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Elastic constants from direct correlation functions in nematic liquid
crystals: A computer simulation study
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Density functional theories such as the Poniewierski—Stecki theory relate the elastic properties of
nematic liquid crystals with their local liquid structure, i.e., with the direct correlation function
(DCF) of the particles. We propose a way to determine the DCF in the nematic state from
simulations without any approximations, taking into account the dependence of pair correlations on
the orientation of the director explicitly. Using this scheme, we evaluate the Frank elastic constants
K11, Ky, andKsz in a system of soft ellipsoids. The values are in good agreement with those
obtained directly from an analysis of order fluctuations. Our method thus establishes a reliable way
to calculate elastic constants from pair distributions in computer simulation®20@ American
Institute of Physics.[DOI: 10.1063/1.1404388

I. INTRODUCTION kgT 5
KzzzTJ ryc(r,ug,uz)
Nematic liquid crystals are fluids of anisotropic particles,

which are aligned preferentially along one directfdtiTheir X p" (ug,) pM" (Us,)UgyUpy dr duy duy, (3
orientation is characterized by a directorof unit length,
with physically identical states and —n. Since the long kT [,
: : : 337 "5 rZC(r!ulIUZ)
range orientational order breaks a continuous symmetry, the 2

isotropy of space, there exist soft fluctuation modes—spatial
variations of the directon(r)—which cost no energy in the
infinite Wavelength ||m|t(|e, the limit wheren is rotated where the vector connects the centers of mass of two mol-
uniformly) and are otherwise penalized by elastic restoringecu|es 1 and Zul, u, are unit vectors a|ong the molecule
forces®* For symmetry reasons, the latter depend on onlyaxes c(r,u; ,u,) denotes the DCF in the nematic liquid, and
three material parameters at large finite wavelentjths. pM)’(u,) is the derivative of the one-particle distribution
They are described by an elastic free energy functfonal  function with respect ta,. The integrals/dr run over all
space, and du over the full solid angleT is the tempera-
ture, andkg is the Boltzmann constant.

X p 7 (Uug,) p P (Usy,) U, Uy dr duy dus, (4)

1
An(r)}= Ef dr{K4[V-n]?+Kyfn-(Vxn)]? Equations of the form (2)—(4) have later been
rederived®*® and applied in theorié5®® and
+KadnX(Vxn)]?}, (1)  simulation§?>~%to study elastic constants in nematic liquid

crystals®® The main difficulty with the Poniewierski—Stecki
which has three contributions: the splay, twist, and bendauations 1S that they depend on _the DCF in the nematic
phase, which is not known. Theories have resorted to ap-

modes. The parameteks,, («=1,2,3), called Frank elastic ati th DCE f ffectively i
constants, control almost exclusively the structure and thgroximations, €.g., théy use a rom an efiectively 1So-

. —42 .
properties of nematic liquid crystals at mesoscopic Iengtr"frOpIC reference stat¥*? or from a state with perfectly

; ; 9,30,55 ;i ; : 265 N
scales. Expressions that relate them to the microscopic pro;‘?—“gned particles: Simulation studie¥~® have ne

erties of liquid crystals are thus clearly of interest. glected the explicit angular dependence of the pair correla-

Several microscopic approaches have been proposed aﬂan functions on the orientation of the director. Longjaal.

employed in the pagt>® Poniewierski and Steckl have ave recently pointed out that this approximation may not be

used the density functional formalisito derive a set of adequate in nematic liquid crystas.

equations which connects the elastic constants with the direct . A(Ijt(zr_natlt\llellz/, th(ihel?stm consltantsthcf?n talstc_) be (fj?;er_
pair correlation functiofDCF), one of the central quantities mined directly from the fong-waveiength fluctuations ot the

in liquid state theorie$>®!In a coordinate frame where the order tensor in Fourier space

axis points along the directar, the equations read v
Q)= 2 Gugy—zhexpikr), 5)

=

ksT [ ,
K”:T ric(r,us,u,) where the sum runs over all particlesn the system] de-
notes the unit matrix andb the dyadic product of two vec-

X pM" (Ug,) p™ (Upy) Ugylpy dr duy dusy, (2)  tors. The largest eigenvalue of thex3 matrix Q at zero
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wave vector Q(K)|«—o) is the nematic order parameter |l. THEORETICAL BACKGROUND
VP,, and the corresponding eigenvector is the direntof
the nematic liquid.

