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Abstract

In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have
demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of
biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical
temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity
genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten
fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals,
petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in
experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for
a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the
sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a
continuous system using the Glass model of differential equations, that can be considered as a first approximation of
kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics
recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the
Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the
Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous
temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis,
providing predictions on the population dynamics of cells with different genetic configurations during development.
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Introduction

‘‘All [the] epistemological value of the theory of probability is based on this:

That large scale random phenomena in their collective action create strict, non

random regularity’’. (From: B.V. Gnedenko and A.N. Kolmogorov,

Limit Distributions for Sums of Independent Random Variables,

Reading, Ma: Addison-Wesley, 1954).

The development of multicellular organisms consists of cell

differentiation and spatiotemporal patterning. Since these pro-

cesses arise from complex interactions among genetic and non-

genetic elements, mathematical and computational models are

useful to study the concerted action of these elements. Gene

regulatory network (GRN) models, which are grounded in

experimental data, have been able to recover fixed profiles of

gene activation, that mimic those characterizing different cell types

in both plants and animals (e.g., [1–3]). Such profiles correspond

to the attractors of these networks, and have been interpreted as

cell fates [4–7].

Some studies have explored cell-fate decisions by modeling

transitions among attractors with stochastic gene regulatory

networks (e.g. [8,9]); however, models grounded in experimental

data that are able to recover patterns of cell-fate attainment for a

particular living system are only now starting to appear. Herein,

we attempted to construct an integrative model driven by noise

that explores the patterns of temporal cell-fate attainment in the

experimental plant, Arabidopsis thaliana (L.) Heynh.

In plants, morphogenesis takes place during the entire life cycle

from groups of undifferentiated cells called meristems. Within

meristems, cell fate is mostly determined by position rather than by

cell lineage [10]. Flower meristems are formed from the flanks of
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the inflorescence meristem, which is found at the apex of an

Arabidopsis thaliana plant once it has reached a reproductive stage

(Figures 1A and B). Early in flower development, a floral meristem

is sequentially partitioned into four regions, from which the floral

organ primordia are formed and eventually give rise to sepals in

the outermost whorl, then to petals in the second whorl, stamens in

the third, and carpels in the fourth whorl in the central part of the

flower (Figures 1B and C). This spatio-temporal sequence is widely

conserved among the quarter of a million flowering plant species

[11]; however, the dynamic mechanisms underlying this robust

pattern are not yet understood.

In this study, we used a previously characterized Boolean GRN,

which converges to ten attractors (Figure 1), to explore the

dynamics of cell-fate decisions during the early stages of flower

development. The ten attractors correspond to the main cell types

observed during early flower development, namely, meristematic

Figure 1. Flower development and gene network underlying primordial floral organ cell-fate determination in Arabidopsis thaliana.
(A) The inflorescence meristem (IM in the Scanning Electron Micrography) is found at the apex of a reproductively mature plant. Within the IM, four
regions can be distinguished. Interestingly, the experimentally observed gene activation configurations of each one of these regions are mimicked by
the I1, I2, I3, and I4 attractors of the 15-gene GRN. Flower meristems arise in a helicoidal pattern from the flanks of the IM. The order in which floral
meristems appear is indicated with numbers (1, oldest; 5, youngest). (B) Young flower meristems can be subdivided into four regions, each one
containing the primordial cells that will eventually develop into the flower organs. In each floral meristem, the outermost region, which is first
determined, will give rise to the sepal (se) primordium, the next to petals (pe) and finally, the primordial corresponding to stamens (st) and carpels
(car) are determined in the center third and fourth whorls of the flower bud, respectively. (C) The mature flower of Arabidopsis thaliana. (D) I1, I2, I3,
and I4 regions of the IM correspond to four of the attractors of the 15-gene GRN model. The expressed genes for each attractor are represented as
gray circles, while the non-expressed genes correspond to white circles. (E) The other six attractors of the GRN model match gene expression profiles
characteristic of sepal, petal (p1 and p2), stamen (st1 and st2), and carpel primordial cells. Black circles represent a gene (UFO) that can be either
expressed or not expressed in the petal and stamen attractors, thus yielding two attractors for petal and stamen primordial cell-type. The gene
activation profiles of the attractors recovered for the 15-gene GRN are congruent with the combinatorial activities of A, B, and C-type genes predicted
by the ABC model of floral organ determination. See the Results section and [3,12] for details. (F) Gene regulatory network model underlying cell fate
determination in the IM and the flower meristem. A-genes (red), B-genes (yellow), and C-genes (blue) from the ABC model are indicated in the
network.
doi:10.1371/journal.pone.0003626.g001
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cells of the inflorescence, which is itself partitioned into four

regions (I1, I2, I3, and I4; Figures 1A and D), and sepal, petal (P1

and P2), stamen (S1 and S2), and carpel primordial cells within

flower meristems (Figures 1B and E) [3,12]. This network was

grounded in experimental data for 15 genes, wherein their

interactions were formalized as logical functions. Among the 15

genes, five are grouped into three classes (A-type, B-type, and C-

type), whose combinations are necessary for floral organ cell

specification [13]. A-type genes (AP1 and AP2) characterize sepal

identity, A-type together with B-type (AP3 and PI) petal identity,

B-type and C-type (AGAMOUS) stamen identity, and the C-type

gene (AG) alone for carpel primordia cell identity. The so-called

ABC model describes such combinatorial activities during floral

organ determination (Figures 1E and F) [13].

Different sets of initial conditions (basins of attraction) of the 15-

gene regulatory network converge to the ABC-gene combinations

necessary for floral organ determination [3,12] (Figures 1E and F);

however, this deterministic GRN does not enable studies of the

transitions among the attractors. In this study, we investigated the

temporal sequence with which attractors are visited in this GRN

when noise or random perturbations to the output of the updating

rules drive the system from one attractor to any other.

The obtained results demonstrate that noise alone is able to

drive transitions among attractors with temporal patterns that

mimic the sequence with which ABC-genes are activated (first A

genes, then B genes, and finally the C gene) during early flower

development [13]. These results are in line with the finding that

the GRN in question is a robust developmental module that is

widely conserved among flowering plant species [3]. Furthermore,

the temporal cell-fate pattern during early stages of flower

development seems to emerge from such a robust network in the

presence of noisy perturbations. The results presented herein

support the idea that random fluctuations in a system may be

important for physiological adaptation, plasticity, and cell

differentiation (examples in: [14–24]).

