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Computational fluid dynamics (CFD) may be a useful design tool, provided that the mathematical models
that we solve with it capture and describe well the most important features of the systems of interest. For
fluidized beds, one of these features is the polydispersity of the powders: particles differ in size and alter
their size distribution in time and space continuously. To model this key phenomenon, one needs to solve
a population balance equation, that is, an equation that governs the evolution of the size distribution. The
direct quadrature method of moments (DQMOM) allows doing so in commercial CFD codes at relatively
low computational cost. This technique, successfully employed for describing dilute multiphase flows of
particles that share the same velocity, still needs testing in the context of dense multiphase flows. Dense
polydisperse fluidized powders can segregate or mix, depending on the process operating conditions,
and to describe these phenomena one needs to let particles move with different velocities. In this work
we use a recent version of DQMOM that has this feature: each quadrature class is advected with its own
velocity. The transport equations of this model feature a diffusive-like contribution that allows the
powders to mix at the particle length scale. We discuss how to assign a value to the diffusion coefficient
and we carry out a sensitivity analysis on the latter; to do so, we simulate the mixing of powders initially
segregated using different values for the diffusivity. Successively, after having estimated a suitable value
for the latter, we simulate the system dynamics under conditions that should promote segregation,
validating the results of the simulations experimentally.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

to great uncertainties. This is because such systems undergo numerous
physical and chemical phenomena that occur concurrently: chemical

Polydisperse multiphase systems are composed of a continuous
phase (a gas or a liquid) within which other discontinuous phases are
dispersed (particles, droplets or bubbles); each discontinuous phase is
composed of elements continuously distributed over velocity and size,
and possibly other properties, such as density. Even if virtually every
industrial plant contains units that treat these systems (e.g., fluidized
beds, bubble columns and crystallizers), designing them is still subject

*Tel.: +44 20 7679 4328; fax: +44 20 7383 2348.
E-mail addresses: l.mazzei@ucl.ac.uk, luca.mazzei.a@gmail.com

0009-2509/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ces.2013.07.006

reactions take place, usually implicating all the phases and affecting
their properties; also, elements of the discontinuous phases can break
into subelements or aggregate, while new elements may nucleate. The
behavior of the units and the quality of the product strongly depend
on these competing phenomena, in turn influenced by phase interac-
tions, system fluid dynamics and, indirectly, unit geometry and size.
To describe the behavior of polydisperse multiphase systems and
design process units for treating them, researchers and engineers have
resorted for several years to experimental correlations and pilot plants.
These correlations, however, have limited applicability as they are
valid only for the specific cases investigated; so, they cannot help


www.sciencedirect.com/science/journal/00092509
www.elsevier.com/locate/ces
http://dx.doi.org/10.1016/j.ces.2013.07.006
http://dx.doi.org/10.1016/j.ces.2013.07.006
http://dx.doi.org/10.1016/j.ces.2013.07.006
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.07.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.07.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.07.006&domain=pdf
mailto:l.mazzei@ucl.ac.uk
mailto:luca.mazzei.a@gmail.com
http://dx.doi.org/10.1016/j.ces.2013.07.006

566 L. Mazzei / Chemical Engineering Science 101 (2013) 565-576

improve design and performance, or predict the effect of changing the
size or geometry of a unit. Pilot plants, on the other hand, are costly
and time-consuming and do not always lead to adequate scale up. In
consequence, thanks to the high-speed computers and advanced
numerical methods now available, the modeling and simulation of
multiphase flows have rapidly gained importance. Due to the com-
plexity of such flows, a relatively large number of modeling
approaches have been developed in the literature (Fox, 2012). At the
most fundamental level the particles are treated individually, so that
the discrete structure of the dispersed material is entirely retained;
here one models the behavior of each particle, accounting for its
interaction with the surrounding fluid and other particles. This
strategy is powerful but computationally extremely expensive. The
information that these simulations provide is normally not of direct
use to engineers and greatly exceeds their normal requirements. An
alternative strategy is to model also the discontinuous phases as
continua. Several Eulerian models of this kind have been developed
(Drew and Passman, 1998); these, however, often present severe
limitations.

One of the most important limitations, present also in many
advanced models, is that these do not account for polydispersity,
neglecting in particular that the discontinuous phases are made of
elements with changing size distribution. They instead assume that
the latter consist of classes of particles with equal and constant sizes.
The constant-particle-size assumption significantly limits the model
flexibility: classes may segregate or mix, and particles may change
class, but variations in the diameters attached to each class are not
allowed. Real systems are instead characterized by broad particle size
distributions (PSDs) which evolve continuously owing to fluid—particle
and particle-particle interactions. Particles can shrink, aggregate, break
and nucleate; hence, their size distribution varies continuously in time
and space. Predicting this evolution, which depends on the local
conditions wherein a system operates, is key to accurately describing
its behavior.

To account for polydispersity and be able to predict how PSDs
evolve, one needs to solve a population balance equation (PBE),
possibly along with customary multifluid balance equations for
mass and/or linear momentum. Doing so is quite difficult, since
the PBE dimensionality differs in general from that of classical
fluid dynamic equations. In the last years numerous attempts to
solve this equation, in particular within CFD codes, have been
reported in the literature (in Fox, 2012 and Marchisio and Fox,
2007, for instance, one may find several references); nevertheless,
dense fluid-solid systems, in which the phases strongly interact and
do not share the same velocity field, have not been investigated
extensively (Fan et al., 2004; Fan and Fox, 2008; Fox and Vedula,
2010; Mazzei, 2011; Mazzei et al., 2012), few works considering
size-changing phenomena such as chemical reaction, aggregation
or breakage.

Often engineers are only interested in few integral properties of
the distribution function that describes the particle population.
Such properties, called moments, may be important because they
control the product quality or because they are easy to measure
and monitor. The idea behind the method of moments is to derive
transport equations for the moments of interest (Randolph and
Larson, 1971). This method is attractive, for the number of
equations to be solved is small; however, the moment transport
equations are unclosed, because for any given set of moments that
the modeler wishes to track, the equations normally involve
higher-order moments external to the set (Marchisio and Fox,
2007). The quadrature method of moments (QMOM) and its direct
version (DQMOM) overcome this issue by approximating the
distribution function with a quadrature formula; assuming the
functional form of the distribution allows to calculate, with a given
approximation, the values of any higher-order moment external to
the set tracked by the methods. QMOM tracks the moments of this

set by integrating their evolution equations; then, once these
moments are known, it calculates the nodes and weights of the
quadrature formula. DQMOM, conversely, directly tracks the latter,
solving the evolution equations that govern them. The models are
theoretically equivalent, as we shall discuss later on, but present
different issues when one solves them numerically (Shohat and
Tamarkin, 1943; Akhiezer, 1965; Wright, 2007; Mazzei et al.,
2010a; Petitti et al., 2010; Mazzei, 2011; Mazzei et al., 2012).

In most versions of the quadrature-based moment methods
reported in the literature, the PBE solved does not feature
convection in physical space; written for well-mixed systems, for
which the distribution function is uniform in such a space, these
models account solely for particle growth, their PBEs featuring
convection just in size space (e.g., Dorao and Jakobsen, 2006;
Grosch et al., 2007; Aamir et al., 2009; Gimbun et al., 2009; Qamar
et al., 2011). Some other models, written for nonuniform systems,
account for convection in physical space, but often assume that all
quadrature classes are advected with the same velocity field, so
that particles share the same velocity (e.g., Petitti et al., 2010). This
assumption prevents solids from segregating. Dense polydisperse
fluidized powders may segregate or mix, depending on the process
operating conditions, and in order to describe these phenomena
one needs to let particles move with different velocities.