In a reference frame where teaxis points alongn and
they axis is perpendicular tl, the order tensor fluctuations
have the limiting long-wavelength behavior

We begin by recalling some common definitidAd.et
us denote byp(u,r) the local number density of particles
with orientationu at positionr. In a uniaxial nematic liquid
at equilibrium with directong, it is distributed according to
a one-particle distribution functiofp(u,r))=p®)(u), that
actually depends ofu-ng| only. The pair distribution func-

(0 (k)|2>k:°g (P2)?VkgT e tion p®(uy,u,,r—r,) gives the probability of finding a
x 4 Kpki+ Kk’ particle with the orientatioru; at the positionr,, and an-
other particle with orientatiom, at r,. Particles at infinite
r—oo
L, 09 (Py)2VkgT distance become uncorrelated, hené®(uy,u,,r) — p®
(1QyKI%) ~ 7 w23 (M) x(uy) pV(u,). This motivates the definition of the so-called
4 Kok +Kaks ’ .
total correlation function
Provided the simulated systems are sufficiently large, the p@(uy,Uy,r)
elastic constants can be extracted directly from Esand h(uy,uz,N=——— 1,51 (8)
(7)5668-71 p - (ug)p'~(uz)

Allen et al.”* have used this method to study elastic con-which measures the total effect of a particle 1 on a particle 2.
stants in a model liquid crystal, which had already been inThis effect is often separated into two parts: a hypothetical
vestigated earlier by Stelzeret al®®® using the “direct” effect of 1 on 2, characterized by the direct corre-
Poniewierski—Stecki equation§2)—(4). The results dis- lation functionc(u,,u,,r) and an “indirect” effect, where 1
agreed by an order of magnitude. Since the determination aé assumed to influence other particles 3, 4, etc., which in
elastic constants via Eq$6) and (7) is straightforward, it turn affect 2. The total correlation function is related to the
seems reliable and the values calculated by ABeml. are  DCF via the Ornstein—Zernike equatfGn
presumably accurate. On the other hand, Stetteal 5354
use an “unori_ented nematic approxim{;\tion," where pair cor- h(U1,U21f12)=C(U1.U2.f12)+f c(uy,Ug, 19 p™Y
relation functions are replaced by their average over all ori-
entations of the director. Given the importance of the X(Ug)h(Usz,Usp,r3)dUs drg, 9)
Poniewierski—Stecki equations, a clearcut test of the applica-
bility of Egs. (2)—(4) in a nematic liquid crystal is desirable. Wherer;; abbreviates;—r;.

To the knowledge of the present authors, no one has yet In the framework of density functional theories, the di-
employed the Poniewierski—Stecki equations with the exactect correlation function has another interpretation as the sec-
DCF of a nematic state. This is presumably due to the facend functional derivative of the excess free energy with re-
that no method has been proposed so far which allows one &Pect to local density distortion8p(u,r)=p(u,r)—p*(u
extract the full orientation dependent DCF from computer-No).* To lowest order indp, the expansion of the free

simulation data. energy functional about an undistorted equilibrium reference
The present work attempts to remedy this situation. Westate is given by

propose a way to calculate the DCF without any approxima- B

. . i . L kT S(up—Uy) 8(r o)

tions from a spherical harmonic expansion of the pair distri-  §27= — — O —C(Uy, Uy, 1)

bution function in a uniaxial nematic liquid crystal. The ex- 2 p " (Ug-No)

pansion coefficients can be determined from computer X 8p(Uy,r1)8p(Us,ro)dr drydu;y dus. (10)

simulations in a straightforward manrférA conveniently

reformulated version of Eq$2)—(4) then allows one to cal- In systems of particles with uniaxial symmetry, further ap-

culate the Frank elastic constamts;, K,,, andKs; from a  Proximations are not needéd However, the derivation is

direct inspection of expansion coefficients of the DCF ingreatly simplified by the additional assumption that the rel-

