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Our first-principles study of Ca(NH2BH3)2 reveals that the gas phase energy barrier for the

first H2 release is 1.90 eV via a Ca/H transition state and 1.71 eV via an NeH/B transition

state for the second H2 release. In the dimer, the barrier for H2 release from the bridging

[NH2BH3]
� species is 1.60 eV via an NeH/B transition state, and 0.94 eV via an NeH/B

transition state for the non-bridging [NH2BH3]
� species. Analysis of the atomic charge

distribution shows that the mechanism of dehydrogenation is determined by the charge

transfer between the transition state and the initial state: the less the charge transfer, the

lower the barrier to dehydrogenation.

Copyright ª 2013, The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction kinetics at typical proton exchange membrane fuel cell oper-
One of the most important problems in hydrogen fuel cell

technology is the lack of safe and highly efficient hydrogen

storage materials [1]. Because of its high storage capacity

(19.6 wt%) and moderate dehydrogenation temperature,

ammonia borane is considered to be a promising on-board

hydrogen storage material [2]. The thermal decomposition of

NH3BH3 involves three steps evolving one equivalent H2 per

step, at temperatures of w110, 150, and >500 �C, yielding a

final BN product [3e6]. The final step is not considered prac-

tical for hydrogen storage because of the very high reaction

temperature. However, direct use of NH3BH3 is unsuccessful

because of borazine formation and the low dehydrogenation
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ating temperatures [2,7,8].

Researchers have attempted to improve the thermal

decomposition behavior of solid NH3BH3 through a variety of

methods, including chemical doping with various transition

metals [9,10], base-metal catalysts [11], and acid catalysts [12],

as well as particle confinement within nanoscaffolds [7], ionic

liquids [13], and carbon cryogels [14]. However, the overall

hydrogen storage capacity was reduced by addition of these

species, which do not release hydrogen at the operation

temperature.

Recently, the substitution of one H(N) [H(N) denotes H

bonded to N] atom in the compound by ametal atom has been

investigated as a potential route to modify the kinetics and
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thermodynamics of H2 release from NH3BH3. So far, most of

the metal atoms investigated are from the alkali and alkaline-

earth groups. Some metal amidoboranes have been synthe-

sized (i.e. LiNH2BH3 [15e20], NaNH2BH3 [16,20,21], Ca(NH2BH3)2
[18,22,23] and Sr(NH2BH3)2 [24]), and show a significant

enhancement of dehydrogenation kinetics, along with sup-

pressed borazine release. For example, LiNH2BH3 releases

most of the hydrogen at w92 and 120 �C; the thermal dehy-

drogenation of NaNH2BH3 resembles that of LiNH2BH3, but at a

slightly lower temperature of 89 �C; and Ca(NH2BH3)2 releases

hydrogen at w100 and 140 �C [16,18].

To improve the operating properties of these materials,

especially rapid H2 release near room temperature, it is

important to understand the underlying mechanism for the

release of H2 from these compounds. Previous theoretical

studies have focused on NH3BH3 and LiNH2BH3 [25e33], and

have indicated that H2 is released via an NeH/B transition

state in NH3BH3 and a Li/H transition state in LiNH2BH3 in the

gas phase. For the dimer case, the mechanism is more com-

plex. The energy barriers for H2 release were also calculated.

The overall results agree well with the variation of the dehy-

drogenation temperature [18]. For example, Shevlin et al.

performed a detailed study on isolatedNH3BH3, LiNH2BH3, and

their dimers [33]. In the gas phase, the energy barrier is 1.39 eV

for the first H2 release from an NH3BH3 molecule via an

NeH/B transition state. For LiNH2BH3, the barrier is 1.61 eV

and themetalmoiety acts as a hydrogen shuttle in a two-stage

dehydrogenation mechanism. For the dimers, the energy

barriers are 1.22 eV for NH3BH3 and 0.71 eV for LiNH2BH3,

which helps to explain the observed experimental dehydro-

genation temperatures of 92 �C for LiNH2BH3 and 110 �C for

NH3BH3. Recently, a systematic study of the dehydrogenation

mechanisms of Group I and Group II metal amidoboranes was

performed by Kim et al. [34]. In their study, in which not only

the M/H transition state but also the oligomerization tran-

sition state were considered, they found that the metal cation

plays a role as a hydride-transfer catalyst.

