able

to walk independently, revealing that disease progression was

slower than expected given the total number of CAG repeats. No

sensory abnormalities were detected.

A second patient (subject #4) had a similar interrupted

pathogenic allele pattern (CAG)50–53(CAT)(CAG)(CAT)(CAG)9–

10. Once again the length of the uninterrupted 59 stretch is above

the pathogenic threshold. This patient had an age at onset of 44

years old and died 23 years later. Both of her daughters (subjects

#5 and #6) were also diagnosed with SCA1, having an age at

onset of 41 and 43 years old, respectively. However, their

pathogenic allele appears to have lost the interruption. This

family is further discussed later in the Parent-Child Analysis

section.

Subject #3 was the third patient with an interrupted pathogenic

allele. Clones were identified with sequence pattern of (CAG)52–

58(CAT)(CAG)(CAT)(CAG)9–10 and (CAG)70(CAT)(CAG)(CAT)(-

CAG)10. One clone was also identified with the sequence pattern,

(CAG)4(CAT)(CAG)6(CAT)(CAG)40(CAT)(CAG)(CAT)(CAG)10.

Each of these alleles contains a contiguous stretch of CAGs above

the pathogenic threshold. The age at disease onset for this patient

was 32 years old.

A fourth patient (subject #2) also has an interrupted pathogenic

allele with a pattern (CAG)46(CAT)(CAG)(CAT)(CAG)10. The

length of the uninterrupted 59 stretch is above the pathogenic

threshold and her age at onset was about 40 years old.

Subject #36 had a SCA1 allele fragment sized at 39 repeats,

which could be digested with SfaNI and therefore she was not

given a diagnosis of SCA1. Further investigation showed that the

patient had polyQ expansion in ATXN3 (69 repeats). This patient

had SCA1 alleles with the interruption pattern (CAG)19–

20(CAT)(CAG)(CAT)(CAG)17–19, confirming that she did not have

SCA1.This case supports our confidence in the diagnostic power

of the correlation between uninterrupted polyQ and disease.

Three other patients (#7, #8 and #23) each had a single clone

with interruptions. Comparison with other patients with the same

age at onset revealed a similar mean CAG repeat size. Indeed,

these patients are indistinguishable from patients with pure

uninterrupted alleles of the same size (see Figure S2, where

these three patients are highlighted in red). This suggests having

only one interrupted clone does not have an effect on the

phenotype. Since these patients only have a single interrupted

clone within a population of uninterrupted clones these interrup-

tions could have arisen from a PCR artefact. A possible source of

artefacts could be the formation of chimeric PCR products, as

previously reported [36]. If there is incomplete extension of the

DNA during the PCR extension step, the PCR product can act as

a primer in subsequent rounds of replication. Template switching

may then occur between normal and pathogenic alleles, introduc-

ing interruptions in the (CAT)(CAG)(CAT) configuration to the

PCR product.

Parent-child analysis
In the first pedigree (Figure 2A), the transmission of the

primarily uninterrupted CAG repeat tract expanded allele was

monitored through three generations, with both maternal and

paternal transmission occurring. The expanded allele appears to

contract from an average of (CAG)48 to (CAG)47 when passed

from mother (I:2) to son (II:1), and daughter (II:5). Expansion from

(CAG)47 to (CAG)50 occurs when transmitted from son (II:1) to

grandson (III:1). Correspondingly, there is a slight delay in the age

at disease onset of two years between mother and son (41 and 43

years old, respectively), whilst the grandson had an age at disease

onset ten years earlier than his father (33 years old). Interestingly,

the mother and son had 44 repeats when sized diagnostically,

whilst cloning and sequencing identified a contraction from a

mean value of 48 to 47 repeats. This difference could however be

mediated by sampling error due to the small number of clones

analysed for these patients.

The second pedigree (Figure 2B) shows transmission of an

interrupted CAG repeat tract expanded allele. The proband (II:1)

has a repeat tract pattern of (CAG)50–53(CAT)(CAG)(CAT)(-

CAG)
9–10

, which on transmission to one daughter (III:1) contracts

to an uninterrupted (CAG)48 repeat tract allele and to the other

(III:2) contracts to an uninterrupted (CAG)47 repeat tract allele.

The PCR products of both daughters are resistant to SfaNI

digestion (data not shown), confirming uninterrupted expanded

alleles. Despite the contraction of the repeat, we also see a loss of

the interruption, which led to an earlier age at onset of 41 years in

one daughter (III:1) and 43.5 year in the other daughter (III:2), as

compared to 44 years in the proband. The proband inherited her

The Role of Interruptions in polyQ Aggregation
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expanded allele from her father, who, consistent with paternal

transmission, had an age at onset in his late-fifties, several years

later than the proband.

His insertion in expanded polyQ reduces aggregate
formation in transfected cells

To further understand the role of interruptions in ataxin-1, the

protein responsible for SCA1, we developed a cellular model

system in which we could transiently transfect constructs with

interrupted and non-interrupted polyQ tracts to see how

interruption, the specific pattern and the total length would affect

aggregate formation. Such a cellular model, albeit simple, has

proven powerful for studying the effect of polyQ in cell [37–40].

We used ataxin-1 constructs in which the C-terminus of the

protein up to the polyQ stretch (ataxinCT) was fused to various

synthetic polyQ or polyQH (with histidine interruptions) stretches.

