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Dual-cycle dielectrophoretic collection rates
for probing the dielectric properties
of nanoparticles

A new DEP spectroscopy method and supporting theoretical model is developed to sys-
tematically quantify the dielectric properties of nanoparticles using continuously pulsed
DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle
dielectric properties, are an attractive alternative to the crossover frequency method for
determining dielectric properties. The new method introduces dual-cycle amplitude mod-
ulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a
fixed frequency acts as a control, and the second collection rate frequency is switched to
a chosen value, such that, it can effectively probe the dielectric properties of the nanopar-
ticles. The application of the control means that measurement variation between DEP
collection experiments is reduced so that the frequency-switched probe collection is more
effective. A mathematical model of the dual-cycle method is developed that simulates the
temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical
method is also developed that enables systematic bivariate fitting of the multifrequency
DEP collection rates to the Clausius–Mossotti function, and is instrumental for determin-
ing dielectric properties. A Monte-Carlo simulation validates that collection rates improve
estimation of the dielectric properties, compared with the crossover method, by exploit-
ing a larger number of independent samples. Experiments using 200 nm diameter latex
nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26
mS/m that lies within 8% of the expected value. The results show that the dual-frequency
method has considerable promise particularly for automated DEP investigations and as-
sociated technologies.
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1 Introduction

DEP is an important electrokinetic technique for microma-
nipulating and transporting micro- and nanoscale biologi-
cal particles suspended in aqueous media [1–3]. DEP is the
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translational movement of an electrically polarizable body by
the action of a nonuniform electric field. It is often imple-
mented by applying radio frequency electrical potentials to
microfabricated electrodes immersed in liquid (typically of
low conductivity). Biological particles amenable to DEP ma-
nipulation include: cells, viruses, nucleic acids (DNA and
RNA), proteins, etc.

One of the important applications of DEP is determin-
ing dielectric properties of small volume samples. Crossover
measurements have been a standard method for characteriz-
ing cells, viruses and colloidal bioparticles [4–8]. This method
often involves preparation of suspension media for a range
of controlled conductivities in order to infer a dielectric prop-
erty, e.g. surface conductivity. Typically, after the sample has
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been suspended in a suitable DEP chamber, the applied sig-
nal is varied until the samples shows a transition from posi-
tive to negative DEP (pDEP to nDEP). The signal frequency
at transition (i.e. the zero force point, where the polarizabil-
ity of the particle equals that of the suspending medium) is
the recorded crossover frequency for that particular medium
conductivity. Unfortunately, the DEP crossover technique re-
quires (i) the existence of both pDEP and nDEP, (ii) substan-
tial time to prepare a range of medium conductivities and
perform experiments, (iii) substantial number of specimen
samples needed for each crossover experiment, and (iv) the
need for considerable operator skill and avoidance of error.

An alternative method for determining the dielectric
properties of particles is the initial collection rate. The rate of
accumulation of samples into specified collection volume is
approximately proportional to the DEP force. The rate, there-
fore, enables the dielectric properties of the particle to be
inferred, e.g. by fitting the rates to the frequency-dependent
polarizability, which can be modeled by the real part of the
Clausius–Mossotti (CM) function. The collection rate tech-
nique, coupled with the need to circumvent problems associ-
ated with crossover measurements and the popular use of pro-
grammable automated switching software, e.g. LabVIEWTM,
motivates using collection rates as a means of determining
dielectric properties of samples.

A useful method for measuring particle collection rates
and inferring dielectric properties is pulsed DEP; measure-
ments have been reported for cells and their constituents,
e.g. DNA, RNA, viruses [4, 9–17]. Figure 1 shows the typi-
cal experimental setup for collection rate measurements us-
ing planar microelectrodes. Pulsed DEP is the application
of DEP for short time durations, typically varying from mil-

liseconds to seconds and the pulse shapes vary from rectan-
gular, ramped, triangular, and so forth. Typically, under the
influence of pDEP nanoparticles collect at the edges of the
microelectrodes when the signal is switched “on,” and are
subsequently released during the “off” phase. Continuously
pulsed DEP is also called amplitude modulated (AM) DEP be-
cause the pulse physically consists of a sinusoidal waveform
with period much less than the pulse duration, and with an
amplitude that depends on the shape of the pulse [18].

One of the problems facing the determination of col-
lection rates is that the number of nanoparticles accumulat-
ing in the capture region is dependent on the localized con-
centration at, or slightly above, the planar electrode array—
practically this is seen to vary even if the bulk concentration is
nominally the same between samples. In previous work using
fluorescently labeled particles [12–14], this problem was ad-
dressed by normalizing (i.e. taking the ratio) of fluorescence
with respect to the initial fluorescence. However, ratio nor-
malization itself can be problematic, particularly when the
value of the fluorescence is low. In the regime of low-level
fluorescence, it is preferable to adopt alternative methods.

In this paper, we present a novel approach for measuring
collection rates and determining the dielectric properties of
fluorescent nanoparticles. Our recent research investigating
the properties of AM DEP [19] is significantly advanced to
allow changing of the carrier frequencies so that between the
DEP being switched on, the frequency is switched, or “hops”
to a selected frequency suitable for estimating the dielectric
properties. The system process is thus titled, dual-cycle DEP.
The issue arising from variable nanoparticle concentration
localized near the planar array is addressed by using dual fre-
quencies, one as a “control” and the other as a “probe.” The

Figure 1. Scheme of the DEP experi-
ment (A) microelectrode array, signal
source (including amplifier and mon-
itoring oscilloscope), epifluorescence
microscope and camera. (B) DEP col-
lection experiment using interdigi-
tated planar microelectrodes. (C) Flu-
orescent image showing castellated
microelectrodes and 200 nm fluores-
cent nanospheres without the field
applied and (D) with electric field ap-
plied showing particles collecting at
the electrode edges (i.e. high-field
gradient regions) under the influence
of pDEP.
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ratio of the “probe” and “control” collection rates is used
to infer the dielectric parameters. In addition, frequency-
dependent collection rates are often semiquantitatively com-
pared to the real part of the CM function [4, 8], fitted by ad
hoc multivariate methods [17] and crossover frequencies [16].
For the first time, we derive first-principle bivariate statistical
algorithms for systematic fitting the real part of the CM using
the method of least squares that minimizes residual error.

Clearly, there is considerable motivation for using DEP
collection rates for determining dielectric properties of
nanoparticles using dual-cycle DEP, yet there is no system-
atic, quantitative analysis of dual-cycle DEP, or indeed a the-
oretical framework to utilize this electrokinetic process. This
work attempts to remedy this deficiency in the literature by
developing mathematical and statistical models for dual-cycle
DEP. These models are used to infer the dielectric properties
of polymer nanospheres from experimental data.