Few models catering for nonuniform dense polydisperse fluid-
solid systems have this feature, and hence have the capability to
describe segregation. Among the first to be developed are those of
Fan et al. (2004) and Fan and Fox (2008); these let each quadrature
class be advected with its own velocity field, whose evolution is
governed by a coarse-grained dynamical equation. These DQMOM
models, as Mazzei et al. (2010a) reported, have a significant
limitation: they do not permit powders to micromix, that is to
say, to mix at the length scale of the particles. Solely macromixing,
that is to say, convection-induced mixing, is possible in such
models. We shall address this aspect in detail later.

To overcome this problem, Mazzei (2011) recently developed a
revised version of DQMOM in which the evolution equations for
the quadrature weighted nodes and weights feature a diffusive
flux that compensates for the error that one makes when calculat-
ing the convective flux of a property adopting the quadrature-
based approximation of the distribution function that describes
the particle population. In Mazzei (2011), we did not specify which
value to assign to the diffusion coefficient. This, indeed, is an open
issue, which we shall address in the present work.

This work aims to simulate the segregation dynamics of inert
dense polydisperse fluidized powders. The paper is organized as
follows. We introduce the problem that we intend to investigate.
Next, we describe the mathematical model, in particular the
DQMOM model recently developed in Mazzei (2011). Since we
shall need them subsequently, we also report the evolution
equations of the QMOM model, showing that the two are theore-
tically equivalent. Their equations feature a diffusive term which
allows the powders to mix at the particle length scale (micromix-
ing). We discuss how to assign a value to the diffusion coefficient
appearing in the evolution equations of the models, conducting a
sensitivity analysis on the latter; to do so, we simulate the mixing
of nonuniform powders using different values for the diffusivity.
Finally, after having estimated a suitable value for this coefficient,
we simulate the system dynamics under conditions which should
promote segregation, validating the predictions of the numerical
simulations experimentally.

2. Problem description

We aim to simulate the dynamics of inert dense polydisperse
fluidized powders under conditions that should promote segregation.
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By inert we mean that the particles do not react, grow, wear, shrink,
break, aggregate or nucleate; in these conditions the local particle size
distribution varies only because of mixing or segregation. A powder
initially uniform, for instance, might segregate becoming nonuniform,
whereas a powder initially nonuniform might homogenize becoming
well-mixed.

Initially, at time t=0, the system of our interest is a packed bed
constituted of two superposed layers of same height of polydis-
perse ballotini particles of equal density (2500 kg/m?). The lower
and upper powders, referred to as A and B, respectively, differ only
in particle size distribution, the upper one having larger mean
particle size. The minimum fluidization velocities u, and u; are
equal to 0.01 m/s and 0.06 m/s, respectively; other experimental
data are given in Mazzei et al. (2010a); in particular, the particle
size distributions of the two powders, which we obtained experi-
mentally by sieving. To fluidize the system, we fed fluid at a
superficial velocity which is low enough to make the larger
particles sink and the smaller particles rise; we considered two
fluid velocities: 0.10 m/s and 0.05 m/s. The resulting powders,
referred to as powders C and D, presented at pseudosteady-state
conditions a PSD that changed continuously along the bed axis. To
find the distributions, we cut off the fluid supply, letting the bed
settle down, and we then divided the fixed bed into five layers,
measuring the PSD of each layer by sieving. To save space, we do
not report the experimental PSDs in a figure (for we would have to
show ten distributions); however, we shall present and use
experimental results later on in Section 7. Details about the
equipment and the experimental procedure are also given in
Mazzei et al. (2010a). Resorting to the direct quadrature method
of moments, we intend to predict the pseudosteady-state particle
size distributions and verify whether they agree with those found
experimentally.

3. Multiphase population balance model

We propose to describe the evolution of the particle size
distribution for an inert dense polydisperse fluidized powder. This
distribution can be represented mathematically by a volume
density function (VDF) that yields the volume of particles in any
given differential size interval per unit volume of physical space. In
particular, if f(x, t; s) denotes the VDF, then f(x, t; s)ds dx yields the
expected volume of particles present at time t in the physical
volume dx about x with size in the range ds about s. If particle size
varies neither continuously nor discontinuously, that is, if growth,
aggregation, breakage and alike size-changing phenomena are
absent, and if particles neither nucleate nor dissolve, the popula-
tion balance equation, that is, the evolution equation of the VDF,
reads as follows:

of = —oxf(vIs) G.D

where (v|s)(x,t;s) denotes the size-conditioned particle velocity.
Details about the derivation of the above equation are found in
Mazzei (2011). As we see, in the conditions considered, convection
in physical space is the sole cause that makes the VDF evolve.
About Eq. (3.1), we would like to point out two aspects, which
are discussed in detail in Mazzei (2011). First, Eq. (3.1) accounts for
the effects of particle collisions, its validity not being restricted to
dilute flows in free transport regime; as discussed in Mazzei
(2011), collisions affect the size-conditioned velocity field
(v|s)(x,t;s). Second, we should note that, because the advective
term in Eq. (3.1) features a size-dependent velocity field, the
equation presents no diffusive flux in physical space; this is
because particles with different sizes are advected with different
velocities. Spatial diffusion would arise if we replaced (v|s)(¥, t;s)

with the mean velocity of the whole particle population, which
would be averaged over s.

Quadrature-based moment methods do not solve Eq. (3.1)
directly: they assume the functional form of the VDF, and then
resort to Eq. (3.1) to determine how the quantities that this
functional form leaves unspecified evolve. The form assumed for
the density function is

fi. 6912 3 (0355, 32)

This quadrature formula involves 2v functions: the weights ¢,(x, t)
and the nodes s;(x, t). We do not assign them explicitly, but instead
require that these conditions be met:

My, )= /w sf(x,t;5) ds

= /x s (%, t;5) ds = i ¢ (%, O)[sr(x, )] for 0<a<2v-1
JOo r=1
(33)

These 2v conditions allow to obtain the 2v functions ¢, and s;. The
quantities Mg(x, t) are called moments of the VDF; they are integer
moments, because a is integer. So, to obtain the functions ¢, and
s, we require that the first 2v integer moments of f, be identical to
those of the VDF. Note that we do not have to preserve necessarily
this set of moments; we could choose, for instance, other integer
moments or even real moments of the distribution. But the first
integer moments represent important physical quantities, such as
the overall volume fraction of particles, the mean size of the latter
and the variance of the distribution; also, preserving these
moments turns f, into a Gaussian quadrature formula (Marchisio
and Fox, 2007), which yields a higher mathematical accuracy
when one uses it to calculate the approximate values of moments
of the VDF external to the set considered in Egs. (3.3).

Eqgs. (3.3) allow to compute the values of the quadrature nodes
and weights in any spatial point x and at any time t provided we
know the values of the first 2v integer moments of the VDF. At
time t=0 we suppose that the VDF and therefore its moments are
known; thus, we know the initial values of the quadrature nodes
and weights in any spatial point x. To obtain the values of the
latter at any subsequent time, we need to know the evolution
equations of the moments, or equivalently of the quadrature nodes
and weights. QMOM deals with the moments of the density
function, solving evolution equations for the latter and employing
Egs. (3.3) to determine the values of the quadrature nodes and
weights. DQMOM, conversely, deals with the quadrature nodes
and weights, solving evolution equations for them and employing
Egs. (3.3) to determine the values of the moments of the density
function. Dealing with quadrature nodes and weights instead of
moments is more convenient from a numerical standpoint,
because calculating the latter from the former is much simpler
than the other way around; this is particularly true for multi-
variate density functions, which here, nevertheless, we do not
consider (Marchisio and Fox, 2007; Mazzei et al., 2012).

