

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/he

Dehydrogenation mechanisms of Ca(NH₂BH₃)₂: The less the charge transfer, the lower the barrier^{\approx}

Peng-Fei Yuan^a, Fei Wang^a, Qiang Sun^a, Yu Jia^{a,*}, Z.X. Guo^{b,**}

^a International Joint Research Laboratory for Quantum Functional Materials of Henan Province, and School of Physics and Engineering, Zhengzhou University, Henan 450001, China ^b Department of Chemistry, London Center for Nanotechnology, University College London, London WC1H OAJ, UK

ARTICLE INFO

Article history: Received 21 May 2013 Received in revised form 19 June 2013 Accepted 24 June 2013 Available online 22 July 2013

Keywords: Complex hydride Reaction mechanism First-principles calculation

ABSTRACT

Our first-principles study of Ca(NH₂BH₃)₂ reveals that the gas phase energy barrier for the first H₂ release is 1.90 eV via a Ca…H transition state and 1.71 eV via an N–H…B transition state for the second H₂ release. In the dimer, the barrier for H₂ release from the bridging $[NH_2BH_3]^-$ species is 1.60 eV via an N–H…B transition state, and 0.94 eV via an N–H…B transition state for the non-bridging $[NH_2BH_3]^-$ species. Analysis of the atomic charge distribution shows that the mechanism of dehydrogenation is determined by the charge transfer between the transition state and the initial state: the less the charge transfer, the lower the barrier to dehydrogenation.

Copyright © 2013, The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important problems in hydrogen fuel cell technology is the lack of safe and highly efficient hydrogen storage materials [1]. Because of its high storage capacity (19.6 wt%) and moderate dehydrogenation temperature, ammonia borane is considered to be a promising on-board hydrogen storage material [2]. The thermal decomposition of NH_3BH_3 involves three steps evolving one equivalent H_2 per step, at temperatures of ~110, 150, and >500 °C, yielding a final BN product [3–6]. The final step is not considered practical for hydrogen storage because of the very high reaction temperature. However, direct use of NH_3BH_3 is unsuccessful because of borazine formation and the low dehydrogenation

kinetics at typical proton exchange membrane fuel cell operating temperatures [2,7,8].

Researchers have attempted to improve the thermal decomposition behavior of solid NH₃BH₃ through a variety of methods, including chemical doping with various transition metals [9,10], base-metal catalysts [11], and acid catalysts [12], as well as particle confinement within nanoscaffolds [7], ionic liquids [13], and carbon cryogels [14]. However, the overall hydrogen storage capacity was reduced by addition of these species, which do not release hydrogen at the operation temperature.

Recently, the substitution of one H(N) [H(N) denotes H bonded to N] atom in the compound by a metal atom has been investigated as a potential route to modify the kinetics and

0360-3199/\$ — see front matter Copyright © 2013, The Authors. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijhydene.2013.06.106

^{*} This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*} Corresponding author. Tel.: +86 371 67739336.

^{**} Corresponding author. Tel.: +44 (0) 20 76797527.

E-mail addresses: jiayu@zzu.edu.cn (Y. Jia), z.x.guo@ucl.ac.uk (Z.X. Guo).

thermodynamics of H₂ release from NH₃BH₃. So far, most of the metal atoms investigated are from the alkali and alkalineearth groups. Some metal amidoboranes have been synthesized (i.e. LiNH₂BH₃ [15–20], NaNH₂BH₃ [16,20,21], Ca(NH₂BH₃)₂ [18,22,23] and Sr(NH₂BH₃)₂ [24]), and show a significant enhancement of dehydrogenation kinetics, along with suppressed borazine release. For example, LiNH₂BH₃ releases most of the hydrogen at ~92 and 120 °C; the thermal dehydrogenation of NaNH₂BH₃ resembles that of LiNH₂BH₃, but at a slightly lower temperature of 89 °C; and Ca(NH₂BH₃)₂ releases hydrogen at ~100 and 140 °C [16,18].

To improve the operating properties of these materials, especially rapid H₂ release near room temperature, it is important to understand the underlying mechanism for the release of H₂ from these compounds. Previous theoretical studies have focused on NH3BH3 and LiNH2BH3 [25-33], and have indicated that H_2 is released via an N-H…B transition state in NH₃BH₃ and a Li…H transition state in LiNH₂BH₃ in the gas phase. For the dimer case, the mechanism is more complex. The energy barriers for H₂ release were also calculated. The overall results agree well with the variation of the dehydrogenation temperature [18]. For example, Shevlin et al. performed a detailed study on isolated NH₃BH₃, LiNH₂BH₃, and their dimers [33]. In the gas phase, the energy barrier is 1.39 eV for the first H₂ release from an NH₃BH₃ molecule via an N–H \cdots B transition state. For LiNH₂BH₃, the barrier is 1.61 eV and the metal moiety acts as a hydrogen shuttle in a two-stage dehydrogenation mechanism. For the dimers, the energy barriers are 1.22 eV for NH3BH3 and 0.71 eV for LiNH2BH3, which helps to explain the observed experimental dehydrogenation temperatures of 92 °C for LiNH₂BH₃ and 110 °C for NH₃BH₃. Recently, a systematic study of the dehydrogenation mechanisms of Group I and Group II metal amidoboranes was performed by Kim et al. [34]. In their study, in which not only the M…H transition state but also the oligomerization transition state were considered, they found that the metal cation plays a role as a hydride-transfer catalyst.