2 Materials and methods

2.1 Cyclic DEP nanoparticle transport model

This section introduces and develops a model of a dual-
cycle DEP system. The following sections describe the elec-

trokinetic model for nanoparticle collection and release,
with new concepts introduced and associated measurement
parameters.

2.1.1 Introduction: Single-cycle DEP collection

and release

A cartoon showing the cyclic movement of nanoparticles at-
tracted by pulsed, or AM, DEP toward and away from a pla-
nar electrode array is shown in Fig. 2A. Each cycle with pe-
riod, T, entails a nanoparticle collection phase when DEP
is switched “on,” followed by a DEP switched “off” release
phase. The distribution of nanoparticles over space and time
is described by the nanoparticle concentration, c(y, t); the to-
tal number of nanoparticles within the system remains con-
stant throughout the experiment. The corresponding time-
dependent nanoparticle number close to the planar electrode
array at y = a is shown in Fig. 2B. The size of the nanoparti-
cles is on the nanoscale but they can be much larger; the key
feature being that the stochastic effect of Brownian thermal
motion is significant. The cap is located at height, h = b − a
above the array, such that h is much greater than the array
features.

Figure 2. Nanoparticle collection under the action of pDEP force and release after the pDEP force is switched off. (A) Cartoon showing
nanoparticle distribution—side view (i) initially uniform (ii) soon after force is switched on (t = tc) pDEP force attracts nanoparticles
downwards causing a depletion layer above (iii) depletion layer widens and system reaches collection steady state (t ≈ tcs) where
nanoparticle fluxes balance (iv) after the pDEP force is switched off (t = tr) nanoparticles diffuse away from array eventually returning
to release SS (t ≈ trs). (B) Nanoparticle number collection and release within a volume near the array as a function of time showing the
initial collection rate and initial to CS transition (further details in text).
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Figure 3. Schematic of the model. The left box shows a switched “on-off” amplitude modulated (AM) generator that frequency hops
between two frequencies and produces signal with a rectangular-wave envelope. The signal is fed to the DEP planar array, illustrated
previously in Fig. 2(A). The action of DEP process (right box) involves squaring the electric field, effectively removing the radio frequency
(RF) carrier by low pass filter (LPF), and the frequency dependence of the real part of the CM factor modulates the pulse amplitude, thus,
filtering the signal to a baseband square-wave. The second pulse with amplitude one-half of the first pulse is for illustrative purposes and
arises from the CM factor responding less with �2 compared with �1. The output shows nanoparticle transport represented as a series of
active ultra-low pass filters (A-LPFs) quantified by the collection rates.

Before switching on the DEP force at the start of the col-
lection phase of the cycle t < tc, Fig. 2A(i), the nanoparticles
are uniformly distributed with the initial number of nanopar-
ticles close to the array, nci (the subscripts “c” and “i” denote
“collection” phase of cycle and “initial” time-point). Applying
an alternating current potential to the electrodes, the action
of the pDEP force causes downward nanoparticle movement,
particularly near the electrode array where the DEP force
is strong, Fig. 2A(ii). The initial rate of collection, with re-
spect to time, is the nanoparticle collection rate, indicated in
Fig. 2B as ṅ(tc). As the concentration further increases near
the array, DEP accumulation near the lower boundary results
in a depletion layer that steadily rises toward the cap at y = b.
Eventually, the DEP nanoparticle flux becomes balanced by
thermally driven diffusion, Fig. 2A(iii), and approaches steady
state (SS). Since the SS is for the collection phase, it is de-
noted “CS” and occurs at time, t = tcs, with nanoparticle
number, ncs. Switching off the alternating current potential
at t = tr initiates the release phase since there is no longer
any pDEP force to trap the nanoparticles, and they diffuse
into the bulk medium, Fig. 2A(iv), eventually reaching re-
lease SS (release (phase) steady state (RS)) at t = trs. On-off
switching can be repeated, as reported for pDEP of DNA
and nanospheres [14, 19]. In the scheme where on-off switch
period times are sufficiently long for the system to reach
SS in each of the phases, the difference between the col-
lection SS and the initial nanoparticle number close to the
array, is the initial to CS transition, �ns = ncs − nci. The al-
ternative case when the on-off switch period times are much
shorter than the time to SS is considered in the following
sections. An important parameter describing the proportion
of the time DEP is switched “on” compared to the period,

T, (or sum of the “on” and “off” durations) is the duty-cycle
ratio:

� = (tr − tc )
/

T (1)

In Fig. 2B, for example, the duty cycle ratio, � ∼ 0.53.

2.1.2 Dual-cycle system model

Single cycle DEP collection followed by release has been re-
ported recently [19], here we extend the framework to a dual-
cycle entailing two separate collection and release cycles with
periods T1 and T2 for the first and second cycles, respectively,
and total period, T = T1 + T2. A schematic of the dual-cycle
DEP system is shown in Fig. 3. A signal generator, shown in
the left box, supplies voltages to the microelectrodes and can
switch both signal amplitude and applied frequency. The elec-
trical potential at the output of the jth dual-cycle is given by:

�(t) = A(t) cos �(t) (2)

where A(t) = Ac[S1(t) + S2(t)] and �(t) = �1 S1(t) + �2 S2(t).
The switch functions S1 and S2, applicable for the first and
second cycles, are defined as unity (on) for t within the
specified interval and zero (off) elsewhere:

S1(t) =
{

1, j T < t < j T + �1T1

0, elsewhere
(3)

S2(t) =
{

1, j T + T1 < t < j T + T1 + �2T2

0, elsewhere
(4)
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and they can be easily constructed from Heaviside unit-step
functions [20]. Ac is the ground-to-peak cosine amplitude,
where the subscript “c” denotes carrier. The two angular fre-
quencies for the first and second cycles are �1 and �2 that
the signal generator is programmed to switch or “hop” be-
tween, and �1 and �2 are the respective duty-cycle ratios. For
convenience, the dual-cycle period T is said to have a mod-
ulation frequency fm = 1/T with subscript “m” denoting
modulation. The output sinusoidal signal of the generator is
shown in the left box of Fig. 3 with a rectangular-wave enve-
lope of the dual cycle; the first cycle with frequency �1 and the
second with frequency �2 and the same amplitude as the first.

