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Abstract 
Variability has been one of the major challenges for both theoretical understanding and 
computer synthesis of speech prosody. In this paper we show that economical representation 
of variability is the key to effective modeling of prosody. Specifically, we report the 
development of PENTAtrainer — A trainable yet deterministic prosody synthesizer based on 
an articulatory-functional view of speech. We show with testing results on Thai, Mandarin 
and English that it is possible to achieve high-accuracy predictive synthesis of fundamental 
frequency contours with very small sets of parameters obtained through stochastic learning 
from real speech data. The first key component of this system is syllable-synchronized 
sequential target approximation — implemented as the qTA model, which is designed to 
simulate, for each tonal unit, a wide range of contextual variability with a single invariant 
target. The second key component is the automatic learning of function-specific targets 
through stochastic global optimization, guided by a layered pseudo-hierarchical functional 
annotation scheme, which requires the manual labeling of only the temporal domains of the 
functional units. The results in terms of synthesis accuracy demonstrate that effective 
modeling of the contextual variability is the key also to effective modeling of function-related 
variability. Additionally, we show that, being both theory-based and trainable (hence data-
driven), computational systems like PENTAtrainer can serve as an effective modeling tool in 
basic research, with which the level of falsifiability in theory testing can be raised, and also a 
closer link between basic and applied research in speech science can be developed. 
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• High synthetic accuracy of prosody achieved for Thai, Mandarin and English 
• Many-to-one mapping from contextually variable surface F0 to invariant functional 

targets 
• Effectively handling of both contextual and non-contextual variability 
• Combination of deterministic synthesis and data-driven parameter learning 
• Large-scale and full-detailed prosody synthesis as tool for theory testing  
• Freely available as a Praat scripts and plug-ins to the speech science community at 

large 
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1. Introduction 
Like the segmental aspects of speech (Perkell and Klatt, 1986), and perhaps to an even 
greater extent, speech prosody exhibits extensive variability and uncertainty, which makes its 
computational modeling extremely difficult. Among the various aspects of prosody, 
fundamental frequency (F0) is by far the most challenging, and has attracted most of the 
research effort. Many theories and computational models of F0 patterns have been proposed 
over the years (Anderson et al., 1984; Bailly and Holm, 2005; Black and Hunt, 1996; Fujisaki 
et al., 2005; Grabe et al., 2007; Hirst, 2005, 2011; Jilka et al., 1999; Kochanski and Shih, 
2003; Mixdorff et al., 2003; Pierrehumbert, 1980, 1981; Prom-on et al., 2009; Taylor, 2000; 
van Santen and Möbius, 2000; Xu and Wang, 2001; Xu, 2005), and a large number of 
empirical studies have been conducted (as reviewed by Wagner and Watson, 2010; Shattuck-
Hufnagel and Turk, 1996; Xu, 2011). Despite the extensive effort, however, most of the 
critical issues still remain unresolved and some are still under heated debate (Arvaniti and 
Ladd, 2009; Ladd, 2008; Wagner and Watson, 2010; Wightman, 2002; Xu, 2011). This lack 
of consensus has been an obstacle to linking basic prosody research to applied areas, resulting 
in slow advances in developing applications with capabilities for processing prosody.  

One way to foster significant advances in prosody research is to develop 
computational models that can be used for theory testing. Such models would allow the 
translation of theories and empirical findings into algorithms that can predict fully continuous 
prosodic patterns, which can be directly compared to real speech data. Furthermore, and 
perhaps more importantly, such computational models would enable theories to predict 
phonetic details beyond the specific phenomena for which they were originally proposed. 
Testing such predictive powers would not only help demonstrate theories’ generalizability, 
but also make them readily applicable to speech technology once the test results are positive. 
The present study is part of our continued effort in this direction, with a significant extension 
from our previous work (Prom-on et al., 2009), and with particular focus on the problem of 
variability. Before describing our current work, however, we will first discuss the main 
sources of prosodic variability and review how they have been addressed so far. 

1.1. Two types of prosodic variability 
Like in the case of segmental aspect of speech (Ladefoged, 1967; Peterson and Barney, 1952), 
the nature of prosodic variability is best highlighted by controlled comparisons. Fig. 1 
displays two very different types of F0 variability with previously reported empirical data 
(Liu and Xu, 2005; Xu, 1997). The first type is contextual variability, defined as the varying 
F0 manifestation of a tonal category as a function of its adjacent tones. As shown in Fig. 1A, 
contextual variability is mostly assimilatory: when the same tone in the second syllable of 
each graph is preceded by four different tones in the first syllable, its F0 contour varies 
extensively, especially in the early portion. Despite the extensive variability, however, all the 
contours gradually converge over time to a trajectory that is appropriate for the underlying 
tone: high-level for the High (H) tone, rising for the Rising (R) tone, low-level for the Low (L) 
tone and falling for the Falling (F) tone. As shown in Xu and Sun (2002), such carryover 
contextual variation is articulatorily inevitable given the physiological limit on the maximum 
speed of pitch change that applies to both Mandarin and English speakers and across genders. 
Fig. 1A also demonstrates that contextual variability is anything but trivial. In fact, much 
effort has been devoted to the understanding and modeling of this variability in terms of tonal 
coarticulation (Gu et al., 2007; Kochanski and Shih, 2003; Ni et al., 2006; Prom-on et al., 
2009; Shen, 1990; Shih, 1987; Wu, 1984). However, theories and models of intonation rarely 
address the issue of contextual tonal variations explicitly in their original frameworks 
(Beckman and Pierrehumbert, 1986; Ladd, 2008; Pierrehumbert, 1980; Taylor, 2000; 't Hart 
et al., 1990). But given its extent as evident from an example in Fig. 1A, two questions are 
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relevant to any theories or models of intonation: a) Should the contextual variability be 
explicitly modeled? b) Should each tonal category have a single underlying representation, or 
should it have multiple representations, each associated with a particular context? 