Truncation of about 200 N-terminal amino acids was dictated by

technical reasons since we could otherwise not easily insert the

wanted stretch into the full-length protein. The excluded N-

terminus has no known role in aggregation or other function,

whereas what we retained spans most of the protein and includes

the C-terminus where the functional motifs involved in aggrega-

tion and toxicity are located, such as the AXH domain, the

phospho-serine 776 and the nuclear localization signals [37,41–

45].

We selected different interruption patterns (Table 1): inter-

rupted patterns of three different total lengths (30Q, 54Q and

82Q) were compared with corresponding uninterrupted polyQ

stretches. The effect of different interruption patterns in the

expanded range was assessed with four sequences of similar total

length (64-69Q), two of which (65Q and 69Q) were taken from the

patterns observed for patient #1.

Uninterrupted polyQ-ataxinCT formed aggregates (Figure 3A–
C) in a manner comparable to that previously observed for full-

length ataxin-1 [37]. When the cells were transfected with

interrupted polyQ-ataxinCT, we observed a clear reduction of

the number of cells containing aggregates (Figure 3D,E). Semi-

quantification of the effect by estimating the percentage of cells

containing aggregates (Table 1) shows a clear difference between

uninterrupted and interrupted sequences. A plot of uninterrupted

polyQ length versus the percentage of cells with aggregates shows

an excellent linear correlation (Figure 3F) (R2 = 0.94). Interest-

ingly, when the same plot is obtained for interrupted polyQ

stretches optimal correlation is obtained only when using the

longer stretch of uninterrupted polyQ, independently of the

pattern (R2 = 0.97 versus 0.40 when using the total polyQ length).

The effect is particularly evident when comparing the different

patterns with the same or approximately the same total length:

only 11% of the cells transfected with the polyQ pattern

Q11HQHQ16HQHQ18HQHQ10, contain aggregates as com-

pared to 28% in those transfected with Q52HQHQ10 and 29%

in those transfected with Q56HQHQ10.

These results indicate that the observed correlation directly

reflects a different behaviour between interrupted and uninter-

rupted polyQ and that, although very simple, our model faithfully

reproduces the correlation between length and disease onset age

observed in patients

Figure 2. Pedigree analysis and the transmission of the pathogenic expanded allele in two families. Subject numbers (#) correspond to
cloned individuals indicated in Table S3, where individual cloned sequences can be found. The mean total repeat size as determined by clone
sequencing for each allele is shown, along with the age at disease onset. The first family (A) illustrates the transmission of a pure CAG repeat tract
across three generations. The second family (B) shows transmission of an interrupted pathogenic allele. The limited number of clones analysed may
have introduced some degree of sampling error.
doi:10.1371/journal.pgen.1003648.g002

Table 1. Aggregation tendency indicated by cell counting
analysis.

PolyQ Nr% Repeat pattern with His interruptions %

Q30 7.860.4 (Q)10(H)(Q)7(H)(Q)11 7.360.7

Q54 28.561.0 (Q)30(H)(Q)11(H)(Q)11 17.160.8

Q64 34.761.5 (Q)50(H)(Q)6(H)(Q)6 27.860.6

Q64 34.761.5 (Q)11(H)(Q)(H)(Q)16(H)(Q)(H)(Q)18(H)(Q)(H)(Q)10 11.361.2

Q65 34.961.4 (Q)52(H)(Q)(H)(Q)10* 29.460.7*

Q69 35.461.1 (Q)56(H)(Q)(H)(Q)10* 30.360.9*

Q82 58.262.5 (Q)30(H)(Q)12(H)(Q)12(H)(Q)12(H)Q12 21.361.7

COS cells were transfected with various ataxinCT constructs fused with polyQ
repeats or repeats containing His interruptions. 48 h after transfection, cells
were stained and analysed by fluorescent microscopy and the percentage of
cells with aggregates was determined. Approximately three hundred cells were
counted in each experiment. Data represent means 6 SD of at least three
experiments. Asterisks indicate sequence patterns corresponding to those
identified in patient samples.
doi:10.1371/journal.pgen.1003648.t001

The Role of Interruptions in polyQ Aggregation
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His interruptions reduce formation of SDS-insoluble
aggregates in transfected cells

To test the aggregate stability for different polyQ patterns, we

carried out filter retardation assays on the pellet of the transfected

cells. These assays exploit the observation that SDS-insoluble

protein aggregates from cells expressing expanded polyQ fusion

proteins are retained on a cellulose acetate filter [46,47].

Formation of these high molecular weight aggregates was shown

to occur in a repeat length dependent manner [46,47].

After transfecting COS cells with appropriate plasmid vectors

carrying His interrupted or uninterrupted polyQ tracts, cell lysates

were prepared. The insoluble material was collected by centrifu-

gation and treated with DNase I. The resulting protein mixture

was subjected to filter retardation assays. Insoluble protein

aggregates were found to form when cells were expressing 54 or

82 repeats (Figure 4A, 82Q and 54Q). Cells expressing His

interrupted polyQ of the equivalent length also contained

insoluble protein aggregates (Figure 4A,

Q30HQ12HQ12HQ12HQ12and Q30HQ11HQ11). In both cases

the band intensity of interrupted polyQ was lighter than that from

cells expressing uninterrupted polyQ proteins.