Results

A stochastic Boolean model of the GRN enables the
study of transitions among network attractors

We first present the results obtained from the Boolean model of

the GRN, and in the next section, we present the equivalent results

obtained from a continuous model. The Boolean approach focuses

on the state of genes’ expression rather than on the concentration

of their products. Thus, each gene in the network is represented by

a Boolean variable x that takes the value x = 1, if the corresponding

gene is expressed, and the value x = 0, if it is not expressed. The

state of expression of the genes in the entire network (herein,

configurations of the GRN, which correspond to ‘‘dynamic state of

the network’’ used by some authors), is then represented by a

vector with the set of Boolean variables {x1,x2,…,xN}, where xn is

the state of expression of the nth gene and N is the total number of

genes in the network. The state of expression of each gene changes

in time according to the dynamic equation:

xn tztð Þ~Fn xn1
tð Þ,xn2

tð Þ, . . . ,xnk
tð Þð Þ: ð1Þ

In the above equation, xn1
tð Þ,xn2

tð Þ, . . . ,xnk
tð Þf g are the

regulators of the gene xn, and Fn is a Boolean function, also called

a logical rule, which is constructed according to the combinatorial

action of the regulators of xn. The additional parameter t is a

measure of the relaxation time, namely, of the time that it takes for a

gene to change its state of expression under a change in the

expression of its regulators. In the Boolean model, it is common to

take t = 1. Each gene in the network has its own associated

Boolean function. This particular GRN includes 15 genes

(Figure 1) whose logical functions are grounded in experimental

biological data, as explained in [3]. The updated truth tables used

here are available in [12].

Note that the dynamics given by Eq. (1) is deterministic: For a

given set of Boolean functions, the configuration of the network at

time t completely determines the configuration of the network at

the next time step t+t. Also note that since the number of dynamic

states or configurations of the network is finite (V= 2N), under the

dynamics given in Eq. (1), the network will eventually come back

to a previously visited configuration, after which the network

enters into a periodic pattern of expression. Such a periodic

pattern is called an attractor, and all the initial configurations that

eventually fall into that attractor constitute its basin of attraction. The

deterministic version of the Boolean GRN modeled here

recovered 10 fixed point attractors, each with a period equal to

one, implying that the GRN remains in one of the 10 fixed 15-

gene configurations after it reaches one of them.

Therefore, in the deterministic model defined in Eq. (1), once the

system reaches an attractor, it remains there for all subsequent

iterations; however, if noise is introduced into the logical rules, there

is a finite probability for the system to ‘‘jump’’ from one basin of

attraction to another. Our central aim herein was to address

whether noisy perturbations of the logical rules in A. thaliana GRN

are sufficient to recover the observed sequences of transitions among

attractors (i.e., gene activity configurations characteristic of the

primordial cell types within the floral meristem) during the

development of this particular biological system.

The ten attractors of the 15-node GRN used here are as follows

(Figure 1): Four corresponding to the four regions of the

inflorescence meristem (I1, I2, I3, and I4), and six to the four

floral organ primordial cells within the flower meristem (S, P1, P2,

S1, S2, and C). The two attractors corresponding to petals (P1 and

P2) are identical except for the state of activation of the UFO gene,

and the same holds for the two stamen attractors (S1 and S2).

In the simulations of the stochastic versions of the GRN

presented in this work, we did not consider the inflorescence

attractors (I1–I4) because they are substantially separated from the

floral primordia attractors. The distance between the two sets of

attractors (inflorescence and floral) is clearly depicted by the way

they are grouped in a phenogram (Figure 2). This is a branching

diagram that groups entities according to their similarity (see

Methods). The inflorescence meristem and floral organ primordia

attractors cluster into two clearly distinct groups (Figure 2).

Indeed, in simulations that considered all of the attractors, we

found that, for a wide range of noise levels, the system never

leaped out of the inflorescence attractors. On the other hand,

when large noise magnitudes were considered, the system went

from the inflorescence attractors to the carpel or stamen attractors,

without visiting the sepal and petal attractors. Dismissing the I1–I4

attractors in the simulations allows for a better exploration of the

temporal pattern in which the attractors corresponding to each of

the four floral organ primordial cells are attained.

We used the GRN depicted in Figure 1 to examine which of the

attractors (S, P1, P2, S1, S2, and C) the system is most likely to

reach when it is initialized at a particular attractor and then is

driven by noise to a different one. In order to obtain the transition

probabilities among the different attractors (i.e., the entries of the

so-called Markov matrix, see the detailed description below), the

possible initial configurations of the system were exhaustively

explored. Given any possible configuration (defined by an array of

15 entries with zeros and ones representing the activation states of

Stochastic Flower Model
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the genes), the system was updated every iteration step according

to the deterministic logical rules [12] with an error probability g.

In other words, at each time step, each gene ‘‘disobeys’’ its

Boolean function with a probability g, such that the dynamic rule

in the presence of noise can be given by:

xn tztð Þ~
Fn tð Þ with prob: 1{g

1{Fn tð Þ with prob: g

�
ð2Þ

Note that the above equation reduces to Eq. (1) for g = 0. [In

order to simplify the notation, we have written just Fn(t) instead of

Fn xn1
tð Þ,xn2

tð Þ, . . . ,xnk
tð Þð Þ.] These perturbations are applied

independently and individually to each gene at each iteration.

If, after applying noise in one time step, the system remains in

the same attractor or the same basin of attraction that it was before

the noise was applied, one count is added to the main diagonal in

the entry of the Markov matrix corresponding to that basin of

attraction. If the configuration ended up in a different basin, a

count is added to the row corresponding to the recipient basin in

the Markov matrix (Table 1). This was repeated 10000 times for

each of the V= 2N possible initial conditions. The number of

realizations was fixed to a considerably larger number than that at

which the matrix entries become stable (data not shown). The

transition probabilities P(n|m) of the Markov matrix (Table 1) give

the probability that a network in attractor m jumps to attractor n in

the presence of noise, and are calculated by dividing the number of

counts in each matrix entry by the total number of configurations

that started in the corresponding matrix row.