 
Fig. 1. A) Mean F0 contours of Mandarin tones in disyllabic sequences (mama) spoken by eight male 
speakers (data from Xu, 1997). In each plot the tone of the second syllable is held constant while that 
of the first syllable alternates across four tones. B) Mean F0 contours of Mandarin sentence (Zhangwei 
danxin Xiaoying kaiche fayun [Zhangwei is concerned that Xiaoying may get dizzy when driving]), 
spoken by eight speakers (four females and four males) as statement or question and with focus on the 
first or third disyllabic word (data from Liu and Xu, 2005).  

 
The second type of variability is non-contextual and non-assimilatory, of which one 

subtype is shown in Fig. 1B. Here Mandarin sentences consisting of only H-tone syllables are 
spoken as either a statement or a question, and with either sentence-initial or sentence-medial 
focus. The F0 contour of a tone again varies extensively, but not due to assimilation with 
adjacent tones, but as a result of different focus and sentence type conditions. The same tone 
has higher F0 when it is in a question than when it is in a statement, and the difference is 
larger at the end than at the beginning of a sentence. Also the F0 height of the same tone 
differs extensively depending on whether it is directly under focus, preceding a focus or after 
a focus. There are also many other factors that trigger this type of variability, including 
additional intonational functions, emotional and attitudinal functions, speaking style, etc., as 
reviewed in Xu (2011). Critically, these factors are all fundamentally different from the 
contextual factor in that they involve genuine modification of the articulatory targets, i.e. the 
surface F0 contours reach different articulatory state depending on the factors, as opposed to 
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the purely mechanical process of articulatorily realizing the targets in the case of contextual 
variability (Xu, 2005; Xu and Wang, 2001). For modeling purposes, several questions 
therefore need to be addressed if this type of variability is to be adequately processed: a) How 
can non-contextual variability be modeled together with contextual variability? b) How can 
multiple prosodic functions be represented and modeled? c) Should the variation patterns be 
annotated only in terms of their functional identity, or should they also be annotated in terms 
of acoustic forms, such as high or low pitch? 

1.2. Previous modeling approaches to contextual variations 
Given the extent of the two types of variability as shown in Fig. 1, there is a need for 
strategies to handle both of them, and importantly, to handle each of them in a way that 
directly addresses the underlying mechanisms. Most theories and models of prosody, 
however, do not explicitly separate contextual from non-contextual variability. Instead, 
efforts have been focused only on finding direct representations of observed F0 contours 
without differentiating the sources of the variability. The IPO model of intonation ('t Hart et 
al., 1990), which defines intonation as composed of concatenated linear sections, assumes 
that many fine details of F0 contours are perceptually irrelevant and therefore can be ignored 
in stylized linear representations of intonation. The autosegmental-metrical (AM) theory 
defines intonation as a phonological structure composed of sequentially arranged pitch 
accents, phrase accents and boundary tones, each manifesting as an F0 event such as a peak or 
valley (Beckman and Pierrehumbert, 1986; Ladd, 2008; Pierrehumbert, 1980). The F0 
contours between these events are treated as due to linear or curved interpolation 
(Pierrehumbert, 1980, 1981). In this way, contextual variations are intermixed with non-
contextual variations rather than being separately recognized. Later works that adopt the AM 
theory or its ToBI (Tone and Break Indices) extension (Silverman et al., 1992) as the 
underlying framework, though using a variety of other ways to handle local F0 contours, also 
do not separately recognize contextual variability (Anderson et al., 1984; Grabe et al., 2007; 
Jilka et al., 1999; Taylor, 2000). Probably the only exception is Black and Hunt (1996), who 
used regression trees to predict three target points for each syllable. Among the regressors 
used in the training process are some (e.g. accent type and endtone of two preceding syllables) 
that carry certain contextual information. In this way, they attempt to develop multiple 
representations of variant tonal contexts. None of these approaches, however, recognizes the 
role of articulatory mechanisms in prosody production, with the only exception of Anderson 
et al. (1984), who have taken into consideration the physiological sluggishness of the 
articulatory system as a possible source of local smoothness of the F0 contours. 