Though the dehydrogenation mechanism of LiNH2BH3 has

been well explained, a detailed study of other metal amido-

boranes is still lacking, especially for Ca(NH2BH3)2, the

alkaline-earth metal amidoborane. Additionally, the dehy-

drogenation of Ca(NH2BH3)2 is endothermic, whereas it is

exothermic for all the other metal amidoboranes. This atyp-

ical behavior may be caused by a unique dehydrogenation

mechanism. Therefore, we have performed a comprehensive

study of Ca(NH2BH3)2 dehydrogenation mechanism based on

density functional theory.
2. Computational methods

First-principles calculations were carried out within the den-

sity functional theory framework [35]. We used the projector-

augmented wave (PAW) method [36,37] and the generalized

gradient approximation (GGA) [38] for the exchange-

correlation energy functional, as implemented in the Vienna

ab initio simulation package (VASP) [39e41]. The GGA calcu-

lation was performed with the PerdeweBurkeeErnzerhof

(PBE) [42] exchange-correlation potential. First, the crystal

structure was optimized. Ca(NH2BH3)2 has a monoclinic
structure with the C2 space group. The unit cell contains 30

atoms [18]. The equilibrium lattice parameters were calcu-

lated using a plane-wave cutoff energy of 400 eV and a

3 � 3 � 3 k-point mesh within the MonkhorstePack [43]

scheme. In the calculation, self-consistency was achieved

with a tolerance in total energy of 0.01 meV, and when the

forces on each atom were less than 0.01 eV/�A. The optimized

lattice parameters were found to be a ¼ 9.254 �A, b ¼ 4.496 �A,

c ¼ 6.599�A, and b ¼ 91.26�. This result is in good agreement

with the experimentally determined parameters: a ¼ 9.100 �A,

b ¼ 4.371 �A, c ¼ 6.441 �A, and b ¼ 93.19� [18]. Subsequent cal-

culations were performed with the same optimized lattice

parameters. Simulation cells of size 15 � 15 � 15 �A3 were used

for the isolated molecule and 20 � 20 � 20 �A3 for the dimers.

The Nudged Elastic Band (NEB) method [44] was used to

determine the minimum energy pathway. All atoms were

fully relaxed with tolerances in total energy of 0.01 meV, and

for the forces on each atom of 0.01 eV/�A.
3. Results and discussion

3.1. Dehydrogenation mechanism in the gas phase

To understand the dehydrogenation mechanism of

Ca(NH2BH3)2, we first studied the basic properties of the

compound in the gas phase. Themolecular structure is shown

in Fig. 1(a), and the bond lengths and bond angles are listed in

Table 1. The calculated NeB bond length is 1.58 �A, which is

shorter than that of crystalline (bulk) NH3BH3, but similar to

that in LiNH2BH3 and NaNH2BH3. The NeH bond length is

1.02�A and the BeH bond lengths are 1.21, 1.26, and 1.26�A. The

NeH bond length is similar to that in NH3BH3, LiNH2BH3, and

NaNH2BH3, but the BeH bond lengths are slightly longer than

those in NH3BH3. This means that the identity of the metal

atomhas little effect on the [NH2BH3]
� structure. Furthermore,

this structure also shows negligible deviation from the crystal

phase. The Ca atom resides in a bridge over the BeN bond,

with a CaeN distance of 2.32 �A and a CaeNeB angle of 76.0�.
The Ca atom coordinates with four H(B) [H(B) denotes H

bonded to B] atoms with a CaeH(B) distance in the range of

2.30e2.33 �A. This is different from that in the crystal phase,

where the CaeN distance is 2.48 �A, the CaeH(B) distance is in

the range of 2.36e2.41 �A, and the CaeNeB angle is 113.2�. In
both phases, the CaeH(N) distance is longer than 3.0 �A. Pre-

vious studies have shown that the Hþ/H� interaction plays

an important role in hydrogen storage [45]. In the gas phase,

the shortest Hþ/H� distance that appears in either [NH2BH3]
�

group was about 2.56 �A, which is longer than the maximum

dihydrogen bond length (2.4 �A). Additionally, the calculated

NeB bond cleavage energy is 2.82 eV, which is smaller than

that of LiNH2BH3 and NaNH2BH3, but larger than that of

NH3BH3 [33], which is consistent with the electronegativity

ordering of the substituents.

