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Elastic constants from direct correlation functions in nematic liquid
crystals: A computer simulation study

Nguyen Hoang Phuong, Guido Germano, and Friederike Schmid
Fakultät für Physik, Universita¨t Bielefeld, 33501 Bielefeld, Germany

~Received 27 March 2001; accepted 27 July 2001!

Density functional theories such as the Poniewierski–Stecki theory relate the elastic properties of
nematic liquid crystals with their local liquid structure, i.e., with the direct correlation function
~DCF! of the particles. We propose a way to determine the DCF in the nematic state from
simulations without any approximations, taking into account the dependence of pair correlations on
the orientation of the director explicitly. Using this scheme, we evaluate the Frank elastic constants
K11, K22, and K33 in a system of soft ellipsoids. The values are in good agreement with those
obtained directly from an analysis of order fluctuations. Our method thus establishes a reliable way
to calculate elastic constants from pair distributions in computer simulations. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1404388#
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I. INTRODUCTION

Nematic liquid crystals are fluids of anisotropic particle
which are aligned preferentially along one direction.1,2 Their
orientation is characterized by a directorn of unit length,
with physically identical statesn and 2n. Since the long
range orientational order breaks a continuous symmetry,
isotropy of space, there exist soft fluctuation modes—spa
variations of the directorn(r )—which cost no energy in the
infinite wavelength limit~i.e., the limit wheren is rotated
uniformly! and are otherwise penalized by elastic restor
forces.3,4 For symmetry reasons, the latter depend on o
three material parameters at large finite wavelengths1–6

They are described by an elastic free energy functional6

F$n~r !%5
1

2 E dr$K11@“•n#21K22@n•~“3n!#2

1K33@n3~“3n!#2%, ~1!

which has three contributions: the splay, twist, and be
modes. The parametersKaa (a51,2,3), called Frank elastic
constants, control almost exclusively the structure and
properties of nematic liquid crystals at mesoscopic len
scales. Expressions that relate them to the microscopic p
erties of liquid crystals are thus clearly of interest.

Several microscopic approaches have been proposed
employed in the past.7–58 Poniewierski and Stecki35 have
used the density functional formalism59 to derive a set of
equations which connects the elastic constants with the d
pair correlation function~DCF!, one of the central quantitie
in liquid state theories.60,61In a coordinate frame where thez
axis points along the directorn, the equations read

K115
kBT

2 E r x
2c~r ,u1 ,u2!

3r~1!8~u1z!r
~1!8~u2z!u1xu2x dr du1 du2 , ~2!
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K225
kBT

2 E r x
2c~r ,u1 ,u2!

3r~1!8~u1z!r
~1!8~u2z!u1yu2y dr du1 du2 , ~3!

K335
kBT

2 E r z
2c~r ,u1 ,u2!

3r~1!8~u1z!r
~1!8~u2z!u1xu2x dr du1 du2 , ~4!

where the vectorr connects the centers of mass of two mo
ecules 1 and 2,u1 , u2 are unit vectors along the molecu
axes,c(r ,u1 ,u2) denotes the DCF in the nematic liquid, an
r (1)8(uz) is the derivative of the one-particle distributio
function with respect touz . The integrals*dr run over all
space, and*du over the full solid angle,T is the tempera-
ture, andkB is the Boltzmann constant.

