
Low Latency Scheduling Algorithm for Shared
Memory Communications over Optical Networks

Muhammad Ridwan Madarbux, Anouk Van Laer and Philip M. Watts
Department of Electronic and Electrical Engineering

University College London
London, United Kingdom, WC1E 7JE

Email: m.madarbux@ucl.ac.uk

Abstract—Optical Network on Chips (NoCs) based on silicon
photonics have been proposed to reduce latency and power con-
sumption in future chip multi-core processors (CMP). However,
high performance CMPs use a shared memory model which
generates large numbers of short messages, typically of the
order of 8-256B. Messages of this length create high overhead
for optical switching systems due to arbitration and switching
times. Current schemes only start the arbitration process when
the message arrives at the input buffer of the network. In
this paper, we propose a scheme which intelligently uses the
information from the memory controllers to schedule optical
paths. We identified predictable patterns of messages associated
with memory operations for a 32 core x86 system using the
MESI coherency protocol. We used the first message of each
pattern to open the optical paths which will be used by all
subsequent messages thereby eliminating arbitration time for
the latter. Without considering the initial request message, this
scheme can therefore reduce the time of flight of a data message
in the network by 29% and that of a control message by
67%. We demonstrate the benefits of this scheduling algorithm
for applications in the PARSEC benchmark suite with overall
average reductions in overhead latency per message, of 31.8%
for the streamcluster benchmark and 70.6% for the swaptions
benchmark.

I. INTRODUCTION

Photonic networks-on-chip (NoC) based on advances in
silicon photonics have been proposed as one of a range of
solutions to the serious problems of energy consumption and
thermal management in chip multiprocessors (CMP) [1]–[6]
due to fundamentally lower power consumption. Figure 1)
shows a shared distributed memory CMP with optical cross bar
assumed in this work. However, whereas electronic networks,
such as meshes [7] and crossbars [8] rely on multiple hops be-
tween sequential elements, efficient optical NoC require end-
to-end optical paths to be setup in advance of communication
and the resulting latency overhead of arbitration and control
message transmission between cores and a central switch can
be significant for the short (8–256 B) messages produced
by shared memory computer systems. Figure 2(a) shows the
overhead latency comprising of request transmission, arbitra-
tion and grant transmission latencies. Various schemes have
been proposed to overcome this overhead latency and the non-
scalable nature of centralised arbitration including speculative
transmission [1], [9], distributed arbitration [1], optical arbitra-
tion [2], avoiding arbitration using a single write multiple read
topology [4] or partitioning the network into smaller optical

switch sections separated by optical-electrical-optical convert-
ers and electronic buffering [4], [6]. These schemes all involve
an increase in the number of optical components and/or the
complexity of the control plane. Alternatively, optical circuit
switching allows long lived flows to be efficiently transferred
with low arbitration overhead [5], although a backup electronic
network is usually necessary to transfer small messages. The
authors have previously investigated setting up long lived cir-
cuits between shared memory cores which have dense sharing
requirements. Initial results [10] showed that, with ideal circuit
setup decisions made on less than 1 µs time periods, a large
proportion of PARSEC application traffic can be routed onto
the circuit switch. However, further investigation has shown
that adding background traffic from the operating system
considerably reduces the benefits.

In this paper, we propose and evaluate a low latency
scheduling algorithm for an optical shared memory network
which reduces the number of control path messages and
arbitrations required, thus improving both latency and power
consumption. Rather than waiting for each message to appear
in the input buffer before starting the arbitration process,
our algorithm intelligently uses a knowledge of the traffic
patterns produced by the cache coherence protocol to setup
optical paths and hence eliminate the arbitration latency for
many messages. The rest of the paper is organized as follows:
Section II describes the predictable communication patterns
produced by cache coherence protocols and our scheduling
algorithm which we use to efficiently schedule optical paths.
Section III outlines our evaluation methodology including the
baseline optical switch system and our proposed algorithm.
Section IV presents results from simulations of the baseline
and proposed networks operating on a 32 core x86 system
running the PARSEC benchmark suite, and finally, section V
discusses the system implications of these results and further
work.