Mechanistically, previous studies show that while H2 is

released through an NeH/B transition state for NH3BH3,

dehydrogenation proceeds via an M/H transition state for

MNH2BH3 (M ¼ Li, Na) [25e33]. We calculated the energy bar-

rier of both processes for Ca(NH2BH3)2. The calculated results

are shown in Fig. 2 and the molecular structures of the

http://dx.doi.org/10.1016/j.ijhydene.2013.06.106
http://dx.doi.org/10.1016/j.ijhydene.2013.06.106


Fig. 1 e Relaxed molecular structures of Ca(NH2BH3)2: (a)

initial state, (b) transition state TS1a, (c) transition state

TS1b, (d) final state FS1, (e) transition state TS2a, (f)

transition state TS2b, (g) final state FS2. Green, pink, blue,

and white spheres denote Ca, B, N, and H atoms,

respectively. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version

of this article.)
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transition states and the final state (FS1) are shown in

Fig. 1(b)e(d) (Fig. 1(a) is the initial state (IS1)). For dehydroge-

nation, the system needs to overcome energetic barriers of

2.70 and 1.90 eV to pass through the NeH/B (TS1a) and the

Ca/H (TS1b) transition states, respectively. Therefore, TS1b

is the most likely mechanism, which is similar to that in

LiNH2BH3 (a barrier of 1.61 eV is encountered in LiNH2BH3). In

both processes, only one [NH2BH3]
� releases H2, without

evident interaction with the other. A discussion of the struc-

tural change in the reacted [NH2BH3]
� follows. The calculated

bond lengths and bond angles of TS1a, TS1b, and FS1 are also

listed in Table 1. It is noted that in TS1a, one of the NeH bond

lengths changes from 1.02 to 1.52 �A, and that this H(N) atom

also coordinates with the B atom, with a BeH(N) bond length

of 1.46 �A, and with the Ca atom, with a CaeH(N) distance of

2.87 �A. One BeH(B) bond length also changes from 1.26 to

1.37 �A. The length between these two H atoms [H(N) and H(B)]
is 0.97 �A. These changes make the CaeH(B) distances longer

than that in IS1. The CaeNeB angle also increased. In TS1b,

the largest change is the NeB bond length, from 1.58 to 1.40 �A,

which is indicative of double bond formation; this is similar to

that seen in FS1, where the [NHBH2]
� is a planar structure. The

CaeN distance and CaeH(B) distance are also longer than that

in IS1. The distance between Ca and the released H(B) atom is

2.07 �A.

To further understand the mechanisms, we used Bader

charge analysis [46] tomonitor changes in the charges on each

atom in both processes, including the initial state, the tran-

sition states, and the final state. The calculated results are

listed in Table 2. It is clear that the charge transferred between

the transition states and the initial state is different. In TS1a,

one H(N) atom gains 0.21e and the N atom gains 0.18e, while

twoH(B) atoms lose 0.05e and 0.29e and the B atom loses 0.06e;

the overall total charge transfer is 0.39e and occurs among

different types of atoms. In TS1b, one H(B) atom receives 0.15e

and theN atom receives 0.14e, while twoH(N) atoms lose 0.07e

and 0.10e and the B atom loses 0.13e. In this case, the total

overall charge transfer, which also occurs among different

types of atoms, is only 0.29e. Therefore, the results indicate

that the less the charge transfer, the lower the barrier to

dehydrogenation of the compound.

Next, the barrier for the second H2 release was studied.

First, we determine from which group the H2 will be released,

[NH2BH3]
� or [NHBH2]