The DEP force on a nanoparticle located at position
x = (x, y, z) is proportional to the small-time averaged gradi-
ent of the square of the electric field magnitude. The spatial
variation of the electric field (peak value) can be evaluated
from Laplace’s equation and written as follows:

�E (x, t) = −�∇�(x, t) = �K (x)�(t) (5)

where the normalized electric field, �K (x) = �E (x, t)|max/Ac ,
assumes a unit ground-to-peak voltage. The DEP process is
represented in the right box of Fig. 3. Using Eqs. (2)–(5), the
small-time averaged DEP force on a nanosphere with radius,
r, immersed in a medium with dielectric constant, �m, is given
by:

〈 �FDEP(x, t)〉Tc = 2�r 3�mRe{ fCM[�(t)]}〈 �∇| �E (x, t)|2〉Tc

= A2
c �r 3�m �∇| �K (x)|2︸ ︷︷ ︸

�FDEP(x)

Sw(t) (6)

where the switch function is weighted by the real part of the
CM factor, fCM(�), associated with each of the two cycles:

Sw(t) = Re{ fCM(� 1)}S1(t) + Re{ fCM(� 2)}S2(t) (7)

In Eqs. (6) and (7) 〈〉Tc denotes the small-time average over
the relevant carrier frequency period, Tc, �l = 2� f l with l
being the cycle index, l = 1, 2, and “Re” denotes real part of
the CM function that is bounded, −1/2 ≤ Re{ fCM(�)} ≤ 1.
It is evaluated according to each of the carrier frequencies
since both � 1 and � 2 >> �m for the main harmonics of the
square-wave modulation.

The effect of the real part of the CM function is shown
in the right box of Fig. 3 and is included with the square-law
and radio frequency carrier low pass filtering effect that rep-
resents the physical processes in which the DEP force arises.
The CM is frequency dependent because it is a function of
the dielectric properties of the nanoparticles suspended in
aqueous medium. Hence, the second cycle (of switched fre-
quency) yields a different amplitude, in this example it is half
that of the first pulse. The mass of nanoparticles is small and
it can be assumed that they reach terminal velocity instan-
taneously. In order to characterize their transport under the
action of continuous on-off pulsed, or AM DEP, the effects of
thermally driven Brownian motion are included. The space-
time evolution of concentration, c(x, t), can be written in
differential form as the modified diffusion equation (MDE),

or Fokker–Planck equation:

∂c(x, t)

∂t
= −1

�
�∇ · (c(x, t) �FDEP(x)Sw(t))︸ ︷︷ ︸

DEP

+ kBT

�
�∇ · �∇c(x, t)︸ ︷︷ ︸
Diffusion

(8)

where kB T is the Boltzmann temperature and � is the
nanoparticle dynamic drag coefficient. The nanoparticle
collection “on” and release “off” processes can be consid-
ered separately using the switch functions S1 and S2 that
rapidly change over the order of nanoseconds. The duration
of switching occurs with a timescale that is much smaller
than the timescales of interest for the collection and release
times. The general solution of a linear MDE, for each of the
two phases can be determined using the separation of vari-
ables method and yields a Fourier series with exponential
time-decay terms [20–22] typical of a diffusion limited pro-
cess. The linear MDE (Eq. (8)) is applicable for very low to
moderate concentrations where the nanoparticles do not in-
teract and can be derived either by stochastic integration of
a single particle Langevin equation [23] or by using standard
mass continuity methods. In the frequency domain, the series
can be represented as a series of active ultralow pass filters as
shown in Fig. 3, right box. This means that the rectangular
DEP force pulses become rounded with collection rates being
approximately proportional to the two cyclic DEP forces, as
shown, and their comparison is a differential collection rate.

2.1.3 Dual-cycle time profiles

The initial collection rate can be found by assuming the ini-
tial concentration is uniform in Eq. (8) so that ∇c(x, 0) = 0
and that the capture volumes are sufficiently small. The
rate of capture, for sufficiently dilute, initially uniform
concentrations where the nanoparticles do not interact,
is approximately proportional to the DEP force, ṅ(tc) ∝
A2

cn(tc)Re{ fCM[�(tc)]}/� [9–14, 16]. Given that the nanopar-
ticle parameters in Eq. (6) are equal in each of the two cycles
except the CM factor, then it follows that the differential rate
is the ratio of the second rate divided by the first:

	 = ṅ2

ṅ1
= Re{ fCM(�2)}

Re{ fCM(�1)} (9)

Important as they are, the collection rates alone cannot
characterize the entire time profile for the nanoparticle num-
ber that describes the system dynamics. The solution for the
nanoparticle number is found by integrating Eq. (8) in space
and time and including the switch functions. The expression
for the jth dual-cycle nanoparticle number is:

n(t) = �ns1 . f1(t)︸ ︷︷ ︸
cycle 1

+ �ns2 . f2(t)︸ ︷︷ ︸
cycle 2

(10)
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where �ns1 and �ns2 are the initial to CS transition nanopar-
ticle numbers, and f1(t) and f2(t) are the exponential series
functions, for the first and second cycles, respectively. In
Eq. (10), the nanoparticle number transitions �ns1 and �ns2

are found by spatially integrating the CS Boltzmann concen-
tration and the exponential series are bound between zero
and unity, i.e. 0 ≤ f l(t) ≤ 1, as before, l is the cycle index,
l = 1, 2. For the first cycle:

f1(t) =
[
1 − kj

1 f c
1 (t)

]
.S1(t)︸ ︷︷ ︸

DEP on: collection

+
[
1 − kj

1 f c
1 ( j T + �1T1)

]
f r
1 (t).S′

1(t)︸ ︷︷ ︸
DEP off : release

(11)

and for the second cycle:

f2(t) =
[
1 − kj

2 f c
2 (t)

]
.S2(t)︸ ︷︷ ︸

DEP on: collection

+
[
1 − k j

2 f c
2 ( j T + T1 + �2T2)

]
f r
2 (t).S′

2(t)︸ ︷︷ ︸
DEP off : release

(12)

In Eq. (11), S′
1 is the switch function complement for the

first cycle, i.e. unity “on” for { j T + �1T1 < t < j T + T1} and
zero elsewhere, and the same applies for S′

2 in Eq. (12). The su-
perscripts “c” and “r” for the functions and parameters relate
to the collection and release phases of each of the two cycles,

which are indexed by subscripts, f c
1 (t) = ∑ic

i=1 nc1
i exp[−(t −

j T )/
c1
i ], f r

1 (t) = ∑ir

i=1 nr1
i exp[−(t − ( j T + �1T1))/
r1

i ],

f c
2 (t) = ∑ic

i=1 nc2
i exp[−(t − j T − T1)/
c2

i ], and f r
2 (t) =∑ir

i=1 nr2
i exp[−(t − ( j T + T1 + �2T2))/
r2

i ]. In addition,
ncl

i and nrl
i are the nanoparticle number coefficients, 


cl
i

and 

rl
i are the collection and release time constants,∑ic

s = 1 ncl
i = 1 = ∑ir

i = 1 nrl
i and the maximum number of

components in each of the sums, i c and i r, for convenience,
is the same in both cycles. The influence of the previous
cycle, in terms of nanoparticle concentrations within the
capture volume, on the jth dual-cycle is accomplished
using the collection initial condition (IC) coefficients, kj

1

and kj
2. Regarding each of the two cycles, Eqs. (11) and

(12), the product of the number coefficient and the IC for
the jth cycle, kj

ln
c
i , arises from the particular solution to

the MDE in the form of an eigenmode expansion [19];
the details are available as Supporting Information. The
linear time invariant lumped parameter approximation,
within each dual cycle, is reasonable for small DEP capture
volumes, i.e. spatial regions where nanoparticles collect,
and for pDEP, close to the electrode edges. Other exam-
ples of 1D linear MDE solutions have entailed ordinary
and modified Bessel functions of the first and second
kinds [21, 22].