To ensure that the observed difference is not caused by marked

differences in expression levels of interrupted and polyQ expanded

constructs, supernatants obtained after cell lysis from each of the

above samples were immunoprecipitated using antibodies against

the internal transfection control and expression levels were

assessed by western blotting (Figure 4B). The resulting blots

show similar protein contents. The transfection control GFP was

not detectable in the SDS insoluble ataxin-1 containing protein

aggregates (not shown), indicating that the expressed GFP

remained in the soluble part of the lysates.

Taken together, these data confirm a clear difference between

interrupted and uninterrupted polyQ sequences that could be

explained either by a reduced aggregate formation tendency or by

a lower stability of the aggregates. This is in agreement with earlier

studies on the effect of interruptions using GST fused polyQ

proteins expressed in E. coli [30].

His interruptions of polyQ decrease fibre formation rates
and increase oligomer stability

To further characterize the aggregation mechanism of inter-

rupted polyQ, we used polyQ peptides fused to GST. This ad hoc in

Figure 3. Interruption of the expanded polyQ stretch by histidines reduces its aggregation in transfected cells. COS cells were
transfected with uninterrupted (A, B and C) or His interrupted polyQ-ataxinCT constructs (D and E). The repeat pattern is shown above each panel.
Cells were stained with anti-ataxin-1 antibodies and FITC conjugated secondary antibodies. The % of cells with aggregates (average from at least 3
different experiments) is shown at bottom right hand corner of each panel. Arrows indicate cells with diffused expression of ataxinCT proteins and
arrowheads indicate aggregates. (F) Analysis of the data in Table 1 plotting the percentage of aggregates observed in cells expressing uninterrupted
polyQ proteins (green triangles, R2 = 0.94) and His-interrupted polyQ proteins plotted either against total repeat length (blue squares, R2 = 0.40) or
against the longest polyQ tract length (orange triangles, R2 = 0.97). The regression lines and the R2 values were calculated using Microsoft Excel.
doi:10.1371/journal.pgen.1003648.g003
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vitro model has proven a powerful alternative tool to solid phase

chemical synthesis [3,13,14,46,47]. This system offers the advan-

tage that polyQ can be rapidly cleaved off from GST by

proteolysis (the reaction with thrombin is complete in 5 minutes

at 0.5 U of enzyme per nmole of GST protein), allowing the study

of polyQ having it in a predominantly monomeric state at time

zero. Fusion with the highly soluble GST allows recombinant

expression and purification of polyQ chains up to about 40–45

repeats and reduces their tendency to aggregate [14,30,48].

Beyond this length the solubilising effect of GST becomes weaker

so that it is hard to obtain monodispersed samples (Masino and

Pastore, unpublished observations). We produced two constructs,

one with an uninterrupted polyQ stretch (polyQ41) and one with a

Q22HQ19 pattern (polyQ41H). After cleavage the polyQ peptides

contain only two non-native residues (GS).

We first checked by nuclear magnetic resonance (NMR) if we

could detect differences in the structure of interrupted and

uninterrupted polyQ in solution. Comparison of the one-

dimensional 1H spectra of the uncleaved proteins (50 mM samples

in 50 mM phosphate at pH 6.9, and 3 mM DTT) shows that they

have very similar features (Figure 5A). The intense peaks at 8.2,

7.4 and 6.8 ppm correspond to the backbone and side chain

amides of polyQ that are indicative of a flexible random coil

conformation. Upon thrombin cleavage, the spectra remain

invariant except for the progressive disappearance of the polyQ

signals as a consequence of the formation of high molecular weight

aggregates that are too large to be detectable by liquid state NMR.

We followed the kinetics of aggregation by monitoring the rates

of disappearance of the polyQ resonances acquiring one-dimen-

sional 1H NMR spectra every 5 minutes (Figure 5B). The signal

decay both at 10 and 25uC is significantly slower for the

polyQ41H construct than that of polyQ41 (data not shown).

The interrupted polyQ peptide aggregates with a longer lag phase

as compared to the uninterrupted polyQ41 peptide. To appreciate

the effect of seeding we repeated the experiments after pre-filtering

the samples. We observed that aggregation is slowed down but the

difference between interrupted and uninterrupted samples is

retained indicating that the difference is genuine and is not

caused by different seeding effects. The trend was confirmed by

Thioflavin T (ThT) fluorescence assays that are routinely taken as

a proof for aggregation proceeding through amyloid rather

amorphous formation [49,50]. Also in this case the kinetics of

polyQ41H is slower independently of the pre-treatment

(Figure 5C). Overall polyQ41H has a lower fluorescence signal

suggesting that the interruption makes polyQ less susceptible to

ThT staining. These data are well in agreement with a previous

study carried out on polyQ of non-pathological length (polyQ30)

interrupted and uninterrupted peptides [10–17].