�. The calculated results show that H2

release from [NH2BH3]
� is energetically favorable and is

0.74 eV lower than release from [NHBH2]
�. In other words,

after the second H2 is released, the Ca(NHBH2)2 molecule will

be formed. As for the first H2 release, the two different dehy-

drogenation mechanisms were considered. The calculated

barriers are shown in Fig. 1, and the molecular structures of

the transition states and final states (FS2) are shown in

Fig. 1(e)e(f). Interestingly, the energy barriers are 1.71 eV and

2.21 eV for the NeH/B (TS2a) and the Ca/H (TS2b) transition

states, respectively. This ordering is different than for the first

dehydrogenation step (release of the first H2). In both pro-

cesses, the resulting [NHBH2]
� shows negligible geometric

changes. The structural changes in the [NH2BH3]
� molecule as

it reaches the transition state are discussed as follows. The

calculated bond lengths and bond angles of all the transition

states and final state are listed in Table 1. From this table, we

can see that in TS2a, one NeH bond length changes from 1.02

to 1.07�A, and this H(N) atom also coordinates with the B atom,

with a BeH(N) bond length 1.52 �A, and the Ca atom, with a

CaeH(N) distance of 2.66 �A. The BeH(B) bond lengths undergo

very small changes (<0.02 �A). The NeB bond elongates, from

1.58 to 1.65 �A. The H(N)þ/H(B)� distance is 1.45 �A. The

CaeH(B) distances also change, with one extending from 2.32

to 2.77 �A, and the other to longer than 3.0 �A. The CaeNeB

angle also increases. In TS2b, the structural changes are pre-

dominately seen in the NeB bond length, which decreases

from 1.58 to 1.46 �A, and the CaeN distance, increasing from

2.36 to 2.50 �A. The distance between Ca and the released H(B)

atom is 2.03 �A.

In the first dehydrogenation step, we found that the less

the charge transfer, the lower the barrier to dehydrogenation

of the compound. To ascertain the generality of this obser-

vation, we investigate whether this trend holds for the second

http://dx.doi.org/10.1016/j.ijhydene.2013.06.106
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Table 1 e Calculated BeN, BeH, and NeH bond lengths (A) and the CaeN and CaeH(B) distances for the initial state,
transition states, and final states of Ca(NH2BH3)2 monomer at different H2 releasing steps. The calculated CaeNeB bond
angles (deg.) are also presented. The values for the crystal phase (Cry) are listed for comparison.

Step1 Step 2 Cry

IS1 TS1a TS1b FS1 IS2 TS2a TS2b FS2

Bond length (�A)

BeN 1.58 1.53 1.40 1.38 1.58 1.65 1.46 1.38 1.55

BeH 1.21 1.21 1.20 1.21 1.22 1.21 1.20 1.20 1.23

1.26 1.26 1.21 1.26 1.25 1.25 1.24 1.26 1.24

1.26 1.37 1.25 1.27 1.25

1.46 1.52

NeH 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

1.52 1.07

CaeN 2.32 2.20 2.79 2.21 2.36 2.20 2.21 2.22 2.48

2.38 2.50 2.35 2.18 2.72

CaeH(B) 2.30 2.37 2.25 2.31 2.31 2.26 2.27 2.30 2.36

2.33 2.58 2.28 2.32 2.32 2.77 2.50 2.32 2.37

2.26 2.36 2.36 2.41

2.29

Bond angle (deg.)

CaeNeB 76.0 88.2 87.0 93.7 76.0 92.5 92.0 92.8 113.2

73.9 71.4 76.2 107.5 74.4 93.0

Fig. 2 e Schematic electronic energy profiles for the first

and second H2 release from Ca(NH2BH3)2, via different

transition states. FS-o1 and FS-o2 are the energy for the

oligomerization process. The energy of Ca(NH2BH3)2 has

been set to zero. Lines are drawn to guide the eye.

Table 2 e Calculated Bader charges (with respect to neutral ato
Ca(NH2BH3)2 monomer at different H2 releasing steps. The valu

Step 1

IS1 TS1a TS1b FS1

Ca þ1.528 þ1.527 þ1.524 þ1.542

B þ1.702 þ1.764 þ1.834 þ1.807

N �1.500 �1.678 �1.638 �1.818

H(B) �0.575 �0.526 �0.573 �0.585

�0.606 �0.605 �0.754 �0.645

�0.593 �0.300 �0.579

H(N) þ0.406 þ0.398 þ0.495 þ0.472

þ0.401 þ0.189 þ0.473
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H2 release step. The calculated charges on each atom in both

processes are listed in Table 2. From the data, we compute a

total charge transfer of 0.11e forTS2a and 0.24e forTS2b. Once

again, we found that the less the charge transfer, the lower the

barrier. In a previous study, Kim et al. also calculated the en-

ergy barrier via the Ca/H transition state [34]. Their results

indicate barriers of 1.55 eV for the first H2 release, and 2.04 eV

for the second H2 release. Our results (1.90 eV for the first and

2.21 eV for the second) are in good agreement with theirs, but

the NeH/B process is not included in their studies. They also

calculated the energy barrier of the oligomerization process,

and the barrier is 1.86 eV for the first and the second H2

release. The energy of both final states is higher than that of

the non-oligomerization process. We also considered this

process, and arrive at similar results, but with a higher barrier.