Fourier space. We apply the method to a model system dfvant long-wavelength distortions can be expressed as local

soft ellipsoidal particles in the nematic phase. For comparidistortions of the directon(r), and that the density distribu-

son, we also compute the Frank elastic constants from théon is otherwise at local equilibriufh

fluctuations of the order tensor, Ed6) and(7). We find that _a

the values are in good agreement. Our results thus show that p(ur)~p(u-n(r)). (D

the Poniewierski—Stecki theory in combination with the cor-Expanding the free energy in terms éh(r)=n(r)—ng

rect DCF can be used to bridge between the microscopicather thansp(u,r) and switching to a representation in Fou-

properties of nematic liquid crystals and their mesoscopicrier space, Eq(10) then reads

i.e., elastic properties.
Our paper is organized as follows. We develop the the- 52— VkBTJ o(uy — Up)

oretical tools needed for our procedure in Sec. Il. Section IlI 2 pP(uy-ng)

gives details of the simulation model and the simulation (1)1 1)

techniques. The results are presented in Sec. IV and dis- Xp" Uz o)™ (Uz-ng) X [y an(k) ]

cussed in Sec. V. X[ us- on(—k)]dk duy du,. (12

—c(ug,Uy,k)
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This expression has to be related to Etj, which has the

Fourier representation F(ug,up,r)= |2|| i myl,myim(T)
1 mll,vmzzy,m
Fn(k)}=5 f dk{K g k- n]?+Kzdn- (kxn)]? XYy (U2) Y, (U2) Yin(P), (19
+Kad nx(kxn)]?}. (13
F(ug,u,, k)= F k
To this end, we expand the DQRuy,u,,k) in Eq. (12) in (Us, Uz, k) |1,2|2,| gl (K)
powers ofk up to second order. For convenience, we choose my,mp,m
a coordinate frame such that th@xis points in the direction ~
of n, (director frame. XY 1ymy (U2 Yimy(U2) Yim(K). (20

Since a global rotation of the directan does not
change the free energy, the leading tekmO must vanish, HereF stands for any op®, h, or c, f denotes the unit

i.e., one has vectorr/r, andk the unit vectork/k. The symmetry of the
@) 5 nematic phase ensures that all coefficients are real and only
J (uy) 2 du=f C(Uy Uy k=0)pY" (uy,) coefficients withm+m;+m,=0, andl+1,+1, even, enter
D(u,) 12 P 1z the expansion$l9) and(20). If the molecules have uniaxial
symmetry, every singlé has to be even in addition.
Next we derive matrix versions of Eq&) and (9). To
(14  simplify the expressions, we introduce the notation

X p™M’ (Uuy,) Uy WUy, duy du,

for a=x,y. Equation(14) has been derived in a different

context by Gubbin€ and is quite generally valid. For sym- 'rLer J du Y (WY} (W), Y ()
metry reasons, the terms linearknn the expansion of12)
vanish too. The quadratic terms lead to an expression of the \/(2|”+1)(2| 1)
form (13), with K;; given by = A2+ 1) C(1"1"1;000
< __kB_Tf g%c(k,uy,uy) xC("'l;m'm'm), (21)
1 2 k2 o
(1) (1), whereC are the Clebsch—Gordan coefficients. The total cor-
X P (Ugz) p " (U Uplax duy AUy, (15 relation functionh can then be calculated frop(® by in-
) version of the matrix version of E{8),
K :_kB_Tf d°c(k,uq,uy)
2 2 K3 o
a (2)
p (1= VAt £ 6m 00m,00100
XP(l)/(Ulz)P(l)'(Uzz)UlyuzydU1dUg, (16) I1mylomaim Iy m;09m,09109mo
_ kgT [ d%c(k,ug,up)
= | —— 117 lalsly
2 e ico +2 hin, (1) g T 202
11
X p" (ug,) p™M" (Uz,)Ugyugy duy dusy, (17) 15,15
which is the Fourier space version of the Poniewierski— (22)