Since we wanted to find the most probable sequence of

transitions among the attractors representing the various cell types,

we followed the changes in the probability of reaching a certain

attractor throughout time given that the system was initialized in a

particular attractor at time t = 0 (see Figure 3). In order to achieve

this, note that the Markov matrix (herein denoted as M) in Table 1

contains the conditional probabilities P(n|m) of reaching attractor n

at time t+t, given that the system is at attractor m at time t. In

order to obtain the temporal sequence in which attractors are most

likely reached, it is necessary to repeatedly multiply the Markov

matrix M by the vector~vv tð Þ, whose entries contain the fraction of

cells at each attractor in a given population at time t. In other

words, ~vv tð Þ~ v1 tð Þ,v2 tð Þ, . . . ,vm tð Þð Þ, where v1(t) is the fraction of

cells in the population whose configurations at time t are in the

basin of attraction of the first attractor, v2(t) is the fraction of cells at

time t in the basin of attraction of the second attractor, and so on.

Starting out from a population with a given distribution ~vv 0ð Þ of

cells among the attractors, the distribution of cells at time t is given

by:~vv tð Þ~~vv 0ð ÞM½ �t.
Since we did not consider the four inflorescence attractors, only

six attractors are involved in the dynamics. Therefore, M is a 666

matrix and~vv is a 6-dimensional vector. We also assumed that the

total number of cells in the population always remains constant;

hence, the sum of the six components of~vv must sum to 100 (there

are no ‘‘probability leaks’’ because transitions to the inflorescence

attractors are extremely rare for the error levels used).

It is worth noting that the different attractors have basins of

vastly different sizes. For instance, the basins of attraction of sepals

and petals are very small in comparison to those of stamens and

carpels. Therefore, the absolute probabilities for the attractors of

sepals and petals are inevitably smaller than those of stamens and

carpels; hence, in order to clearly observe the time at which each

attractor attains its maximum probability, we divided each

absolute probability value by the maximum of each attractor’s

curve, and plotted the relative probabilities for each attractor

probability distribution. Note that since each curve was normal-

ized in relation to its own maxima, the probabilities in these graphs

no longer add up to 1 at every moment.

It is important to notice that although the Markov matrix M
provides information about the probability of going from any

attractor m at time t to any attractor n at time t+t, this matrix alone

is not sufficient to derive the most probable sequence of transitions

among attractors. The latter is only evident when the matrix M is

recursively multiplied by the vector ~vv containing the fraction of

cells per attractor, ideally until the system reaches a steady

probability distribution.

Since sepal cells are the first to attain their fate in flower

development, we used an initial vector ~vv 0ð Þ with v1(0) = 100 and

vm(0) = 0 in all of the other entries (the first entry corresponds to the

sepal configuration). Thus, initially, all of the population of cells

Figure 2. Heat map of the similarity matrix among the ten
attractors of the GRN. A strict consensus phenogram was obtained
for the GRN attractors (vectors of zeros and ones) by using the
Manhattan distance similarity index (see Methods). This phenogram is
shown below the attractors that are ordered along the X and Y axes of
the heat map. Attractors that group together had the highest similarity
indexes between them (i.e. the lowest Manhattan distance). Color scale:
darker colors indicate more similar, while lighter ones indicate more
different attractors in the pairs compared.
doi:10.1371/journal.pone.0003626.g002

Table 1. Markov matrix.

sep pe1 pe2 st1 st2 car

sep 0.939395 0.001943 0.009571 0.000083 0.00049 0.048517

pe1 0.036925 0.904162 0.00925 0.0339 0.000488 0.015275

pe2 0.009067 0.000464 0.941609 0.000024 0.048374 0.000461

st1 0.000084 0.001893 0.00002 0.936514 0.00996 0.05153

st2 0.00002 0.000001 0.002074 0.000356 0.987953 0.009597

car 0.002045 0.000034 0.00002 0.001951 0.01002 0.98593

Matrix of transition probabilities among all possible pairs of attractors. The
entries of each column in this matrix correspond to the probabilities P(n|m) of
reaching attractor n, given that the system is at attractor m at time t = 0 (see
Results and Methods, noise magnitude used for this case is 1%).
doi:10.1371/journal.pone.0003626.t001
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Figure 3. Temporal sequence of cell-fate attainment patterns under the Boolean dynamics with noise. Maximum relative probability
(‘‘Y’’ axis) of attaining each attractor, as a function of iteration number or time (‘‘X’’ axis). (A) Probability of attaining each attractor (i.e., cell type)
obtained by multiplying the Markov matrix M by a population vector~vv initialized at the sepal attractor. The error probability in computing this graph

Stochastic Flower Model
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within a floral primordia is in the sepal attractor. We then followed

the changes in the probability of reaching each one of the other

attractors over time, given that the entire system started in the

sepal configuration (see Figure 3A). Every attractor has a

maximum or peak in the probability of being reached at particular

times. This maximum corresponds to the moment at which the

corresponding primordial cell fate is most likely.

The use of the probability peaks to determine the time at which

each cell multigenic configuration is most probable follows the

standard reasoning in deriving maximum likelihood estimators in

statistics [25]. The time at which the probability peak appears

corresponds to the maximum of the associated transition

probability for that particular attractor. The order of appearance

of the peaks shown in Figure 3 matches the order of formation of

the maxima of the transition probabilities. Recall that when using

the maximum likelihood methodology [25], the main assumption

is that the set of real data is precisely observed because they are

more likely to happen than other possible data sets. In other

words, they maximize the probability of being observed among all

possible samples of the same size. Conversely, if we want to know

when a specific event is more likely to happen, the most natural

assumption is that it will be at a maximum of the corresponding

probability distribution. This is precisely what we claim based on

the graphs of the frequencies of visits to each attractor. Also notice

that the locations of the maxima are not affected by normalization.

This interpretation hence implies that, given that a particular

attractor will be reached (i.e. that a specific event will occur), it is

natural to assume that the most likely time for it to occur is when

the probability of reaching that particular attractor is maximal.