II. PROPOSED SCHEDULING ALGORITHM

In order to investigate the traffic patterns within shared
memory CMPs, we collected traces of all communication
within the parallel phase of ten PARSEC benchmark appli-
cations [11] running on a simulated 32 core x86 system with
a Linux operating system and MESI coherence protocol using
the gem5 simulator [12]. Ideal contention-free interconnect



Fig. 1: A Chip Multiprocessor (CMP) with compute tiles
consisting of processor, private L1 and distributed shared L2
cache interconnected with a photonic crossbar. O = optical
network port, X = optical switch

Fig. 2: Timing model of (a) baseline (b) proposed scheduling
algorithm. τtof=time of flight latency between ports and
switch, τarb=arbitration time and τserial=serialization latency.

was used to generate the traces in order to eliminate the effect
of the network at this stage.

Analyzing the traces, it was found that the communication
consists of eight common patterns of messages exchanged
between any pair of cores, initiated by the cache coherence
protocol. The messages consist of request messages (REQ,
8B for read/72B for write), response messages (RES, 8B/72B)
and unblock messages (UNB, 8B). Although each of the
different benchmarks had very different traffic matrices, their
communications consisted mostly of patterns involving mostly
two, three and five messages, from which it can be concluded
that the patterns depend on the coherence protocol rather than
the benchmark.

Figure 3 shows examples of the most commonly occurring
three and five message patterns, both representing a store
request. In the three message pattern, shown in Figure 3(a),
the L1 cache of the source port is requesting exclusive access

Fig. 3: Most common patterns of three and five messages

to an address in memory by sending a REQ message to the
L2 of the destination port. The L2 will then block the address
and return a RES message with the blocked address. Finally,
an UNB message will be sent between the L1 and L2 caches
at the destination port before being sent across to the source
port to make the address available exclusively by the L1 of
the source port. Similarly, Figure 3(b) represents the most
commonly occurring five message pattern consisting of two
REQ, two RES and an UNB. The purpose of the five message
pattern is very similar to the three message one except that
the data comes from a different L1 cache. The two message
patterns (not shown) consist of a REQ followed by a RES
message.

The main point to note is that each of these patterns is an
series messages exchanged between two ports where, once
the initial REQ message has entered the network, the rest
of the pattern is predictable and can be used to schedule
a bidirectional optical circuit for the entire duration of the
pattern. From Figure 2, it can be observed that the latency
of subsequent messages in the pattern is reduced by twice
the time of flight in the network plus the arbitration time,
2τtof + τarb. The bidirectional circuit will finally be closed
only after all the messages in the specific pattern have been
transferred. It also shows the latency savings that would arise
from a three message pattern. In this particular situation, the
latency of the pattern would be reduced by 4τtof + 2τarb.
Clearly, longer patterns have proportionately greater latency
savings.

There is one refinement required to the algorithm concern-
ing the situation in which the requested memory address is
not in any cache on the chip and must be retrieved from main
memory. Memory access can take hundreds of clock cycles
(set to 600 clocks in the simulations reported in this paper).
Holding open optical circuits for this length of time would
block other messages waiting to use the switch. Therefore in
this case, the destination port signals to the arbiter to tear down
the circuits. The memory response and unblock message are



then treated as a separate pattern.
In spite of the considerable latency benefits of this method,

there is one obvious drawback: while the bidirectional circuit
is setup, there is a period of time in which other messages to
or from the ports are blocked and will need to be queued
for future transmission. The effectiveness of the algorithm
therefore depends on whether the latency savings made by
keeping the optical path open outweigh the additional latency
introduced by additional queuing of request messages. In the
following section, we investigate this using simulations of the
proposed algorithm against a baseline switch arbiter.

III. METHODOLOGY

Simulations of an optical crossbar switch [13] and arbiter
were performed using the 32-core x86 traces as input. Figure
4 represents the arrangement of two cores connected by the
optical switch. The switch has two sections; (1) a path allo-
cator/arbiter with a FIFO which will receive control messages
from the cores requesting setup and tear down of optical paths
and (2) the optical switch with an 80 Gb/s data path (e.g.
8 wavelengths of 10 Gbps), chosen because this bandwidth
(and hence serialsation latency) gave optimum results for full
system simulations of a CMP interconnected with an optical
cross-bar in our previous work [14].