3.1. DQMOM evolution equations

To derive the DQMOM evolution equations, we might think to
introduce Eq. (3.2) into Eq. (3.1); a few passages then yield the
desired equations (Mazzei et al., 2010a). This simple procedure,
nevertheless, leads to incorrect equations, insofar as, since the
quadrature-based approximation of the VDF differs from the
actual VDF, the evolution equation of the former differs from that
of the latter. Following Mazzei (2011), we assume that the
equation reported below:

0if, = —0x-f (VIS) + 0x Dxoxf, (3.4)
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governs the quadrature-based approximation of the VDF, in which
Dx(x) represents a diffusion coefficient. Details are given in the
cited article; here we just point out that the diffusive flux
introduced compensates for the error that we make when com-
puting the convective flux of the real VDF, that is, ox-f(v|s), by
adopting its quadrature-based approximation.

To derive the DQMOM evolution equations, we now introduce
Eq. (3.2) in the revised population balance equation reported
above; this, after few manipulations, gives the following:

at¢r = _ax'¢rvr + ax‘Dxax¢r + C;/) ;

0t0r = —0x-0rVy + Ox-Dx0x0r + C}. (3.5
where it is
or(X, D= (X, 0)Sr (X, 1), Vr(X, D=(VIS)[X, L5 Sr(X, )] (3.6)

The quantity o denotes the rth quadrature weighted node;
following Marchisio and Fox (2007), we prefer to operate in terms
of these variables instead of the quadrature nodes. We must note
that weights and weighted nodes are not conservative; the source
terms c¢/(x,t) and c2(x,t) that appear in their evolution equations
are given by this set of linear equations:

1-a) ¥ sic? +a ¥ rayed
r=1 r=1
=a(a—1)Dy i ¢G5S 20xSr-0xSr  for 0<a<2v-1 3.7)
r=1

One can obtain the evolution equations of the quadrature nodes by
combining the evolution equations above; this gives the following:

hrDeSr=p(0¢Sr + Vr-0xSr) = Ox-h DxOxSr + C; (3.8
where it is
€S = C7—$rC? + DyOxchy-OxSr (3.9

Notice that if the diffusive term in Eq. (3.4) is neglected, that is, if
we set Dy =0, assuming that the evolution equations of the actual
and quadrature-based VDFs coincide, the diffusive and source
terms in all equations vanish, Eq. (3.8) predicting (incorrectly)
that quadrature nodes do not change along pathlines; in this case,
only macromixing can occur, but powders cannot micromix (i.e.,
mixing at the particle length scale is impossible). This clearly
shows that the diffusive contribution is essential; the issue that
arises is assigning a value to the diffusivity. We shall address this
in Section 4.

Following Fan et al. (2004), to determine the velocity field
vr(x,t) we use a coarse-grained dynamical equation of this form:

Ot(psprVr) = —0x-(psprVrVr) + Ox-Sr +fr

+u21(fm + &) + st g (3.10)
where p; is the solid density (which is the same for all particles),
S:(x,t) is the effective solid stress tensor, accounting for kinetic
and collisional stress, f,(x,t) is the fluid—particle interaction force,
whilst f,,,(x,t) and &,,(x,t) are the interaction force and the linear
momentum exchanged (owing to mass transfer) between the
quadrature classes r and u, respectively.

In Eq. (3.10), the effective solid stress tensor and the particle-
particle interaction force are functions of the granular tempera-
tures of the quadrature classes (Lu and Gidaspow, 2003). To find
the granular temperature for the rth quadrature class, we solve
this pseudointernal energy balance equation:

0t(psrUr) = —0x-pspUrVi—0x-G, + Sr = 0xV;

+Gr—=Sr + X (Gru—Sn) G.11)
u=1

Here U,(x,t)=36,(x,t)/2 is the pseudointernal energy, &,(x,t) is
the granular temperature and q,(x,t) is the pseudothermal heat
flux; moreover, G/(x,t) is a source term owing to fluctuating fluid-

particle forces, Sy(x,t) is a sink term owing to the viscous
resistance to particle motion, whilst Gn,(x,t) and Sy (x,t) are a
source term and a sink term, respectively, the first related to the
pseudointernal energy exchanged (owing to mass transfer)
between the rth and uth quadrature classes and the second to
the pseudointernal energy dissipated by means of inelastic particle
collisions (Fan and Zhu, 1998; Jackson, 2000). For the constitutive
equations employed to express the unclosed terms in the equa-
tions above, we refer to Mazzei et al. (2010a); further details can
also be found in Fan and Zhu (1998) and Lu and Gidaspow (2003).
To determine the volume fraction of fluid, denoted as e(x, t), we
do not have to use a transport equation; we can find this field
using the relation
e=1- 3 ¢ = 1-M, (3.12)
r=1
where M,(x,t), the zeroth-order moment of the distribution,
represents the overall volume fraction of solid. The fluid velocity
field, conversely, is given by a course-grained dynamical equation
similar to Eq. (3.10). For further details we refer to Mazzei and
Lettieri (2008) or Lettieri et al. (2003).

3.2. QMOM evolution equations

In this work we intend to simulate the system behavior using
only DQMOM. However, because subsequently we shall need the
QMOM evolution equations for some considerations, we now
derive them here. This will also allow us to show that the two
quadrature-based methods are equivalent on theoretical grounds,
and that consequently what holds for DQMOM is also true for the
other method.

To derive the QMOM evolution equations we could operate on
Eq. (3.4), multiplying all its terms by s* and then integrating out
the size coordinate (Mazzei et al., 2012). Here we follow an
alternative route: we use the DQMOM evolution equations as
starting point. To this end, let us multiply the evolution equations
of the quadrature weights by (1—a)s? and those of the quadrature
weighted nodes by as?-'. With a few passages, omitted for brevity,
we obtain the following:

(1—a)sforp, + as?'oror = or(hyST),
+ as? ' 0x-0rVy = Ox- STV

(1-a)s{0x-¢p,Vr
(3.13)

Moreover, it is

(1—a)s%0x-Dx0xp + aSt ' 0x-Dx0xor = Ox-Dxx(¢h;S%)

—a(a—1)Dyep,S* 2 dxSr-0xSr (3.14)

Consequently, from Egs. (3.5), we obtain the following:

at((/7rs‘r1) = _aX"/)rsgvr + aX'DXax(d’rsg)

—a(a—1)Dyp,S* 20xSr-0xSy + (1—a)s?c? 4 as?'c? (3.15)

Finally, summing over the index r for 1 <r <v and resorting to Eqs.
(3.3) and (3.7), we obtain the following evolution equations:

0t Mg = —0y- i‘, DrSIV + 0x-DxoxM, for 0<a<2v—1 (3.16)

r=1

This is the same result that one would obtain by operating, as
described above in Eq. (3.4). This confirms, as expected, that
QMOM and DQMOM are theoretically equivalent. We should not
be surprised, because both methods are based on the same
presumed functional form of the volume density function. So, on
theoretical grounds no method is superior, both methods present-
ing the same limitations. In particular, in both methods neglecting
the diffusive contribution renders particle micromixing impossi-
ble; this is plainly revealed solely by the DQMOM evolution
equations, but we know that the same issue is present in QMOM,
for its evolution equations can be derived from those of DQMOM.
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The equations above, which hold for the first 2v integer moments
of the VDF, show that the moments, as opposed to the quadrature
weighted nodes and weights, are conservative in the case under study.
Reminding that, for instance, M, represents the overall volume
fraction of particles, its evolution equation states that the volume
(and therefore the mass) of particles is a conservative quantity, as one
should expect in this case. This condition is met because the source
terms in the moment evolution equations vanish.