Therefore, we propose that the temporal sequence in which

attractors are attained will correspond to the sequence in which

their maximum probabilities are reached.

A related important issue has to do with the interpretation of the

transition probabilities. There are at least two possibilities that are

consistent with the traditional approaches in statistical studies of

collective behavior [26]. First, it is possible to consider that each

agent (in this case, a single cell) will spend some time at each

equilibrium configuration and then will jump to another with a

certain probability. This would imply that each cell transits through

different configurations. In our case, for example, a particular cell

might attain a sepal primordia identity, then transit to a petal

primordial cell, then to a stamen primordial cell, and finally to a

carpel primordial cell. An alternative interpretation is that, from a

given initial population of cells, the number of individual cells at a

certain attractor at any given time, is proportional to the transition

probability of reaching that particular attractor.

These two interpretations are equivalent or are assumed to be so

(ergodic hypothesis) in many applications of statistical physics.

This is often summarized by saying that averaging quantities in

time is the same as averaging them in space [26]; however, in the

case we have considered here, the second interpretation seems

more appropriate. Future experimental studies that actually follow

gene configurations over time at the individual cellular level will

directly test these two alternative interpretations. For now, if we

accept the overall population of undifferentiated cells in the floral

meristem as our system, it is consistent to assume that the

proportion of them reaching a particular configuration will be in

accordance with the transition probabilities.

Therefore, we present a stochastic GRN that can be interpreted

as a model of cell population dynamics. This model describes the

dynamics of cells within the flower meristem, in which different

fractions of cells sequentially attain distinct configurations.

Therefore, it does not imply that individual cells transit through

different identities or configurations, but rather that once in a

floral meristem, one set of cells attains a certain identity first (sepal

primordia) and then, from the remaining cells, another fraction

attains a second cell fate (petal primordia), and so on, until all the

cells in the floral primordium have reached an identity

corresponding to each of the four floral organ primordia. Later

in development, primordia will grow and differentiate to form the

four floral mature organs: Sepals, petals, stamens, and carpels. The

latter events are regulated by other GRNs. We explored whether

the observed dynamics of cell-fate attainment can be recovered by

the stochastic Boolean GRN model presented here.

Simulated temporal transitions among attractors (cell
types) mimicked the sequence in which A, B, and C genes
are expressed in real flower meristems

By following the procedure presented above, we found that, by

starting from the gene configuration associated with sepal

primordial cells (t = 0 in Figures 3 A and C), the next maximum

probability was observed in the petal curves, P1 plus P2 (t = 18 in

Figure 3A). Afterwards, the peaks for the probability of attaining

first the carpel and then the stamen (S1 plus S2) identity appeared

(t<45, t<100 in Figures 3A and C). Interestingly, the same

sequence was observed when applying a range of noise magnitudes

from 0.5 to 10%; however, the peaks corresponding to the stamen

and carpel cell fates became closer, almost simultaneous, as the

noise magnitudes increased (compare Figures 3A–C). Nonetheless,

it is noteworthy that the probability peak of the carpel configuration

appeared before the peak of the stamen configuration.

The sequence resulting from the aforementioned model mimics

the observed temporal pattern for A, B, and C gene expression: A-

genes are expressed first, followed by B-genes, and finally by the C-

gene [27,28]. Furthermore, our model predicts that the gene

configuration characteristic of carpels most probably appears before

that corresponding to stamens during early flower development.

This would, in fact, be the case if the C gene was first expressed in

the flower center and then its expression expanded to the peripheral

whorls. This should be tested experimentally by gathering data on

the population dynamics of cells with different genetic configura-

tions during early stages of flower development.

It is noteworthy that, among all of the tested noise levels, the only

non-trivial temporal sequence of A, B, and C gene combinations

recovered was: A, then AB, then C and finally BC. Although the

latter two appeared almost simultaneously as error magnitudes used

increased. This sequence is congruent with the ABC temporal

pattern in Arabidopsis thaliana (Figures 3A and C) in which the A

genes are turned on first, then the B and finally the C genes; hence

BC and C combinations are defined at the same time. The trivial

behaviors are: i) remaining in the initial configuration forever, and

ii) transitions depending only on the size of the basins of attraction

was g= 0.03. The most probable sequence of cell attainment is: Sepals, petals, carpels, and stamens. (B) Probability of attaining each attractor (i.e., cell
type) at each iteration when 80000 randomly chosen ‘‘sepal’’ configurations were selected and followed for 140 steps. Noise was introduced in the
updating of each gene independently, with a g= 0.03 probability at each iteration. The probabilities for the petal (p) and stamen (st) attractors
correspond to the sum of p1+p2 and st1+st2, respectively. All maxima correspond to 100 because each absolute probability value was divided by the
maximum of each attractor’s curve (see Results and Methods). Equivalent graphs to those in (A) and (B) for g = 0.01 are shown in (C) and (D),
respectively.
doi:10.1371/journal.pone.0003626.g003
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(i.e., the system behaves according to only noise). If the magnitude of

the noise is increased, for example to 50%, the system goes from

sepal to stamen1 or carpel configurations directly. This is because

the basins of attraction corresponding to petals are very small in

comparison to those of stamens and carpels.

In addition to the Markov matrix approach, we also performed

simulations by directly following trajectories starting in randomly

chosen configurations from the basin of attraction corresponding

to the ‘‘sepal’’ configuration. We followed each of 80000 such

configurations for 140 iterations in order to compute the

probabilities of directly attaining each attractor at each iteration

(see Methods). This latter simulation is directly comparable to that

performed for the Glass system discussed in the following section.

It is noteworthy that the sequence of probability peaks we found

for each attractor over time is the same as the one that we had

obtained using the Markov Matrix approach: Sepal, petal, carpel,

and stamen (Figures 3B and D).

Continuous GRN model with noise
In order to develop a continuous model based on the differential

equations of the flower development GRN considered here, one

would need to know all of the kinetic reaction constants, promoter

affinities, degradation rates, and many other parameters involved in

the dynamics. To the best of our knowledge, these have not yet been

identified; however, a first step towards a continuous description of

this GRN is to implement the Glass dynamics in the network [29].