Starting from a position in which all ports are free, when
a message enters the source port data FIFO, it will send a
path request message to the allocator which enters the request
FIFO. If there is an available switch path, a grant message is
sent to the source port and the allocator opens a unidirectional
optical circuit from the source port to the destination port in
the case of the baseline scheduler or a bidirectional circuit
in the case of proposed scheduler. To deal with contentions,
the round-robin method [15] was to ensure fair allocation. As
only output port arbitration is required, our previous 45 nm
synthesis results show that the allocator can be scaled up to 64
ports while maintaining single cycle allocation with a clock
frequency of up to 1.2 GHz [16]. In these simulations, we
conservatively assumed a clock frequency of 1.2 GHz for
the 32-port network. Once the grant message is received, the
source port router will serialize the message and send it via the
now open optical path. With the message sent, in the case of
the baseline scheduler, the arbiter will bring down the path and
proceed to deal with the oldest request in the request FIFO.
In the case of the proposed algorithm, the bidirectional circuit
remains open until the memory transaction is complete with
subsequent messages in the pattern bypassing the data FIFO.
If another memory transaction between the same two cores is
initiated before the previous pattern is completed, the circuit
is extended, further increasing the latency savings.

From [17], the die area of a 32 core CMP was estimated
to be 1400mm2. Assuming a topology whereby the switch
and arbiter are situated in the center of the die, the maxi-
mum distance of any core from the arbiter does not exceed√
1400 = 37 mm. Assuming an optical link using waveguides

with neff = 4 for both control (parallel wavelengths) and data
paths, τtof is 0.49 ns, that is, 59 % of a network clock cycle.

Fig. 4: Simulated optical switch interconnect with electronic
sections in green and optical sections in blue

Therefore, the time taken for request and grant messages was
rounded up to 1 clock cycle, which explains why a different
network frequency (<2 GHz) can be used from the one in the
trace file. Similarly the data transfer time (2τtof +τserial) was
rounded up to the nearest integer number of clock cycles. At
the source and destination ports, the processing time between
obtaining a grant and sending the message is taken to be one
clock cycle.

IV. RESULTS

Figure 5(a) quantifies the average latency savings per mem-
ory transaction (or per pattern) including the network latencies
and computation times. Patterns of 2, 3 and 5 messages are
included in the figures, therefore, for the proposed algorithm,
these times correspond to the average time that the optical
circuit remains open. The latency savings per memory trans-
action ranges from 14.8% for swaptions to 23.8% for vips.
Figure 5(b) shows the average overhead latency per message,
that is, the latency required for the message to be sent in
the network without considering the serialisation time and
the time of flight of the data message through the network.
This metric eliminates the latency difference between data and
control messages and therefore clearly demonstrates the effect
of the proposed scheduling algorithm. A significant reduction
in the overhead latency ranging from 31.8% reduction for
streamcluster up to 70.6% for swaptions is observed.

Although the proposed algorithm shows significant reduc-
tions in latency, it is also expected to have increased use of the
request FIFO as the bidirectional circuits block other memory
transactions. Figures 5(c) and (d) illustrate the extent of the
additional queuing and explain why this does not significantly
diminish the latency savings. Figure 5(c) shows that the
average waiting time in the request FIFO increases using the
proposed algorithm, up to a factor of nearly 5 for freqmine
and vips. Although this will tend to increase latency compared
with the baseline scheduler, Figure 5(d) shows that requests
which use the request FIFO for more than one clock cycle
constitute a very small proportion of the total communication.
Here, for both freqmine and vips benchmarks, less than 2%
of total communication will remain in the request FIFO. Even
Swaptions, which has the densest communication pattern of
the ten investigated, does not exceed 17.9% for the proposed
algorithm in the request FIFO. Hence, the overall effect is a
substantial latency saving.