We should note, however, that the same is not true for the
diffusive terms, which instead survive; this may appear incorrect,
but we can explain it as follows. If to derive the evolution equation
of M, we adopt Eq. (3.1), that is, the PBE written in terms of the
real VDF, we obtain the following:

0t Mg = —0x- /m (v|s)s’f ds (3.17)

The last two equations give the following:
—Dx0x Mg = / (v|s)sf ds— i ¢Sty for 0<a<2v-1  (3.18)
JO r=1

This shows why it is indeed necessary that the equations which
govern the evolution of the moments feature diffusion; if they did
not, we would be claiming that the fluxes on the right-hand side of
Egs. (3.18) are equal, this being in general untrue. We model the
deviation flux as a diffusive flux. The issue, as said, is assigning a
suitable value to the coefficient of diffusion.

4. Discussion on the diffusivity order of magnitude

Let t. and x. be the time and length scales, respectively, in the
bulk of the domain. By definition, the scales of the independent
variables have to render the derivatives of the scaled nondimen-
sional dependent variables of unit order of magnitude. As for the
dependent variables, ¢, is already dimensionless and of order
unity; thus, we only need to introduce scales for the velocity fields
and for the quadrature nodes. Let these be v. and s, respectively.
Then, if we introduce the dimensionless variables

t=t/te, X=X/Xc, Vi=V;/Ve, 5:=S:/Sc 4.1)

the first of Egs. (3.5) gives the following:

Ot == Aox bV} + =5 {0 0ede + | (42)

vele Dyt
¢

As done in the equation above, in what follows we shall assume
that Dy is constant. Two characteristic times arise, x./v. and x2/Dx,
which relate to convection and diffusion, respectively. Their ratio
is the inverse of the Peclet number, ¢=1/Pe, where Pe=v.x./Dx.
Since the equation is scaled, the term on the left-hand side and the
bracketed terms on the right-hand side have unit order of
magnitude; consequently, if ¢ <1 the characteristic time must
be x./v., while if ¢ > 1 it must be x2/D,. Thus, the characteristic
time depends on the value of Pe and, as one would expect, the
time scale is dictated by the term that dominates the quadrature
weight rate of change.

As we shall presently explain, we expect that in the problem
that we are studying ¢ is a small parameter. Consequently, we
choose t.=x./v.. This yields

Oy = —~0x P Vr + 9l0g Ox by +T7) (4.3)
Eq. (3.8) instead gives the following:
& DgSr=¢(9:5r + Vr-0g5r) = {05, 051 + €7} (4.4)

Hence, over short dimensionless times of order ¢ convection
dictates the evolution of the quadrature weights and nodes,
causing macromixing. But diffusion plays a crucial role over longer
times, allowing micromixing to occur and quadrature nodes to

change along pathlines; the effects of diffusion are negligible
compared to those of convection over short times, but these small
effects build up, becoming important over long times. This is an
example of singularity in the unbounded time domain (Simmonds
and Mann, 1998). So, to correctly predict the pseudosteady state of
the system - which by definition refers to long times - and its
particle size distribution in particular, we cannot neglect the
diffusive contribution.

It is worth emphasizing that the considerations above, and in
particular the reason why we cannot neglect the deviation flux
between actual and approximated convective fluxes, has nothing
whatsoever to do with the numerical code that we employ to solve
the equations of the model and with the errors that such a code
might generate. The reason has only to do with the form that the
quadrature-based methods assume for the volume density func-
tion that describes the particle population.

To explain why we find it reasonable to assume that ¢ is a small
parameter, we note that —Dydy M, is the error that we make when
approximating the convective flux of M,, that is, the integral on
the right-hand side of Eq. (3.17), with the quadrature formula. The
greater the number of classes used in the latter, the smaller the
error; however, the error is never zero. There must be, therefore, a
minimum quadrature order n (that is, a minimum number of
classes) which ensures that the error is small enough to render
¢ < 1. In what follows, we shall refer to quadrature formulae of
order v that satisfy this condition, assuming accordingly that v>n.
This ensures that

Dx < Dx2=VcXc 4.5)

Here Dy, denotes an upper bound value for the diffusion coeffi-
cient. As we know that the higher the order of the quadrature
formula, the smaller the error that this makes in approximating
moment convective fluxes, we know that there must exist a more
accurate upper bound value dependent on the order of the
formula, and that this must decrease as the order v increases.
However, being unable to determine it, we must refer to the value
identified above, which ensures that convection dominates over
diffusion.

In the problem at hand, reasonable orders of magnitude for the
length and velocity scales are given by the characteristic dimen-
sion of the vessel containing the fluidized bed and the fluidization
velocity, respectively (as one can verify numerically). The diameter
of the vessel used in this work is 0.35 m, while the fluidization
velocities are 0.10 and 0.05m/s. To be conservative, we take
xc=107m and v, =10" m/s, which give Dy, =10 m?/s as an
upper bound value for Dy.

The upper bound value just estimated is not sufficient for deciding
which value to assign to Dy. We need also a lower bound value, which
we denote as Dy ;. We know that it must be greater than zero, and we
expect it to be some orders of magnitude lower than the upper bound
value Dy,. Nevertheless, we have no criterion based on physical
grounds for estimating it. This, in principle, poses an issue, insofar as
we do not know how small Dy should be. The numerical diffusion
generated by the CFD code, however, renders the problem less critical,
as we shall presently see.

The numerical scheme that the CFD code uses to discretize the
spatial derivatives is diffusive; so, the real nondimensionalized
evolution equation solved for the rth quadrature weight (similar
considerations hold for the quadrature nodes and weighted nodes)
reads as follows:

Orpy = —0g-¢, Vr + @{[1 + (Dn /D)0 -5, + 7} (4.6)

Here D, is the coefficient of numerical diffusion, which depends
on the numerical discretization scheme and on the grid size.
The smaller D,/Dy, the less numerical diffusion affects the solu-
tion; thus, one should favor discretization schemes that are little
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diffusive — preferring, for instance, a second-order discretization
scheme to a first-order one. The drawback is that these schemes
are often less stable. We did try to solve the model using a second-
order discretization scheme, but all the simulations invariably
crashed almost immediately. Only the first-order discretization
scheme permitted us to run the simulations. Probably, this was
because to implement the DQMOM evolution equations we had to
modify significantly the default model of the code. So, as for the
discretization scheme, we had no real choice.

The coefficient of numerical diffusion for a first-order discreti-
zation scheme can be estimated, following Ferziger and Peric
(2002), using the relation 2D, =ulL, where L is the length of the
computational cell side and u is the velocity of advection, which
has the same order of magnitude as v.. Therefore, the sole degree
of freedom available to reduce D, is the computational cell side;
in particular, to reduce the order of magnitude of D, one needs to
reduce the order of magnitude of L. Doing so is often unfeasible,
insofar as it renders the computational times unacceptably long. In
setting a value for L, one needs to compromise between accuracy
of the solution and length of the computational times. In this work
we adopted a uniform computational grid made of square cells of
side L=5 mm. Employing a time step of 10~ seconds, to simulate
the systems for ten real-time seconds, which was sufficient for
them to reach pseudosteady-state conditions, we had to accept
computational times as long as four and a half months. Reducing
the cell size to 1 mm - which does not alter the order of magnitude
of D, - results already in unacceptable computational times
(running the simulations in parallel would not alleviate the
problem significantly, especially because we had to run several
simulations and in consequence we needed several processors).
With such a cell size the order of magnitude of D, results to be
10™* m?/s, just one order of magnitude lower than that of Dy.,.
Since we cannot set Dy lower than Dy, for otherwise numerical
diffusion would dominate over real diffusion, even if we had been
able to estimate a value for Dy, this would be overridden by that
of Dy. So, at least in this work, the numerics imposes a lower
bound value for the coefficient of diffusion.