Though the dehydrogenation mechanism of LiNH₂BH₃ has been well explained, a detailed study of other metal amidoboranes is still lacking, especially for Ca(NH₂BH₃)₂, the alkaline-earth metal amidoborane. Additionally, the dehydrogenation of Ca(NH₂BH₃)₂ is endothermic, whereas it is exothermic for all the other metal amidoboranes. This atypical behavior may be caused by a unique dehydrogenation mechanism. Therefore, we have performed a comprehensive study of Ca(NH₂BH₃)₂ dehydrogenation mechanism based on density functional theory.

2. Computational methods

First-principles calculations were carried out within the density functional theory framework [35]. We used the projectoraugmented wave (PAW) method [36,37] and the generalized gradient approximation (GGA) [38] for the exchangecorrelation energy functional, as implemented in the Vienna *ab initio* simulation package (VASP) [39–41]. The GGA calculation was performed with the Perdew–Burke–Ernzerhof (PBE) [42] exchange-correlation potential. First, the crystal structure was optimized. Ca(NH₂BH₃)₂ has a monoclinic structure with the C2 space group. The unit cell contains 30 atoms [18]. The equilibrium lattice parameters were calculated using a plane-wave cutoff energy of 400 eV and a $3 \times 3 \times 3$ k-point mesh within the Monkhorst–Pack [43] scheme. In the calculation, self-consistency was achieved with a tolerance in total energy of 0.01 meV, and when the forces on each atom were less than 0.01 eV/Å. The optimized lattice parameters were found to be a = 9.254 Å, b = 4.496 Å, c = 6.599Å, and $\beta = 91.26^{\circ}$. This result is in good agreement with the experimentally determined parameters: a = 9.100 Å, b = 4.371 Å, c = 6.441 Å, and $\beta = 93.19^{\circ}$ [18]. Subsequent calculations were performed with the same optimized lattice parameters. Simulation cells of size 15 \times 15 \times 15 \mathring{A}^3 were used for the isolated molecule and 20 \times 20 \times 20 ${\rm \AA}^3$ for the dimers. The Nudged Elastic Band (NEB) method [44] was used to determine the minimum energy pathway. All atoms were fully relaxed with tolerances in total energy of 0.01 meV, and for the forces on each atom of 0.01 eV/Å.

3. Results and discussion

3.1. Dehydrogenation mechanism in the gas phase

To understand the dehydrogenation mechanism of Ca(NH₂BH₃)₂, we first studied the basic properties of the compound in the gas phase. The molecular structure is shown in Fig. 1(a), and the bond lengths and bond angles are listed in Table 1. The calculated N–B bond length is 1.58 Å, which is shorter than that of crystalline (bulk) NH₃BH₃, but similar to that in LiNH₂BH₃ and NaNH₂BH₃. The N-H bond length is 1.02 Å and the B–H bond lengths are 1.21, 1.26, and 1.26 Å. The N-H bond length is similar to that in NH₃BH₃, LiNH₂BH₃, and NaNH₂BH₃, but the B-H bond lengths are slightly longer than those in NH_3BH_3 . This means that the identity of the metal atom has little effect on the [NH₂BH₃]⁻ structure. Furthermore, this structure also shows negligible deviation from the crystal phase. The Ca atom resides in a bridge over the B-N bond, with a Ca–N distance of 2.32 Å and a Ca–N–B angle of 76.0°. The Ca atom coordinates with four H(B) [H(B) denotes H bonded to B] atoms with a Ca-H(B) distance in the range of 2.30–2.33 Å. This is different from that in the crystal phase, where the Ca–N distance is 2.48 Å, the Ca–H(B) distance is in the range of 2.36–2.41 Å, and the Ca–N–B angle is 113.2°. In both phases, the Ca-H(N) distance is longer than 3.0 Å. Previous studies have shown that the $H^+ \cdots H^-$ interaction plays an important role in hydrogen storage [45]. In the gas phase, the shortest H⁺…H⁻ distance that appears in either [NH₂BH₃]⁻ group was about 2.56 Å, which is longer than the maximum dihydrogen bond length (2.4 Å). Additionally, the calculated N-B bond cleavage energy is 2.82 eV, which is smaller than that of $LiNH_2BH_3$ and $NaNH_2BH_3$, but larger than that of NH₃BH₃ [33], which is consistent with the electronegativity ordering of the substituents.