One model that takes articulatory mechanism of F0 production much more seriously is 
the command-response model, also known as the Fujisaki model (Fujisaki et al., 1990, 2005; 
Gu et al., 2006; Mixdorff et al., 2003). It represents F0 as a superpositional sum of phrase and 
accent/tone components, each as a second-order critically-damped response to the phrase and 
accent/tone commands, respectively. The second-order system is based on a spring-mass 
model, which has also been used in characterizing articulatory movements of segmental 
production (Saltzman and Munhall, 1989; Perrier et al., 1996). The Fujisaki model has been 
shown to be able to accurately resynthesize F0 contours of tonal variations (Fujisaki et al., 
2005; Gu et al., 2007) and sentence modality (Gu et al., 2006), but it has not yet been tested 
to generate contextually variant F0 contours, as those shown in Fig. 1, with invariant tone 
commands. Two of its basic assumptions may have made this task difficult for the model. 
First, the response to each command consists of an on-ramp as well as an off-ramp, whereas 
all the variants of a tone in Fig. 1A exhibits only unidirectional movements toward an 
underlying linear trajectory, with no observable return movements. Second, there are only 
static-step or impulse commands in the Fujisaki model, whereas the F0 contours of the R and 
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F tones in the right two plots of Fig. 1A evidently converge to a dynamic rising or falling 
trajectory, respectively. This suggests that the underlying targets of these tones could be 
dynamic rather than static. The issue of dynamic targets has been addressed in Fujisaki et al. 
(2005) by adding to the model negative commands. But this creates a need to optimize for the 
amplitudes and timings of the additional commands. Third, unlike the syllable-synchronized 
tonal variation shown in Fig. 1, the timings of all commands, in terms of both onset and 
offset, are free parameters that need to be estimated during modeling, which also increases of 
the difficulty of establishing invariant tonal commands. 

Thus to the questions of whether contextual variability should be explicitly modeled, 
the answer by most of the above-mentioned models is negative, because they have either 
ignored it or handled it indirectly. As for whether each tone should have a single or multiple 
underlying representations, the answer by those models that do address contextual variability 
in some way is that there need to be multiple representations, each corresponding to a 
particular tonal context (Black and Hunt, 1996; Fujisaki et al., 2005; Gu and Lee, 2007). 
Hence the best conceivable mapping so far between surface tonal realizations and the 
underlying representations is many-to-many. 

1.3. Previous modeling approaches to non-contextual variations 
Probably because non-contextual variations often involve larger temporal domains than 
contextual variations, they have been the main focus of most of the theories and models. The 
strategies for handling non-contextual variability differ extensively, however. Many models 
do not explicitly separate the non-contextual from the contextual variability, as mentioned 
earlier. So, of how to model non-contextual variability together with contextual variability is 
irrelevant to them. A number of models, known as superpositional models, envision surface 
F0 as composed of different layers of prosodic elements added on top of each other. Among 
them, the command-response model, also known as the Fujisaki model, distinguishes two 
such layers: accent commands that correspond to local patterns, and phrase commands that 
correspond to global patterns (Fujisaki et al., 2005), with the accent commands having 
smaller time constant (hence faster changes) than the phrase commands. The accent and 
phrase commands generate two sequences of F0 contours, which are then summed up on a 
logarithmic scale. The allowance of only two explicit levels is an apparent limit of this model, 
as it makes it difficult to model more than one non-contextual functions (Gu et al., 2006), 
which is needed even for the F0 contours in Fig. 1B. The Superposition of Functional 
Contours (SFC) model alleviates this difficulty by allowing any arbitrary number of layers, 
referred to as metalinguistic functions (Bailly and Holm, 2005). On the other hand, the fact 
that SFC represents prototypical contours summarized from training data means that it avoids 
direct modeling of any articulatory constraints. This limits its ability to efficiently model 
contextual variability. So, with regard to the question of how multiple prosodic functions can 
be represented and modeled, the most explicit answer so far is superposition. 

Finally, regarding the question as to how variable prosodic patterns should be 
annotated, the AM/ToBI answer is to use a representation that is at once phonological and 
quasi-phonetic, because it directly represents the relative pitch of the tone types, i.e., H for 
high pitch and L for low pitch. Similar quasi-phonetic is also used in INTSINT (Hirst, 2005, 
2011) and RaP (Breen et al., 2012). Note that such annotations are even “narrower” than a 
narrow transcription of the segments by the International Phonetic Alphabet (IPA), because 
in IPA, symbols like [a], [i] and [u] do not directly represent acoustic or articulatory features 
such as formant frequency or tongue position. In contrast to these modeling-by-transcription 
approaches are a number of models that allow the learning of functional forms directly from 
data (Bailly and Holm, 2005; Black and Hunt, 1996; Fujisaki et al., 2005; Kochanski and 
Shih, 2003; Vainio et al., 2009). To the extent that they are able to achieve prosody synthesis 
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with the directly learned forms, we can see that it is possible that a quasi-phonetic 
transcription of prosodic forms may not be necessary. 

1.4. The need for clearer separations of the two types of variability 
To summarize the above discussion, the general lack of clear separation of contextual and 
non-contextual variations has been a major source of difficulty in prosodic modeling. 
Ignoring the distinction between the two entirely would severely obscure the identity and 
underlying form of true functional categories in prosody, making it hard to model meaningful 
prosody. Representing contextual variants separately in a many-to-many manner, each 
associated with a triggering context, could lead to improvements. But it would take up 
additional modeling resources (storage space, computing time, complexity of the algorithm, 
etc.), and yet still unable to fully resolve the confounding between the two very different 
types of variability. A solution is therefore needed that can not only clearly separate the two 
types of variability, but also handle both in a coherent framework. 

2. An articulatory-functional approach 
The approach we have been developing is the quantitative implementation of the parallel 
encoding and target approximation (PENTA) framework (Xu, 2005), which is based on the 
recognition of the fact that speech is a communicative system that uses the articulators—a 
mechanical-physiological system—to encode information. Target approximation is a 
simulation of the articulatory dynamics, which gives rise to the contextual variability (Xu and 
Wang, 2001), while parallel encoding is a simulation of how communicative meanings are 
encoded with the articulatory dynamics, which gives rise to the non-contextual variability. 