As seen, the order of magnitude of D, is lower than that of Dy .
This is important, since, if this condition was not met, being
Dn/Dx, > 1, as it must be Dy /Dy, < 1, it would be D, /Dy > 1. This
would have two consequences. The first is that numerical diffusion
would prevail over real diffusion - the diffusion rate being dictated
by the numerics; the second is that the diffusive and source terms
present in Eq. (4.6) would no longer be balanced, the former
prevailing over the latter. These effects, particularly the second,
would lead to wrong predictions. Note that the strongest imbal-
ance between diffusion and generation is not found for large
values of the numerical diffusion coefficient, but for Dy = 0, insofar
as, owing to numerical diffusion, the diffusive term survives,
whilst the source term vanishes. This shows another reason, this
time numerical, for which we must not neglect the diffusive terms
in the evolution equations.

In light of this, we conclude that Dy must lie between D, and
Dx,. This ensures that convection prevails over diffusion (a
necessary condition for quadrature formulae that well approx-
imate the moments external to the set tracked by the methods,
and in particular the convective fluxes) and that the balance
between diffusion and generation in the evolution equations is
preserved. Any value external to this range would lead to entirely
wrong results. Larger values would allow diffusion to erase the
gradients generated by convection, flattening the spatial profiles of
the quadrature weights and weighted nodes, of the moments and
of the volume fraction of fluid; in bubbling beds, for instance, this
would make bubbles disappear. Smaller values, as stated, would
alter the balance between diffusion and generation, letting the
former dominate; the effect is that weights and weighted nodes

would essentially be modeled - incorrectly - as conservative
quantities. We shall confirm all this numerically in Section 6, in
which we conduct a sensitivity analysis on the diffusivity.

To conclude, let us summarize concisely how to estimate the
diffusion coefficient D,. First, one needs to estimate the upper
bound value Dy, employing Eq. (4.5). To this end, one needs to
estimate the macroscopic length scale x. characterizing the system
(dictated by the dimensions of the latter) and the velocity scale v,
(assumed to be of the same order of magnitude as the fluidization
velocity and accordingly dependent on the properties of the
powder being fluidized). Then, one has to estimate the numerical
diffusion coefficient D, (dependent on the discretization scheme
and on the grid size used, and so related only to the numerics).
The value for Dy has to lie between the lower and upper bound
values just identified.

5. Implementation of the DQMOM model in CFD

To run the simulations we employed the commercial CFD code
Fluent 12.1, implementing the evolution and constitutive equa-
tions in the multifluid model of the package, which is based on a
Eulerian flow description, and adopting user-defined functions
and subroutines. We used a quadrature approximation of order
two (that is, v=2), tracking the evolution of two quadrature
weights and weighted nodes and defining three phases in the
multifluid model: one gas and two particle phases. As pointed out,
we solved balance equations for linear momentum and pseudoin-
ternal energy for each phase.

The first equations that we had to implement were those
governing the quadrature weights. These differ from customary
continuity equations, because they feature diffusion (we should
notice that the quantities ¢, are not volume fractions of real
particle phases, but weights of a quadrature formula). The simplest
strategy to implement such equations would have been introdu-
cing diffusion and generation in the default continuity equations of
the code that govern the evolutions of the volume fractions of the
particle phases with which the quadrature classes are associated.
This, however, was impossible, because Fluent does not allow to
introduce diffusion in such equations.

Accordingly, we had to resort to another strategy, which does
not rely on the continuity equations for the particle phases
available in the code. First of all, we had to disable these equations,
which therefore the code no longer solved. Then, we had to treat
quadrature weights as user-defined scalars, for which the code
allows to define evolution equations involving both convection
and diffusion. Fluent allows to associate scalars with the mixture
or with a phase. In the first case, the equation reads as follows:

Ot(pm¥r) + Ox Py Vin—0x-Dxoxy =S, 5.1

w being a generic scalar, p,, and v, the mixture density and
velocity, respectively, while S,, a source term. In the second case, it
reads as follows:

Ot(prary) + OxprayyVr—0x-ar Dxoxy = 5,,, (5.2)

where «; is the volume fraction of the solid phase with which the
scalar y is associated. Both equations are unsuitable; the first
because our scalars are not advected at the velocity of the mixture,
but at the velocities of their respective quadrature classes, while
the second because it multiplies the scalar and the diffusivity by
the phase volume fraction (refer to Egs. (3.5)).

The simplest way to overcome the issue is associating the
scalars with the mixture, so that the diffusion term is correctly
modeled, and changing the accumulation and advection terms via
user-defined functions; in particular, we implemented the changes
pm—1 and p,, v, - v,. The first ensures that the density does not
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appear in the accumulation term, whereas the second replaces the
mixture mass flux with the phase volume flux. To implement
these modifications, we resorted to the user-defined functions
DEFINE_UDS_UNSTEADY and DerINE_ubs_FLux. Finally, we set the following:

_ 6(¢ps DxOxSs-0xSs — b DxOxSr-0xSr)

S, =c?
v (Sr—Ss)?

(5.3)

where the indexes r and s denote the two quadrature classes. This
is the expression for the source term c? that one obtains from
Egs. (3.7) when setting v=2. We derived the gradients of the
quadrature nodes from those of the quadrature weights and
weighted nodes, as it is

OxSr = (6x6r—5rax(/)r)/(,br (5'4)

Notice that Eq. (5.3) shows that the sources for the two quadrature
classes are equal in magnitude and opposite in sign, so that the
overall volume of particles (and consequently also their mass) is
conserved. We checked this numerically, verifying that the volume
integral of the zeroth-order moment over the entire computa-
tional domain is constant. We should also point out that, in each
cell, at each time step and in each iteration of the computation, the
values of the particle phase volume fractions (for which the CFD
code no longer solved any evolution equations) were set equal to
those of the weights of the quadrature formula.

To implement the evolution equations of the quadrature
weighted nodes we proceeded similarly, treating them as user-
defined scalars associated with the mixture. Also in this case we
used the user-defined functions DEFINE_UDS_UNSTEADY and DEFINE_UDS_-
FLUX to set the expressions for accumulation and convection,
respectively; furthermore, we used this expression for the source
terms

_ 2¢(Ss + 25r)Dx0xSs-0xSs—2¢;(Sr + 2S5)DxOxSr-0xSr
B (Sr—5s)’

Sx// = C;‘T (55)

where the indexes r and s denote the two quadrature classes. This
is the expression for the source term c? that one obtains from
Egs. (3.7) for v =2.