Mechanistically, previous studies show that while H_2 is released through an N–H···B transition state for NH₃BH₃, dehydrogenation proceeds via an M···H transition state for MNH₂BH₃ (M = Li, Na) [25–33]. We calculated the energy barrier of both processes for Ca(NH₂BH₃)₂. The calculated results are shown in Fig. 2 and the molecular structures of the

Fig. 1 – Relaxed molecular structures of $Ca(NH_2BH_3)_2$: (a) initial state, (b) transition state TS1a, (c) transition state TS1b, (d) final state FS1, (e) transition state TS2a, (f) transition state TS2b, (g) final state FS2. Green, pink, blue, and white spheres denote Ca, B, N, and H atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transition states and the final state (FS1) are shown in Fig. 1(b)-(d) (Fig. 1(a) is the initial state (IS1)). For dehydrogenation, the system needs to overcome energetic barriers of 2.70 and 1.90 eV to pass through the N-H…B (TS1a) and the Ca…H (TS1b) transition states, respectively. Therefore, TS1b is the most likely mechanism, which is similar to that in LiNH₂BH₃ (a barrier of 1.61 eV is encountered in LiNH₂BH₃). In both processes, only one [NH₂BH₃]⁻ releases H₂, without evident interaction with the other. A discussion of the structural change in the reacted [NH₂BH₃]⁻ follows. The calculated bond lengths and bond angles of TS1a, TS1b, and FS1 are also listed in Table 1. It is noted that in TS1a, one of the N-H bond lengths changes from 1.02 to 1.52 Å, and that this H(N) atom also coordinates with the B atom, with a B-H(N) bond length of 1.46 Å, and with the Ca atom, with a Ca-H(N) distance of 2.87 Å. One B-H(B) bond length also changes from 1.26 to 1.37 Å. The length between these two H atoms [H(N) and H(B)] is 0.97 Å. These changes make the Ca–H(B) distances longer than that in **IS1**. The Ca–N–B angle also increased. In **TS1b**, the largest change is the N–B bond length, from 1.58 to 1.40 Å, which is indicative of double bond formation; this is similar to that seen in **FS1**, where the [NHBH₂][–] is a planar structure. The Ca–N distance and Ca–H(B) distance are also longer than that in **IS1**. The distance between Ca and the released H(B) atom is 2.07 Å.

To further understand the mechanisms, we used Bader charge analysis [46] to monitor changes in the charges on each atom in both processes, including the initial state, the transition states, and the final state. The calculated results are listed in Table 2. It is clear that the charge transferred between the transition states and the initial state is different. In TS1a, one H(N) atom gains 0.21e and the N atom gains 0.18e, while two H(B) atoms lose 0.05e and 0.29e and the B atom loses 0.06e; the overall total charge transfer is 0.39e and occurs among different types of atoms. In TS1b, one H(B) atom receives 0.15e and the N atom receives 0.14e, while two H(N) atoms lose 0.07e and 0.10e and the B atom loses 0.13e. In this case, the total overall charge transfer, which also occurs among different types of atoms, is only 0.29e. Therefore, the results indicate that the less the charge transfer, the lower the barrier to dehydrogenation of the compound.

Next, the barrier for the second H₂ release was studied. First, we determine from which group the H₂ will be released, $[NH_2BH_3]^-$ or $[NHBH_2]^-$. The calculated results show that H_2 release from [NH2BH3]- is energetically favorable and is 0.74 eV lower than release from [NHBH₂]⁻. In other words, after the second H_2 is released, the Ca(NHBH₂)₂ molecule will be formed. As for the first H₂ release, the two different dehydrogenation mechanisms were considered. The calculated barriers are shown in Fig. 1, and the molecular structures of the transition states and final states (FS2) are shown in Fig. 1(e)-(f). Interestingly, the energy barriers are 1.71 eV and 2.21 eV for the N-H...B (TS2a) and the Ca...H (TS2b) transition states, respectively. This ordering is different than for the first dehydrogenation step (release of the first H₂). In both processes, the resulting [NHBH2]- shows negligible geometric changes. The structural changes in the [NH₂BH₃]⁻ molecule as it reaches the transition state are discussed as follows. The calculated bond lengths and bond angles of all the transition states and final state are listed in Table 1. From this table, we can see that in TS2a, one N-H bond length changes from 1.02 to 1.07 Å, and this H(N) atom also coordinates with the B atom, with a B-H(N) bond length 1.52 Å, and the Ca atom, with a Ca–H(N) distance of 2.66 Å. The B–H(B) bond lengths undergo very small changes (<0.02 Å). The N–B bond elongates, from 1.58 to 1.65 Å. The $H(N)^+ \cdots H(B)^-$ distance is 1.45 Å. The Ca-H(B) distances also change, with one extending from 2.32 to 2.77 Å, and the other to longer than 3.0 Å. The Ca–N–B angle also increases. In TS2b, the structural changes are predominately seen in the N-B bond length, which decreases from 1.58 to 1.46 Å, and the Ca–N distance, increasing from 2.36 to 2.50 Å. The distance between Ca and the released H(B) atom is 2.03 Å.