2.1. Target approximation 
Fig. 2 is an illustration of the basic concept of target approximation (Xu and Wang, 2001). F0 
contour (black solid curve) is the response of the target approximation process to the 
underlying pitch targets (gray dashed line). Pitch targets represent the goals of F0 control and 
are localized to the host syllables (demarcated by the boundaries represented by the vertical 
gray lines). 

 
Fig. 2 An illustration of target approximation process. The thick solid line represents the F0 contour 
that asymptotically approach two successive pitch targets represented by the dashed lines. The middle 
vertical gray line represents the syllable boundary through which the final F0 dynamic state is 
transferred from one syllable to the next. The gray block arrow indicates the direction of the F0 
dynamic state transfer. 
 

This conceptual model has been mathematically implemented as the quantitative 
Target Approximation (qTA) model (Prom-on et al., 2009). In qTA, for each syllable, F0 is 
represented by the solution equation of the third-order critically damped linear system driven 
by a pitch target, as shown in the following equation, 
 f0 t( ) = mt + b( ) + c1 + c2t + c3t

2( )e−λt   (1) 
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where m and b denote the slope and height of the pitch target, respectively, and λ represents 
the strength of the target approximation movement. The first term, a linear equation, is the 
forced response which is the pitch target, and the second term, a polynomial and exponential, 
is the natural response of the system. The transient coefficients, c1, c2, and c3, are calculated 
based on the initial F0 dynamic state and the pitch target of the specified syllable. The initial 
dynamic state consists of initial F0 level, f0(0), velocity, f0ʹ′(0), and acceleration, f0ʺ″(0). The 
dynamic state is transferred from one syllable to the next at the syllable boundary to ensure 
continuity of F0. Using the first and second differentiations, F0 velocity and acceleration are 
directly estimated from the synthesized F0 values at the offset of the previous syllable, with 
the only exception for the first syllable of an utterance, for which these values are obtained 
directly from the original utterance. The three transient coefficients are computed from the 
following formulae. 
 c1 = f0 0( )− b   (2) 
 c2 = ′f0 0( ) + c1λ −m   (3) 
 c3 = ′′f0 0( ) + 2c2λ − c1λ

2( ) 2   (4) 
qTA has three model parameters controlling the F0 trajectory of each syllable: target 

slope (m), target height (b), and the rate or strength of target approximation (λ). m and b 
specify the form of the pitch target. Positive and negative values of m indicate rising and 
falling targets, respectively, while positive and negative values of b indicate raising and 
lowering of pitch targets relative to the speaker average F0 level. For example, the Mandarin 
rising and falling tones are found to have positive and negative m values, respectively (Prom-
on et al., 2009, 2011). λ indicates how rapidly a pitch target is approached. The higher the 
value of λ the faster F0 approaches the target. For example, λ of the Mandarin neutral tone has 
been found to be smaller than those of other tones (Prom-on et al., 2011, 2012), reflecting the 
slow F0 movement toward the target of the neutral tone. 

With qTA, given a particular pitch target, as those shown in Fig. 2, the surface F0 
contour is the result of approaching this pitch target, starting from the initial state transferred 
from the preceding target approximation movement. Thus the model would exhibit carryover 
contextual influences not unlike those shown in Fig. 1A. Furthermore, since the target 
approximation movement is directly calculated from its target and initial state, there is no 
need for the system to “know” what exactly the previous target is during synthesis, or to keep 
track of the preceding context during training (as done in Black and Hunt, 1995, Fujisaki et 
al., 2005, Gu and Lee, 2007). Hence, to the two questions about contextual variability raised 
earlier, the answers by PENTA are, a) each tone needs only a single underlying target in 
different tonal contexts, because the variant surface F0 trajectories due to context can be 
automatically generated given the initial states (represented by f0(0), f0ʹ′(0), and f0ʺ″(0)) used 
for calculating the transient coefficients and syllable durations (which are the original 
duration in this study and independent of the targets)1, and b) there is no need to treat tonal 
contexts as associated properties of the corresponding tonal variants, since the initial state can 
be estimated online, without knowing the identity of the preceding context. 

2.2. Parallel encoding 
Fig. 3 displays a schematic of the PENTA framework. The stacked boxes on the far left 
represent individual communicative functions as the driving force of the model. These 
functions are realized by distinct encoding schemes (the second stack of boxes from the left) 
that specify the parameters (middle block) of target approximation. The parameters are then 

                                                
1 Note that here the invariance in tonal targets is only relative to contexts. Variant targets are required for modeling the 
second type of variability, as will be discussed next. 
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used to control the target approximation process to generate the acoustic output (right). The 
PENTA framework thus describes speech prosody as a process of encoding communicative 
functions based on target approximation. This allows for a clear separation as well as smooth 
integration of the contextual and non-contextual variability, and specifies a continuous link 
between the two. In this way it provides a framework in which a full repertoire of 
communicative functions can be simultaneously realized in prosody, with all the details of 
the surface prosody still linked to their proper sources. 

 
Fig. 3. A schematic sketch of the PENTA framework. This figure is adapted from Xu (2005).  
 

PENTA is not, however, a theory about the exact forms of individual encoding 
schemes, and so it is not a direct alternative to, e.g., the AM theory. Rather, it assumes that 
how and even whether a communicative function is prosodically encoded is language specific, 
and that the exact details of each encoding scheme in a particular language have to be 
discovered through systematic empirical investigations (e.g., Chen et al., 2009; Lee and Xu, 
2010; Liu et al., 2013; Liu and Xu, 2005; Wu and Xu, 2010; Xu, 1999; Xu and Wang, 2009; 
Xu and Xu, 2005). A further implication of this assumption for prosody modeling is that 
there is no need for quasi-phonetic transcription systems like ToBI, INTSINT or RaP, 
because the exact underlying form of the functional coding can be learned in a data-driven 
manner, as long as the functional categories and their temporal domains are adequately 
annotated. 