Stecki equation$2)—(4). As mentioned above, the same re-

sult can be derived without the approximati@il) for sys- Equation(22) is a linear system of equations and can be
tems of particles with uniaxial symmetty. Compact solved for the coefficients di by standard numerical meth-
expressions for the correction terms in systems of asymmetds.

ric molecules have been given by Yokoyaffian this paper, The Ornstein—Zernike equatidf) is most conveniently
we shall be concerned with uniaxially symmetric moleculessolved in Fourier spac&. We calculate the coefficients
only. h|lm1 2m2,m(k) of the total correlation function in Fourier

For practical applications, it is convenient to expand allspace by using the Hankel transformatibn
orientation dependent functions in spherical harmonics

Y,m(u). In the director frame, we obtain .
h|1m1|2m2|m(k)=477'i|fO r2 (KD mymom(0 AT, (23)

pP(w=0 X fYjo(u), (18)
| even
with the spherical Bessel functiofps. The matrix version of
wherep is the total bulk number density, and the Ornstein—Zernike equatidf) in Fourier space reads
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h|1m1|2m2|m(k):C|1m1|2m2|m(k) approximates the contact distance between two eIIip_soids of
elongation «= o end_end Tside—side™ V(1 +x)/(1—x) with
N 2 K orientationsu; and u;, which are separated by a center—
e Ciymylmgl m* (K) center vector in the direction of;=r;/r;;.”* We use

131515 . . .
|,3m~°’,|3,,:]3,, throughout scaled units defined in termsegf o, the par-
ticle massmgy and the Boltzmann constakg . We studied
n” 1ol . . .
X hlgm3lzmzl"m”(k)flgrmm/mffrrﬁ 33 systems of particles with 'elongatlon=3 at temperaturd
373 =0.5 and number density=0.3. The pressure waP
X (—1)"s. (24) =2.60.”° This corresponds to a state well in the nematic

. . . ) ) phase: at fixed temperatufe=0.5, the fluid remains nematic
The result for the direct correlation functiatk) is readily  4,.vn to the density =0.29 or, equivalently, the pressure
transformed back into real space by another Hankel transfols _ 5 3576 T average order p’)arameter dehsity in our sys-

mation. However, this is not necessary for our purpose, bet'em was(P,)=0.69 and the fourth rank parameter was
cause the Poniewierski—Stecki equations assume a ve@p (U-ng))=0.31, P4(x)=(35x*—30x2+3)/8 being the
handy form in Fourier space: the spherical harmonic reprefOthh ngendre p;oly‘:wmial.

sentation of Eqst15)—(17) reads The pair distribution function was determined in systems

of N=1000, 4000, and 8000 particles in cubic boxes with
for i=1,2,3 (25 periodic boundary conditions. For thé=1000 system we

used a Monte CarloMC) program by Langé® Trial moves
with picked a particle at random and attempted in random order

either a rotation or a translation, with maximum step sizes

2 I+ DL+ Df, chosen such that the Metropolis acceptance rate was roughly
i 12 30%. The larger systems were studied with a massively par-
allel computer, using a domain decomposition molecular dy-
namics(MD) program, that has been codeveloped by one of
us (G.G). These simulations were performed in the micro-
canonical ensemble using tHeaTTLE integratof’:’® with
time stepAt=0.003(Ref. 79 and molecular moment of in-
ertial =2.5. Run lengths were 8 million MC steps, one MC
step consisting of B trial moves, or 10 million MD steps,

1 d?
Kiizz Wcii(k)

k=0

kBTQ2

8\m

Cii(k)=

X [ [C1,11,-10dK) +C — 11,100 K) ]

5
+0i5 (011,120 K) + €1 - 11,12d(K) ]

N _\/1—5 K+ K respectively; data for the pair distribution function were col-
Wi J8 [111,12-2(K) €1, —11,- 124 K)] lected every 1000 or 10 000 steps.