The model given by Eqs. (10)–(12) also includes the sit-
uations where high concentrations of nanoparticles interact
and their presence also distorts the electric field, and hence,

the DEP force. The MDE (Eq. (8)) prescribing nanoparticle
motion will be nonlinear; nonetheless, simulations and ex-
periments show that the collection and release phases can be
considered separate solutions. Equations (10)–(12) remain
valid except that the weight and time coefficients have dif-
ferent values compared to those for a linear MDE. Impor-
tantly, the DEP force may also be influenced by other elec-
trohydrodynamic effects, such as, electro-osmosis so that the
net deterministic driving motion is the effective DEP force.
This means that instead of attempting to evaluate, for ex-
ample, the DEP force by assigning values to all parameters
in Eq. (6), the dynamics of the nanoparticle ensemble can
be characterized by fitting nc

i , nr
i and 
c

i , 
r
i to experimen-

tal measurements and subsequently estimating the effective
force.

2.1.4 Dependence on dual-cycle period example

Nanoparticle excursions to and from the electrode edges de-
pend on the strength of the DEP force that dominates and
drives nanoparticles toward the electrode edges (thus achiev-
ing nmax), the thermal fluctuations responsible for nanopar-
ticles moving away from the electrode edges when the pDEP
force is switched off (achieving nmin); and the duration time
for both of these processes. The dual-cyclic DEP collection and
release of nanoparticles within a designated volume leads to
an important parameter: the difference between the maxi-
mum and minimum of the number of particle for each of
the two cycles. The nanoparticle number fluctuation, or am-
plitude, evaluated over the duration of the jth dual-cycle is
defined:

�nl = nl(t)max − nl(t)min, l = 1, 2 (13)

where subscripted terms “max” and “min” denote maximum
and minimum particle number.

An example of dual-cycle DEP collection and release
using the model (10)–(12) is shown in Fig. 4. For conve-
nience, the nanoparticle initial to CS transition numbers in
Eq. (10) are normalized, �ns1 = 1.0 and �ns2 = 0.3 and the
series has a maximum of two terms, ic = 2 = i r. Relating
to Eqs. (11) and (12), the nanoparticle number weightings
used in this example are nc1

1 = 4
5 = nc2

1 , nc1
2 = 1

5 = nc2
2 , nr1

1 =
3
4 = nr2

1 , nr1
2 = 1

4 = nr2
2 and the time constants are 


c1
1 =

3 = 

c2
1 , 


c1
2 = 6 = 


c2
2 , 


r1
1 = 2 = 


r2
1 , 


r1
2 = 7 = 


r2
2 (s). This

means that the shape of the second cycle is the same as
the first and the only difference is the scale (0.3). The val-
ues of the weightings and time constants are based on the
dynamics of submicron-sized nanoparticles, including previ-
ously reported ultralow AM DEP collection and release mea-
surements [3,19,21,22]. Both duty cycles ratios are the same,
�1 = 0.5 = �2. If the period of DEP switched on is sufficiently
long, e.g. T = 80 s for the first case f 1 : fm = 0.0125 Hz
where the superscript denotes the case, the nanoparticles
in Fig. 4 in the first cycle are predicted initially to collect
at a constant rate, ṅ1

1 (where subscript denotes cycle), that
later approaches a quasi-CS maximum for this phase of the
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Figure 4. Dual-cycle DEP col-
lection and release simulation
for three modulation frequen-
cies as listed. Normalized par-
ticle number n(t) plot for � =
0.5 (50% duty cycle), values as
stated on plot (T = 1/fm) or in
the text.

cycle. Likewise, switching off the DEP force for the release
phase, the system approaches quasi-release (phase) steady
state minimum, as shown. The same applies for the sec-
ond cycle except the collection rate ṅ1

2 maximum is 0.3-fold
smaller.

On the other hand, if the period of DEP switched on
is sufficiently short, e.g. for the second case f 2 : fm =
0.05 Hz or the third case f 3 : fm = 0.50 Hz, as shown,
quasi-SS within either of the dual cycles is not reached
since there is insufficient time for the particles to fully
collect before they are released. As illustrated in Fig. 4,
cases 2 and 3, an important distinction is made between
transient behavior and periodic or dual-cyclic steady state
(cSS), behavior. In the former case, the nanoparticle num-
ber n at the beginning of jth cycle is less than at the
end, or beginning of the next cycle, n[ j T ] < n[( j + 1)T ], as
illustrated.

In cSS, the nanoparticle number of the beginning of
the jth first cycle and at the end of the second remains
the same, n[ j T ] = n[( j + 1)T ]. An alternative to “cSS” is
“cyclostationary”—a term that describes a system with statis-
tics that remain unchanged at periodic time points [23, 24].
This periodic equilibrium state implies that the IC for each cy-
cle comprising the dual-cycle remains constant, kj+1

l = kj
l =

ks
l where the superscript “s” denotes cSS and expressions

for the IC, amplitude and time average can be derived. The
cSS amplitudes for both cycles for case 2 in Fig. 4 show
the amplitude of the first cycle is greater than the second,
�n2

1 > �n2
2 and similarly the collection rates, ṅ2

1 > ṅ2
2,

as expected. The amplitudes for case 3 that is ×10 higher

modulation frequency are smaller than case 2, and as the
modulation frequency increases (T decreases) further, the
dual-cycle amplitudes in Eq. (13) become vanishingly small,
�nl|T → 0 → 0. This trend is confirmed by laboratory obser-
vations of nanoparticle movement and measurements using
fluorescence microscopy. For modulation frequencies above
the order of 1 Hz, and for similar duty cycle ratio values, the
time averages (over T) tends to become comparable, or larger
than, the amplitudes. The pDEP collection and release pro-
cesses, for each of the two cycles, become indistinguishable.
Very little DEP motion or modulation, e.g. blurred fluores-
cence, is observed and a partial unmodulated, or constant
(0 Hz), nanoparticle response appears microscopically at the
electrode edges.