Equations of the form ~2!–~4! have later been
rederived36–46 and applied in theories47–58 and
simulations62–65 to study elastic constants in nematic liqu
crystals.66 The main difficulty with the Poniewierski–Steck
equations is that they depend on the DCF in the nem
phase, which is not known. Theories have resorted to
proximations, e.g., they use a DCF from an effectively is
tropic reference state,37–42 or from a state with perfectly
aligned particles.29,30,55 Simulation studies62–65 have ne-
glected the explicit angular dependence of the pair corr
tion functions on the orientation of the director. Longaet al.
have recently pointed out that this approximation may not
adequate in nematic liquid crystals.67

Alternatively, the elastic constants can also be de
mined directly from the long-wavelength fluctuations of t
order tensor in Fourier space

Q~k!5
V

N (
i 51

N

~ 3
2 ui ^ ui2

1
2 I !exp~ ik•r i !, ~5!

where the sum runs over all particlesi in the system,I de-
notes the unit matrix and̂ the dyadic product of two vec
tors. The largest eigenvalue of the 333 matrix Q at zero
7 © 2001 American Institute of Physics
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wave vector (Q(k)uk50) is the nematic order paramete
VP2 , and the corresponding eigenvector is the directorn of
the nematic liquid.

In a reference frame where thez axis points alongn and
the y axis is perpendicular tok, the order tensor fluctuation
have the limiting long-wavelength behavior3

^uQxz~k!u2& ;
k→0 9

4

^P2&
2VkBT

K11kx
21K33kz

3 , ~6!

^uQyz~k!u2& ;
k→0 9

4

^P2&
2VkBT

K22kx
21K33kz

3 . ~7!

Provided the simulated systems are sufficiently large,
elastic constants can be extracted directly from Eqs.~6! and
~7!.56,68–71

Allen et al.71 have used this method to study elastic co
stants in a model liquid crystal, which had already been
vestigated earlier by Stelzeret al.63,64 using the
Poniewierski–Stecki equations~2!–~4!. The results dis-
agreed by an order of magnitude. Since the determinatio
elastic constants via Eqs.~6! and ~7! is straightforward, it
seems reliable and the values calculated by Allenet al. are
presumably accurate. On the other hand, Stelzeret al.63,64

use an ‘‘unoriented nematic approximation,’’ where pair c
relation functions are replaced by their average over all
entations of the director. Given the importance of t
Poniewierski–Stecki equations, a clearcut test of the appl
bility of Eqs. ~2!–~4! in a nematic liquid crystal is desirable
To the knowledge of the present authors, no one has
employed the Poniewierski–Stecki equations with the ex
DCF of a nematic state. This is presumably due to the
that no method has been proposed so far which allows on
extract the full orientation dependent DCF from compu
simulation data.

The present work attempts to remedy this situation.
propose a way to calculate the DCF without any approxim
tions from a spherical harmonic expansion of the pair dis
bution function in a uniaxial nematic liquid crystal. The e
pansion coefficients can be determined from compu
simulations in a straightforward manner.61 A conveniently
reformulated version of Eqs.~2!–~4! then allows one to cal-
culate the Frank elastic constantsK11, K22, andK33 from a
direct inspection of expansion coefficients of the DCF
Fourier space. We apply the method to a model system
soft ellipsoidal particles in the nematic phase. For comp
son, we also compute the Frank elastic constants from
fluctuations of the order tensor, Eqs.~6! and~7!. We find that
the values are in good agreement. Our results thus show
the Poniewierski–Stecki theory in combination with the c
rect DCF can be used to bridge between the microsco
properties of nematic liquid crystals and their mesosco
i.e., elastic properties.

Our paper is organized as follows. We develop the t
oretical tools needed for our procedure in Sec. II. Section
gives details of the simulation model and the simulat
techniques. The results are presented in Sec. IV and
cussed in Sec. V.
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II. THEORETICAL BACKGROUND

We begin by recalling some common definitions.72 Let
us denote byr(u,r ) the local number density of particle
with orientationu at positionr . In a uniaxial nematic liquid
at equilibrium with directorn0 , it is distributed according to
a one-particle distribution function̂r(u,r )&5r (1)(u), that
actually depends onuu•n0u only. The pair distribution func-
tion r (2)(u1 ,u2 ,r12r2) gives the probability of finding a
particle with the orientationu1 at the positionr1 , and an-
other particle with orientationu2 at r2 . Particles at infinite

distance become uncorrelated, hencer (2)(u1 ,u2 ,r ) →
r→`

r (1)