In the first dehydrogenation step, we found that the less the charge transfer, the lower the barrier to dehydrogenation of the compound. To ascertain the generality of this observation, we investigate whether this trend holds for the second Table 1 – Calculated B–N, B–H, and N–H bond lengths (A) and the Ca–N and Ca–H(B) distances for the initial state, transition states, and final states of Ca(NH₂BH₃)₂ monomer at different H₂ releasing steps. The calculated Ca–N–B bond angles (deg.) are also presented. The values for the crystal phase (Cry) are listed for comparison.

	Step1				Step 2				Cry
	IS1	TS1a	TS1b	FS1	IS2	TS2a	TS2b	FS2	
Bond length (Å)									
B-N	1.58	1.53	1.40	1.38	1.58	1.65	1.46	1.38	1.55
В-Н	1.21	1.21	1.20	1.21	1.22	1.21	1.20	1.20	1.23
	1.26	1.26	1.21	1.26	1.25	1.25	1.24	1.26	1.24
	1.26	1.37			1.25	1.27			1.25
		1.46				1.52			
N—H	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
		1.52				1.07			
Ca—N	2.32	2.20	2.79	2.21	2.36	2.20	2.21	2.22	2.48
		2.38	2.50	2.35		2.18	2.72		
Ca—H(B)	2.30	2.37	2.25	2.31	2.31	2.26	2.27	2.30	2.36
	2.33	2.58	2.28	2.32	2.32	2.77	2.50	2.32	2.37
		2.26		2.36	2.36				2.41
		2.29							
Bond angle (deg.)									
Ca-N-B	76.0	88.2	87.0	93.7	76.0	92.5	92.0	92.8	113.2
		73.9	71.4	76.2		107.5	74.4	93.0	

Fig. 2 – Schematic electronic energy profiles for the first and second H₂ release from $Ca(NH_2BH_3)_2$, via different transition states. FS-o1 and FS-o2 are the energy for the oligomerization process. The energy of $Ca(NH_2BH_3)_2$ has been set to zero. Lines are drawn to guide the eye.

 H_2 release step. The calculated charges on each atom in both processes are listed in Table 2. From the data, we compute a total charge transfer of 0.11e for **TS2a** and 0.24e for **TS2b**. Once again, we found that the less the charge transfer, the lower the barrier. In a previous study, Kim et al. also calculated the energy barrier via the Ca···H transition state [34]. Their results indicate barriers of 1.55 eV for the first H_2 release, and 2.04 eV for the second H_2 release. Our results (1.90 eV for the first and 2.21 eV for the second) are in good agreement with theirs, but the N–H···B process is not included in their studies. They also calculated the energy barrier of the oligomerization process, and the barrier is 1.86 eV for the first and the second H_2 release. The energy of both final states is higher than that of the non-oligomerization process. We also considered this process, and arrive at similar results, but with a higher barrier.

Additionally, the barrier for release of the third and fourth H_2 was calculated. For the third H_2 release, the calculated energy barriers via the N-H…B and the Ca…H process are equal, about 3.34 eV, and the charge transfer is also equal, about 0.55e. This result also fits with the aforementioned trend: the less the charge transfer, the lower the barrier. For

Table 2 – Calculated Bader charges (with respect to neutral atom) for the initial state, transition states, and final states of $Ca(NH_2BH_3)_2$ monomer at different H_2 releasing steps. The values for the crystal phase (Cry) are also listed for comparison.

	Step 1				Step2				Cry
	IS1	TS1a	TS1b	FS1	IS2	TS2a	TS2b	FS2	
Ca	+1.528	+1.527	+1.524	+1.542	+1.550	+1.533	+1.489	+1.545	+1.557
В	+1.702	+1.764	+1.834	+1.807	+1.693	+1.677	+1.817	+1.803	+1.719
Ν	-1.500	-1.678	-1.638	-1.818	-1.510	-1.599	-1.665	-1.754	-1.592
H(B)	-0.575	-0.526	-0.573	-0.585	-0.565	-0.574	-0.575	-0.576	-0.613
	-0.606	-0.605	-0.754	-0.645	-0.599	-0.615	-0.638	-0.642	-0.600
	-0.593	-0.300	-0.579		-0.598	-0.567	-0.574		-0.582
H(N)	+0.406	+0.398	+0.495	+0.472	+0.419	+0.431	+0.444	+0.398	+0.432
	+0.401	+0.189	+0.473		+0.387	+0.458	+0.471		+0.460

the fourth H_2 release, we could only successfully obtain a single barrier of about 3.09 eV. The related structural information and the calculated atom charges can be seen in the Supporting information (Fig. S1, Tables S1 and S2).