To compare more directly the kinetics of aggregation and fibre

formation of the samples we used a classical microplate reader

which allows simultaneous measurement of static light scattering

(SLS) and ThT fluorescence in the same cuvette. In SLS

measurements, the intensity of the scattered light is directly

proportional to the average molecular weight of the particles (i.e.

aggregates) in solution. The ThT signal confirms that polyQ41

aggregates faster than polyQ41H (Figure 5D,E) and SLS kinetics

follows the same behaviour. However, the time scales of the ThT

and SLS signals are synchronous only for the uninterrupted

polyQ41 whereas aggregation and fibre formations are asynchro-

nous for the interrupted peptide. This observation suggests that

amyloid formation is less favoured for the latter leading to a more

stable oligomeric state and possibly an internal structural

rearrangement leading to ThT binding but with a delayed

increase of scattering intensity.

Finally, we wondered whether we could distinguish between the

hypotheses that the observed behaviour is caused by a reduced

aggregate formation tendency or by a lower stability of the

aggregates in interrupted polyQ. We measured the aggregate

stability by following the light scattering intensity as a function of

temperature. We observed a clear shift (ca. 3uC) of the melting

temperature for interrupted polyQ41H that indicates a lower

stability.

Taken together, these observations indicate that interruptions

do not affect the structure of monomeric polyQ but rather play a

role in the kinetics of oligomer and fibre formation.

Discussion

In this paper, we have presented an extensive characterization

of the frequency, behaviour and mechanism of aggregation of

interrupted polyQ in SCA1. We studied 36 individuals comprising

35 SCA1 patients and one patient with a borderline SCA1

expansion who was subsequently discovered to have also a SCA3

expansion. To our knowledge this is the largest set of cases in

which extensive cloning and sequencing has been carried out for

both the normal and expanded alleles. Current diagnostic tests for

SCA1 rely on fragment sizing SCA1 alleles, which does not

discriminate between interrupted and uninterrupted alleles. When

alleles with 35–39 repeats are detected, they are digested with

Figure 4. Detection of protein aggregates formed in transfected COS cells by slot blot filter assay. Slot blot filter assay was carried out
on the insoluble fraction isolated from transfected COS cells. COS cells were transfected with ataxinCT constructs expressing polyQ repeats with and
without His interruptions. Cell pellets obtained after lysis were treated with DNAse I, boiled in 2% SDS and filtered through a cellulose acetate
membrane. Aggregated protein retained on the membrane was detected with anti-ataxin-1 antibodies. (A) Proteins retained from uninterrupted
(82Q; 54Q) and interrupted (Q30HQ12HQ12HQ12HQ12; Q30HQ11HQ11) polyQ expressing cells. Results were consistent across three separate
experiments. (B) Supernatants obtained after cell lysis from each of the above samples were subjected to immunoprecipitation using anti GFP
antibodies and the precipitates were subjected to western blot analysis using anti-GFP antibodies. Lane 1, uninterrupted Q82; lane2, interrupted 82Q;
lane 3, uninterrupted 54Q; lane 4, interrupted 54Q. Molecular weight markers are indicated on the left.
doi:10.1371/journal.pgen.1003648.g004
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SfaNI to detect CAT interruptions and distinguish large normal

and pathogenic alleles. SfaNI digestion is not routinely performed

on large pathogenic alleles and therefore interruptions in these

alleles are not detected.

We identified 4 out of 35 SCA1 patients (11%) with interrupted

pathogenic alleles, a frequency higher than the 1 out of 17 (6%)

previously reported [35]. The difference is not statistically

significant given the still limited number of samples as also

suggested by the Fisher’s Exact test with P = 0.467. It has been

suggested that loss of interruptions predisposes SCA1 (CAG)n to

expansion and that they appear only in the normal alleles [32].

This is not substantiated by our findings. We show that

interruptions can be common in both alleles and mostly occur

through mutation of the last codon position, almost invariably

leading to interruption of glutamines by histidines. For both upper

and lower alleles, interruptions appear to stabilize the expansion 39

to the histidine. The CAG repeats seem to be stable 59 to the

interruption for the lower allele with a tendency to have a pattern

of 12 CAGs, whereas for the upper allele, the repeat 59 to the

interruption has higher variability and somatic instability in

agreement with earlier observations in SCA1 [21,22,51] as well as

in Huntington’s patients [52,53] and in a Huntington’s mouse

model [54].

Our findings on one of the families discussed here suggest that

the presence of an interruption may influence stability during

transmission of the expanded allele (Figure 2B). The proband

(II:1) has an interrupted pathogenic allele with the longest

contiguous CAG stretch containing 50 repeats. Upon transmission

to her daughters (III:1 and 2), not only is the interruption lost, but

also there is a contraction of the total number of CAG repeats.

Although the DNA of the proband’s father was not available for

analysis, family tree evaluation revealed anticipation with the

proband being affected over ten years earlier than her father. This

implies that the father may have an interrupted pathogenic allele

and expansion may have occurred in the longest contiguous CAG

stretch, with the interruption being lost upon subsequent maternal

transmission. This is in agreement with one of the mechanisms

previously proposed [22], where expansion initially occurs in the

CAG tract 59 to the interruption prior to the loss of the

interruption at a later stage leading to a greatly increased

instability of the repeat region. This family clearly shows that

interrupted repeats can be unstable, and contrasts with the idea of

the stability of interrupted repeats. Although unstable interrupted

repeats could be rare, the occurrence of instability twice in the

present family suggests that it may be a more frequent

phenomenon, or that the ATXN1 gene in this family is particularly

prone to instability, or that the mutation from an interrupted to a

pure CAG repeat occurred just once in the mother in her

postzygotic development and that she is a mosaic with interrupted

and uninterrupted alleles. In the latter case it is possible that

uninterrupted CAG repeats may be enriched in the proband’s

oocytes, whilst not being detected in the proband’s blood, and

therefore be transmitted to her daughters. These findings suggest

that the sex of the transmitting parent, even if they have an

interrupted pathogenic allele, is important in the diagnosis and

prognosis of SCA1.