Hence, to the questions raised earlier about non-contextual variability, the answers by 
PENTA would be, a-b) Non-contextual variability can be modeled as targets modified by all 
the participating functions, but the modified targets are always realized the same way, i.e., via 
syllable-synchronized target approximation, which automatically generates all the contextual 
variability; and c) Targets need to be annotated only in terms of their functional combinations, 
as their parameter values can be extracted from natural speech in a data-driven manner. 

3. Modeling with PENTAtrainer2 
The goal of the present study is to test the idea of automatic learning of underlying melodic 
representations of communicative functions from real speech data, with which F0 contours 
closely matching those of the original can be predictively synthesized. More specifically, we 
try to achieve a number of goals that are related to the questions raised earlier about both 
contextual and non-contextual variations. First, we try to find unique and singular invariant 
representations that can generate a wide range of contextual variants. In other words, we seek 
many-to-one as opposed to many-to-many (Bailly and Holm, 2005; Chen et al., 2004; Gu et 
al., 2007; Jokisch et al., 2000; Ni et al., 2006; Taylor, 2009) mappings between contextually 
variable surface acoustics and underlying phonetic representations. Second, we try to achieve 
predictive synthesis, in which model parameters extracted from one set of sentences are used 
to predict F0 of other sentences, as done in only some of the modeling studies (e.g., Raidt et 
al., 2004; Sakurai et al., 2003; Sun, 2002), rather than just re-synthesis of F0 contours with 
parameters derived from the same utterance. Third, we try to minimize the total number of 
parameters by allowing as few degrees of freedom as possible.  

This modeling effort is a significant extension of our previous modeling work, 
including Prom-on et al. (2009) and the subsequently developed PENTAtrainer1 (Xu and 
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Prom-on, 2010-2013). In the following two subsections we will describe the new components 
added to the previous system. In Section 4, we will explain how the newly developed 
PENTAtrainer2 is tested and report the results of modeling experiments on Thai, Mandarin 
and English. In Section 5 we will demonstrate the capability of PENTAtrainer2 to be used as 
a tool for theoretical hypothesis testing. 

3.1. Functional annotation 
PENTAtrainer2 is a data-driven system in the sense that all the specific values of the model 
parameters are learned from natural speech used as the training material. But it is critical for 
the system to know what to learn. This is done with three strategies: a) layered functional 
annotation, b) pseudo-hierarchical combination and c) edge-synchronization. Fig. 4 illustrates 
the annotation of three communicative functions of English intonation: Stress, Focus, and 
Modality. Each layer was annotated independently and the function-internal categories are 
defined by the investigator, in this case by ourselves based on our previous empirical data 
(Liu et al., 2013). Boundaries on each layer were marked according to the time span of that 
prosodic event, again defined by the investigator. For example, in Fig. 4, the Stress function 
is associated with the syllable and can have two values: Stressed (S) and Unstressed (U). 
Note that the names here carry no meaning to PENTAtrainer2 other than informing it which 
are of the same categories and so should be given a common set of target parameters. This 
differs from annotation schemes in which the names are meaningful (e.g., ToBI: Silverman et 
al., 1992, INTSINT: Hirst, 2011, RaP: Breen et al., 2012). 
 

 
Fig. 4. An example of conversion process from the parallel functional annotation to the essential 
functional combinations. For a “Stress” layer, S denotes stressed syllables and U denotes unstressed 
syllables. For a “Focus” layer, PRE, ON, POS denote pre-focus, on-focus, and post-focus regions, 
respectively. For a “Modality” layer, Q denotes question. 
 

Pseudo-hierarchical combination means that boundaries from the layer with the 
smallest temporal unit (i.e. largest number of intervals) project to other layers to form 
functional combinations. Thus each of the smallest temporal domains is a full combination of 
all the functions present in the sentence. As can be seen from Fig. 4, a sequence of functional 
combinations after boundary projection represents the prosodic variation of that utterance. 
Functional combinations that occur more than once are combined, so that there is no 
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redundancy of functional representation. Note that such functional combination and boundary 
projection is an alternative to the superposition approach which requires F0-contour 
decomposition before parameter extraction, extracting two separate sets of parameters during 
trainings, and algorithmic summation during synthesis (Bailly and Holm, 2005; Fujisaki et al., 
2005; Mixdorff et al., 2003). Here for each functional combination at the smallest temporal 
unit, only a single set of parameters need to be learned directly from the original (i.e., non-
decomposed) F0 contours during training and used during synthesis. Finally, edge-
synchronization means that all the layers, regardless of their own temporal scope, have fully 
synchronized edges with the smallest units. This is similar to the approaches of Bailly and 
Holm (2005) and Black and Hunt (1996), but differs from the Fujisaki model for which 
phrase commands and accent commands each have their own free onsets and offsets, and so 
both have to be learned separately (thus with additional degrees of freedom). 