Overall, we found that if there is more than one pathway to reach the final state, the energy barrier of each process is determined by the charge transfer between the transition state and the initial state: the less the charge transfer, the lower the barrier.

3.2. Dehydrogenation mechanism in the dimer

In practice, dehydrogenation often occurs in the solid phase. Therefore, it is important to study the effect of neighboring molecules on the dehydrogenation mechanism. Here, the dimer was studied. The optimized structure is shown in Fig. 3(a) and the calculated bond lengths and bond angles are listed in Table 3. The four [NH₂BH₃]⁻ groups can be separated into two types: one (the non-bridging one) associated with one Ca atom, the other (the bridging one) with two Ca atoms. Here, each Ca atom is coordinated with three [NH2BH3]- groups through two Ca–N interactions, with distances of 2.37 Å (nonbridging), 2.40 Å (bridging), 2.36 Å (non-bridging), and 2.48 Å (bridging); and one Ca–B interaction with distances of 2.70 Å (bridging) and 2.87 Å (bridging). This structure is still different from that in the crystal phase, where each Ca directly coordinates with two [NH₂BH₃]⁻ groups with a closest Ca-N distance of ~2.50 Å, and the other four $[NH_2BH_3]^-$ groups with Ca–B distances in the range of 2.90–3.16 Å, forming an octahedron. Both the N-H and the B-H bond lengths are unchanged when compared with those in the monomer (our results in Table 1). However, the four N-B bond lengths changed from 1.55 to 1.58 Å. The shortest one is the same as that in the solid phase and the longest one is the same as that in the gas phase. Further analysis shows that the shorter two belong to the bridging [NH₂BH₃]⁻, and the longer two belong to the non-bridging [NH₂BH₃]⁻. As they have slightly different geometries, H₂ release from different [NH₂BH₃]⁻ groups may proceed through different energy barriers. The shortest $H^+ \cdots H^-$ distance of 2.45 Å is still found within one $[NH_2BH_3]^$ moiety (non-bridging), while the distance in the bridging species is 2.60 Å, and the distance between two nearby bridging [NH₂BH₃]⁻ groups is 2.65 Å. The above analysis indicates that H₂ may release through three different pathways: from the non-bridging [NH₂BH₃]⁻, from the bridging [NH₂BH₃]⁻, or from two nearby bridging [NH₂BH₃]⁻ (oligomerization process). The energy barriers of the two nonoligomerization processes were studied first. Also, two different dehydrogenation mechanisms were considered. The calculated energy barrier is shown in Fig. 4. The structures of all the transition states and final states are shown in Fig. 3(b)–(g). Here, we can see that the energy barriers for FSd1 (the final state when H₂ is released from the bridging $[NH_2BH_3]^-$) are 1.60 eV and 4.28 eV for the N-H···B (**TSd1a**) and Ca…H (TSd1b) transition states; for FSd2 (the final state when H_2 is released from the non-bridging $[NH_2BH_3]^-$), the energy barriers are 0.94 eV and 1.90 eV for the N-H…B (TSd2a) and the Ca…H (TSd2b) transition states. The total energy of FSd2 is 0.38 eV lower than that of FSd1.

Fig. 3 – Relaxed molecular structures of the $Ca(NH_2BH_3)_2$ dimer: (a) initial state, (b) transition state TSd1a, (c) transition state TSd1b, (d) final state FSd1, (e) transition state TSd2a, (f) transition state TSd2b, (g) final state FSd2. Green, pink, blue, and white spheres denote Ca, B, N, and H atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Then, the structural changes are explored. The calculated bond lengths and bond angles are listed in Table 3. In **TSd1a**, one N–H bond length changes from 1.02 to 1.05 Å, and this H(N) atom also coordinates with the B atom, with a B–H(N) bond length of 1.58 Å. The B–N bond length changes from 1.56 to 1.63 Å, and the Ca–H(B) distance changes substantially,

Table 3 – Calculated B–N, B–H, and N–H bond lengths (A) and the Ca–N and Ca–H(B) distances for the initial state, transition states, and final states of the Ca(NH_2BH_3)₂ dimer. The calculated Ca–N–B bond angles (deg.) are also presented. Only the reacted $[NH_2BH_3]^-$ group is listed.