The order tensor fluctuations are sampled most effi-
(26) ciently if the k vectors in Egs(6) and(7) are always on the
and vq,v,,03)=(—1,—1,2), (wWy,w,,w3)=(—1,1,0). De- same grid. They were therefore determined from independent
riving these equations, we have exploited the relatiorsimulations in an ensemble where the direatigrwas con-
Jdr F(r)r2=—?F(k)/ok>?|—o and properties of spherical strained to theZ axis of the simulation boX* Thus thexyz
harmonics. Finally, Eq(14) can be rewritten as frame of Eqs(6) and(7) becomes coincident with th€Y Z
frame of the simulation box. The constraint was imple-

(1)r 2
Cii(k=0)=—kBT7rfl duz(l—ui)p(l)&, (27) mented in the MD simulations by adding two global
-1 p o (uy) Lagrange multipliers to the integrator, so th&ty,(0)
whereC; (k) is defined as in Eq(26). =Qyz0)=0 at every time step. Our procedure was similar

to that introduced by Alleret al,”* except that we used an

improved integratf designed in the spirit atATTLE,”""®s0
lll. MODEL AND SIMULATION DETAILS that it is symplectic and fulfills the constraints exactly. The
We performed computer simulations of a system of axi->ame '”tegrf;to_r&gaﬁ alrelady been ﬁ%:nj cz?llcu_lateKzz In-a
ally symmetric rigid particles, which interact via a simple Gay—Berne fluid,"t € value compared we with an estimate
re . . . from a thermodynamic perturbation approach. Here, we
pulsive pair potential . . ) .
simulated a system di=4000 particles in a cubic box over
deo(XiP—X) T et X >1/2, 10 million MD steps, and a system bf=16 000 particles in
i=10: otherwise. (28 an elongated box with side ratids;:Ly:L;=1:1:2 (Ref.
) 83) over 5 million MD steps. Data for the order tensor were
Here Xjj= oo /(rij—ojjt00), ri; denotes the distance be- cqjlected every 200 steps. The largest autocorrelation times

tween particles andj, and the shape function were of the order of 70MD steps at the lowest values and
x| (ui-Fi+u- fij)Z dropped rapidly below 1000 MD steps for higHer
oij (Ui ,U; ,ru)=cro{l— 27 Trxuu

IV. DATA ANALYSIS AND RESULTS
(uj- Fij—uj- ;)2
1—Xui'Uj

-1/2
] (29 We begin by presenting the results for the order tensor
fluctuations. Following Ref. 71, we calculated the quantities
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FIG. 1. W, (@ and W,, (b) surfaces forN=4000 (cubic boy and N
=16 000(elongated bok the smaller, finer spaced grids correspond to the
larger system. The fit&otted line$ coincide almost perfectly with the data

(solid lines.
9(P,)?VkgT k=0
Wi K)= 202280 ~ Ky kE+ Kk,
AT aQuipy T ks
9(P,)?VKgT k-0
WyAK)= (P2) Vkg ~ KokG+Kaks,

4]QyAK)|%)

where the frame is chosen such thdies in thexz plane[cf.
Egs.(6) and(7)]. More specifically, we evaluated the order
tensor in Fourier spad®(k) on ak grid with 6xX6x6 grid
points in the small systemN=4000), and & 6x12 grid
points in the large systenN(=16 000). Then we applied a
rotation Q®Y2(k)=U(k)Q*Y2(k)UT(k) into the desired
coordinate frame such th&t,=0, and calculated the aver-
ages(|Q.»(k)|?) and thew,,(k) surface in that frame. Be-
cause of the constraint any, U(k) is a constant throughout

the run.