This can be accomplished by considering the parameter t in Eq. (1)

as a small quantity, and expanding the left-hand side of that

equation to the first order in powers of t, which gives:

dxn tð Þ
dt

~a Fn xn1
tð Þ,xn2

tð Þ, . . . ,xnk
tð Þð Þ{xn tð Þ½ �, ð3Þ

where a = 1/t is a measure of the ‘‘relaxation’’ time in the gene

expression profile. Although the above equation is formally correct,

it has the problem that the Boolean function Fn on the right-hand

side has to be evaluated using discrete variables, whereas the

derivative on the left-hand side treats the xn’s as continuous

variables. Therefore, each continuous variable xn has to be

transformed into a discrete variable in order to evaluate the

Boolean function. This is accomplished by introducing the discrete

variables x̂n defined as:

x̂xn~H xn{hnð Þ, ð4Þ

where hn is a threshold, and H(x) is the Heaviside function. (H(x) = 1

if x$0 and H(x) = 0 if x,0). Thus, each continuous variable xn,

representing the level of expression of a given gene, has an associated

discrete variable x̂n that represents the state of expression of that gene:

‘‘ON’’ if xn is above the threshold hn, and ‘‘OFF’’ if xn is below hn. In

principle, each gene xn could have its own threshold hn. Our

simulations show that the results are qualitatively the same if we

randomly assign the thresholds in the interval hnM[0.35,0.65]. Thus,

in what follows, we fixed hn = 0.5 for all of the genes.

The continuous piece-wise linear Glass dynamics of the network

can thus be given by:

dxn tð Þ
dt

~a Fn x̂xn1
tð Þ,x̂xn2

tð Þ, . . . ,x̂xnk
tð Þð Þ{xn tð Þ½ � ð5Þ

We will refer to the set of continuous values {x1(t),x2(t),…,xN(t)}

as the microscopic configuration of the network, and to the set of

corresponding discrete values {x̂1(t),x̂2(t),…,x̂N(t)} as the Boolean

configuration of the network. Note that there are infinitely many

microscopic configurations compatible with the same Boolean

configuration. Finally, we will refer to the dynamics generated by

Eq. (5) as Glass dynamics.

It has been pointed out that the discrete model given in Eq. (1)

and the corresponding continuous piece-wise linear model defined

in Eq. (5) are not necessarily equivalent, since the attractors of the

two models can be different, even when the Boolean functions Fn

are the same in both cases. Nonetheless, our numerical simulations

show that for the A. thaliana network, the Glass dynamics generate

exactly the same ten point attractors obtained in the Boolean

model, and only those ten attractors. Therefore, from now on, we

will make no distinction between the attractors of the Boolean

model and the attractors of the continuous model, referring to

them simply as the attractors of the floral GRN.

Even when the Boolean dynamics and the Glass dynamics

produce the same ten attractors, their basins of attraction do change

from one model to the other. This is so because two different initial

microscopic configurations that correspond to the same Boolean

configuration may end up in two different attractors under the Glass

dynamics. In order to show that this is indeed the case, for each of

the V= 2N Boolean configurations of the network, we probed

10,000 compatible microscopic configurations. We evolved these

10,000 microscopic configurations in time until an attractor was

reached, and determined the configuration in which the network

fell. Figure 4 depicts in a color map the probability PG(n|m) that the

network ends up in attractor n under the Glass dynamics, given that

it started in a microscopic configuration whose corresponding

Boolean configuration was in the basin of attraction of attractor m.

As can be seen, the highest probabilities lie along the diagonal;

however, the non-vanishing off-diagonal elements indicate that two

different microscopic configurationss corresponding to the same

Boolean configuration may end up in two different attractors.

On the other hand, Table 2 shows the fractional sizes of the

basins of attraction in both the Boolean and the continuous

Figure 4. Changes in the basins of attraction of the continuous
model with respect to the Boolean model. Color map of the
probability P(n|m) that a microscopic configuration whose associated
Boolean configuration belongs to the basin of attraction of attractor m,
ends up in attractor n using Glass dynamics. Note that the main
transitions occur along the diagonal where attractors are reached by
both dynamics (Boolean and Glass); however, the non-diagonal
elements indicate that two microscopic configurations that correspond
to the same Boolean configuration may end up in different attractors.
doi:10.1371/journal.pone.0003626.g004
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models. It is apparent from this table that, when passing from the

Boolean to the continuous description, the largest basins of

attraction (carpel and stamen1) lose about 30 to 40 percent of their

configurations, which are redistributed among the smaller basins

of attraction. Thus, even when the predicted cell types (attractors)

are the same in the two models, the basins of attraction are not.

The stochastic continuous model of the GRN yields a cell-
fate attainment sequence similar to the Boolean
stochastic model

In order to implement noise in the continuous model, we followed

a procedure similar to the one indicated in Eq. (2); namely, with a

probability g, each gene will disobey its Boolean function Fn,

replacing it by 12Fn; however, since the system in this case is

governed by differential equations, this ‘‘perturbation’’ will occur

during a finite time interval Dtp, rather than being instantaneous. In

other words, if at time t one particular gene xn is perturbed and chosen

to disobey its Boolean function, then from time t to time t+Dtp its state

will not be determined by Eq. (5), but rather by the equation:

dxn tð Þ
dt

~a 1{Fn x̂xn1
tð Þ,x̂xn2

tð Þ, . . . ,x̂xnk
tð Þð Þ{xn tð Þ½ � ð6Þ

After the time interval Dtp, the state of xn will be determined

again by Eq. (5), and a new set of ‘‘disobeying genes’’ will be

chosen. We will call these disobeying genes the perturbed genes.

We have to choose the value of Dtp in such a way that the gene has

enough time to relax to its new state after the perturbation has been

produced. In other words, Dtp has to be larger (or at least of the same

order of magnitude) than the relaxation time t = a21 appearing in

Eq. (5). Figure 5 shows two typical noisy realizations of the temporal

evolution of a particular xn(t) as a function of time, for two different

choices of t and Dtp: One for Dtp = 2.5 and t = 1 (black curve), and

the other for Dtp = 2.5 and t = 1/20 (red curve). The two realizations

started out from the same initial conditions, and underwent the

same set of perturbations. The only difference was the value of t. As

can be seen from this figure, the trajectories are qualitatively the

same as long as Dtp.t. In what follows, we selected Dtp = 2.5 or 1

(Figures 6A and B, respectively), and t = 1 to simulate Glass

dynamics with noise (see methods for further details).