We have shown that the age at disease onset correlates more

significantly with the number of uninterrupted CAG repeats than

Figure 5. Comparison of the structural and aggregation properties of interrupted and uninterrupted polyQ. (A) 1H NMR spectra of
interrupted (upper trace) and uninterrupted (lower trace) of the GST fused polyQ41 and polyQ41H peptides recorded at 600 MHz and 10uC on 50 mM
protein samples in 50 mM sodium phosphate at pH 6.9 and 3 mM DTT. (B) Aggregation kinetics followed by NMR collected forpolyQ41 (black) and
polyQ41H (red). Continuous and broken lines are used for filtered and non-filtered samples respectively. (C) Aggregation kinetics obtained by ThT
fluorescence detection at 25uC in a stirring plate reader. The conventions are the same as in (B). (D) Simultaneous recording of the SLS, plotting the
absorbance at 473 nm (black), coupled with ThT fluorescence aggregation kinetics (grey) for polyQ41. (E) The same as in (D) for polyQ41H (in red and
orange respectively). The measurements were carried out at 37uC. (F) Plot of the light scattering intensity as a function of temperature for polyQ41
(black) and polyQ41H (red).
doi:10.1371/journal.pgen.1003648.g005
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with the total repeat size including the interruption. Interrupted

pathogenic alleles form a distinct cluster outside the 95%

confidence level of the uninterrupted pathogenic allele linear

model, with a delayed age at onset. If the mean longest

uninterrupted stretch of CAG repeats in these interrupted

pathogenic alleles is plotted against age at disease onset the

correlation falls within the uninterrupted model. This shows that

the longest uninterrupted CAG stretch should be considered

rather than the total interrupted repeat tract when predicting age

at disease onset and pathogenicity. Also this finding has significant

implications for patient prognosis and counselling especially if

interrupted pathogenic alleles are not identified diagnostically.

We have observed a significant correlation between fragment

sizing and sequencing of cloned SCA1 alleles. Interestingly, the

larger the repeat size the greater the difference between the

fragment sizing and sequencing methods. One explanation for this

size-dependent difference between the two techniques is that CAG

repeat containing fragments have a high GC-content compared to

the commercial size standards used in capillary electrophoresis and

hence run through the polymer faster than expected. This is

similar to the faster migration of triplet repeats through non-

denaturing polyacrylamide gels [55]. The size of these fragments

could therefore be interpreted as being smaller than it actually is,

as determined by sequencing. Although fragment sizing and

sequencing utilise the same polymer (POP-7, Applied Biosystems),

the sequence is read from discrete base peaks and does not take

into account variations in the migration speed of the fragments, as

observed through variations in the breadth of the sequence peaks.

The longer the CAG repeat, the more GC-content, which leads to

a faster migration and greater difference from the repeat size

determined from the repeat sequence. Comparing known

sequence clones by fragment sizing has shown that the difference

has obvious implications for individuals around the pathogenic

boundary. At the pathogenic threshold ($39 repeats), as defined

for the full penetrance pathogenic allele reported in GeneReviews

[56], fragment sizing produces repeat values that are about 3

repeats fewer than the known repeat size as determined by

sequencing. This suggests that a pathogenic allele of 39 repeats

from fragment sizing is actually 42 repeats and that the fragment

sizing pathogenic allele threshold should incorporate alleles of at

least 36 repeats. Indeed, this is taken into account when fragment

sized pathogenic alleles of 35–39 repeats are digested with SfaNI

and those alleles that are uninterrupted are deemed potentially

pathogenic.

Additional considerations are important for a critical assessment

of our results. A total of 800 clones were analysed in this cohort.

However, since the number of clones for each patient was

relatively low it remains possible that our data may be subject to

sampling errors. We have minimised potential PCR errors, but it is

not possible to completely eliminate artefacts associated with

polymerase slippage and mis-priming [36]. We identified for

instance three patients (#7, #8 and #23) who had a single

interrupted pathogenic clone within a population of uninterrupted

clones. It is likely that these clones are artefacts arising from

template switching between normal and pathogenic alleles during

PCR as outlined in the Results section. It is also possible that PCR

slippage may have affected the lengths of the fragment-sized or

sequenced alleles analysed and therefore contributed to the

somatic variation observed.

Complementing clinical data with cellular and in vitro models

has helped us to dissect the mechanism by which histidine

interruptions delay the age at onset. Interestingly, we were able to

reproduce a similar linear correlation using a cellular model in

which we transfected COS cells with C-terminally truncated

constructs of ataxin-1 with different polyQ patterns. Also with this

model system we observed a satisfactory linear correlation between

polyQ length and degree of aggregation only when we considered

the longest uninterrupted polyQ stretch. The effect is largely

independent from the specific interruption pattern and solely

depends on the longer stretch of uninterrupted polyQ.