Additionally, the barrier for release of the third and fourth

H2 was calculated. For the third H2 release, the calculated

energy barriers via the NeH/B and the Ca/H process are

equal, about 3.34 eV, and the charge transfer is also equal,

about 0.55e. This result also fits with the aforementioned

trend: the less the charge transfer, the lower the barrier. For
m) for the initial state, transition states, and final states of
es for the crystal phase (Cry) are also listed for comparison.

Step2 Cry

IS2 TS2a TS2b FS2

þ1.550 þ1.533 þ1.489 þ1.545 þ1.557

þ1.693 þ1.677 þ1.817 þ1.803 þ1.719

�1.510 �1.599 �1.665 �1.754 �1.592

�0.565 �0.574 �0.575 �0.576 �0.613

�0.599 �0.615 �0.638 �0.642 �0.600

�0.598 �0.567 �0.574 �0.582

þ0.419 þ0.431 þ0.444 þ0.398 þ0.432

þ0.387 þ0.458 þ0.471 þ0.460
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the fourth H2 release, we could only successfully obtain a

single barrier of about 3.09 eV. The related structural infor-

mation and the calculated atom charges can be seen in the

Supporting information (Fig. S1, Tables S1 and S2).

Overall, we found that if there is more than one pathway to

reach the final state, the energy barrier of each process is

determined by the charge transfer between the transition

state and the initial state: the less the charge transfer, the

lower the barrier.
Fig. 3 e Relaxed molecular structures of the Ca(NH2BH3)2
dimer: (a) initial state, (b) transition state TSd1a, (c)

transition state TSd1b, (d) final state FSd1, (e) transition

state TSd2a, (f) transition state TSd2b, (g) final state FSd2.

Green, pink, blue, and white spheres denote Ca, B, N, and H

atoms, respectively. (For interpretation of the references to

color in this figure legend, the reader is referred to the web

version of this article.)
3.2. Dehydrogenation mechanism in the dimer

In practice, dehydrogenation often occurs in the solid phase.

Therefore, it is important to study the effect of neighboring

molecules on the dehydrogenation mechanism. Here, the

dimer was studied. The optimized structure is shown in

Fig. 3(a) and the calculated bond lengths and bond angles are

listed in Table 3. The four [NH2BH3]
� groups can be separated

into two types: one (the non-bridging one) associatedwith one

Ca atom, the other (the bridging one) with two Ca atoms. Here,

each Ca atom is coordinated with three [NH2BH3]
� groups

through two CaeN interactions, with distances of 2.37 �A (non-

bridging), 2.40 �A (bridging), 2.36 �A (non-bridging), and 2.48 �A

(bridging); and one CaeB interaction with distances of 2.70 �A

(bridging) and 2.87 �A (bridging). This structure is still different

from that in the crystal phase, where each Ca directly co-

ordinates with two [NH2BH3]
� groups with a closest CaeN

distance ofw2.50�A, and the other four [NH2BH3]
� groups with

CaeB distances in the range of 2.90e3.16 �A, forming an octa-

hedron. Both the NeH and the BeH bond lengths are un-

changed when compared with those in the monomer (our

results in Table 1). However, the four NeB bond lengths

changed from 1.55 to 1.58 �A. The shortest one is the same as

that in the solid phase and the longest one is the same as that

in the gas phase. Further analysis shows that the shorter two

belong to the bridging [NH2BH3]
�, and the longer two belong to

the non-bridging [NH2BH3]
�. As they have slightly different

geometries, H2 release from different [NH2BH3]
� groups may

proceed through different energy barriers. The shortest

Hþ/H� distance of 2.45 �A is still found within one [NH2BH3]
�

moiety (non-bridging), while the distance in the bridging

species is 2.60 �A, and the distance between two nearby

bridging [NH2BH3]
� groups is 2.65 �A. The above analysis in-

dicates that H2 may release through three different pathways:

from the non-bridging [NH2BH3]
�, from the bridging

[NH2BH3]
�, or from two nearby bridging [NH2BH3]