3(u1)r (1)(u2). This motivates the definition of the so-calle
total correlation function

h~u1 ,u2 ,r !5
r~2!~u1 ,u2 ,r !

r~1!~u1!r~1!~u2!
21, ~8!

which measures the total effect of a particle 1 on a particle
This effect is often separated into two parts: a hypothet
‘‘direct’’ effect of 1 on 2, characterized by the direct corre
lation functionc(u1 ,u2 ,r ) and an ‘‘indirect’’ effect, where 1
is assumed to influence other particles 3, 4, etc., which
turn affect 2. The total correlation function is related to t
DCF via the Ornstein–Zernike equation60

h~u1 ,u2 ,r12!5c~u1 ,u2 ,r12!1E c~u1 ,u3 ,r13!r
~1!

3~u3!h~u3 ,u2 ,r32!du3 dr3 , ~9!

wherer i j abbreviatesr i2r j .
In the framework of density functional theories, the d

rect correlation function has another interpretation as the
ond functional derivative of the excess free energy with
spect to local density distortionsdr(u,r )5r(u,r )2r (1)(u
•n0).60 To lowest order indr, the expansion of the free
energy functional about an undistorted equilibrium referen
state is given by

d2F5
kBT

2 E Fd~u12u2!d~r12!

r~1!~u1•n0!
2c~u1 ,u2 ,r12!G

3dr~u1 ,r1!dr~u2 ,r2!dr1 dr2 du1 du2 . ~10!

In systems of particles with uniaxial symmetry, further a
proximations are not needed.43 However, the derivation is
greatly simplified by the additional assumption that the r
evant long-wavelength distortions can be expressed as l
distortions of the directorn(r ), and that the density distribu
tion is otherwise at local equilibrium35

r~u,r !'r~1!~u•n~r !!. ~11!

Expanding the free energy in terms ofdn(r )5n(r )2n0

rather thandr(u,r ) and switching to a representation in Fo
rier space, Eq.~10! then reads

d2F5
VkBT

2 E F d~u12u2!

r~1!~u1•n0!
2c~u1 ,u2 ,k!G

3r~1!8~u1•n0!r~1!8~u2•n0!3@u1•dn~k!#

3@u2•dn~2k!#dk du1 du2 . ~12!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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This expression has to be related to Eq.~1!, which has the
Fourier representation

F$n~k!%5
1

2 E dk$K11@k•n#21K22@n•~k3n!#2

1K33@n3~k3n!#2%. ~13!

To this end, we expand the DCFc(u1 ,u2 ,k) in Eq. ~12! in
powers ofk up to second order. For convenience, we cho
a coordinate frame such that thez axis points in the direction
of n0 ~director frame!.

Since a global rotation of the directorn does not
change the free energy, the leading termk50 must vanish,
i.e., one has

E r~1!8~uz!
2

r~1!~uz!
ua

2 du5E c~u1 ,u2 ,k50!r~1!8~u1,z!

3r~1!8~u2,z!u1,au2,a du1 du2

~14!

for a5x,y. Equation~14! has been derived in a differen
context by Gubbins73 and is quite generally valid. For sym
metry reasons, the terms linear ink in the expansion of~12!
vanish too. The quadratic terms lead to an expression of
form ~13!, with Kii given by

K1152
kBT

2 E ]2c~k,u1 ,u2!

]kx
2 U

k50

3r~1!8~u1z!r
~1!8~u2z!u1xu2x du1 du2 , ~15!

K2252
kBT

2 E ]2c~k,u1 ,u2!

]kx
2 U

k50

3r~1!8~u1z!r
~1!8~u2z!u1yu2y du1 du2 , ~16!