	Bridging				Non-bridging				
	ISd	TSd1a	TSd1b	FSd1	ISd	TSd2a	TSd2b	FSd2	
Bond length (Å)									
B-N	1.56	1.63	1.52	1.34	1.57	1.60	1.40	1.38	
В—Н	1.21	1.23	1.21	1.22	1.22	1.22	1.21	1.21	
	1.24	1.25	1.23	1.25	1.26	1.23	1.20	1.25	
	1.29	1.33			1.26	1.26			
		1.58				1.68			
N-H	1.02	1.02	1.02	1.02	1.02	1.03	1.02	1.02	
		1.05	1.03			1.03			
Ca-N	2.40	2.38	2.72	2.32	2.36	2.25	2.82	2.21	
Ca—H(B)	2.30	2.97	2.25	2.34	2.35	2.43	2.98	2.41	
	2.35	2.97		2.67	2.36				
	2.32	2.86		2.55					
Bond angle (deg.)									
Ca-N-B	90.0	107.4	85.0	95.8	76.8	91.2	89.8	92.0	

from about 2.3 Å to nearly 3.0 Å. In TSd1b, the biggest change is seen in the Ca-N distance, which increases from 2.40 to 2.72 Å. The number of Ca–H(B) interactions decreases from three to one. In TSd2a, the changes are very small. In TSd2b, the B–N bond length changes from 1.57 to 1.40 Å, and the Ca–N distance changes from 2.36 to 2.82 Å. The number of Ca-H(B) interactions also decreases, from two to one (this remaining interaction has a distance of 2.98 Å, and is then very weak). In all four states, the un-reacted [NH₂BH₃]⁻ groups show negligible changes, and the overall structure also has very small changes. From the above analysis, we can see that all the four transition states in the dimer cases have tendencies similar to that in the gas phase, with the same dehydrogenation mechanism. The $H^+ \cdots H^-$ distance is 1.51 Å in TSd1a and 1.80 Å in TSd2a, and the distance between Ca and the released H(B) atom is 2.14 Å in TSd1b and 2.03 Å in TSd2b.

Fig. 4 – Schematic electronic energy profiles for H_2 release from Ca(NH₂BH₃)₂ dimer to two different final states (FSd1 and FSd2), each via two different transition states (TSd1a, TSd1b and TSd2a, TSd2b). FS-o is the energy for the oligomerization process. The energy of the Ca(NH₂BH₃)₂ dimer has been set to zero. Lines are drawn to guide the eye.

From the gas phase, we observed that a lower barrier may be caused by less charge transfer. Therefore, we also calculated the charges on each atom for all four processes, the results of which are listed in Table 4. The charge transfer was found to be 0.10e, 0.14e, 0.58e, and 0.19e for the **TSd1a**, **TSd2a**, **TSd1b**, and **TSd2b** transition states, respectively. Barrier calculation also shows that both **TSd1a** and **TSd2b** involve a lower energy barrier than that of the other processes. Thus, the same observation applies to the dimer case: the less the charge transfer, the lower the barrier to dehydrogenation.

Next, the oligomerization process was studied. As we have discussed earlier, this process may happen between two bridging $[NH_2BH_3]^-$ species, and the $H^+ \cdots H^-$ distance is 2.65 Å, which is longer than the 2.4 Å van der Waals distance for the interaction constituting a dihydrogen bond. First, the structure after H₂ release was optimized. The calculated total energy is 0.37 eV lower than that of FSd2. This indicated that oligomerization is energetically more favorable than the nonoligomerization process. Calculation of the energy barrier is then needed to determine whether this process is kinetically favorable. Unfortunately, direct barrier calculation was unsuccessful, so we chose another method to test whether the final state could be formed. In previous studies of Mg(BH₄)₂·2NH₃ and Ca(NH₂BH₃)₂·2NH₃, one H(B) atom was removed from the compound and the structure was optimized. Then, an H(N) atom was removed from the optimized structure, and the resulting structure was also optimized [47,48]. The final optimized structure was used to study the initial dehydrogenation mechanism. By this method, the authors were able to successfully demonstrate the formation of an N-B bond after dehydrogenation. These studies encouraged us to use this method to search for the formation of an N-B bond in the dimer, but we did not observe N-B bond formation. This could indicate that the oligomerization process may not be feasible for a dimer system. A possible reason may be the longer $H^+ \cdots H^-$ distance. Experimentally, researchers have observed the existence of N-B-N structures [22]. A previous theoretical study has also shown that for M-NH₂BH₃, the calculated reaction enthalpy is closer to the

Table 4 – Calculated Bader charges (with respect to neutral atom) for the initial state, transition states, and final states of the Ca(NH₂BH₃)₂ dimer. Only the reacted $[NH_2BH_3]^-$ group is listed.