� (oligo-

merization process). The energy barriers of the two non-

oligomerization processes were studied first. Also, two

different dehydrogenationmechanisms were considered. The

calculated energy barrier is shown in Fig. 4. The structures of

all the transition states and final states are shown in

Fig. 3(b)e(g). Here, we can see that the energy barriers for FSd1

(the final state when H2 is released from the bridging

[NH2BH3]
�) are 1.60 eV and 4.28 eV for the NeH/B (TSd1a) and

Ca/H (TSd1b) transition states; for FSd2 (the final state when

H2 is released from the non-bridging [NH2BH3]
�), the energy

barriers are 0.94 eV and 1.90 eV for the NeH/B (TSd2a) and

the Ca/H (TSd2b) transition states. The total energy of FSd2 is

0.38 eV lower than that of FSd1.
Then, the structural changes are explored. The calculated

bond lengths and bond angles are listed in Table 3. In TSd1a,

one NeH bond length changes from 1.02 to 1.05 �A, and this

H(N) atom also coordinates with the B atom, with a BeH(N)

bond length of 1.58�A. The BeN bond length changes from 1.56

to 1.63 �A, and the CaeH(B) distance changes substantially,

http://dx.doi.org/10.1016/j.ijhydene.2013.06.106
http://dx.doi.org/10.1016/j.ijhydene.2013.06.106


Table 3 e Calculated BeN, BeH, and NeH bond lengths (A) and the CaeN and CaeH(B) distances for the initial state,
transition states, and final states of the Ca(NH2BH3)2 dimer. The calculated CaeNeB bond angles (deg.) are also presented.
Only the reacted [NH2BH3]

L group is listed.

Bridging Non-bridging

ISd TSd1a TSd1b FSd1 ISd TSd2a TSd2b FSd2

Bond length (�A)

BeN 1.56 1.63 1.52 1.34 1.57 1.60 1.40 1.38

BeH 1.21 1.23 1.21 1.22 1.22 1.22 1.21 1.21

1.24 1.25 1.23 1.25 1.26 1.23 1.20 1.25

1.29 1.33 1.26 1.26

1.58 1.68

NeH 1.02 1.02 1.02 1.02 1.02 1.03 1.02 1.02

1.05 1.03 1.03

CaeN 2.40 2.38 2.72 2.32 2.36 2.25 2.82 2.21

CaeH(B) 2.30 2.97 2.25 2.34 2.35 2.43 2.98 2.41

2.35 2.97 2.67 2.36

2.32 2.86 2.55

Bond angle (deg.)

CaeNeB 90.0 107.4 85.0 95.8 76.8 91.2 89.8 92.0
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from about 2.3 �A to nearly 3.0 �A. In TSd1b, the biggest change

is seen in the CaeN distance, which increases from 2.40 to

2.72 �A. The number of CaeH(B) interactions decreases from

three to one. In TSd2a, the changes are very small. In TSd2b,

the BeN bond length changes from 1.57 to 1.40 �A, and the

CaeN distance changes from 2.36 to 2.82 �A. The number of

CaeH(B) interactions also decreases, from two to one (this

remaining interaction has a distance of 2.98 �A, and is then

very weak). In all four states, the un-reacted [NH2BH3]
� groups

show negligible changes, and the overall structure also has

very small changes. From the above analysis, we can see that

all the four transition states in the dimer cases have ten-

dencies similar to that in the gas phase, with the same

dehydrogenation mechanism. The Hþ/H� distance is 1.51 �A

in TSd1a and 1.80 �A in TSd2a, and the distance between Ca

and the released H(B) atom is 2.14 �A in TSd1b and 2.03 �A in

TSd2b.
Fig. 4 e Schematic electronic energy profiles for H2 release

from Ca(NH2BH3)2 dimer to two different final states (FSd1

and FSd2), each via two different transition states (TSd1a,

TSd1b and TSd2a, TSd2b). FS-o is the energy for the

oligomerization process. The energy of the Ca(NH2BH3)2
dimer has been set to zero. Lines are drawn to guide the

eye.
From the gas phase, we observed that a lower barrier may

be caused by less charge transfer. Therefore, we also calcu-

lated the charges on each atom for all four processes, the re-

sults of which are listed in Table 4. The charge transfer was

found to be 0.10e, 0.14e, 0.58e, and 0.19e for the TSd1a, TSd2a,

TSd1b, and TSd2b transition states, respectively. Barrier

calculation also shows that both TSd1a and TSd2b involve a

lower energy barrier than that of the other processes. Thus,

the same observation applies to the dimer case: the less the

charge transfer, the lower the barrier to dehydrogenation.