In order to determine the cell-fate attainment patterns in the A.

thaliana network under Glass dynamics with noise, we analyzed the

transitions between attractors over time in a population of

80 000 cells subject to the perturbations described above. At time

t = 0, all of the cells were initialized in different random

microscopic configurations corresponding to the sepal basin of

attraction. In every cell, each gene was independently chosen to be

perturbed with a probability g = 0.03. The non-perturbed genes

then evolved in time according to Eq. (5), whereas the perturbed

genes evolved following Eq. (6). After a time interval Dtp = 2.5 or 1

(for Figures 6A and B, respectively), a new set of perturbed genes

in the entire population was chosen again, and so on.

At each unit of time, we looked at the microscopic configuration

of each cell and determined to which attractor this microscopic

configuration would have evolved in the absence of perturbations.

This allowed us to associate a given attractor at each unit of time

to each cell configuration. The results of this simulation are

Table 2. Basins of attraction.

Attractor Boolean Dynamics Glass Dynamics

Inflorescence 1 0.0156 0.0500

Inflorescence 2 0.0156 0.0500

Inflorescence 3 0.0078 0.0380

Inflorescence 4 0.0078 0.0381

Carpel 0.4404 0.2622

Sepal 0.0185 0.0670

Stamen 1 0.4570 0.3331

Stamen 2 0.0166 0.0710

Petal 1 0.0195 0.0786

Petal 2 0.000976 0.0116

This table shows the fractional sizes of the basins of attraction in the Boolean
and Glass models. The data for the Glass dynamics were obtained by sampling
10,000 microscopic configurations for each of the V= 2N Boolean
configurations, and by counting the frequency with which these microscopic
configurations end up in each of the ten attractors.
doi:10.1371/journal.pone.0003626.t002

Figure 5. Effects of the choice of the relaxation time on Glass dynamics with noise. Two typical realizations of Glass dynamics for a given
gene xn showing that the choices of the relaxation time t and the perturbation time Dtp do not affect the qualitative dynamics, so long as Dtp.t.
Both trajectories started from the same initial conditions, and were followed through the same set of perturbations. The black trajectory corresponds
to Dtp = 2.5 and t = 1, whereas the red trajectory corresponds to Dtp = 2.5 and t = 1/20.
doi:10.1371/journal.pone.0003626.g005
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reported in Figure 6, which shows the evolution in time of the

population of cells, and shows how the cells redistribute among the

sepal, petal, stamen, and carpel attractors. Similar patterns were

recovered for other values of noise (data not shown), ranging

between g = 0.005 and g = 0.1, as well as for other values of Dtp.

As can be observed in Figure 6, the results obtained using Glass

dynamics are analogous to those obtained for the Boolean model,

in that the addition of noise to the dynamics produces the

emergence of cell-fate attainment patterns in a population of cells

in a specific temporal order. Thus, the use of the Glass model,

based on piece-wise linear differential equations, reveals that the

time ordering in the emergence of the cell-fate patterns is not an

artifact of the synchronous updating in the Boolean model;

however, the stamen and carpel peaks are reversed in time

between the Boolean and Glass models (Figure 3 vs. Figure 6A).

In real flowers, A genes are first ‘‘ON’’, followed by the B genes

that turn ‘‘ON,’’ thus defining the A (sepal) to AB (petal) transition.

This is recovered by both models (Figures 3 and 6), and is observed

in real flowers. The C genes then turn ‘‘ON,’’ and hence, the BC

(stamens) and C (carpels) configurations are defined at the same

time. While the Boolean dynamics predict that the carpel

primordia cell fate (C alone) will be attained before that of the

stamen (BC), in the Glass model, these two are reversed (Figure 3

vs. Figure 6A). Interestingly, when this model is simulated to

mimic the Boolean model (Figure 6B), both systems recover the

same sequence: ‘‘Sepal-petal-carpel-stamen’’ (Figure 3 vs.

Figure 6B) and in both cases the time at which stamen and carpel

configurations are determined converge as noise levels are

increased. Detailed experimental data on the precise spatio-

temporal dynamics of the gene activation profiles of cells in the

developing flower meristem are needed to test which of the two

peaks is observed first in real floral buds. Such data will also be

useful to determine which of the two models predicts the most

realistic frequency distributions of cell types over time. The latter

will be related to the relative sizes of the basins of attraction.

Glass system simulations indicate that the order of appearance

of the two peaks (stamen or carpel) may depend on the precise

values of the reaction-kinetic constants and degradation times, as

well as some other epigenetic processes not taken into consider-

ation in the simple analysis presented here. The important

conclusion of both models is that noise in the gene-expression

dynamics is necessary and sufficient to qualitatively recover the

temporal transitions among the ABC-gene configurations ob-

served during early flower development.

Figure 6. Temporal sequence of cell-fate attainment patterns under the Glass dynamics with noise. Maximum relative probability (‘‘Y’’
axis) of attaining each attractor as a function of iteration number or time (‘‘X’’ axis). (A) The maxima of the cell-fate curves are attained in a particular
sequence in time, which in this case is sepal, petal, stamen, and carpel. Parameters used: dt = 0.01, t= 1, and Dtp = 2.5. (B) When the simulations mimic
the Boolean case (dt = 1, t= 1 and Dtp = 1; see Results and Methods), a temporal pattern identical to that of the Boolean dynamics was obtained, with
a sequence of sepal, petal, carpel and stamen. The noise used in both cases was g= 0.03. Although the Boolean and Glass dynamics need not
coincide in general, for the case of the A. thaliana GRN, both models provide similar predictions. Simulations show that the order of emergence of the
stamen and carpel maxima, as compared to the Boolean model, may depend on the precise values of the kinetic constants.
doi:10.1371/journal.pone.0003626.g006
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Discussion

Robust morphogenetic patterns that are recreated over the life

cycles of individuals from the same species, or even from distantly

related species, have led to the prevailing view of development as a

deterministic process; however, we have shown here that the

stereotypical temporal pattern with which floral organs are

determined may result from a stochastic dynamic system

associated with a highly non-linear GRN.

