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Abstract

The linked cell list algorithm is an essential part of molecular simulation soft-
ware, both molecular dynamics and Monte Carlo. Though it scales linearly
with the number of particles, there has been a constant interest in increas-
ing its efficiency, because a large part of CPU time is spent to identify the
interacting particles. Several recent publications proposed improvements to
the algorithm and investigated their efficiency by applying them to particu-
lar setups. In this publication we develop a general method to evaluate the
efficiency of these algorithms, which is mostly independent of the parameters
of the simulation, and test it for a number of linked cell list algorithms. We
also propose a combination of linked cell reordering and interaction sorting
that shows a good efficiency for a broad range of simulation setups.
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1. Introduction

A fundamental issue in the evaluation of non-bonded interactions in
molecular simulation is to avoid the calculation of all pair distances because
particles beyond a certain cutoff radius rc can be neglected [1]. The two
main methods to deal with this are the Verlet list [1, 2, 3] and the linked cell
list (LCL) [1, 4, 5]. A further improvement uses a LCL to generate a Verlet
list [6, 7, 8, 9]. These methods apply to both molecular dynamics (MD)
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and Monte Carlo simulations, but for convenience here we use only MD to
illustrate them.

The reason to apply more complex algorithms than a plain LCL is that
the majority of the computed pairwise distances is not within the cutoff
radius. So, despite of the linear scaling with the number of particles, there
is space for further optimizations. Verlet lists solve this accurately by taking
into account only particles within a Verlet radius rV > rc. However Verlet
lists have limitations for large scale simulations, as the total memory needed
by them scales as the number of particles N times the average number of
neighbours. Moreover they must be updated regularily and thus the same
basic problem of determining neighbours within a cutoff needs to be solved.

Mason [10] introduced a variant of the LCL where, instead of dividing
particles into cells with cubic shape, an arbitrary lattice is set up and particles
are sorted into a container belonging to the closest lattice point. This can
be seen as a generalization of the LCL by allowing all possible coordination
polyhedra.

Gonnet [11] modified the LCL to avoid the majority of unnecessary dis-
tance calculations and thus gaining a significant speedup with respect to the
standard algorithm by sorting particles according to their projection onto the
vector that connects the cell centers; a schematic picture is given in Fig. 1.
However in his publication he only investigated the use of this method for
one specific case, i.e. the evaluation of the real space part of the Coulomb
interaction of water molecules. We wished to investigate the performance
of this algorithm for a wide area of simulation setups, taking into account
the results of other publications concerning the optimization of linked cell
algorithms.

To this aim a general method for comparing the performance of linked
cell algorithms is needed. Sutmann [12] tested generalized LCLs for Lennard-
Jones systems with different densities and cutoff radii. One of the results is
that the ratio between the cell side L and the cutoff has an optimal value
typically for a fraction of integer numbers, for example 1 : 1 or 1 : 2, which can
be deduced by geometrical considerations, as the sphere that is built by the
cutoff radius fits perfectly a cubic cell, or an array thereof, only in these cases.
However the cutoff radius and the density of the system are connected by
another parameter, which is the average number of neighbours each particle
interacts with, i.e. the particles that reside within the cutoff radius around
each particle. This single parameter is the most fundamental one for judging
the performance of the different linked cell algorithms. As all linked cell
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Figure 1: Reduction of the search space (grey/green) using smaller cells (top) or Gonnet’s
method (bottom).

algorithms scale more or less linearly with increasing number of particles, we
can assume that an algorithm that works fastest for a given average number
of interactions will do so regardless of the size of the simulation.

Apart from purely algorithmic considerations, there are publications ad-
dressing an effect that can be summarized as cache-optimized memory access
[8, 13, 14]. The idea is to rearrange the particle information in order to en-
sure that the data representing particles which are close to each other in the
simulated system is located as close as possible in memory, in order to achieve
cache hits within the hierarchical memory typical of contemporary comput-
ers. Computer memory can be seen as a one-dimensional array, but typical
molecular simulations are done in three spatial dimensions, so a perfect map-
ping is impossible. One early approach was to sort the particles into slabs
along one of the three spatial axes, preferably the one corresponding to the
largest box side [5, 8]. Meloni et al. [14] picked up a principle that had been
used in multi-billion particle simulations [13] and demonstrated the gain in
efficiency by reordering particles in memory by their linked cell index, which
is referred to as linked cell reordering (LCR). A further improvement of data
locality can be achieved doing this by means of the space-filling Peano or
Hilbert curve [15]. However rearranging particles in memory is a hardware
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specific optimization that will not necessarily be an advantage on all kinds
of computers. Specifically, approaches that take advantage of coprocessors
like graphic processing units [15, 16] or cell processors might need different
adjustments.

To investigate the efficiency of the different linked cell algorithms we set
up a small scalar MD program in C++ for the Lennard-Jones fluid and imple-
mented the different linked cell algorithms, taking into account considerations
of several publications concerning aspects for an efficient implementation.