In the high wavelength limik—o, W,,(k) (a=1,2)

takes the valué
ke (P2)?pkgT

War(K) (P)[21-4(P )35+ 1/15'

(30

31

(32
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TABLE I. Elastic constants from the analysis of order tensor fluctuations for
systems of different sizhl.

Order tensor fluctuations

System
size (Kip) (K22 (Kaa)
4000 0.530.01 0.36:0.01 1.66-0.01
16 000 0.530.01 0.36:0.01 1.59:0.01

fitted to a fourth order polynomial ik? and k? (i.e., with
highest order term&2 k°kZ, ... k&) without a zeroth order
term. Higher orders were d|sregarded because the fourth or-
der coefficients turned out to be already very small. Normal
equations and singular value decomposition gave the same
results. Figure 1 demonstrates that the fit is almost perfect.
The leading coefficients give the elastic constants, shown in
Table I. As expected for elongated molecules, one finds that
K sz is largest, followed byK; andKs.

Next we discuss the results for the pair correlation func-
tions. The spherical harmonics expansion coefficients of the
pair distribution functionp® were determined usifi{y

2
pl(lr)nllzmzlm(r)

=4m2g(N){Y{ m, (UD) Y, (U2) Yin(F)) o1 (33

where(-) 5, denotes the average over all molecules in a shell
or fromr tor+ 6r, and the functiorg(r) is the number of
molecular centers at distancefrom a given molecular cen-
ter, divided by the number at the same distance in an ideal
gas at the same density. The calculation of these averages is
very time consuming, since a great number of coefficients
has to be evaluated, and was therefore carried out in part on
a massively parallel machine. We have determined coeffi-
cients for values of,l; up tol,,=6 in all systems, and for
values up td ,,,=8 in the smallest system. The bin size was
or=0.04 and the cutoff distanag,,, was chosen to be 40%

of the box sidel in order to reduce boundary effeéfs.

From the pair distribution function we calculated the to-
tal correlation function by inverting Eq22). The latter was
then Fourier transformed according to E&3). There is a
subtle problem here: due to the elasticity of the nematic
phase, the total correlation function decays algebraically like
1/r. This follows directly from Eq(1).2 Before applying Eq.
(23), we thus fitted the simulation data points at the largest
distances >r to a power law of the forni/r and extrapo-
lated h(r) to infinity.%¢ The parameter, was chosen to be
2.8, 4.0, and 5.3 in systems &f=1000, 4000, and 8000
particles, respectively.

It turned out that the long-range tail was quite pro-
nounced for coefficients ofi with m;=*+*1m,=*+1, and
almost negligible for the others. In Fig. 2 we show an ex-

In our simulations, we obtained 1.13, which is in good agreeample of a coefficient with a pronounced long-range tail, the

ment with the theoretical value 1.12.

The results for théV,,(k) surfaces are shown in Fig. 1.
The data for the small systeficoarse grigl match almost
exactly those for the large systeffine grid. They were

coefficient h|1m1|2m2,m(r) with [;=1,=1=2, m;=1, m,
=—1 and m=0. The data for different system sizéé
=1000, N=4000, andN=38000 lie almost on top of each
other, hence the form di(r) atr<r ., is not affected by
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TABLE Il. Elastic constants from the DCF method for systems of different
size N. (*) marks a system that has been simulated with a director con-
straint. Results are shown for different choices of the cutoff vhligin the
spherical harmonics expansion of the pair distribution funcpéf. See

7232 J. Chem. Phys., Vol. 115, No. 15, 15 October 2001
0
-10 |
S
&
o' 20 +
-30 1
0 5 10 15

FIG. 2. Expansion coefficierit,;,_15{r) of the total correlation functioh
vs 1 in systems of sizé\=8000 (solid line), N=4000 (dotted ling, and
N=1000 (dashed ling Cutoff radii werer,,,,=11.9,9.4, and 6.6, respec-
tively. The long dashed line indicates the extrapolation towardse (for
the dataseN=1000). Inset shows same data vs.1/

Sec. IV for details.