Our biophysical studies confirm and extend previous work

carried out on synthetic polyQ peptides in the non-pathological

length range [29,31]. We provide direct evidence that interrup-

tions do not alter the structure of polyQ which, whether

interrupted or not, is in a random coil conformation when in

the monomeric state. The aggregation kinetics of interrupted and

non-interrupted polyQ are different in a seeding dependent way

indicating that interruptions do not affect the final state but alter

the kinetic barrier to form aggregates. It was suggested that the

differences could be caused either by lower fibre stability or by a

lower tendency to aggregate of interrupted polyQ stretches. We

are now in the position of discriminating between these two

hypotheses. By following a temperature scan with SLS we

observed that interrupted polyQ assemblies are less stable.

Simultaneous analysis of SLS and ThT fluorescence indicated

that the increase in the molecular size and ThT binding occur in a

synchronous way for uninterrupted but not for interrupted polyQ

for which the increase of the molecular weight occurs after the

acquisition of ThT fluorescence. A way to explain these data is by

assuming that interrupted polyQ become ThT fluorescent positive

before being able to aggregate because they require a structural

rearrangement that has a higher barrier than in uninterrupted

polyQ.

In conclusion, we have provided an extensive study of the

occurrence, significance and mechanism of aggregation of polyQ

interruptions that covers different aspects from the genetic to the

biophysical characterization. An important consequence of our

findings is that all pathogenic alleles should be digested with SfaNI

to detect alleles that contain interruptions. This is at variance with

current fragment sizing methods for diagnosis that do not routinely

differentiate interrupted and uninterrupted pathogenic alleles.

Direct sequencing of the expanded allele ultimately provides the

only basis for accurately determining the patient’s prognosis and

age at onset.

Materials and Methods

Ethical statement
This research has been approved by the London (Queen

Square) NHS Research Ethics Committee (reference 09/H0716/

53) at the National Hospital for Neurology and Neurosurgery,

London.

SCA1 cohort
The patient cohort with large normal or pathogenic alleles was

selected by querying the Neurogenetics Unit database at The

National Hospital for Neurology and Neurosurgery, London, for

individuals with SCA1 fragment sizing results $39 repeats. This

threshold is accepted as the lower size limit of full penetrance

pathogenic alleles [56]. The search identified 36 individuals, of

which 35 had a diagnosis of SCA1. The other patient had a

borderline SCA1 allele with 39 repeats. However, since this allele

could be digested with SfaNI this patient was therefore not given a

diagnosis of SCA1. Concurrent tests revealed a pathogenic

expansion of 69 repeats in the SCA3 allele of this patient.
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SCA1 fragment sizing
Genomic DNA was extracted from patient peripheral blood

leukocytes using a FlexiGene DNA kit (QIAGEN). SCA1 alleles

were amplified by PCR using GoTaq DNA polymerase (Promega)

and a FAM-label introduced by the forward primer. The primers

used were SCA1For_alt (FAM-59-TGGAGGCCTATTC-

CACTCTG-39) and SCA1Rev_alt (59-TGGACG-

TACTGGTTCTGCTG-39). PCR products were checked on a

4% (w/v) agarose gel and then run on an ABI 3730xl DNA

analyser with a LIZ-500 size standard (Applied Biosystems).

Fragment analysis was performed with GeneMapper software

(version 4.0, Applied Biosystems). The most intense peak for each

allele was selected to calculate the allele size. For alleles with 35–39

repeats, PCR products were digested with SfaNI. This restriction

enzyme cuts the PCR product if a CAT interruption is present and

allows the distinction of large normal (interrupted) and pathogenic

(uninterrupted) alleles.

Cloning the CAG-repeat tract of SCA1 alleles
SCA1 alleles from each patient were amplified by PCR using

Phusion High-Fidelity DNA Polymerase (New England Biolabs/

Finnzymes) and primers which flank the CAG-repeat region and

introduce restriction enzyme cleavage sites. The primers used were

ATXN1x8 BamHI Forward (59-GGGTTGGGATCCTTC-

CAGTTCATTGGGTCCTC-39) and ATXN1x8 XhoI Reverse

(59-GGTTTGCTCGAGGTGTGTGGGATCATCGTCTG-39).

The PCR reactions were purified and digested with BamHI and

XhoI restriction enzymes. The alleles were resolved on 3% (w/v)

agarose-1000 gels (Invitrogen) with a resolution distance of 6.5 cm.

The gels were post-stained with a counterion-dye staining solution

containing 0.0025% (w/v) crystal violet and 0.0005% (w/v)

methyl orange in double distilled water [57]. Individual allele PCR

products were purified from the agarose gels and ligated into the

pcDNA3.1(+) vector. Ligations were transformed into chemically

competent Stbl3 E. coli (Invitrogen) (genotype F2 mcrB mrr

hsdS20(rB
2, mB

2) recA13 supE44 ara-14 galK2 lacY1 proA2

rpsL20(StrR) xyl-5 l2leumtl-1). Transformants containing plasmids

with inserts were propagated and the plasmids sequenced using the

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems).