2. Minimum image convention

As pointed out by Pütz and Kolb [17] as well as by Heinz and Huenen-
berger [18], the minimum image problem needs to be adressed on the linked
cell level rather than for every particle pair. In the approach given in the
book of Allen and Tildesley [1] the minimum image convention is computed
for every calculated distance. This is done either with modulo operations or
conditional tests, both of which are expensive in computation time. A better
way is to compute a distance vector for an evaluated cell pair and to add it
to the distance vector of molecules within these cells. This way the periodic
images are resolved by three additions for any calculated distance. In this
work we used the method introduced by Rapaport [19] and used by Pütz
and Kolb [17], which uses copies of the linked cells at the borders of the unit
box with translated coordinates. This way the evaluation of the pairwise
forces does not need any additional operation. This is similar to domain
decomposition, where the particles in the cells at the boundary of a domain
are “exported”, i.e. copied, to the neighbour domains for the calculation of
the forces [19, 20, 21, 22, 23, 24]. Only interactions with the positive half
shell of surrounding cells are computed, so Newton’s third law is exploited
to avoid the calculation of an interaction twice. The forces on the particles
in the copied region are reassigned to the original particles. This reduces the
effort of computing the minimum image convention from being proportional
to the number of evaluated pair distances to the number of particles within
the border region of the unit box. Gonnet [11] used the variant with an addi-
tional vector to resolve periodicity, thus making distance evaluations a little
more expensive than necessary. It is important to avoid these superfluous
computations, as it is possible that a performance gain of a different linked
cell algorithm could be caused just by reducing the number of minimum im-
age calculations, as can be seen in Mason’s publication [10]. He explicitly
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writes that in his approach minimum images are computed per particle pair
and that this computation is time consuming.

3. Linked cell variants

In our test program we implemented several variants of linked cell algo-
rithms. As basis we use a generalized LCR with an arbitrary relation between
the cutoff radius and the cell side. During the initialization the program com-
putes an interaction matrix of the linked cells given in relative coordinates
as proposed by Mattson [6].

The LCR algorithm as given by Kadau [13] and Meloni et al. [14] consists
in computing at every time step the scalar cell index i of each particle from
its coordinates and then to sort the particles by i. The latter is computed
e.g. as i = iz + iynz + ixnynz, where iα = 0, . . . , nα − 1 are the Cartesian cell
grid indices. An improvement computes i through the space-filling Peano
or Hilbert curve [15], which results in better data locality. The sorting can
be achieved by a hash sort which takes O(N) operations, as the numbers of
particles with the same cell index can be counted, and in a second loop all
particles can be moved directly to a position according to their cell index.
An advantage of the reordering method is that within one time step only a
few particles change their cell, so the effort of rearranging the particles is
small. Interestingly a quicksort [25] that exploits pre-existing order can be
applied for sorting; in simulations with slow moving particles this is slightly
faster than the direct way. We also generalized the LCR method for arbitrary
fractions m/n, m, n ∈ N, of the cutoff and the cell side. For this a list of
relative cell coordinates that are within the cutoff radius around a central
cell is generated and used to define the interacting cell pairs during the force
evaluation. This list is reduced by a factor two exploiting Newton’s third law
as mentioned in the previous section.

On top of this we implemented Gonnet’s interaction sorting method [11].
As it evaluates cell pairs, it can be used with all the linked cell algorithms,
both with list and sorted variants and with an arbitrary cell-side to cutoff
ratio. The full details are discussed in Gonnet’s publication; the principle
is that for each pair of cells all the particles are projected onto the vector
that connects the cell centers. The projection can be simplified in the special
cases where one or two components of the connecting vector are zero, which
happens when the cells have one or two identical Cartesian grid indices.
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However, the necessary additional conditional evaluations are slower than
the saved multiplications by zero, and the code is more complex.

Afterwards the particles of both cells are sorted by the projected distance.
Since this value is smaller than the distance itself, if the former is larger than
the cutoff the latter will be larger too and this pair of particles does not need
to be evaluated. So instead of computing all pairs between the two cells,
which would be an operation of order O(N1N2), all the particles of both
cells are projected and sorted, with an effort of O(N1 + N2 + N1 logN1 +
N2 logN2). The task to be done here is sorting a small set of particles as fast
as possible. Gonnet used a typical implementation of the quicksort method
that stops at a certain array size, usually smaller than 10, and handles the
remaining subarray with an O(N2) method like insertion sort. However, for
small sets the best solution are optimal sorting networks [25]. They result
in the minimum number of comparisons and swaps, close to the theoretical
limit of N log

2
N ! operations. Thus in our implementation we resorted to a

combination of the quicksort algorithm and, for each subarray size of 16 and
smaller, a suited optimal sorting network. Gonnet’s result happened to be
faster than the generalized LC algorithm with L = rc/2 though his sorting
method was not optimal because in both cases he computed the minimum
image convention in a fashion that was not optimal either. Speeding up
the latter, it becomes essential to improve the sorting too in order to remain
competitive with respect to the generalized LC algorithm without interaction
sorting.