The transition from a prominent DEP amplitude re-
sponse at ultralow fm compared with the response being neg-
ligible at higher modulation frequencies suggests DEP “AM
bandwidths.” They can be defined as the range of modulation
frequencies, fm, such that at cSS:

�nl( fmB) ≤ � �nl( fmUL), l = 1, 2 (14)

where l is the cycle index, � is an arbitrary cut-off typically,
� ≈ 0.1, and subscripts “mB” and “mUL” denote modula-
tion bandwidth and ultralow modulation that approaches a
constant (0 Hz), in the limit fm → 0.

In a typical DEP experiment, the cyclic DEP response
of fluorescent nanoparticles yields a corresponding opti-
cal signal that is quantified using a microscope and video
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Figure 5. (A) Plots of the real part of CM as a function of frequency, f R
CM( fi), three-line piecewise approximation, and noisy f R

CM( fi) arising
from noise added to the nanoparticle conductivity. The product of the noisy f R

CM and CM scaling factor, m, simulates the collection rate
ratio samples (“*”) that are distributed over the frequencies as nine groups of four samples. Estimation starts with initial values that are
obtained by line of best fit at frequencies of a few megahertz where the collection ratios rapidly change. The two initial estimates, m̂0and
�̂0, generate m̂0 f R

CM( fi, �̂0) profile that is further refined using the NR iterative method, that yields estimates, m̂k+1 and �̂k+1 that, in turn,
leads to an improved final fit, m̂k f R

CM( fi, �̂k) as shown. (B) Histograms of the estimated nanoparticle conductivity (S/m) from Monte-Carlo
simulation, 200 trials. Collection rates show improved estimation with narrower spread or variance compared to the crossover method.

camera. A measurable parameter is the difference between
the maximum and minimum, or fluorescence amplitude for
each of the two cycles at cSS:

�Fl =
{

fnl(�nl), � nl large − nonlinear
kf �nl + kfc, �nl small − linear

}
, l = 1, 2 (15)

In Eq. (15), for weak DEP yielding small collections
of nanospheres, the fluorescence is proportional to num-
ber where kf is the fluorescence gradient coefficient and kfc

is the intercept constant. Eventually, further collections of
nanospheres do not yield proportional increases in fluores-
cence and saturation occurs. The relation can be expressed
by fnl that is a nonlinear, soft limit function. The depen-
dence on parameters at cSS is understood to be implicit,
�Fl ≡ �F [�l, Tl( fm)]. A linear or quasilinear relationship be-
tween fluorescence and nanoparticle number enables values
for the two bandwidths to be estimated experimentally. The
maximum modulation frequency is bound by the AM band-
widths. For example in [19], a single-cycle bandwidth was
measured to be 1 Hz for 0.5 �m diameter nanospheres
and this value also concurred with predictions of 1D
time-dependent Fourier–Bessel series models [21, 22].
Clearly, there is an optimum set of modulation frequencies
suitable for differential DEP collection rates suggesting that,
in the case where the duty cycle ratios and cycle periods are
similar to each other, 0.0125 ≤ fm ≤ 0.05 Hz is a suitable
range.

2.2 Determining dielectric properties via collection

rates

Central to determining the nanoparticle dielectric properties
from the DEP collection rates is the frequency-dependent real
part of the CM function. This section describes properties of
the CM function and methods to fit the function to collec-
tion rate ratios. A comparison of two methods, collection rate
ratios and crossover, is made in terms of nanoparticle con-
ductivity estimates.

2.2.1 Properties of the CM function

The DEP collection rates are used to determine the dielectric
properties of the nanoparticles and typically for spheroidal
particles, by the real part of the CM factor that describes the
frequency dependent polarizability:

f R
CM = Re{ fCM(�)} = Re

{
�∗

p − �∗
m

�∗
p + 2�∗

m

}

= (�p − �m)(�p + 2�m) + �2(�p − �m) (�p + 2�m)

(�p + 2�m) 2 + �2(�p + 2�m) 2

(16)

where �∗
p = �p − j �p/� is the complex permittivity of the

particle, �∗
m = �m − j �m/� is the complex permittivity of the

medium, and other symbols have been previously defined.
An example of f R

CM as a function of frequency is sketched
in Fig. 5A using typical values for medium conductivity,
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�m = 1.5mS/m, and medium and nanoparticle permittivity,
�m = 78.4�0 �p = 2.55�0 where �o = 8.8542 × 10−12 F/m is
the permittivity of free space. These values are typical for an
aqueous suspension of latex nanospheres at room tempera-
ture. The nanoparticle conductivity is evaluated using a stan-
dard expression involving bulk conductivity, �b, nanoparticle
radius, r, and the surface conductance, Ks, �p = �b + 2Ks/r .
Hence, using �b = 0, r = 100 nm, Ks = 1.0 nS results in
the nanoparticle conductivity being, �p = 20 mS/m. The fre-
quency of the crossover, fx, from pDEP to nDEP occurs when
the numerator of Eq. (16) is zero:

fx = 1

2�

√
(�p − �m)(�p + 2�m)

(�m − �p) (�p + 2�m)
(17)

In Fig. 5A the crossover frequency is seen to be, fx
∼=

3.4MHz. In principle, a value of the nanoparticle conductiv-
ity can be determined from a value for f R

CM =  by inverting
Eq. (16) and solving the quadratic relation (see Supporting
Information). Typically, the positive root yields a unique so-
lution. At the crossover, applying  = 0, (Eq. S2.13 in Sup-
porting Information) gives the solution [3]:

�p = −�m + √
9 �2

m − 4 �2
x (�p − �m)(�p + 2�m)

2
(18)

The upper and lower frequency limits of the real
part of CM are labeled in Fig. 5A and are approximately
constant:

f R
CM

∣∣
� → 0

= �p − �m

�p + 2�m
(19)

f R
C M

∣∣
� → ∞ = �p − �m

�p + 2�m
(20)

In Fig. 5A, for example, the lower and upper frequency
limits are, respectively, f R

CM

∣∣
� → 0

= 0.80 and f R
CM

∣∣
� → ∞ =

–0.48. The gradient at the crossover is given by the partial
derivative of Eq. (16) with respect to the log-frequency:

f R
CM

∣∣lin

f = fx
= 2 ln(10)

dr
[log( fx) − log( f )] (21)

where the sum of the dielectric ratios is given by:

dr = (�p + 2�m)

(�p − �m)
+ (2�m + �p)

(�m − �p)
(22)

and “lin” denotes linear relation. The negative gradient at the
crossover is also shown in Fig. 5A.