Statistical analysis
A bivariate two-tailed Pearson correlation between the patho-

genic allele repeat size and age at disease onset was assessed using

SPSS Statistics (version 21, IBM). Analysis was only performed on

patients in the cohort with a diagnosis of SCA1. Since the cloning

and sequencing approach identified clones of multiple lengths due

to mosaicism, the mean pathogenic allele size ($39 repeats) across

these clones was used for each patient. In addition, the data were

fit to a linear model of the form ‘‘Age at Onset = A*(Pathogenic

Allele Size)+b’’ in MATLAB (R2012b, The MathWorks) using a

QR decomposition algorithm. Prediction bounds for a new

observation with non-simultaneous bounds were also calculated

at the 95% confidence interval.

Construction of plasmid vectors for expression in
mammalian cells

Ataxin-1cDNA encoding the C-terminal 590 aminoacids and

lacking the polyQ tract (ataxinCT) was amplified and cloned into

Myc-tagged pNuc vector (Invitrogen) using XhoI and NotI

restriction sites. PolyQ sequences amplified from patient #1’s

DNA and other synthetic polyQ sequences with or without

histidine interruptions (polyQH) were cloned 59 to the ataxin-1

ataxinCT construct. Oligonucleotide annealing was carried out to

create these Q/QH sequences. Since long oligos are not only

expensive to make but also error prone, we adopted a sequential

cloning strategy starting from a construct with 30Q. Oligos

encoding the 30Q sequence had a 59 SalI sticky end and a 39 XhoI

sticky end. Immediately 59 to the XhoI site was an AfeI site which is

a blunt ending enzyme that recognizes and cuts in the middle of

the sequence AGC GCT. After cloning the 30Q sequence into

SalI/XhoI sites in the vector, the construct was digested with AfeI

and XhoI and the next set of oligos were annealed and ligated to

the vector. In the second and subsequent cloning steps the first two

bases on the annealed oligos (that joins the AfeI site on the vector)

could either be AG (resulting in glutamine) or AT (histidine)

hence, when required, the 31st residue could be a histidine. Some

oligos had histidines in the middle of the sequence. One or more of

such repeats was incorporated within the next 20–30 glutamine

stretch. The process was repeated a third time to create Q/QH

constructs having the desired number of Q/QH tracts.

Microscopic analysis of aggregate formation
COS cells do not express endogenous ataxin-1 yet readily

express ataxin-1 upon transfection with SCA1 constructs [58]

hence they were used for cell studies. COS cells were transiently

transfected with expression constructs using Fugene 6 transfection

reagent (Roche) and immunofluorescence was carried out as

described previously [59]. Briefly, the cells were fixed 48 h after

transfection using 4.0% paraformaldehyde, permeabilised with

0.2% triton X-100/PBS and probed with anti-ataxin-1 antibodies

(clone N65/37 obtained from NeuroMab Facility, University of

California, Davis) followed by FITC-conjugated secondary anti-

bodies. After washing with PBS, slides were mounted using

Citifluor (Agar Scientific) and analysed by confocal microscopy.

Cells were examined under a Leica laser scanning confocal

microscope (TCS-SP1) equipped with a DM-RXE microscope

and an argon-krypton laser. Aggregate-containing cells were

counted and compared with the total number of fluorescent cells

to determine the percentage of aggregate-containing cells.

Filter retardation assay for aggregate analysis
COS cells were transfected with expression constructs along

with internal transfection control plasmid expressing GFP. Cells

were harvested 48 hours after transfection and processed as

previously described [57]. In short, cells were washed with PBS,

pelleted and lysed in lysis buffer [50 mM Tris-HCl (pH 8.5),

100 mM NaCl, 1 mM EDTA, 5 mM MgCl2, 0.5% (v/v) NP 40

containing Complete Protease Inhibitors (Roche)]. Lysates were

adjusted to pH 7.4 and subjected to immunoprecipitation and

western blot analysis using anti-GFP polyclonal antibodies

(Abcam) and peroxidase-conjugated Heavy Chain specific anti-

rabbit IgG monoclonal antibodies (Sigma). Pellets containing

insoluble material were resuspended in DNase buffer (20 mMTris-

HCl at pH 8.0, 15 mM MgCl2) and treated with DNase I for 1 h

at 37uC. Protein concentration was determined by dotMetric assay

(G-Biosciences). Incubations were terminated by adding EDTA,

SDS and DTT to a final concentration of 20 mM EDTA, 2%

SDS and 50 mM DTT and heating at 98uC for 5 minutes. 50 mg

of extracted proteins from the pellet fractions were filtered on a

slot blot unit (Scie-Plas Ltd) through a cellulose acetate membrane

(Sartorius, 0.2 mM pore size) pre-equilibrated with 2% SDS. After

two washes with 0.1% SDS, membranes were blocked in TBS

(100 mMTris-HCl at pH 7.5, 150 mMNaCl) containing 3% dried

milk powder. After washing extensively with TBS, membranes

were incubated with anti-ataxin-1 antibodies followed by HRP-
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conjugated secondary antibodies. Proteins were detected by

chemiluminescence (Pierce).