The functional annotation concept implemented in PENTAtrainer2 requires the 
annotation of only the temporal intervals of components of hypothetical prosodic functions, 
while the discovery of the function-specific parameters is left to the training process. 
Compared to annotation systems like ToBI, this frees the investigator of the responsibility to 
make detailed and quasi-phonetic transcriptions based on careful F0 inspection and listening. 
It also potentially enhances annotation consistency, as true communicative functions, by 
definition, are commonly shared by native speakers, thus alleviating the well-known problem 
of low cross-labeler consistency in ToBI type annotations (Breen et al., 2012; Syrdal and 
McGory, 2000; Wightman and Rose, 1999). 

3.2. Analysis-by-synthesis with stochastic optimization 
In the initial implementation of qTA (Prom-on et al., 2009), target parameters are learned 
locally syllable-by-syllable through an exhaustive search for the parameter sets that result in 
the lowest sum of square errors between original and synthesized F0. This algorithm has been 
further implemented as PENTAtrainer1 — an interactive Praat script (Xu and Prom-on, 
2010-2013). The local parameter sets learned from this process are then summarized into 
categorical ones by averaging across individual occurrences of the same functional categories 
(Prom-on et al., 2009). Such local search plus categorization-by-averaging is illustrated in the 
left panel of Fig. 5. The synthesis results were quite good despite the simplicity of the 
algorithm, which demonstrates the effectiveness of the qTA model in capturing contextual 
variability. The disadvantages, however, are that a) the estimated parameters are optimal for 
the local syllable but not necessarily for the functional categories and b) the estimation of λ is 
often not satisfactory because it may fall into a local minimum due to the complexity of its 
error landscape, as shown in Fig. 6. Solving this problem is especially critical for the 
successful modeling of weak prosodic components such as the neural tone in Mandarin and 
the unstressed syllable in English. 

In PENTAtrainer2, local optimization is replaced by stochastic global optimization 
that can directly estimate parameters of functional categories from an entire corpus. The 
general idea is illustrated in the right panel of Fig. 5. The list of functional combinations is 
used to initialize the categorical parameters. These parameters are then repeatedly evaluated 
for every utterance in the corpus, by synthesis and comparison, and randomly adjusted. Since 
a pseudo-hierarchical structure of communicative functions (see section 3.3) is incorporated 
into the parameter estimation process, at the end of the optimization, the learned parameters 
would be close to optimal for the given set of functional combinations. 
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Fig. 5. Comparisons between local and global optimizations in modeling speech prosody based on 
communicative functions. 
 

 
Fig. 6. Changes in error landscapes in the optimization process when target parameters vary. Each 
landscape was derived by varying m and λ of an on-focus F tone category. The gradient color bar on 
the right of each panel shows the association of color and error value. The solid mark “✕” indicates 
the optimal point and the dashed mark indicates the old optimal point. The solid arrow line points to 
the new optimal coordinate. On the left panel where b of an on-focus F tone is set to 0, the optimal 
point indicates the combination of m and λ where the error between original and synthesized F0 
contours is at minimum. When b is changed to 5, the new optimal point also moves to the new 
combination. Such interactions between parameters suggest a need to optimize the parameters of all 
functional categories together. 
 

Fig. 7 shows a block diagram of the global parameter estimation through analysis-by-
synthesis and simulated annealing (Kirkpatrick et al., 1983). At the initial stage, the 
algorithm randomly generates parameters of all functional categories. The number of 
initialized parameter sets is equal to the number of essential functional combinations obtained 
from the procedure to be discussed in the next section. These parameters are randomly 
adjusted and used in qTA to synthesize F0 contours that are to be compared to the original 
data. The total sum of square error between original and synthesized F0 contours calculated 
from the whole corpus is then used to determine whether the proposed adjustment is 
acceptable. The decision to accept or reject the proposed adjustment depends on the 
acceptance probability calculated from the change in error incurred from parameter 
adjustment and the annealing temperature, as follows, 
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 paccept = e
− Ecurrent−Eprevious( ) T

  (5) 
where Ecurrent and Eprevious are the total sum of square errors calculated from the whole corpus. 
The difference between these two errors indicates the change in the total error incurred from 
the parameter adjustment. T is the annealing temperature that controls the degree at which a 
bad solution is allowed. In the decision process, a random testing probability (ptest) is 
generated and compared to paccept. If ptest < paccept, the parameter adjustment is accepted; 
otherwise it is rejected. T is initially set to a high value and then gradually reduced as the 
procedure is repeated. In other words, this way of adjusting temperature allows the bad 
solutions to have opportunities to be accepted at the initial stages and, as the procedure is 
repeated, the decision is gradually shifted towards accepting only good solutions. This allows 
the solution to converge close to the global optimum over iterations. 
 

 
Fig. 7. A diagram illustrating the application of the simulated annealing algorithm used for globally 
optimizing parameters of essential functional combinations by means of analysis-by-synthesis. 
 

For different simulation runs, the final optimized parameters may differ slightly due to 
the randomness built into the optimization process. The parameter learning process should be 
therefore repeated a number of times to obtain a more stable solution. This process is also 
known as bootstrapping in statistics (Efron, 1979; Konishi and Kitagawa, 1996). The medians 
of the parameters were then calculated across repetitions for each functional category 
produced by each speaker. 

3.3. Speaker normalization 
To handle the individual differences in pitch range, especially between female and male 
speakers, we applied two strategies found to be effective in our previous work on 
PENTAtrainer1 (Prom-on et al., 2009). The first is to always use the initial F0 of each 
utterance as the reference, and treat subsequent variations as deviations from it. This 
normalizes the cross-speaker and cross-gender F0 height differences. During resynthesis, 
however, the speaker mean can be used as the reference. The second strategy is to process F0 
on the semitone scale, which is logarithmic. This normalizes the cross-speaker and cross-
gender pitch range differences. In addition, the target approximation, as simulated by the 
qTA model, is a powerful normalization process in itself, as all speakers of a language, 
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despite their differences in their normal pitch range, are presumably doing comparable things 
in their production of tone and intonation. 