Thus, f R
CM can be approximated as three lines using Eqs.

(19)–(22): two horizontal lines subtending from each of the
lower and upper limits, as shown in Fig. 5A, and the “di-
agonal” tangential to f R

CM at the crossover frequency, and is
thus, piecewise linear. The simple piecewise linear approx-
imation, based on Eqs. (19)–(22), is useful for determining
the dielectric properties even if it is not possible to measure
the crossover frequency experimentally.

2.2.2 Fitting the CM function to collection rate data

The proportional relationship between the real part of CM,
that is bounded, −1/2 ≤ f R

CM ≤ 1 and the unbounded col-
lection rate ratio, 	, expressed by Eq. (9), suggests that they
should be related by a scaling factor, m, and constant c such
that:

	 = m . f R
CM + c (23)

A series of collection rate ratio values, from Monte-Carlo
simulations as discussed in the following sections, is shown
in Fig. 5A showing the scaling factor lies between one and
two. A feature of Eq. (9), verified experimentally, is that if
f R
CM = 0 at crossover then 	 = 0 ⇒ c = 0. The fitting pro-

cess, therefore, entails estimating from collection ratio data
two parameters: (i) nanoparticle conductivity, �p, and (ii) scal-
ing factor, m.

The fitting process is of two steps: (i) initiation–where
an initial value for �p, and m are estimated from collection
rate data, followed by (ii) refinement–where initial estimates
of �p, and m, are refined by fitting the nonlinear function,
f R
CM( f ) using Newton’s method or a numerical method, e.g.

Nelder–Mead.

Step 1: This step finds initial, rough estimates for equation
parameters of the line of best-fit shown in Fig. 5A that relates
the initial collection rate ratio, 	, with log-frequency, l:

	lin = � + � l (24)

where the abscissa, �, and gradient, �, are given by standard
textbook formulae, e.g. [25] for least sum of squared error
(SSE) fit (see Supporting Information also). The collection
rate ratio is set, for convenience, so that the baseline or “con-
trol” data points near 1 MHz, are about unity, 	c = 1 where
“c” denotes “control.” This means that an initial estimate for
the scaling factor is given by:

m̂0 = 1

/
1

nc

ic−1+nc∑
i=ic

	i (25)

where the subscript “0” denotes initial estimate and nc is the
number of data points at the control frequency. The initial
estimate for �p can be found from Eq. (24) by using the esti-
mate of the crossover frequency line of best-fit, f̂x = 10−�/�,
or if it is not measured, extrapolation of the line. An alterna-
tive �̂p can be found by equating the log-frequency gradient
of f R

CM( f ) defined in Eqs. (21) and (22) with the gradient of
the of the collection rate ratios line of best-fit Eq. (24):

�̂0 = �m
3�p − (�p − �m)2 ln 10 m̂0/�

3�m − (�p − �m)2 ln 10 m̂0/�
(26)

where it is understood that the subscript “p” has been replaced
by “0” to signify the initial estimate. In the example shown
in Fig. 5A, the parameter values for the line of best-fit, � =
13.6, � = −2.1 and m̂0 = 1.4 lead to f̂x = 3.25 MHz, �̂0 =
19 mS/m and using the gradient method, �̂

g
0 = 5.8 mS/m.

The result of using the initial estimates m̂0 = 1.45 and �̂0
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= 19 mS/m in determining the scaled real part of the CM
function, m̂0Re{ fCM( f, �̂0)} is shown in Fig. 5A. Clearly, it is
close to the collection ratios but needs further refinement.

Step 2: The initial estimate of nanoparticle conductivity �̂0 is
refined by updating using the Newton–Raphson (NR) proce-
dure, i.e. �̂0 is updated to �̂1 by the algorithm:

�k+1 = �k − ∂�k SSE

∂�k, �k SSE
(27)

where it is understood for the first iteration (in this example)
k = 0 and �k ≡ �̂p for the kth iteration, k = 0, 1, 2, 3 , . . ..
In Eq. (27), the first and second partial derivatives of the SSE
are evaluated using the expression for f R

CM( f ) (see Support-
ing Information for further details). The revised conductivity,
�̂k + 1, then enables estimate for the scaling factor, m̂k (derived
in Supporting Information), to be updated to m̂k+1:

m̂k+1 =
sn∑

i=1

	i f R
CM(li, �k+1)

/
sn∑

i=1

[
f R
CM(li, �k+1)

]2
(28)

The iteration is repeated until the difference is suffi-
ciently small, e.g. �k+1 − �k < 0.01 mS/m. For the collec-
tion ratios shown in Fig. 5A, the refined fit, m̂kRe{ fCM( f, �̂k)},
is clearly a much better fit to the collection ratio values than
the initial fit.

2.2.3 Comparison of methods for nanoparticle

conductivity estimation

In this section, estimation of nanoparticle conductivity using
the crossover is compared with collection rate method. The
comparison consists following two stages: (i) data simulation,
and (ii) parameter estimation.

Stage 1—Simulation: The surface conductance for both meth-
ods is partly randomized by adding noise so that the ith sam-
ple of the nanoparticle conductivity is simulated:

�i = �p︸︷︷︸
true

+ noise = �b + 2

r
Ks︸ ︷︷ ︸

true

+2

r
K i︸︷︷︸

noise

,

K i = Ks�N(0, 1) (29)

In the simulation, the dielectric parameter values in Eq.
(29) are the same as before, and for clarity the true value of the
nanoparticle conductivity is labeled. The additive noise factor
contribution is set at 15%, � = 0.15 and the noise,N(0, 1), is a
zero mean, unit variance random number. Since nanoparticle
conductivity for the ith data point, �i is “noisy,” the real part
of the CM function, Re{ fCM( f i, �i)} becomes noisy, as shown
in Fig. 5A. The collection rate ratio, 	i, is simulated as:

	i = m f R
CM(li), f R

CM(li) ≡ f R
CM(li, �i, �m, �p, �m︸ ︷︷ ︸

fixed

) (30)

where, as before, li = log10 f i and i = 1, 2, 3, . . . . , sn and
the total number of samples, sn = 36. The sample values are

uniformly spaced across the log-frequency domain, as shown
in Fig. 5A, as nf = 9 frequency points each comprising np

= 4 samples. The collection rate scaling factor, m, is set to
have a random effect and a sensible value, for illustration in
Fig. 5A, is found by taking the reciprocal of the root of mean
of sum of squares:

m =
(

1

sn

sn∑
s=1

f R
CM(li)

2

)−1/2

(31)

where the dependence of the fixed and randomized dielectric
parameters is implicit, as in Eq. (30), so that for generating
the example collection rate data shown in Fig. 5A, m = 1.65.