		Bridging				Non-bridging				
	ISd	TSd1a	TSd1b	FSd1	ISd	TSd2a	TSd2b	FSd2		
Ca	+1.528	+1.561	+1.468	+1.538	+1.542	+1.523	+1.471	+1.536		
В	+1.713	+1.658	+1.260	+1.773	+1.683	+1.668	+1.827	+1.775		
Ν	-1.585	-1.625	-1.543	-1.730	-1.614	-1.662	-1.615	-1.793		
H(B)	-0.619	-0.621	-0.073	-0.647	-0.592	-0.600	-0.696	-0.636		
	-0.607	-0.609	-0.645	-0.607	-0.595	-0.592	-0.597	-0.585		
	-0.557	-0.519	-0.568		-0.569	-0.551	-0.564			
H(N)	+0.449	+0.470	+0.494	+0.430	+0.467	+0.518	+0.495	+0.472		
	+0.434	+0.425	+0.401		+0.452	+0.453	+0.458			

experimental value if the final product is M–NHBHNHBH₃ [49]. The oligomerization process may happen in Ca(NH₂BH₃)₂ trimers or larger clusters, and this will be interesting for further study.

4. Conclusions

In summary, the dehydrogenation mechanism of Ca(NH₂BH₃)₂ was elucidated by first-principles density functional methods. In the gas phase, the barrier for the first H₂ release is 1.90 eV via the Ca…H transition state and 2.70 eV via the N-H…B transition state; the barrier for the second H₂ release is 2.21 eV via the Ca…H transition state and 1.71 eV via the N-H…B transition state. For the dimer, the barrier for H₂ release from the bridging [NH₂BH₃]⁻ species is 4.28 eV via the Ca…H transition state and 1.60 eV via the N-H…B transition state, while the barrier for H₂ release from the non-bridging [NH₂BH₃] species is 1.90 eV via the Ca…H transition state and 0.94 eV via the N-H…B transition state. The oligomerization process in the gas phase and the dimer were also calculated, and both are kinetically unfavorable. Charge analysis shows that the process with a lower barrier corresponds to that with less charge transfer. Hence the dehydrogenation mechanism is driven by charge transfer between the transition state and the initial state: the less the charge transfer, the lower the barrier.

Acknowledgments

The work was supported partly by the "973 Project" (No. 2012CB921300), partly by the NSF of China (Grant No. 11274280), and partly by the Program for Innovative Research Team of Science and Technology of Henan Province (Grant No: 2012IRTSTHN003). ZXG is supported by the UK EPSRC through the SUPERGEN Initiative (EP/E040071/1, EP/E046193/1, EP/K002252/1). The calculations were performed on the High Performance Clusters of Zhengzhou University.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijhydene.2013.06.106.

REFERENCES

- Graetz J. New approaches to hydrogen storage. Chem Soc Rev 2009;38:73–82.
- [2] Stephens FH, Pons V, Tom Baker R. Ammonia–borane: the hydrogen source par excellence. Dalton Trans 2007;25:2613–26.
- [3] Sit V, Geanangel RA, Wendlandt WW. The thermal dissociation of NH₃BH₃. Thermochim Acta 1987;113:379–82.
- [4] Hu MG, Geanangel RA, Wendlandt WW. The thermal decomposition of ammonia borane. Thermochim Acta 1978;23:249–55.
- [5] Wolf G, Baumann J, Baitalow F, Hoffman P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim Acta 2000;343:19–25.
- [6] Baitalow F, Baumann J, Wolf G, Jaenicke-Rößler K, Leitner G. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 2002;391:159–68.
- [7] Gutowska A, Li L, Shin Y, Wang CM, Li XS, Linehan JC, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 2005;44:3578–82.
- [8] Marder TB. Will we soon be fueling our automobiles with ammonia-borane. Angew Chem Int Ed 2007;46:8116-8.
- [9] Jaska CA, Temple K, Lough AJ, Manners I. Transition metalcatalyzed formation of boron–nitrogen bonds: catalytic dehydrocoupling of amine–borane adducts to form aminoboranes and borazines. J Am Chem Soc 2003;125:9424–34.
- [10] Denney MC, Pons V, Hebden TJ, Heinekey M, Goldberg KI. Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 2006;128:12048–9.
- [11] Keaton RJ, Blacquiere JM, Baker RT. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 2007;129:1844–5.
- [12] Stephens FH, Baker RT, Matus MH, Grant DJ, Dixon DA. Acid initiation of ammonia-borane dehydrogenation for hydrogen storage. Angew Chem Int Ed 2007;46:746–9.
- [13] Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 2006;128:7748–9.
- [14] Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G. Coherent carbon cryogel—ammonia borane nanocomposites for H₂ storage. J Phys Chem B 2007;111:7469–72.
- [15] Xiong ZT, Chua YS, Wu GT, Xu WL, Chen P, Shaw W, et al. Interaction of lithium hydride and ammonia borane in THF. Chem Commun 2008;43:5595–7.
- [16] Xiong ZT, Yong CK, Wu GT, Chen P, Shaw W, Karkamkar A, et al. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 2008;7:138–41.