This study supports recent work that has concluded that

random fluctuations in a system may be important for cell

behavior and pattern formation ([14–21]), and contrasts with

deterministic and preprogrammed views of development. Intrinsic

noise (noise arising from the system itself) has its origin in

molecular fluctuations due, for example, to slight modifications in

temperature, and in random events due to sampling, given that the

number of molecules is not infinite during transcription and

translation [16,19,14].

Stochastic implementations of a GRN model as pursued in this

study were proposed by C. H. Waddington many years ago ([22];

see review in [23]). He understood development as a complex

dynamic system, with genes, proteins, metabolites, and environ-

mental factors constituting complex dynamic networks. The

attractors of such networks represent a specific configuration of

the system (e.g. cell types). The number, depth, width, and relative

position of these attractors are represented by the hills and valleys

of his ‘‘Epigenetic Landscape’’ metaphor [22,7]. The study

presented here actually explored such an Epigenetic Landscape

for the flower organ determination GRN (Figures 1 and 7). Other

recent studies have also explored this idea for GRNs [30].

In the case presented here, a GRN generates the overall temporal

morphogenetic pattern (Figures 3 and 6) observed during flower

development of Arabidopsis thaliana [31,32]: A genes are expressed first,

followed by B genes, and finally C genes, in a rather broad range of

noise magnitudes, and in two different modeling approaches.

Therefore, our results provide a possible explanation for the

conservation, among many flowering plant species [27,28,31–34],

of the temporal transitions of A, B, and C-gene expression, and to

some extent, of the observed cell fate attainment patterns.

Our results support the hypothesis that biological systems may

not only cope with random perturbations, but that the noise may

have been incorporated during evolution in the generation of

biological patterns (e.g. [30,35–37]). Central to the constructive

role of noise is the existence of non-linear dynamic systems [38]

that converge to robust attractors for a range of noise magnitudes.

Stochastic implementations of GRNs, such as the one presented

here, may guide predictions of actual noise magnitudes experi-

enced in biological systems.

Nevertheless, deterministic signals or inducers of flower

development cannot be dismissed. Indeed, our results hold when

focusing on the attractors corresponding to the four types of floral

organ primordia. However, if all of the attractors (including I1–I4)

are considered, and the system is initialized in one of the

inflorescence basins, the system hardly ever transits into the floral

basins when small noise levels are used, or else it directly jumps to

one of the largest basins (stamens1 or carpels) when larger

magnitudes of noise are simulated. These results enable us to

speculate on the role of reported non-random inducing signals in

the transition from cell fates in the inflorescence meristem to those

in the flower meristem. Genes such as FLOWERING LOCUS T,

Figure 7. Schematic representation of the epigenetic landscape generated by a stochastic exploration of the GRN for flower
development. This schematic landscape is equivalent to the Epigenetic Landscape proposed by C.H. Waddington (1957). Basins comprise the cell
genetic configurations that lead to attractors (in this case, gene arrays characteristic of floral organ primordial cell-types: Sepals, petals, stamens, and
carpels. See Figure 1 and Discussion). Each cell fate is associated to the GRN configuration corresponding to each of the attractors. The arrows
represent transitions among attractors. The transition from inflorescence to sepal attractor might be biased or determined by an inducer. The
numbers associated to the arrows represent the sequence of transitions among attractors: From sepals to petals, and then to carpels and stamens.
doi:10.1371/journal.pone.0003626.g007
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SUPPRESSOR OF OVEREXPRESSION OF CO 1, or CONSTANS

(see [39] for a review) could constitute or mediate such signals.

The type of model put forward here will enable the predictions

of the real magnitudes of stochastic fluctuations once such

deterministic biasing signals are considered. They will also be

useful to test what mutations may cause alterations in the

epigenetic landscape and alter the temporal order with which

attractors are visited. Such models will guide the search of genetic

alterations underlying atypical morphogenetic patterns during the

evolution of flowering plant species [40].

One possible interpretation of our model is to assume that, once

most cells have attained a certain attractor within a primordium,

these are canalized to develop into a particular organ type. One

possible explanation for this is that noise does not drive the cells

out of each configuration once a certain proportion of them attain

an attractor, or that the noise is ‘‘frozen’’ at some point, maybe

because irreversible differentiation or synchronization events take

place. We may speculate that, in the developmental system we

have studied, non-autonomous cell function of key transcription

factors [41–44] could play a relevant role in this process, as it

could effectively freeze the stochastic fluctuations or synchronize

the configuration of the cells within a primordium, and thus,

contribute to the formation of the observed spatio-temporal

patterns. We could further speculate that the activity of pre-

patterning genes (e.g., WUSCHEL or UNUSUAL FLORAL

ORGANS; [43,45,46]) may play important roles during spatio-

temporal pattern formation.

Models such as those presented here enable novel predictions

about the genetic regulation of cell differentiation and morphoge-

netic patterns. For example, the stochastic GRN dynamic system

eventually attains a stationary distribution of attractor probabilities.

The distribution reflects the probability of the cells being in each

attractor, and may be interpreted as the proportion of primordial

cells fixed to each GRN configuration. In the floral organ

specification network, such proportions would correspond to the

regions within the floral meristem with A, A+B, B+C, and C

function configurations; however, this distribution may only be

observed at the very early stages of the partitioning of the floral bud

into four concentric rings. This event occurs before cells committed

to a certain cell-type start further differentiation and acquire distinct

division and elongation rates; hence, the final amount of cells in a

certain organ or organ primordium would not necessarily coincide

with that predicted by the models presented herein.

Another prediction derived from this model states that the

carpel attractor appears either before (Figure 3) or after (Figure 6A)

that of stamens. This prediction does not contradict the fact that,

in most plants, carpels are the last organs to be fully formed

because, again, cells have different division and elongation rates

after cell-type differentiation, and therefore, the order in which

organogenesis takes place may not match the sequence in which

organ primordia cells are determined during early flower

development, before the primordia actually emerge.