Note however that such speaker normalization is applicable only in the case of group-
average modeling, in which common targets shared by a group of speakers are obtained. It is 
also possible to perform speaker-dependent modeling, in which the targets learned are unique 
to individual speakers. Both types of modeling are performed in the present study, and their 
results are compared whenever necessary. 

3.4. PENTAtrainer2, the software 
PENTAtrainer2 is developed as a semi-automatic software package written as Praat scripts 
(Boersma and Weenink, 2009) integrated with Java programs. Users can download 
PENTAtrainer2 and its documentations from: 
http://www.phon.ucl.ac.uk/home/yi/PENTAtrainer2/. It consists of three computational tools: 
Annotation, Learning and Synthesis tools, as shown in Fig. 8. The first step in using 
PENTAtrainer2 is to annotate the corpus with the Annotation tool. Before the annotation, 
users need to determine the number of communicative/linguistic functions that will be 
studied, as well as their internal categories. This annotation step is the most time consuming 
part for the user. In this step, users need to mark the boundaries in each layer associating with 
a particular factor and name the category in each interval, as illustrated in Fig. 4.  
 

 
Fig. 8. Workflow of PENTAtrainer2, which consists of the use of Annotation, Learning, and 
Synthesis tools. The number on the top-left of each tool indicates its order of application in the 
modeling process. 
 

In the second step, parameters are automatically optimized by the Learning tool. This 
step requires user input only on a few optimization parameters, including 

- Maximum Iteration, indicating the number of rounds that the procedure is 
repeated 
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- Learning Rate, indicating the scaling factor for parameter adjustment 
- Starting Temperature, indicating the starting temperature, T, as shown in Eq. (5) 
- Reduction Factor, indicating the scaling factor of the annealing temperature for 

each iteration 
The speed of the optimization process depends on the size of the corpus, the number of 
functional combinations, and the above-mentioned optimization parameters. In the last step, 
i.e., after the optimization process is completed, users can use the Synthesis tool to synthesize 
F0 contours based on the optimized parameters and visually compare them to the originals. 
Users can also perceptually inspect the quality of the synthesized sounds, which are 
generated by the PSOLA algorithm implemented in Praat. Both the acoustic output and the 
synthetic F0 can be saved for later evaluation and analysis. The results to be reported in the 
following sections are based directly on the saved output of PENTAtrainer2. 

4. Testing 
Our goal here is to test whether we can use PENTAtrainer2 to learn invariant categorical 
target parameters from real speech, with which F0 contours closely matching the original can 
be predictively synthesized.  

4.1. Corpora 
Three corpora, in Thai, Mandarin, and English, were used, each originally designed for 
systematic acoustic analysis of various prosodic factors in the target language. The Thai 
corpus was designed for the study of interaction between contextual tonal variation and 
vowel length. The Mandarin corpus was designed for the study of interaction between tone, 
focus, and sentence modality (Prom-on et al., 2011). The English corpus was designed for the 
study of interaction between stress, focus, syllable position, and sentence modality (Liu et al., 
2013). Table 1-3 show the sentence structure of each corpus.  
 
Table 1. Sentence structure of the Thai corpus.  

 
a The word of the forth syllable depends on the preceding vowel: ŋa�n0 if it is preceded by a 
long vowel or ma�0 if it is preceded by a short vowel. 
 
Table 2. Sentence structure of the Mandarin corpus.  

Syllable 1-2 Syllable 3-4 Syllable 5-6 Syllable 7-8 

ta1 mai3 
H L/L-S 

ma1 ma0 
H N men0 de0 

N N 

le0 ma0 
N N ye2 ye0 

R N 
nai3 nai0 mao1 mi1 
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L N H H-F 
mei4 mei0 

F N 
 
Table 3. Sentence structure of the English corpus.  
Non-Target Words Target Word 1 Non-Target Words Target Word 2 

You want a job with Microsoft 
La Massage 

There’s something unmarriable about me 
May 

You’re going to Bloomingdales with Alan 
Elaine 

 
The Thai corpus consists of 2500 four-syllable utterances recorded by five native 

Standard Thai speakers (three males and two females). All speakers were undergraduate 
students, aged 20-25, studying at King Mongkut’s University of Technology Thonburi, 
Bangkok, Thailand. They all grew up in the Greater Bangkok region and had no self-reported 
speech or hearing disorders. Recordings were done in a sound-treated room at the King 
Monkut’s University of Technology Thonburi. The utterances were recorded at the sample 
rate of 22.05 kHz and 16-bit resolution. 

The Thai lexical tones, including Mid (M, T0), Low (L, T1), Falling (F, T2), High (H, 
T3), and Rising (R, T4) and vowel length, both short and long, were manipulated in a full 
factorial design. Each sentence consisted of four syllables, with the tones of the two middle 
syllables varying across all five tones and two vowel lengths. The first and the last syllables 
were always M tones to minimize carryover and anticipatory influences on the two middle 
syllables. Thus there were 100 tone and vowel length combinations in total. Each utterance 
was repeated five times by each speaker.  