K3352
kBT

2 E ]2c~k,u1 ,u2!

]kz
2 U

k50

3r~1!8~u1z!r
~1!8~u2z!u1xu2x du1 du2 , ~17!

which is the Fourier space version of the Poniewiersk
Stecki equations~2!–~4!. As mentioned above, the same r
sult can be derived without the approximation~11! for sys-
tems of particles with uniaxial symmetry.43 Compact
expressions for the correction terms in systems of asymm
ric molecules have been given by Yokoyama.44 In this paper,
we shall be concerned with uniaxially symmetric molecu
only.

For practical applications, it is convenient to expand
orientation dependent functions in spherical harmon
Ylm(u). In the director frame, we obtain

r~1!~u!5% (
l even

f lYl0~u!, ~18!

where% is the total bulk number density, and
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F~u1 ,u2 ,r !5 (
l 1 ,l 2 ,l

m1 ,m2 ,m

Fl 1m1l 2m2lm~r !

3Yl 1m1
~u1!Yl 2m2

~u2!Ylm~ r̂ !, ~19!

F~u1 ,u2 ,k!5 (
l 1 ,l 2 ,l

m1 ,m2 ,m

Fl 1m1l 2m2lm~k!

3Yl 1m1
~u1!Yl 2m2

~u2!Ylm~ k̂!. ~20!

Here F stands for any ofr (2), h, or c, r̂ denotes the unit
vector r /r , and k̂ the unit vectork/k. The symmetry of the
nematic phase ensures that all coefficients are real and
coefficients withm1m11m250, andl 1 l 11 l 2 even, enter
the expansions~19! and~20!. If the molecules have uniaxia
symmetry, every singlel i has to be even in addition.

Next we derive matrix versions of Eqs.~8! and ~9!. To
simplify the expressions, we introduce the notation

Gmm8m9
l l 8 l 9 5E du Ylm* ~u!Yl 8,m8~u!,Yl 9,m9~u!

5A~2l 911!~2l 811!

4p~2l 11!
C~ l 9l 8l ;000!

3C~ l 9l 8l ;m9m8m!, ~21!

whereC are the Clebsch–Gordan coefficients. The total c
relation functionh can then be calculated fromr (2) by in-
version of the matrix version of Eq.~8!,

r l 1m1l 2m2lm
~2! ~r !5%2S A4p f l 1

f l 2
dm10dm20d l0dm0

1 (
l 18 l 19

l 28 ,l 29

hl
18m1l

28m2lm~r ! f l
19
f l

29
G

m1m10
l 1l 18 l 19 G

m2m20
l 2l 28 l 29 D .

~22!

Equation ~22! is a linear system of equations and can
solved for the coefficients ofh by standard numerical meth
ods.

The Ornstein–Zernike equation~9! is most conveniently
solved in Fourier spacek. We calculate the coefficient
hl 1m1l 2m2lm(k) of the total correlation function in Fourie
space by using the Hankel transformation61

hl 1m1l 2m2lm~k!54p i lE
0

`

r 2 j l~kr !hl 1m1l 2m2lm~r !dr, ~23!

with the spherical Bessel functionsj l . The matrix version of
the Ornstein–Zernike equation~9! in Fourier space reads
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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hl 1m1l 2m2lm~k!5cl 1m1l 2m2lm~k!

1% (
l 3l 38 l 39m3

l 8m8 l 9m9

cl 1m1l 3m3l 8m8~k!

3hl
38m3l 2m2l 9m9~k! f l

39
Gmm8m9

l l 8 l 9 G
m3m30
l 3l 38 l 39

3~21!m3. ~24!