- [17] Wang P, Orimo S, Tanabe K, Fujii H. Hydrogen in mechanically milled amorphous boron. J Alloys Compd 2003;350:218–21.
- [18] Wu H, Zhou W, Yildirim T. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties. J Am Chem Soc 2008;130:14834–9.
- [19] Wu CZ, Wu GT, Xiong ZT, David WIF, Ryan KR, Jones MO, et al. Stepwise phase transition in the formation of lithium amidoborane. Inorg Chem 2010;49:4319–23.
- [20] Luedtke AT, Autrey T. Hydrogen release studies of alkali metal amidoboranes. Inorg Chem 2010;49:3905–10.
- [21] Xiong ZT, Wu GT, Chua YS, Hu JJ, He T, Xu WL, et al. Synthesis of sodium amidoborane (NaNH₂BH₃) for hydrogen production. Energy Environ Sci 2008;1:360–3.
- [22] Spielmann J, Jansen G, Bandmann H, Harder S. Calcium amidoborane hydrogen storage materials: crystal structures of decomposition products. Angew Chem 2008;120:6386–91.
- [23] Himashinie VK, Diyabalanage RPS, Semelsberger TA, Scott BL, Bowden ME, Davis BL, et al. Calcium amidotrihydroborate: a hydrogen storage material. Angew Chem Int Ed 2007;46:8995–7.
- [24] Zhang Q, Tang Ch, Fang Ch, Fang F, Sun D, Ouyang L, et al. Synthesis, crystal structure, and thermal decomposition of strontium amidoborane. J Phys Chem C 2010;114:1709–14.
- [25] McKee ML. Ab initio study of the formation of aminoborane from ammonia and diborane. J Phys Chem 1992;96:5380–5.
- [26] Sakai S. A new mechanism of H₂BNH₂ formation in the reaction of B₂H₆ with NH₃. Chem Phys Lett 1994;217:288–92.
- [27] Sakai S. Theoretical study of the chemical reactions of B₂H₆ with Lewis bases (NH₃, PH₃, H₂O, and H₂S). J Phys Chem 1995:99:9080-6.
- [28] Li QS, Zhang J, Zhang S. A DFT and ab initio direct dynamics study on the hydrogen abstract reaction of H₃BNH₃ → H₂ + H₂BNH₂. Chem Phys Lett 2005;404:100-6.
- [29] Nguyen VS, Matus MH, Grant DJ, Nguyen MT, Dixon DA. Computational study of the release of H₂ from ammonia borane dimer (BH₃NH₃)₂ and its ion pair isomers. J Phys Chem A 2007;111:8844–56.
- [30] Swinnen S, Nguyen VS, Nguyen MT. Potential hydrogen storage of lithium amidoboranes and derivatives. Chem Phys Lett 2010;489:148–53.
- [31] Lee TB, Mckee ML. Mechanistic study of LiNH₂BH₃ formation from (LiH)₄ + NH₃BH₃ and subsequent dehydrogenation. Inorg Chem 2009;48:7564–75.
- [32] Kim DY, Singh NJ, Lee HM, Kim KS. Hydrogen-release mechanisms in lithium amidoboranes. Chem Eur J 2009;15:5598–604.
- [33] Shevlin SA, Kerkeni B, Guo ZX. Dehydrogenation mechanisms and thermodynamics of MNH_2BH_3 (M = Li, Na)

metal amidoboranes as predicted from first principles. Phys Chem Chem Phys 2011;13:7649–59.

- [34] Kim DY, Lee HM, Seo JC, Shin SK, Kim KS. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Phys Chem Chem Phys 2010;12:5446–53.
- [35] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133–8.
- [36] Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953–79.
- [37] Kress G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758–75.
- [38] Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 1992;45:13244–9.
- [39] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558–61.
- [40] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86.
- [41] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput Mater Sci 1996;6:15–50.
- [42] Perdew JP, Burke K, Ernzehof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.
- [43] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188–92.
- [44] Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 2000;113:9901–4.
- [45] Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater 2004;16:1522–5.
- [46] Henkelamn G, Arnaldsson A, Jonsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 2006;36:354–60.
- [47] Chen XW, Yu XB. Electronic structure and initial dehydrogenation mechanism of $M(BH_4)_2 \cdot 2NH_3$ (M = Mg, Ca, and Zn): a first-principles investigation. J Phys Chem C 2012;116:11900–6.
- [48] Li W, Wu GT, Chua YS, Feng YP, Chen P. Role of NH₃ in the dehydrogenation of calcium amidoborane ammoniate and magnesium amidoborane ammoniate: a first-principles study. Inorg Chem 2012;51:76–87.
- [49] Zhang YS, Autrey T, Wolverton C. First-principles prediction of intermediate products in the decomposition of metal amidoboranes. J Phys Chem C 2012;116:26728–34.