Direct correlation function

System
size I max (K1) (K2 (Kag)

1000 8 0.55:0.02 0.35-0.03 1.56-0.04
6 0.51+0.02 0.34-0.03 1.52:0.04
4 0.53+0.03 0.23-0.02 1.32-0.04
2 0.51+0.01 0.20-0.01 1.56-0.04

4000 6 0.510.02 0.310.01 1.5%+0.03
4 0.65+0.02 0.27:0.02 1.23-0.03
2 0.53+0.01 0.22:0.01 1.46:0.03

*4000 6 0.52:0.02 0.310.01 1.510.03
4 0.65-0.02 0.27:0.02 1.24-0.04
2 0.53+0.01 0.22:0.01 1.48-0.03

8000 6 0.53%0.02 0.33:0.02 1.48-0.03
4 0.61£0.01 0.29-0.02 1.25-0.04
2 0.54+0.01 0.23-0.01 1.47-0.04

noticeable finite size effects. The dominating finite size prob-
lem comes from the uncertainty of the extrapolation, if the
available range oh(r) is too short. The results are summarized in Table Il. We have calcu-

The rest of the analysis was straightforward. From theated the DCF from the pair distribution functigii®) using
coefficients of the total correlation function in Fourier space,an upper cutofi ,,,,=2,4, and 6, respectively, in the matrix
hy m,1,mim(K), those of the DCF were obtained by solving equationg22) and(24). Already the lowest order calculation
the linear matrix equatio(24). Then we calculated the func- Wwith |,,,=2 gave elastic constants of the correct order of
tionsC;; (k) as defined in Eq26). According to Eq(25), the ~ magnitude. Quantitatively reliable results were obtained with
elastic constanti;; can be determined from the initial slopes |mac=6: we checked in the smallest system that the results
in a plot of C;;(k) versusk?. Data forC;;(k) are shown for ~from calculations with ,,,,=6 andl,,=8 do not differ sig-
different system sizes in Fig. 3. The points at zero waveificantly.
vectorC;;(0) were calculated using E(R7). They fit nicely Since the calculations with,,,=8 were very time con-
on the straight lines at— 0, hence the data are consistentsuming(one has 1447 different expansion coefficignise
with the requirement14) or (27). This gave additional con- usedl,,=6 in the analyses of the larger syste(d§9 dif-
fidence in the quality of the analysis. The slopes of theferent expansion coefficients
straight lines yield the elastic constants. The results were the same for systems of she

=1000, 4000, and 8000. Furthermore, they were not af-
fected by the presence of a director constraint: as mentioned
2 in Sec. lll, the DCF was mostly calculated in unconstrained
e---e N=8000 ;’;{«/ systems, but we also studied the DCF in one constrained
oo N=4000 % system for comparison.
# —— N=1000 o Finally, we compare the values of the elastic constants
¥ i calculated by the DCF approach with those obtained from
. the order fluctuation analysis, shown in Table I. The values
e for K4, and K,, are identical for both method¥s; is
s slightly underestimated by the DCF analysis with,,=6,
1 but the result increases with,,,, and agrees within the error
with that of the order fluctuation analysis lat,,=8.

One might ask how much the successive coefficients of
the (correcy DCF contribute to the elastic constants. We
il found that the contribution of the coefficients with>4, |,
>4 or|>4 is very small. If we include only terms up to
K2 [,l,=4 in Eq. (26), we obtainK,;=0.55, K,,=0.21, and
K33=1.51 (in the largest systenN=8000, which is very
close to the final values quoted in Table Il. However, we
could not push this analysis further. If we include only terms
up tol,l;=2, the resultingC;; (k) are very concave and have
no well-defined initial slope in a plot verskg. Hence the

FIG. 3. Weighted sum of the DCF expansion coefficieDigk) as defined
in Eq. (26) vs k? for different system sizeN (unconstrained director, evalu-
ated using coefficients up tq,,,=6). The points ak=0 are taken from Eq.
(27). The initial slopes give the elastic constamtg. Thick solid lines
indicate corresponding fits for tHé=4000 system.
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