The result for the direct correlation functionc(k) is readily
transformed back into real space by another Hankel trans
mation. However, this is not necessary for our purpose,
cause the Poniewierski–Stecki equations assume a
handy form in Fourier space: the spherical harmonic rep
sentation of Eqs.~15!–~17! reads

Kii 5
1

2

d2

dk2 Cii ~k!U
k50

for i 51,2,3 ~25!

with

Cii ~k!5
kBT%2

8Ap
(
l 1l 2

Al 1~ l 111!Al 2~ l 211! f l 1
f l 2

3H @cl 11l 22100~k!1cl 121l 2100~k!#

1v i

A5

2
@cl 11l 22120~k!1cl 121l 2120~k!#

1wi

A15

A8
@cl 11l 21222~k!1cl 121l 22122~k!#J

~26!

and (v1 ,v2 ,v3)5(21,21,2), (w1 ,w2 ,w3)5(21,1,0). De-
riving these equations, we have exploited the relat
*dr F(r )r a

252]2F(k)/]ka
2 uk50 and properties of spherica

harmonics. Finally, Eq.~14! can be rewritten as

Cii ~k50!52kBTpE
21

1

duz~12uz
2!

r~1!8~uz!
2

r~1!~uz!
, ~27!

whereCii (k) is defined as in Eq.~26!.

III. MODEL AND SIMULATION DETAILS

We performed computer simulations of a system of a
ally symmetric rigid particles, which interact via a simp
repulsive pair potential

Vi j 5H 4e0~Xi j
122Xi j

6 !1e0 : Xi j
6 .1/2,

0: otherwise.
~28!

Here Xi j 5s0 /(r i j 2s i j 1s0), r i j denotes the distance be
tween particlesi and j , and the shape function

s i j ~ui ,uj , r̂ i j !5s0H 12
x

2 F ~ui• r̂ i j 1uj• r̂ i j !
2

11xui•uj

1
~ui• r̂ i j 2uj• r̂ i j !

2

12xui•uj
G J 21/2

, ~29!
Downloaded 30 Oct 2001 to 129.70.124.4. Redistribution subject to AI
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approximates the contact distance between two ellipsoid
elongation k5send–end/sside–side5A(11x)/(12x) with
orientationsui and uj , which are separated by a cente
center vector in the direction ofr̂ i j 5r i j /r i j .74 We use
throughout scaled units defined in terms ofe0 , s0 , the par-
ticle massm0 and the Boltzmann constantkB . We studied
systems of particles with elongationk53 at temperatureT
50.5 and number density%50.3. The pressure wasP
52.60.75 This corresponds to a state well in the nema
phase: at fixed temperatureT50.5, the fluid remains nemati
down to the density%50.29 or, equivalently, the pressur
P52.35.76 The average order parameter density in our s
tem was ^P2&50.69 and the fourth rank parameter w
^P4(u•n0)&50.31, P4(x)5(35x4230x213)/8 being the
fourth Legendre polynomial.

The pair distribution function was determined in syste
of N51000, 4000, and 8000 particles in cubic boxes w
periodic boundary conditions. For theN51000 system we
used a Monte Carlo~MC! program by Lange.76 Trial moves
picked a particle at random and attempted in random or
either a rotation or a translation, with maximum step siz
chosen such that the Metropolis acceptance rate was rou
30%. The larger systems were studied with a massively
allel computer, using a domain decomposition molecular
namics~MD! program, that has been codeveloped by one
us ~G.G.!. These simulations were performed in the micr
canonical ensemble using theRATTLE integrator77,78 with
time stepDt50.003~Ref. 79! and molecular moment of in
ertia I 52.5. Run lengths were 8 million MC steps, one M
step consisting of 2N trial moves, or 10 million MD steps
respectively; data for the pair distribution function were c
lected every 1000 or 10 000 steps.