Stage 2—Estimation: Estimation of the nanoparticle conduc-
tivity for the collection ratios is achieved by the two-step es-
timation process described in the previous section with re-
lations (24)–(28). The refined estimate from the NR yielded,
for the example in Fig. 5A, �̂

	
p = �k = 18.1 mS/m where

collection rate ratio is denoted by superscript “	” and the
scaling factor was m̂k = 1.7. Nanoparticle conductivity val-
ues are estimated from measured crossover frequencies, fx,
typically by fitting Eq. (17) for a range of medium conductiv-
ities and reading �̂p, which is the equivalent of solving with
the quadratic relation (18). In this comparison, for brevity,
only one medium conductivity is used. Since Eq. (17) is
the inverse of Eq. (18) in this context, it follows that the
least SSE estimate of nanoparticle conductivity is directly
given by:

�̂x
p = 1/4

4∑
i=1

�i (32)

where the superscript “x” means estimated from “crossover”
data.

Monte-Carlo repetition of the two-stage simulation and
estimation process, 200 times, enables statistical evaluation
of the estimation performance. Histograms of the estimates
are shown in Fig. 5B and it is clear the spread of the esti-
mates for using the crossover method is much wider than
for the collection rate method. Summary statistics show that
the mean of the estimates is comparable to each other and to
the true value, �(�̂x

p) = �p = �(�̂	
p). On the other hand, the

variance of the estimates from the crossover method is nearly
fourfold more than the variance of the estimates from the
collection rate method, Var(�̂x

p)/Var(�̂	
p) = 3.8. Since the col-

lection method has ninefold more samples than the crossover
method, a ninefold ratio would be expected from central limit
theorem [25]. A reduced ratio is not surprising given that
the real part of the CM is nonlinear and that the high fre-
quency limit, shown in Eq. (18), is dominated by nanoparticle
and medium permittivity rather conductivity where noise has
been introduced. The Monte-Carlo simulation data strongly
supports the argument that collection rate measurements
give a more robust and accurate measurement of the dielectric
properties of the nanoparticles compared to methods which
rely solely on an individual measurement of the zero force
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point at a number of medium conductivities (i.e. crossover
measurements).

2.3 Experimental

The dual-cycle DEP initial collection rate ratio method for
estimating nanoparticle conductivity was demonstrated ex-
perimentally using fluorescent latex nanospheres.

A signal generator (TG4001; ThurlbyThandar Instru-
ments, Fort Worth, TX, USA) provided 2 V peak-to-peak,
variable duty cycle, square wave enveloped, sinusoidal signals
over a frequency range of 1–10 MHz to the microelectrodes.
Pulse duration, amplitude, and applied frequencies were
controlled by custom software written in LabVIEWTM 2011
(National Instruments, Austin, TX, USA).

Castellated geometry interdigitated microelectrodes with
critical feature sizes of 5 �m were fabricated using standard
photolithography and lift-off techniques (Fig. 1 shows an
image of a microelectrode array). A 100 nm thick layer of
platinum was lithographically patterned on 500 �m thick
Pyrex wafers. Individual devices were cut from the wafer.
The devices were mounted on Veroboard and wire bonded
to the copper strips on the Veroboard allowing robust elec-
trical connection to the signal generator. A 7 mm diameter
glass ring was glued on top of the devices to form a sample
chamber of defined height over the electrodes. This was then
sealed with a cover-slip to prevent sample evaporation.

Ultrapure water having a resistance of 18.2 M�cm
(Purelab ultra, Elga process water, Buckinghamshire, UK)
was used to prepare KCl (Sigma-Aldrich R©, St. Louis,
MO, USA) buffer solutions with conductivity of 2.0
× 10−4 S/m (Mettler Toledo, InLab R© 730, Columbus,
OH, USA) at room temperature. Carboxylate-modified
200 nm diameter latex spheres (InvitrogenTM Molecu-
lar Probes R©, Eugene, OR, USA) with yellow-green flu-
orescence (505/515 nm wavelength) were washed three
times in KCl buffer (2.0 × 10−4 S/m) and sus-
pended in the same KCl buffer at a concentration of
4.8 × 1010 spheres/mL (diluted from 2% w/v stock solution).
The concentration and monodispersity of the nanospheres
was verified using nanoparticle-tracking analysis (NanoSight
LM10, Wiltshire, UK).

The motion of the nanospheres was observed using an
inverted microscope (Nikon Eclipse TS 100) with LED epi-
fluorescent illumination (pE-2, CoolLED, UK) imaged with
×40 objective (Nikon S Plan Fluor 40 × /0.60) and recorded
with a digital camera (Thorlabs USB 2.0, Newton, NJ, USA)
at 10 frames/s. Videos were analyzed using bespoke software
written in MatlabTM 7.14 (Mathworks, Natick, MA, USA).
Nanosphere collections at the high-field gradient regions of
the castellated electrodes (i.e. areas where particles collect
under the influence of pDEP) were quantified by measuring
the fluorescence intensity at the electrode tips. By restricting
the image analysis to only the edge regions of the castel-
lated electrodes and performing control and probe collection
rate measurements, fluctuations in the background intensity

were normalized (for further details of the image analysis ap-
proach, see [13, 19]). Time-dependent collection profiles for
each of the control and probe cycles were quantified by linear
fitting to thirteen points; this proved sufficiently robust from
noise and gave consistent measures of DEP strength. Linear
fitting is typically performed with initial collection rates as an
approximation to an exponential series for sufficiently short
time intervals [4, 9–17]. Collection data was also fitted to sin-
gle and double exponentials and there was little quantifiable
advantage using this more complicated method.

3 Results

In each set of collection experiments, approximately 100 �L
aliquots of nanosphere suspension was pipetted onto the de-
vice and sealed with a cover slip. The dual frequency col-
lection rates comprised of a control collection pulse set at,
f1 = 0.7 MHz and a probe pulse that ranged in carrier fre-
quency from f2 = 1.0 to 4.0 MHz. The dual-cycle consisted
of equal periods, T1 = T2 = 17 s and duty cycle ratio val-
ues, �1 = �2 = 0.412 (7 s on, 10 s off), so fm = 1/(T1 + T2) =
0.0294 Hz. The ground-to-peak voltage, during the DEP on
phase, was Ac = 1.0 V (i.e. 2 V peak-to-peak) for all exper-
iments. Each experiment recorded approximately five dual
cycles in 170 s. Collections for the first dual cycle were tran-
sient, whereas the four remaining dual cycles exhibited cSS
characteristics described in Sections 2.1.3 and 2.1.4. Thus, the
choice of fm = 0.03 Hz achieved the following two key con-
ditions: (i) cSS and (ii) an adequate fluorescence amplitude,
�F , (i.e. nanoparticle fluctuation) suitable for quantification
of initial collection rates. The initial collection rate ratio of
the dual-cycle control and probe, for each experiment, was
evaluated according to Eq. (9) and a representative data set,
with four replicates for each of the seven applied frequen-
cies, is shown in Fig. 6. Initial estimates of the nanoparticle
conductivity and CM scaling factor, �̂0 and m̂0, were esti-
mated according to Eqs. (24), (26), and (31) using the line of
best-fit for the applied frequencies, 1–4 MHz (28 data val-
ues) as shown. Using the initial estimate for the nanoparticle
conductivity, the real part of the CM, f R