We do not report in this paper the boundary conditions and the
numerical techniques used to solve the model, because these are the
same as those presented in Mazzei et al. (2010a). As for the initial
conditions, from the initial particle size distributions of the powders,
one can calculate the initial values of the first four integer moments of
the VDF and of the nodes and weights of the quadrature formula. We
explained how to do this in Mazzei et al. (2010a), and thus we do not
repeat it here. Table 1 reports the results for £ = 0.400. These values,
which provide the initial conditions for the DQMOM evolution
equations, are a function of the voidage e because, whereas the PSD
refers to solid mass fractions on a void-free basis, the VDF accounts for
voids and provides volumes of solid per unit volume of physical space.

Table 1
Initial values of the moments of the volume density function and of the quadrature
nodes and weights obtained from the experimental PSDs referred to ¢ = 0.400.

6. Sensitivity analysis on the diffusion coefficient

In this section we test the considerations presented in Section
4, reporting how sensitive the numerical results are on the value
selected for the coefficient of diffusion Dyx. To this end, we
simulated several times the same system under identical operating
conditions, each time using a different value for Dy. We then
compared the numerical results. The system investigated was
described in Section 2. Initially, at time t=0, the bed is packed
and constituted of two superposed layers; these are 15 mm high
and together occupy half of the vessel. The lower and upper
powders differ solely in particle size distribution, the upper one
having larger mean particle size. We suddenly start fluidizing the
system, setting the value of the superficial velocity of the fluid
equal to 0.15 m/s, which is sufficient to attain very good mixing.
Each simulation ran for ten real-time seconds, a time long enough
to reach pseudosteady-state conditions. The operating conditions
used, as said, are those promoting nearly perfect mixing; the
reason is simple: in this case we can calculate analytically the
pseudosteady-state values of the quadrature nodes and weights,
and in consequence we can easily assess the accuracy of the
numerical results.

The procedure required for determining analytically the values
of the quadrature nodes and weights after perfect mixing is
reported in Mazzei (2011); thus, we do not repeat it here. The
values of these quantities are reported in Table 2 and are referred
to as correct values. The table reports also another set of values,
referred to as incorrect values, whose meaning we now explain. We
said that the diffusive terms cannot be neglected in the evolution
equations of the quadrature weighted nodes and weights, for
otherwise micromixing cannot take place. If we set Dy =0 and
solve Egs. (3.5) numerically using a CFD code, in these equations
the source terms vanish, insofar as Eqgs. (3.7) become homoge-
neous, while the diffusive terms survive owing to numerical
diffusion. Micromixing therefore takes place, but the results are
incorrect for the diffusive and source terms are imbalanced. These
are the incorrect results reported in Table 2. To obtain them
analytically, one needs to regard the quadrature weighted nodes
and weights as conservative quantities (this is incorrect, but
consistent with the evolution equations solved for Dy=0 and
Dp#0, that is, in the presence of numerical diffusion) and simply
require that they be conserved throughout the mixing process.

One expects that these incorrect results are obtained also for
finite diffusivities when Dy < Dy, since in this case the diffusive
and source terms remain strongly imbalanced. Conversely, one
expects that the correct results reported in Table 2 are obtained for
any Dy > Dy, regardless of the specific value employed for Dy. The
correct and incorrect values for the quadrature weighted nodes
and weights just identified and reported in Table 2 are hence
limiting values, and one might expect that the predicted values
yielded by the numerical simulations should fall between them.

Fig. 1 shows the pseudosteady-state values, predicted numeri-
cally, of the quadrature nodes and weights after good mixing has
taken place as a function of Dy. The vertical dashed line identifies
the value of D,. We also remind that the upper bound value Dy,

Powder Moments of the volume density function

Mo (-) My (pm) My (um?) Ms (pm?) Table 2

Correct and incorrect values (refer to Section 6) of the quadrature nodes and

A 0.600 5.45 x 10! 506 x 103 482 % 10° weights obtained after mixing powders A and B for ¢=0.400. The values are
B 0.600 170 x 10? 4.98 x 10° 152 x 107 computed analytically, not numerically.

Quadrature nodes and weights Quadrature nodes and weights
Powder S1(pm) $1(=) S2(pm) (=) 1 (pm) P (=) Sz (pm) 2 (=)
A 75 0.262 103 0.338 Correct values 104 0.366 316 0.234
B 240 0.380 355 0.220 Incorrect values 173 0.321 202 0.279
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Fig. 1. Values of the VDF quadrature nodes and weights at pseudosteady-state conditions in the mixed fluidized bed as a function of the diffusion coefficient Dj.
The (modified) quadrature weights refer to a spatially uniform void fraction equal to 0.400.

formerly estimated for Dy is 10~ m?/s. The horizontal dashed lines
identify the correct and incorrect values of the quadrature nodes
and weights reported in Table 2. As we see, for Dy < D, the
numerical values tend towards the incorrect values predicted
analytically. In this case the order of magnitude of the diffusive
terms in the evolution equations is much larger than that of the
source terms, the quadrature weighted nodes and weights are
essentially modeled as conservative quantities, and so the results
are entirely incorrect. As the value of Dy increases, in particular for
Dy > 0.1D,, the quadrature nodes change monotonically, their
values tending toward the correct values reported in Table 2.
We note, in particular, that for Dy~10D, the agreement is nearly
perfect, this being true also for larger values of the diffusivity.
Consequently, from this standpoint, the larger the value the better.
The quadrature weights do not vary monotonically; in particular,
we see that their worst values are obtained for Dy~D;,. Never-
theless, for larger values of Dy the quadrature weights change
quite rapidly, their values tending towards the correct ones
calculated analytically. For Dy~10D, the agreement is very good,
this being true also for larger values of the diffusivity. Apparently,
once again, the larger the value of Dy the better.

We should highlight an important aspect. The values of the
quadrature weights reported in the tables and in Fig. 1 refer to a
reference value of the void fraction, which we chose to be equal to
0.400. This value is close to that observed in packed beds, into
which the fluidized bed turns when we cut off the fluid supply. We
could have chosen & equal to zero, in which case the weights
would have referred to a void-free powder. We have to choose a
reference value for ¢ because we want to eliminate the apparent
nonuniformities in the particle size distribution of the powder
induced by the presence of bubbles, or more in general by the
spatial variations of the void fraction. Since the powder is nearly
perfectly mixed, we would expect the functions ¢,(x,t) to have
nearly flat spatial profiles, their values being virtually independent
of x. This does not happen, however, due to the variations in &(x, t),
which are induced by the fluid dynamics and have nothing to do
with the powder particle size distribution. To eliminate these
effects, so that the functions ¢,(x, t) reflect solely properties of the
PSD, we need to refer these quantities to a spatially uniform
reference value of the void fraction. As said, we chose a reference
value close to that observed in loosely packed powders. For what
we are going to report now, we need to clearly distinguish
between the original functions ¢,(x,t) yielded by the CFD simula-
tions (which in a bubbling bed, even for a well-mixed powder,
are not uniform in space, owing to the fluid dynamic effects
just mentioned) and those referring to a spatially uniform refer-
ence value of the void fraction (which in a bubbling bed, for
a well-mixed powder, are indeed uniform in space). So, in the

considerations reported below we shall denote as ¢} (x, t) the latter
modified functions.

Let us return to our former considerations. We have seen that for
Dx~10D,, the values of the functions s,(x, t) and ¢} (x,t), and accord-
ingly the particle size distribution of the well-mixed powder, are
accurately predicted. The diagrams shown in Fig. 1, in particular, seem
to indicate that we can choose the value of Dy as large as we like, that
is, of order even larger than 10D,,. But this is not true for the functions
¢.(x,t), and in turn for the function e(x,t), whose values strongly
depend on the system fluid dynamics. As said, another condition that
has to be met is Dy < Dy,, for otherwise diffusion would erase the
spatial nonuniformities that convection generates; in this instance,
also the functions ¢,(x,t) would become uniform in space and the
bubbles, or more generally the void fraction gradients within the
fluidized bed, would be partly or entirely lost. This is what we
observed numerically.