4. Computational details

To evaluate the efficiency we did a set of simulations with changing aver-
age number of interactions per particle. A typical setup of the Lennard-Jones
fluid with a density ρ = 0.72 and a cutoff radius rc = 2.5 has an average num-
ber of interactions of (4/3)πr3

c
ρ = 55. Gonnet tested his modification of the

linked cell algorithm for the real space part of the Coulomb interaction in
water with rc = 10 nm, resulting in an average number of interactions of 150.
We are not aware of MD simulations with a considerably larger number of
interactions. For each average number of interactions per particle we obtain
the average time per integration step and particle.

We set up a small scalar MD program for the Lennard-Jones fluid using
the velocity Verlet integrator [26]. Periodic boundary conditions are applied
with the minimum image convention computed as described before. For the
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tests we generated particles on a lattice with a density derived from the
required number of interacting particles. For simplicity our unit box and
therefore also its subcells were cubic. The velocities were randomized and
the system was equilibrated for 20 000 steps of ∆t = 0.001 at a temperature
T = 5 using velocity scaling, followed by 4000 steps of time profiling in the
microcanonical ensemble. We used the GNU C++ compiler version 4.3.2 to
produce 64 bit binaries with double precision on an Intel Core2 Quad running
at 1.6GHz.

5. Results and discussion

First of all we compared the LCL, the LCR with a minimum image check
for every calculated distance, and the LCR with resolved periodicity as de-
scribed above (Fig. 2). The impact on performance of avoiding the evaluation
of the minimum image convention is higher than changing from the list to
reordering.
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Figure 2: Performance of linked cell variants.

Knowing this we compared Gonnet’s extention with the generalized LCR
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variants to see which algorithm performs fastest for any given average number
of interactions (Fig. 3). Gonnet’s algorithm does perform faster than all the
generalized LCR variants. The break-even between the LCR with a cell side
equal to the cutoff radius and Gonnet’s modified method is approximately
at an average number of interactions equal to 82. This corresponds to an
average number of 19 particles per linked cell.

Usual MD simulations do not set the side of the unit box as an integer
multiple of the cutoff, so that the real size of the linked cells is generally
slightly larger than the cutoff radius. We plotted the position of the crossover
as a function of the ratio between the side of the linked cells and the cutoff
(Fig. 4). Gonnet’s approach tolerates larger linked cell sides much better than
the standard linked cell algorithm. If we put the average number of particles
per linked cell on the y-axis rather than the average interaction count per
particle, we see that the crossover stays between 19 and 20 particles per linked
cell (Fig. 5). This is almost a constant that is pretty much unaffected by all
the simulation details. A MD software could automatically choose between
the standard linked cell implementation and Gonnet’s method just using the
number of particles per linked cell as a criterium. This value depends on the
compiler and a lot of hardware specific parameters like cache sizes and the
CPU architecture; thus it must be determined separately for each system.

Even for a Lennard-Jones fluid simulation with rc = 2.5 and ρ = 1.0
yielding an average interaction count of 65, Gonnet’s method will be faster
if the ratio L/rc is larger than 1.08, which can easily happen for small-sized
simulations.

If the minimum image convention is resolved in a more expensive way
than we did in our test, Gonnet’s method is faster for even a smaller number
of interactions or particles per linked cell.

6. Summary

We investigated Gonnet’s variant of the linked cell algorithm. We mod-
ified it in two ways, using linked cell reordering rather than a plain linked
list and changing the sort method to a combination of quicksort and optimal
sorting networks that are particularly suited for small arrays. Moreover we
used the fastest known approach for the computation of the minimum im-
age convention, which resembles the scheme of domain decomposition paral-
lelism. Then we evaluated the performance of the modified Gonnet approach
in comparison with the known linked cell algorithm variants, and introduced
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Figure 3: Performance of the generalized LCR with and without sorting and resolved
periodicity, at different ratios between the cell side L and the cutoff radius rc.

a general way to compare the performance of these algorithms independently
of the simulation parameters. On our test systems the reordering version of
the linked cell algorithm performed better than the list variant. This basi-
cally reproduces the work by Meloni et al. [14], however we investigated the
behaviour for a broad range of possible simulation setups. Gonnet’s modified
variant always outperformes the generalized linked cell variants in our tests
and is only slower than the linked cell algorithm for less than roughly 19
particles per linked cell. Our results show that even for Lennard-Jones fluids
cases exist where the modified Gonnet variant of the linked cell algorithm is
faster than the standard linked cell algorithm. These results enable molecu-
lar dynamics software to choose the faster method based on simple statistics
that can be computed easily during a simulation.
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