The discussion above suggests that models that incorporate

GRN associated to cellular growth and proliferation, as well as

spatial aspects of the system presented here, will eventually be

needed to understand the dynamics by which cells attain their fate

and proliferate in the floral spatio-temporal domain. In this paper,

we have restricted ourselves to exploring the temporal patterns of

cell-fate establishment early in flower development, assuming that

cells differentiate independently of one another; however, in real

organisms, cell-cell communication, cellular dynamics, domain

geometry, and growth or mechanical interactions, are all likely to

alter the proportion of cells across space and time that are set aside

for each type in early flower development [10].

Kauffman’s Boolean model for cell differentiation has been

criticized because it is said to oversimplify the gene regulatory

interactions and the way activation states of all genes are updated

(synchronically in Kauffman’s proposal); however, Boolean GRN

models grounded in experimental data have been able to recover

observed multi-gene expression arrays characteristic of certain cell

types in several biological systems [2,3,7,36]. These results suggest

that the logic of regulation considered in Boolean networks suffices

to qualitatively reproduce the dynamics of biological GRNs.

Furthermore, theoretical studies have suggested that the details of

the kinetic functions are not relevant in determining the system’s

attractors. In particular, updating schemes do not seem to affect the

number and identity of fixed-point attractors [47], as is the case of

the attractors recovered in the network used here.

Given that the identity of the attractors and the temporal

sequence in which these were attained are the same (Figures 3A–C

vs Figure 6B) or very similar (Figures 3A–C vs Figure 6A) using

Boolean and Glass dynamics, this study reveals that the time

ordering in the emergence of cell-fate patterns is not an artifact of

synchronous updating in the Boolean model; however, the sizes of

the basins of attraction differ between the two models. In Glass

dynamics, the basins corresponding to stamen and carpel

primordia cells are smaller, and those of sepals and petals are

larger (Table 2); hence, the proportion of cells at each fate along

time predicted by the Glass and Boolean dynamics differ, which

suggests that the updating schemes might be relevant to recovering

the actual temporal cell population dynamics in biological systems.

Experimental data on the temporal fluctuations of primordial cells

with different multi-gene expression arrays will test which of the

two systems and updating hypotheses better reproduces the real

system.

Eventual formalizations of stochastic multicellular GRN

dynamics in explicit spatial domains may require ‘‘hybrid’’

approximations that enable large computational explorations,

and allow, for instance, the explicit incorporation of developmen-

tal processes into models of network or phenotypic evolution [48],

or the study of the epigenetic landscapes that emerge from GRN

related to complex diseases, such as cancer [9].

In conclusion, we put forward a stochastic approach to model

the Boolean and continuous dynamics of an experimentally-based

GRN, and thus, take Waddington’s Epigenetic Landscapes into a

specific biological framework: Flower organ specification in

Arabidopsis thaliana. The theoretical framework of this proposal

could also be useful for studying the behavior of other networks,

including, for instance, ecological, epidemiological, immunologi-

cal, engineering, or social networks. Finally, our results emphasize

that complex networks and stochastic processes are central to

understanding the biological development and emergence, as well

as the stability, of morphogenetic patterns.

Methods

Construction of phenogram of attractors
We obtained six phenograms by estimating the Manhattan

distance index to infer the relationships among the 10 attractors

for the 15-gene system. This index was obtained by comparing the

vectors of zeros and ones of each attractor. We then used the

clustering method by the unweighted pair-group method with

arithmetic average (UPGMA) to group the attractors. We obtained

six different phenograms, with which we constructed a strict

consensus that kept the branches that were recovered in all of the

six phenograms. In Figure 2, the consensus phenogram is shown

below the attractors ordered along the X and Y-axes of the heat

map, corresponding to the Similarity Matrix.
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Implementation of noise in the GRN model
Boolean case. The GRN has 15 elements; two of them (LUG

and CLF) are constitutively expressed in the flower meristem, and

thus, their activation states were fixed to 1. The transition

probabilities among attractors in the Boolean GRN

implementation were obtained by introducing noise to the updating

logical rules in 10, 000 realizations for each possible configuration of

the system. The analyses of the Boolean model were performed with

the ‘‘Atalia’’ software, which is publically available (http://www.

ecologia.unam.mx/̃achaos/Atalia/atalia.htm).

Another equivalent method to obtain the Markov matrix entries

would be to follow the system’s trajectory for every possible initial

configuration. For certain levels of noise, the system never remains

at a particular basin, and it is hard to determine when to stop the

computation for the corresponding initial condition. Nonetheless,

we performed a similar type of simulation in order to mimic that of

the Glass system. We selected a random configuration from those

in the ‘‘sepal’’ basin. Each gene was updated according to its true

table, except that with a certain probability (0.01 and 0.03), the

rule was violated, and if the true table predicted that a state should

be ‘‘1,’’ it was set to ‘‘0,’’ and vice versa. The new basin was

registered, and this procedure was continued for 140 iterations.

80,000 such realizations were obtained (i.e., 80,000 randomly

chosen configurations from the ‘‘sepal’’ basin were chosen).
Glass system. The model is explained in the Results section.

We numerically integrated the set of differential equations (5) and

(6) using the Euler method with an integration step dt = 0.01. The

results do not change by choosing smaller values of dt; however, if

we take dt = t=Dtp = 1, then the continuous model given in

equations (5) and (6) becomes completely equivalent to the

Boolean model given in Eq. (2). The results for this latter case are

shown in Figure 6B. In order to recover the temporal sequence, in

which attractors (cell-fate) were attained in the A. thaliana network

using Glass dynamics with noise, we followed transitions for 140

time-steps, starting with a population of 80 000 cells

(configurations from the ‘‘sepal’’ basin of attraction), in which

each gene was independently chosen not to be updated according

to its logical functions (set to ‘‘1’’ if the predicted value was ‘‘0,’’

and vice versa), with a probability g = 0.03; hence, the non-

perturbed genes evolved in time according to Eq. (5), while the

perturbed genes evolved following Eq. (6). After a time interval

Dtp = 2.5 for Figures 6A, and 1 for Figure 6B, a new set of

perturbed genes in the entire population was chosen again, and so

on until 140 iterations were completed. Qualitatively similar

results were obtained for a noise of 0.01. The code for the Glass

system simulations was developed in JAVA, and is available upon

request.
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