Fig. 2 reports the spatial profiles, after mixing has occurred, of
the void fraction and of the unmodified and modified quadrature
weights for various values of the diffusivity. As we can see, for
Dx~Dp and lower orders of magnitude, the powder is well mixed,
the functions ¢; (x, t) being nearly uniform in space. But the same
is not true for the functions ¢.(x,t) and e(x,t), whose spatial
gradients, caused by the fluid dynamics, are clearly visible. This
is the picture that one would expect. For Dy~Dy, and larger orders
of magnitude, conversely, these gradients are lost, for diffusion
partly or entirely erases them. The powder tends to become
homogeneous, and the bed height is accordingly overpredicted.

These findings confirm that the value of Dy must lie between
Dy and Dy,. If these two values differed by several orders of
magnitude, one could choose a value for the diffusivity such that
Dy < Dy < Dy,. Such a condition would be ideal, because it would
ensure that the values of the quadrature nodes and weights and
the spatial profile of the voidage be very accurately predicted. But
this condition cannot always be achieved. As observed, Dy, is
dictated by the system and the operating conditions, whilst the
order of magnitude of D, is dictated by the computational times
that one may accept. In the problem investigated here, the two
values differ only by one order of magnitude, and therefore this
ideal condition is not found. The results, however, show that the
value Dy =5.0 x 10~ m?/s is a good compromise, because it does
not corrupt the void fraction profiles while predicting reasonably
well the values of the quadrature nodes and weights.

7. Simulations of segregating fluidized powders

After having estimated a reasonable value for Dy, we went on to
simulate the dynamics of the system under operating conditions
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Fig. 2. Profiles of the void fraction and of the unmodified and modified quadrature weights at pseudosteady-state conditions in the mixed fluidized bed for different values
of the diffusion coefficient Dy. The values of the modified quadrature weights refer to a spatially uniform void fraction equal to 0.400.

that should promote segregation. The system modeled is the same
as before (refer again to Section 2), but this time we considered
superficial fluid velocities of 0.10 and 0.05 m/s, values that should
be sufficiently low to induce segregation.

Before presenting the experimental and numerical results, let
us briefly describe how we derived them. As formerly mentioned,
initially the system is made up of two superposed uniform
powders, the powder with particles of lower mean size being
placed underneath the other; this ensured that smaller particles
were free to migrate towards the bed top, while larger particles

toward the bed bottom. In the experiments, after loading the
powders, we fed nitrogen at a constant superficial velocity for
about 10 min, a time sufficient to attain pseudostationary condi-
tions. After, we carried out the so-called bed freeze test: we
abruptly cut off the gas supply to the bed and vented the gas
present in the windbox of the vessel to the atmosphere. We then
split the fixed bed resting on the distributor plate into five layers
of equal height, collected each layer using a sampling probe, and
finally sieved them to obtain their PSDs. From these we calculated
first the VDF integer moments of interest and then the quadrature
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nodes and weights; details about the experimental apparatus and
procedure can be found in Mazzei et al. (2010a). The simulations
did not exactly mirror the experiments, for we did not simulate
the bed collapse. Doing so is unnecessary and might even be
detrimental. Numerically, we can easily determine the VDFs
when the bed is still fluidized; to this end, we just have to divide
the bed in layers and from the numerical profiles of the VDF
moments determine their average values in each layer and then
the corresponding average values of the quadrature nodes and
weights. There is also another reason for which it is preferable to
calculate the VDFs while the bed is still fluidized. As Mazzei et al.
(2010b) reported, freezing the bed is detrimental, since while the
experimental collapse is instantaneous, and the bed conserves its
particle size distribution, the simulated collapse is not and so
allows the bigger particles to sink toward the bottom of the vessel,
altering the original segregation profile. For these reasons, we
simulated solely the fluidization phase, determining the VDFs in
pseudostationary conditions. The experimental and numerical
values of the quadrature nodes and weights are reported in
Figs. 3 and 4 for the superficial fluid velocities of 0.10 and
0.05 m/s, respectively. Good match between the values implies
good prediction of the particle size distributions. This is how we
tested the quadrature-based model.

Let us first describe the numerical results obtained for the super-
ficial fluid velocity of 0.10 m/s. Fig. 3 shows the pseudosteady-state
values, predicted numerically and measured experimentally, of the
quadrature nodes and weights. As we can see, the numerical values of
the quadrature nodes are spatially uniform, that is, they are the same
in each bed layer, while the experimental values are nearly the same
in all layers except the bottom one, where they are slightly larger.
Overall, the agreement is reasonably good; the mean percent error is
about 20% for s; and 10% for s, (from this point of view the figure
might mislead, insofar as the node s, appears to be better predicted;
but the smaller absolute error visible in the figure turns into the larger
percent error reported above because s, is the smaller node). We
should note that setting Dy = 0 would have resulted (in the presence
of numerical diffusion, which allows micromixing to take place and
nodes to homogenize) in mean percent errors of about 70% for s, and
35% for s,.

As said, the numerical profiles of the nodes are spatially
uniform. This always occurs for very long times, provided size-
changing phenomena such as growth, aggregation and breakage
are absent. Initially the nodes are not uniform and therefore the
diffusive and source terms present in Eq. (3.8) are not zero, making
the nodes vary along the pathlines and the material derivatives of
the nodes differ from zero. For long times, however, the node
gradients tend to vanish, thus driving the material derivatives to zero.
This occurs regardless of the superficial fluid velocity employed.
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Consequently, if segregation takes place, this is reflected by nonuni-
form spatial profiles of the quadrature weights - in particular of the
functions ¢} (x,t) introduced in the previous section and reported in
Fig. 3, whose values for the smaller nodes we expect to be smaller in
the lower bed region. This is what we do observe in the figure: as we
move downwards through the bed the weight ¢ (%, t), which refers to
the smaller node, progressively decreases, revealing that segregation
has taken place. Also in this case the overall agreement is reasonably
good, the mean percent error being less than 10%. Segregation, as we
can see, is only slightly overpredicted in the top two layers of the bed.

We now go on to discuss the results obtained for the superficial
fluid velocity of 0.05 m/s. Fig. 4 shows the pseudosteady-state
values, predicted numerically and measured experimentally, of the
quadrature nodes and weights. As we expected, the numerical
values of the quadrature nodes are spatially uniform and equal to
those found for the larger superficial velocity; the experimental
values, conversely, vary from layer to layer, but not substantially.
Overall, the agreement is again reasonably good; the mean percent
error is also in this case about 20% for s, and 10% for s,.

The spatial profiles of the quadrature weights predicted
numerically are not uniform, which confirms that segregation
has taken place; however, the degree of segregation is far less
than that observed experimentally. The experimental profile
shows that in the three lower bed layers the quadrature weights
are nearly uniform, the larger quadrature node being dominant; in
the two upper bed layers the quadrature weights are also nearly
uniform, but here the smaller node is dominant. Thus, the bed is
almost split into two regions. The segregation profile predicted
numerically is smoother, ¢} (x, t) changing gradually along the bed
axis; the mean percent error in this case is about 35%. This result
should be improved.