The order tensor fluctuations are sampled most e
ciently if the k vectors in Eqs.~6! and~7! are always on the
same grid. They were therefore determined from independ
simulations in an ensemble where the directorn0 was con-
strained to theZ axis of the simulation box.71 Thus thexyz
frame of Eqs.~6! and~7! becomes coincident with theXYZ
frame of the simulation box. The constraint was imp
mented in the MD simulations by adding two glob
Lagrange multipliers to the integrator, so thatQXZ(0)
5QYZ(0)50 at every time step. Our procedure was simi
to that introduced by Allenet al.,71 except that we used a
improved integrator80 designed in the spirit ofRATTLE,77,78so
that it is symplectic and fulfills the constraints exactly. T
same integrator has already been used81 to calculateK22 in a
Gay–Berne fluid;82 the value compared well with an estima
from a thermodynamic perturbation approach. Here,
simulated a system ofN54000 particles in a cubic box ove
10 million MD steps, and a system ofN516 000 particles in
an elongated box with side ratiosLX :LY :LZ51:1:2 ~Ref.
83! over 5 million MD steps. Data for the order tensor we
collected every 200 steps. The largest autocorrelation tim
were of the order of 105 MD steps at the lowestk values and
dropped rapidly below 1000 MD steps for higherk.

IV. DATA ANALYSIS AND RESULTS

We begin by presenting the results for the order ten
fluctuations. Following Ref. 71, we calculated the quantit
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Wxz~k!5
9^P2&

2VkBT
4^uQxz~k!u2&

;
k→0

K11kx
21K33kz

2, ~30!

Wyz~k!5
9^P2&

2VkBT
4^uQyz~k!u2&

;
k→0

K22kx
21K33kz

2 , ~31!

where the frame is chosen such thatk lies in thexz plane@cf.
Eqs. ~6! and ~7!#. More specifically, we evaluated the ord
tensor in Fourier spaceQ(k) on ak grid with 63636 grid
points in the small system (N54000), and 636312 grid
points in the large system (N516 000). Then we applied a
rotation Q(xyz)(k)5U(k)Q(XYZ)(k)UT(k) into the desired
coordinate frame such thatky50, and calculated the ave
ages^uQaz(k)u2& and theWaz(k) surface in that frame. Be
cause of the constraint onn0 , U(k) is a constant throughou
the run.

In the high wavelength limitk→`, Waz(k) (a51,2)
takes the value71

Waz~k! ——→
k→` ^P2&

2rkBT
^P2&/2124^P4&/3511/15. ~32!

In our simulations, we obtained 1.13, which is in good agr
ment with the theoretical value 1.12.

The results for theWaz(k) surfaces are shown in Fig. 1
The data for the small system~coarse grid! match almost
exactly those for the large system~fine grid!. They were

FIG. 1. Wxz ~a! and Wyz ~b! surfaces forN54000 ~cubic box! and N
516 000~elongated box!; the smaller, finer spaced grids correspond to
larger system. The fits~dotted lines! coincide almost perfectly with the dat
~solid lines!.
Downloaded 30 Oct 2001 to 129.70.124.4. Redistribution subject to AI
-

fitted to a fourth order polynomial inkx
2 and kz

2 ~i.e., with
highest order termskx

8 ,kx
6kz

2 ,...,kz
8! without a zeroth order

term. Higher orders were disregarded because the fourth
der coefficients turned out to be already very small. Norm
equations and singular value decomposition gave the s
results. Figure 1 demonstrates that the fit is almost perf
The leading coefficients give the elastic constants, show
Table I. As expected for elongated molecules, one finds
K33 is largest, followed byK11 andK22.

Next we discuss the results for the pair correlation fun
tions. The spherical harmonics expansion coefficients of
pair distribution functionr (2) were determined using84

r l 1m1l 2m2lm
~2! ~r !