Next, the oligomerization process was studied. As we have

discussed earlier, this process may happen between two

bridging [NH2BH3]
� species, and the Hþ/H� distance is 2.65�A,

which is longer than the 2.4 �A van der Waals distance for the

interaction constituting a dihydrogen bond. First, the struc-

ture after H2 release was optimized. The calculated total en-

ergy is 0.37 eV lower than that of FSd2. This indicated that

oligomerization is energetically more favorable than the non-

oligomerization process. Calculation of the energy barrier is

then needed to determine whether this process is kinetically

favorable. Unfortunately, direct barrier calculation was un-

successful, so we chose another method to test whether the

final state could be formed. In previous studies of

Mg(BH4)2$2NH3 and Ca(NH2BH3)2$2NH3, one H(B) atom was

removed from the compound and the structure was opti-

mized. Then, an H(N) atom was removed from the optimized

structure, and the resulting structure was also optimized

[47,48]. The final optimized structure was used to study the

initial dehydrogenation mechanism. By this method, the au-

thors were able to successfully demonstrate the formation of

an NeB bond after dehydrogenation. These studies encour-

aged us to use this method to search for the formation of an

NeB bond in the dimer, but we did not observe NeB bond

formation. This could indicate that the oligomerization pro-

cess may not be feasible for a dimer system. A possible reason

may be the longer Hþ/H� distance. Experimentally, re-

searchers have observed the existence of NeBeN structures

[22]. A previous theoretical study has also shown that for

MeNH2BH3, the calculated reaction enthalpy is closer to the
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Table 4 e Calculated Bader charges (with respect to neutral atom) for the initial state, transition states, and final states of
the Ca(NH2BH3)2 dimer. Only the reacted [NH2BH3]

L group is listed.

Bridging Non-bridging

ISd TSd1a TSd1b FSd1 ISd TSd2a TSd2b FSd2

Ca þ1.528 þ1.561 þ1.468 þ1.538 þ1.542 þ1.523 þ1.471 þ1.536

B þ1.713 þ1.658 þ1.260 þ1.773 þ1.683 þ1.668 þ1.827 þ1.775

N �1.585 �1.625 �1.543 �1.730 �1.614 �1.662 �1.615 �1.793

H(B) �0.619 �0.621 �0.073 �0.647 �0.592 �0.600 �0.696 �0.636

�0.607 �0.609 �0.645 �0.607 �0.595 �0.592 �0.597 �0.585

�0.557 �0.519 �0.568 �0.569 �0.551 �0.564

H(N) þ0.449 þ0.470 þ0.494 þ0.430 þ0.467 þ0.518 þ0.495 þ0.472

þ0.434 þ0.425 þ0.401 þ0.452 þ0.453 þ0.458
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experimental value if the final product is MeNHBHNHBH3 [49].

The oligomerization process may happen in Ca(NH2BH3)2 tri-

mers or larger clusters, and this will be interesting for further

study.
4. Conclusions

In summary, the dehydrogenationmechanismof Ca(NH2BH3)2
was elucidated by first-principles density functional methods.

In the gas phase, the barrier for the first H2 release is 1.90 eV

via the Ca/H transition state and 2.70 eV via the NeH/B

transition state; the barrier for the second H2 release is 2.21 eV

via the Ca/H transition state and 1.71 eV via the NeH/B

transition state. For the dimer, the barrier for H2 release from

the bridging [NH2BH3]
� species is 4.28 eV via the Ca/H tran-

sition state and 1.60 eV via the NeH/B transition state, while

the barrier for H2 release from the non-bridging [NH2BH3]
�

species is 1.90 eV via the Ca/H transition state and 0.94 eV via

the NeH/B transition state. The oligomerization process in

the gas phase and the dimerwere also calculated, and both are

kinetically unfavorable. Charge analysis shows that the pro-

cess with a lower barrier corresponds to that with less charge

transfer. Hence the dehydrogenation mechanism is driven by

charge transfer between the transition state and the initial

state: the less the charge transfer, the lower the barrier.
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