Fig. 5: Simulation results comparing the baseline and proposed scheduling algorithms (a) time taken to complete a pattern of
messages (b) individual message latency; (c) average waiting time in request FIFO and (d) percentage of total communication
that uses the request FIFO

V. CONCLUSIONS

The results in this paper demonstrate that a scheduling algo-
rithm which performs arbitration once per memory transaction
rather than per message offers significant overhead latency
reductions of up to 70.6%. Despite the potential for blocking
other communication while the memory transaction is in
progress, the proportion of messages using the request FIFO
are relatively low ranging from 1.5% for vips to 17.9% for
swaptions. The results show that this additional queuing does
not significantly affect overall latency savings. However, for
future work we intend to build a full system simulation model
of the proposed algorithm within the gem5 framework in order
to measure the effect on overall application performance.

This paper demonstrated the latency benefits of the proposed
algorithm for CMPs with an optical NoC. However, far greater
benefits can be obtained for larger shared memory systems
which span multiple chips such as high performance, multiple-
socket servers. In this case, the additional time of flight
τtof ensures that the control and arbitration overhead latency
saving is further increased. In addition, the proposed algorithm
potentially allows greater port counts to be accommodated
without a substantially increased arbitration overhead as using
several clock cycles for arbitration will only affect the initial
REQ message in a pattern.

ACKNOWLEDGMENT

The authors would like to thank Timothy Jones (Univeristy
of Cambridge) for his help in setting up the gem5 simulator
and for stimulating discussions. This work was supported by
the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/I004157/2.

REFERENCES

[1] A. Shacham et al., “Building ultralow-latency interconnection networks
using photonic integration,” IEEE Micro, vol. 27, no. 4, 2007.

[2] D. Vantrease et al., “Corona: System implications of emerging nanopho-
tonic technology,” in Int. Symp. on Comput. Archit., 2008.

[3] A. Krishnamoorthy et al., “Computer systems based on silicon photonic
interconnects,” Proc. of the IEEE, vol. 97, no. 7, 2009.

[4] Y. Pan et al., “Firefly: Illuminating future network-on-chip with
nanophotonics,” in Proc. Int. Symp. on Comput. Archit., 2009.

[5] G. Hendry et al., “Analysis of photonic networks for a chip multipro-
cessor using scientific applications,” in 3rd ACM/IEEE Int. Symp. on
Networks-on-Chip, 2009.

[6] G. Hendry et al., “Time-division-multiplexed arbitration in silicon
nanophotonic networks-on-chip for high-performance chip multiproces-
sors,” Journal of Parallel and Distributed Comput., vol. 71, no. 5, 2011.

[7] W. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. Design Autom. Conf., 2001.

[8] J. Shin et al., “A 40 nm 16-core 128-thread sparc soc processor,” IEEE
Journal of Solid-State Circuits, vol. 46, no. 1, 2011.

[9] I. Iliadis and C. Minkenberg, “Performance of a speculative transmis-
sion scheme for scheduling-latency reduction,” IEEE/ACM Trans. on
Networking, vol. 16, no. 1, 2008.

[10] P. Watts et al., “Requirements of low power photonic networks for
distributed shared memory computers,” in Opt. Fib. Comm. Conf., 2011.

[11] C. Bienia et al., “The parsec benchmark suite: Characterization and
architectural implications,” Princeton University, Tech. Rep., 2008.

[12] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, 2011.

[13] A. Poon et al., “Cascaded Microresonator-Based Matrix Switch for
Silicon On-Chip Optical Interconnection,” Proc. of the IEEE, vol. 97,
no. 7, 2009.

[14] A. Laer et al., “Full system simulation of optically interconnected chip
multiprocessors using gem5,” in Optical Fiber Comm. Conf., 2013.

[15] E. Shin et al., “Round-robin arbiter design and generation,” in Proc. Int.
Symp. on Syst. Synthesis, 2002.

[16] P. Watts et al., “Energy implications of photonic networks with specu-
lative transmission,” IEEE/OSA Jour. of Opt. Comm. and Netw., vol. 4,
no. 6, 2012.

[17] J. Zhao et al., “Cost-aware three-dimensional (3d) many-core multipro-
cessor design,” in Proc. 47th Design Autom. Conf., 2010.