54p%2g~r !^Yl 1m1
* ~u1!Yl 2m2

* ~u2!Ylm* ~ r̂ !&dr , ~33!

where^•&dr denotes the average over all molecules in a sh
dr from r to r 1dr , and the functiong(r ) is the number of
molecular centers at distancer from a given molecular cen
ter, divided by the number at the same distance in an id
gas at the same density. The calculation of these averag
very time consuming, since a great number of coefficie
has to be evaluated, and was therefore carried out in par
a massively parallel machine. We have determined coe
cients for values ofl ,l i up to l max56 in all systems, and for
values up tol max58 in the smallest system. The bin size w
dr 50.04 and the cutoff distancer max was chosen to be 40%
of the box sideL in order to reduce boundary effects.85

From the pair distribution function we calculated the t
tal correlation function by inverting Eq.~22!. The latter was
then Fourier transformed according to Eq.~23!. There is a
subtle problem here: due to the elasticity of the nema
phase, the total correlation function decays algebraically
1/r . This follows directly from Eq.~1!.3 Before applying Eq.
~23!, we thus fitted the simulation data points at the larg
distancesr .r 0 to a power law of the formb/r and extrapo-
lated h(r ) to infinity.86 The parameterr 0 was chosen to be
2.8, 4.0, and 5.3 in systems ofN51000, 4000, and 8000
particles, respectively.

It turned out that the long-range tail was quite pr
nounced for coefficients ofh with m1561,m2561, and
almost negligible for the others. In Fig. 2 we show an e
ample of a coefficient with a pronounced long-range tail,
coefficient hl 1m1l 2m2lm(r ) with l 15 l 25 l 52, m151, m2

521 and m50. The data for different system sizesN
51000, N54000, andN58000 lie almost on top of each
other, hence the form ofh(r ) at r ,r max is not affected by

TABLE I. Elastic constants from the analysis of order tensor fluctuations
systems of different sizeN.

System
size

Order tensor fluctuations

^K11& ^K22& ^K33&

4 000 0.5360.01 0.3060.01 1.6060.01
16 000 0.5360.01 0.3060.01 1.5960.01
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noticeable finite size effects. The dominating finite size pr
lem comes from the uncertainty of the extrapolation, if t
available range ofh(r ) is too short.

The rest of the analysis was straightforward. From
coefficients of the total correlation function in Fourier spa
hl 1m1l 2m2lm(k), those of the DCF were obtained by solvin
the linear matrix equation~24!. Then we calculated the func
tionsCii (k) as defined in Eq.~26!. According to Eq.~25!, the
elastic constantsKii can be determined from the initial slope
in a plot of Cii (k) versusk2. Data forCii (k) are shown for
different system sizes in Fig. 3. The points at zero wa
vectorCii (0) were calculated using Eq.~27!. They fit nicely
on the straight lines atk→0, hence the data are consiste
with the requirement~14! or ~27!. This gave additional con
fidence in the quality of the analysis. The slopes of
straight lines yield the elastic constants.

FIG. 2. Expansion coefficienth212– 120(r ) of the total correlation functionh
vs r in systems of sizeN58000 ~solid line!, N54000 ~dotted line!, and
N51000 ~dashed line!. Cutoff radii werer max511.9,9.4, and 6.6, respec
tively. The long dashed line indicates the extrapolation towardsr→` ~for
the datasetN51000). Inset shows same data vs 1/r .

FIG. 3. Weighted sum of the DCF expansion coefficientsCii (k) as defined
in Eq. ~26! vs k2 for different system sizesN ~unconstrained director, evalu
ated using coefficients up tol max56). The points atk50 are taken from Eq.
~27!. The initial slopes give the elastic constantsKii . Thick solid lines
indicate corresponding fits for theN54000 system.
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The results are summarized in Table II. We have cal
lated the DCF from the pair distribution functionr (2) using
an upper cutoffl max52,4, and 6, respectively, in the matri
equations~22! and~24!. Already the lowest order calculatio
with l max52 gave elastic constants of the correct order
magnitude. Quantitatively reliable results were obtained w
l max>6: we checked in the smallest system that the res
from calculations withl max56 andl max58 do not differ sig-
nificantly.

Since the calculations withl max58 were very time con-
suming ~one has 1447 different expansion coefficients!, we
usedl max56 in the analyses of the larger systems~469 dif-
ferent expansion coefficients!.