In vitro aggregation kinetics of uninterrupted and His-
interrupted polyQ repeats

Two expanded polyQ stretches, one of uninterrupted 41

glutamines and one of the same length but interrupted with a

histidine at position 22, were inserted into a pGEX-4T1 vector to

be expressed as fusion proteins with Glutathione-S-transferase

(GST) [14]. The resulting proteins (referred to as GSTQ41 and

GSTQ41H respectively) were expressed in BL21(DE3) E.coli cells

and affinity purified using a Glutathione Sepharose resin (GE

Healthcare). 1H NMR samples of both constructs were prepared

at a final concentration of 50 mM in 50 mM sodium phosphate

buffer at pH 6.9, 3 mM DTT, 10% D2O. Thrombin (0.5 U/

nmole of GST fusion protein) was added just before data

collection. 1H-NMR spectra were acquired every 5 minutes on a

600 MHz Varian Inova spectrometer, at 10 and 25uC.

Thioflavin T (ThT) fluorescence assays were performed on

GSTQ41 and GSTQ41H using a fluorescence plate reader

(safire2, Tecan). Samples (25 mM) were in the same buffer used for

the NMR experiments, with the addition of 20 m MThT. 0.5 U/

nmole thrombin was added in each well just before the beginning

of the acquisition and fluorescence emission upon excitation at

450 nm was measured as a function of time. The reaction was

carried out at 25uC. ThT fluorescence was also measured

simultaneously with SLS using a home-made instrument provided

with a 407 nm laser beam for the excitation of ThT and other two

lasers (473 and 533 nm) for SLS measurements. Samples (50 mM)

were prepared in 50 mM sodium phosphate at pH 6.9, 3 mM

DTT, 300 mM ThT. The aggregation kinetics were monitored at

30uC after the addition of 0.5 U/nmole thrombin. NMR and

ThT assays were repeated in triplicates on each of three

independent batches of samples of polyQ41 and polyQ41H. Fibre

stability of the aggregates was measured by following the light

scattering intensity as a function of temperature.

Supporting Information

Figure S1 Correlation between pathogenic allele size deter-

mined by clone sequencing and fragment sizing of clones. Mean

pathogenic allele size as determined via clone sequencing was

compared to diagnostic fragment sizing of clones (n = 100).

(PDF)

Figure S2 Correlation between pathogenic allele size deter-

mined by clone sequencing with Subjects #7, 8 and 23

highlighted. Patients with a single interrupted pathogenic clone

amongst a population of uninterrupted clones are shown in red.

They are indistinguishable from patients with pure uninterrupted

alleles of the same size. For further details on the correlation,

please refer to Figure 1B.

(PDF)

Table S1 Frequency with which each clone sequence was

detected for each individual. The bold line indicates the

pathogenic threshold of $39 repeats. Individual #36 (+) is

affected with SCA3, but has a borderline interrupted expansion

in SCA1. The majority of uninterrupted clones have a size above

the pathogenic threshold, whilst the majority of interrupted clones

lie below the pathogenic threshold.

(PDF)

Table S2 Frequency with which each clone sequence was

detected for each individual, corrected for the clone depth

sequenced for each patient. The bold line indicates the pathogenic

threshold of $39 repeats. The number of clones for each patient

were expressed as a percentage and these were taken into account

when expressing the overall percentage of each clone within the

clone population (final column).

(PDF)

Table S3 Summary of age at disease onset and allele size data

for each patient. This data was used to compile the graphs in

Figure 1.

(PDF)
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7. Dürr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expan-

sions and beyond. Lancet Neurol 9: 885–894.

8. Perutz MF (1996) Glutamine repeats and inherited neurodegenerative diseases:

molecular aspects. Curr Opin Struct Biol 6: 848–858.

9. Perutz MF, Finch JT, Berriman J, Lesk A (2002) Amyloid fibers are water-filled

nanotubes. Proc Natl Acad Sci U S A 99: 5591–5595.

10. Altschuler EL, Hud NV, Mazrimas JA, Rupp B (1997) Random coil

conformation for extended polyglutamine stretches in aqueous soluble

monomeric peptides. J Pept Res 50: 73–75.

11. Bennett MJ, Huey-Tubman KE, Herr AB, West AP, Jr., Ross SA, et al. (2002) A

linear lattice model for polyglutamine in CAG-expansion diseases. Proc Natl

Acad Sci U S A 99: 11634–11639.

12. Chen S, Wetzel R (2001) Solubilization and disaggregation of polyglutamine

peptides. Protein Sci 10: 887–891.

13. Klein FA, Pastore A, Masino L, Zeder-Lutz G, Nierengarten H, et al. (2007)

Pathogenic and non-pathogenic polyglutamine tracts have similar structural

properties: towards a length-dependent toxicity gradient. J Mol Biol 371: 235–

244.

14. Masino L, Kelly G, Leonard K, Trottier Y, Pastore A (2002) Solution structure

of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett 513:

267–272.

15. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for

polyglutamine-expansion protein aggregation and cellular toxicity is dynamic

and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A

99: 10417–10422.

16. Sharma D, Shinchuk LM, Inouye H, Wetzel R, Kirschner DA (2005)

Polyglutamine homopolymers having 8–45 residues form slablike beta-crystallite

assemblies. Proteins 61: 398–411.

The Role of Interruptions in polyQ Aggregation

PLOS Genetics | www.plosgenetics.org 11 July 2013 | Volume 9 | Issue 7 | e1003648



17. Sikorski P, Atkins E (2005) New model for crystalline polyglutamine assemblies

and their connection with amyloid fibrils. Biomacromolecules 6: 425–432.
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