The question that we asked ourselves is whether the inaccuracy
of the quadrature weight profile is related to the DQMOM model.
We believe that it is not. As mentioned, if size-changing phenom-
ena such as growth, aggregation and breakage are all absent, the
quadrature nodes eventually become uniform in space; then, the
evolution equations of the quadrature weights become as follows:

at(/)r = —ax’(/)rvr + ax'Dxax¢r (7-1)

because, as Egs. (3.7) indicate, the source terms vanish. This
reveals that, when pseudosteady-state conditions have been
achieved, the quadrature weights become conservative quantities.
In Section 3 we explained why the diffusive term above survives;
this, however, is comparatively smaller than the convective term,
and we may regard it as a correction to the latter. In these
conditions, that is, once the source terms have vanished, neglecting
the diffusion term should not alter significantly the numerical
predictions of the spatial profiles of the functions ¢.(x,t). If we

0.60
0.55
0.50
0.45 —
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

+— Experimental - Weight 1

CFD - Weight 1

Quadrature weight 1 [ -]

Bed bottom
0 1 2 3 4 5 6
Layer

Bed top

Fig. 3. Profiles of the VDF quadrature nodes and of the weight relative to the smaller node at pseudosteady-state conditions in the segregated fluidized bed for u = 0.10 m/s
and D, =0.005 m?/s. The values of the (modified) quadrature weights refer to a spatially uniform void fraction equal to 0.400.
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Fig. 4. Profiles of the VDF quadrature nodes and of the weight relative to the smaller node at pseudosteady-state conditions in the segregated fluidized bed for u = 0.05 m/s
and Dy =0.005 m?/s. The values of the (modified) quadrature weights refer to a spatially uniform void fraction equal to 0.400.

neglect this contribution, Eq. (7.1) reduces to the customary
continuity equation solved for solid phases by Eulerian CFD codes,
and in particular by Fluent. Of course, because of numerical
diffusion, the equation really solved is as follows:

atd)r = —0x’(/)rvr + ax'Dr1ax¢r

where the coefficient Dy has been replaced by D,. But the diffusive
term introduced by numerical diffusion is also comparatively
smaller than the convective term, provided the computational
grid is sufficiently fine. So, if the pseudosteady-state spatial
profiles of the quadrature weights are inaccurately predicted,
there can only be two reasons: either we employed a value for
Dy that does not render the diffusion term comparatively smaller
than the convective term, or the dynamical equations used in the
code, based on the kinetic theory of granular gases, lack sufficient
accuracy to well match the profiles experimentally measured. The
equations that we adopted are a default option in Fluent, are based
on the work of Lun et al. (1984), Syamlal (1987) and Gidaspow
(1994), and are customary choices in multiphase modeling of
granular flows.

To investigate this aspect further, we simulated the behavior of
a binary powder made up of particles with sizes equal to the
pseudosteady-state values of the quadrature nodes predicted by
the DQMOM equations and fluidized at a superficial velocity of
0.05 m/s. In doing so, we used the same dynamical equations
previously used, replacing the evolution equations for the quad-
rature weights with the customary continuity equations obtained
from Egs. (7.1) by setting Dy = 0. The computational grid adopted
was the same as before, but this time to discretize in space we
used a second-order numerical scheme; doing so was possible
because now we were using the default equations of the code, and
thus we did not encounter the same stability problems that the
DQMOM equations posed. The reason for adopting a second-order
numerical scheme was minimizing as much as possible the
numerical diffusion. Fig. 5 reports the new and old profiles of
the function ¢} (x, t), that is, of the modified quadrature weight. As
we see, the two profiles do not differ significantly, both predicting
a gradual change of the weight along the bed axis. Segregation is
slightly more pronounced in the new profile, but the qualitative
difference between the numerical and experimental results
remains: the numerical results do not predict that the bed
essentially separates into two regions. For the new profile, the
mean percent error is nearly the same as before, being about 35%.

This is what we conclude from this investigation. The DQMOM
model employed correctly predicts the evolution of the quadrature
nodes, as long as the diffusion coefficient Dy is correctly estimated
(we reported how to do this at the end of Section 4). Setting this
coefficient to zero, or to a low value compared to that of the
numerical diffusion coefficient, leads to wrong results. The

(7.2)

0.60
0.55

—— DQMOM Model - Weight 1

0.50 | — Binary Model - Weight 1
0.45
0.40 - —
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Quadrature weight 1 [ -]

Bed bottom Bed top
0 1 2 3 4 5 6

Layer

Fig. 5. Profiles of the VDF quadrature weight relative to the smaller node at
pseudosteadystate conditions in the segregated fluidized bed for u = 0.05 m/s and
Dy =0.005 m?/s calculated using DQMOM and a normal binary model. The values
of the (modified) quadrature weights refer to a spatially uniform void fraction equal
to 0.400.

quadrature weights, conversely, are not very well predicted,
because in the simulation the segregation profile is more gradual
than what observed experimentally. This limitation, however, is
not related to the DQMOM evolution equations, but to those
adopted to model the velocity and granular temperature fields
associated with each quadrature class. The constitutive relations
used in such equations give results that are qualitatively correct,
but quantitatively inaccurate. It is necessary, therefore, that these
relations be improved.

8. Conclusions

In this work we tested the new DQMOM model recently
developed by Mazzei (2011), using it to model the segregation
dynamics of dense polydisperse fluidized powders of inert parti-
cles. The novelty of the model is that it allows mixing at the
particle length scale, thereby allowing the nodes of the quadrature
formula to vary along the pathlines. Previous models reported in
the literature predicted, for similar systems, that nodes are
constant along the pathlines, which implies that nonuniform
powders cannot homogenize in space. To permit micromixing,
the model introduces in the evolution equations of the quadrature
weighted nodes and weights a diffusive term; which value to
assign to the diffusion coefficient present in this term had not
been specified in Mazzei (2011). In this work we first of all
discussed this problem, and then we tested the ideas advanced
numerically, simulating the mixing of powders initially segregated
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using different values for the diffusivity. This sensitivity analysis
gave a positive outcome, confirming that the diffusive term is
essential and that the diffusivity Dy must be larger than the
coefficient Dy, representing the numerical diffusion generated by
the computational code. Specifically, the analysis showed that
Dx~10D,, suffices for good accuracy. Smaller values render the
source and diffusion terms present in the evolution equations of
the quadrature weighted nodes and weights imbalanced, leading
to grossly wrong predictions, a condition found, in particular,
when one sets Dy =0, that is, when one neglects the diffusion
term altogether. We also identified an upper bound value for the
diffusion coefficient, denoted as Dy,. Values of Dy smaller than this
value permit convection to dominate over diffusion, a necessary
condition for quadrature formulae that well approximate the
moments external to the set tracked by the DQMOM model, in
particular the convective fluxes. Larger values of Dy would allow
diffusion to erase the gradients generated by convection, thereby
flattening the spatial profiles of the quadrature weighted nodes
and weights, of the moments and of the fluid voidage. The
numerical results also confirmed such aspects. After having
identified, in light of this analysis, a suitable value for Dy, we
went on to simulate the dynamics of the system under conditions
which promote segregation, validating the results of the simula-
tions experimentally. We considered two superficial fluid velo-
cities, 0.10 and 0.05 m/s. For the first we found a good match
between simulations and experiments, whilst for the second only
the quadrature nodes were reasonably well predicted; in particu-
lar, the simulations underpredicted the degree of segregation in
the bed. Qualitatively the results are correct, but quantitatively the
accuracy needs improvement. A test that we conducted, however,
suggests that the issue is not related to the DQMOM model but has
more to do with the constitutive relations used to model the
velocity and granular temperature fields associated with each
quadrature class. These relations need to be improved.
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