The results were the same for systems of sizeN
51000, 4000, and 8000. Furthermore, they were not
fected by the presence of a director constraint: as mentio
in Sec. III, the DCF was mostly calculated in unconstrain
systems, but we also studied the DCF in one constrai
system for comparison.

Finally, we compare the values of the elastic consta
calculated by the DCF approach with those obtained fr
the order fluctuation analysis, shown in Table I. The valu
for K11 and K22 are identical for both methods.K33 is
slightly underestimated by the DCF analysis withl max56,
but the result increases withl max, and agrees within the erro
with that of the order fluctuation analysis atl max58.

One might ask how much the successive coefficients
the ~correct! DCF contribute to the elastic constants. W
found that the contribution of the coefficients withl 1.4, l 2

.4 or l .4 is very small. If we include only terms up t
l ,l i54 in Eq. ~26!, we obtainK1150.55, K2250.21, and
K3351.51 ~in the largest systemN58000!, which is very
close to the final values quoted in Table II. However, w
could not push this analysis further. If we include only term
up to l ,l i52, the resultingCii (k) are very concave and hav
no well-defined initial slope in a plot versusk2. Hence the

TABLE II. Elastic constants from the DCF method for systems of differe
size N. ~* ! marks a system that has been simulated with a director c
straint. Results are shown for different choices of the cutoff valuel max in the
spherical harmonics expansion of the pair distribution functionr (2). See
Sec. IV for details.

System
size

Direct correlation function

l max ^K11& ^K22& ^K33&

1000 8 0.5560.02 0.3560.03 1.5660.04
6 0.5160.02 0.3460.03 1.5260.04
4 0.5360.03 0.2360.02 1.3260.04
2 0.5160.01 0.2060.01 1.5660.04

4000 6 0.5160.02 0.3160.01 1.5160.03
4 0.6560.02 0.2760.02 1.2360.03
2 0.5360.01 0.2260.01 1.4660.03

*4000 6 0.5260.02 0.3160.01 1.5160.03
4 0.6560.02 0.2760.02 1.2460.04
2 0.5360.01 0.2260.01 1.4860.03

8000 6 0.5160.02 0.3360.02 1.4860.03
4 0.6160.01 0.2960.02 1.2560.04
2 0.5460.01 0.2360.01 1.4760.04
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contributions of successivels to the elastic constants cann
be distinguished.

V. SUMMARY AND CONCLUSIONS

We have presented a method which allows one to de
mine without approximations the direct correlation functio
in nematic liquid crystals from computer simulations, and
calculate elastic constants on that basis according to
Poniewierski–Stecki theory35 ~2!–~4!. We have applied this
method to a nematic fluid of soft ellipsoids. In the sam
system, the elastic constants were also determined by a
tablished approach, the analysis of order tensor fluctuati

Our study represents a direct test of the Poniewiers
Stecki theory. We found that the results obtained with
two methods agree well with each other. The Poniewiers
Stecki theory can thus be employed to calculate elastic c
stants, at least in our system, provided that the exact d
correlation functions are used in the equations.

Hence we have established an alternative way of ca
lating elastic constants in nematic liquid crystals. As long
a simulation is performed solely to determine elastic c
stants, the order tensor fluctuation approach is still more
ficient: the statistical error of pair correlation functions mu
be quite small for a reliable DCF analysis, and the analys
very time consuming. However, the DCF approach has
advantage of being straightforward; elastic constants ca
computed from arbitrary bulk simulations, if the pair dist
bution functions are known with sufficient accuracy. Ev
the calculation of spatially varying elastic constants, e.g.
the vicinity of surfaces, is conceivable.

The direct correlation function is a central quantity
liquid state theories. The study of direct correlation functio
in the nematic phase is therefore interesting in its own rig
We shall examine them in more detail and compare them
those in the isotropic phase in a forthcoming publication.87
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