CM( f i, �̂0) is plotted
as shown along with the scaled version, m̂0 f R

CM( f i, �̂0). The
refinement used the NR algorithm, Eqs. (27) and (28) yield-
ing final estimates for the scaling factor, m̂k = 1.46 and for
the nanoparticle conductivity, �̂p = 26.1 mS/m. This value
is to within 8% of the expected value �p = 24 mS/m [12].
Assuming, as before, �b = 0, r = 100 nm, then the sur-
face conductance is estimated, K̂s = 1.3 nS. The estimated
crossover frequency, from Eq. (17), is f̂x = 4.5 MHz, close to
the expected value for low conductivity medium.

4 Discussion

The use of dual-cycle dielectrophoretic collection rate ratios
has been demonstrated as a method for rapidly estimating
the dielectric properties of nanoparticles in fluid suspension.
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Figure 6. Representative initial collection rate ratio data (*) from
dual-cycle DEP experiments. The line of best fit for frequencies
in the range of 1–4 MHz, as shown was used to generate ini-
tial estimates for the nanoparticle conductivity and CM scaling
factor, �̂0 and m̂0. The real part of the CM, f R

CM( fi, �̂0) is plotted
as shown along with the scaled version, m̂0s f R

CM( fi, �̂0). Further
refinement of the estimates used the NR algorithm yielding the
final m̂ f R

CM( fi, �̂p) curve, as plotted, with estimates for the CM
scaling factor, m̂k = 1.46 and for the nanoparticle conductivity,
�̂p = 26.1 mS/m.

The dual-cycle method uses a constant control frequency
and a probe signal with a frequency that can be selectively
switched, or hopped, throughout the range of interest. The
application of a control pDEP collection cycle, preceding the
probe cycle acts to mitigate against experimental variations
that arise from fluctuations in localized nanoparticle con-
centrations. Monte-Carlo simulations demonstrate that the
“more independent samples, better estimates” concept ap-
plies, thus motivating the use of collection rates compared
with conventional DEP crossover measurements. DEP col-
lection experiments demonstrated that 15 s on and 10 s off
duration for each of the control and probe cycles with 1 V
electrical amplitude yielded accurate collection rate data for
200 nm diameter nanospheres at 20 mHz modulation fre-
quency and 60% duty cycle. These values are semioptimized,
full optimization of parameter settings would need further
investigation. The dual-cycle can be easily extended to multi-
ple cycles, and again needing optimization and cost/benefit
analysis. We have obtained similar data using 500 nm diam-
eter nanospheres demonstrating the general applicability of
the method.

An important advantage of using collection rates, com-
pared with the crossover method, is the absence of a require-
ment for nDEP. Our focus in this paper has been the intro-
duction of pDEP the dual-cycle collection ratio method and
demonstration of experimental proof-of-principle. We have
not explored the use of an nDEP control and probe, or indeed
alternative estimation of dielectric parameters using nDEP,
however, these avenues would also be exciting to explore for
further application in measurement science.

The real part of the CM function was initially fitted based
on a piecewise linear approximation (on the log-frequency
scale) and application of least squares error to bivariate pa-
rameters, i.e. scaling and nanoparticle permittivity. There is
no reason why a more complicated real part of the CM cannot
be approximated by a piecewise linear model, e.g. more com-
plex structures, such as, cells, that exhibit multiple crossovers,
or, extending bivariate fitting to multivariate parameter fit-
ting. The crossover frequency is a key feature of interest in
this work, but for other investigations, the point of inflection
of the real part of the CM may be of greater importance (e.g.
[16]) where linear fits can be made to provide initial parameter
estimates.

The dual-cycle model introduced a simple and insightful
mathematical framework with characteristics based on typ-
ical values for the weights and time constants that explain
experimental observations, e.g. the presence of a transient
response followed by cSS. The model assumes linear time
invariance and correctly predicts a decrease in nanoparticle
number fluctuation or amplitude with increasing modula-
tion frequency expected of active ultra-low pass filters, and a
modulation bandwidth of up to a few Hertz. Nonetheless, the
modeling process could be extended further by finding em-
pirical estimates for the weights and time constants from
experimental data. Indeed, perhaps the most exciting ad-
vance in terms of estimating parameters would be at lower
frequencies where other electrohydrodynamic effects begin
to become significant, e.g. low-frequency electroosmosis, and
corresponding parameters of these effects included in the es-
timation process [26]. In principle, there is no limitation on
the number of collection and release cycles other than the
practical limitation due to data storage, sample evaporation,
etc., none of which are near being limiting factors.

In conclusion, a new dual-cycle DEP fluorescence micro-
spectroscopic system and mathematical framework has been
developed for quantifying the dielectric properties of nanopar-
ticles. The system entails two cycles each involving a DEP
nanoparticle collection and release phase: the first cycle is a
control DEP nanoparticle collection with fixed frequency, fol-
lowed by release, and the collection rate in the second cycle
acts as a probe since the frequency can be selectively switched.
By taking the ratio of the initial collection rate of the probe
with respect to the control, experimental variation between
DEP collection rate experiments can be reduced. The ratios
are shown to exhibit good experimental repeatability and en-
ables probing over a range of applied frequencies. Bivariate
fitting of the real part of the CM factor to the collection rate
ratio values using least squares yields estimates for the scal-
ing factor and nanoparticle conductivity. The semiautomated
dual-cycle DEP system effectively allows larger sampling of
nanoparticles over a range of frequencies, compared with
the conventional crossover method. The benefits of the dual-
cycle method are demonstrated with a Monte-Carlo simula-
tion, which shows a narrower spread of the estimates of the
nanoparticle dielectric properties. The technique was demon-
strated experimentally using 200 nm latex nanospheres and
shown to be in good agreement with the expected dielectric

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com
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properties of these particles. The simplicity and speed of the
current method makes it ideal as a method for the rapid char-
acterization of a range of biological particles (e.g. viruses,
bacteria, DNA and RNA).
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