The Mandarin corpus consists of 1280 eight-syllable utterances recorded by eight 
native Mandarin speakers (four males and four females). They were either students at Yale 
University or residents in New Haven, Connecticut, who were born and raised in the city of 
Beijing. They were 23-34 years old and had no self-reported speech or hearing disorders. 
Recordings were done in a sound-isolated booth at Haskins Laboratories, New Haven, 
Connecticut. The utterances were originally digitized at the sample rate of 44 kHz and 16-bit 
resolution, and later resampled at 22.05 kHz. 

Each target sentence in the Mandarin corpus consists of eight syllables. The tone of 
the third syllable varies across all the full tones, including High (H, T1), Rising (R, T2), Low 
(L, T3) and Falling (F, T4). The first syllable is always H and the second syllable always L. 
The fourth to sixth syllables are always the Neutral tone (N, T0). The tones of the final two 
syllables are either both H or both N. Each sentence was also said as either a statement or a 
question, and with focus on either the second or the third syllable. The intended focus and 
sentence modality were elicited by different prompt sentences. There were, thus, 32 
combinations in total. For each combination, the utterance was repeated five times by each 
speaker.  

The English corpus consists of 960 utterances having 8-10 syllables for each utterance. 
It was recorded by five native speakers of American English (two males, three females), aged 
18-30, with no self-reported speech or hearing disorders. They were raised in either 
California or the Midwest in the United States, and spoke General American English. 
Recordings were done in sound-treated booth in the Language Labs at the University of 
Chicago, Chicago, Illinois. During the recording, the prompt and target sentences were 
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displayed and the subject read aloud both of them. The utterances were digitized at 22.05 kHz 
and 16-bit resolution. There are three sets of sentences, in each of which the final syllable of 
the last word was either stressed or unstressed. Each sentence was said as either a statement 
or a question, and with focus on either the middle or the final target word. Each sentence was 
repeated eight times by each speaker. 

Note that all these three corpora, due to their experimental nature, may seem more 
limited than most other corpora used in data-driven modeling, which are typically much less 
controlled. But speech corpora are merely subsets of all speech and as such they can never be 
full exhaustive. What really matters is whether a corpus includes sufficient samples 
(preferably by multiple speakers) of the patterns of interest as well as their triggering contexts. 
Traditional corpora, typically consisting of many more unique sentences than in a controlled 
corpus, inevitably have very uneven sample sizes for different patterns. As a result, it is hard 
to determine in the end which proportion of the modeling errors should be attributed to the 
modeling algorithms and which should be attributed to the uneven sample sizes. A further 
advantage of controlled corpora is that they allow special designs for focusing on difficult 
problems such as the neutral tone in Mandarin. The use of long strings of successive neutral 
tones, such as those shown in Table 2, has proven to be instrumental for our previous 
investigation of the neutral tone in three separate production studies (Chen and Xu, 2006; Liu 
and Xu, 2005; Liu et al., 2013). But it would be very hard to find more than a few (or any at 
all) samples of similar neutral tone sequence in a traditional corpus. Furthermore, controlled 
corpora, like those just described, due to their full transparency, makes it easier for 
investigators to understand what may be the source of a particular problem and how 
damaging it is, as we will see in the case of the Mandarin corpus used in the present study. 

Each corpus was specifically annotated based on its design. For Thai corpus, two 
functional layers were annotated for the two middle syllables, including tones (M/L/F/H/R) 
and vowel length (Long/Short). For Mandarin corpus, three functional layers were annotated, 
including tones (H/H-F/R/L/LS/F/N), focus conditions (Pre-focus/On-focus/Post-focus) and 
sentence modality (Statement/Question). L-S annotates the L tone changed by the tone sandhi 
rule, to be discussed later. H-F annotates the sentence-final H tone, which is heavily 
influenced by the modality function, also to be discussed later. For English corpus, four 
functional layers were annotated, including stress (Unstressed/Stressed/Stressed-WordFinal), 
focus conditions (Pre-focus/On-focus/Post-focus), sentence modality (Statement/Question) 
and syllable position in sentence (Non-final/Penuntimate-final/Final). In each corpus, syllable 
boundaries were marked and pulse marking were rectified manually by the authors using the 
Annotation tool. 

Note that there were no layers for annotating the well-known phonetic patterns like 
downstep, declination and final-lowering, because we believe they are not independent 
functions that convey communicative meanings, but rather by-products of tone, focus and 
sentence modality (Liu and Xu, 2005; Xu, 1999). As found in Prom-on et al. (2009), the 
effects of these phonetic patterns would be fully accounted for by the annotated functions 
mentioned above. Note also that from our previous acoustic studies, what affect the F0 of 
English and Mandarin the most are tone (including tonal context), focus and sentence 
modality, and our corpora have included balanced materials for all these three factors, except 
the slightly incomplete balance in tonal context for Mandarin in order to better model the 
neutral tone, as mentioned above. In comparison, a corpus like the widely used Boston Radio 
Corpus, though consisting of a great variety of sentences, contains virtually no question 
intonation samples, and so is much less balanced for F0 control than our corpora. On the other 
hand, syntactic structures other than statement/question contrast, affect mostly duration rather 
than F0 (Wagner and Watson, 2010; Xu, 2011; Xu and Wang, 2009; Yang and Yang, 2012). 
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And duration modeling, as explained in the discussion, is what we will investigate in future 
studies. 

4.2. Testing method 
The optimization parameters were set as default for all corpora as follows: Maximum 
Iteration = 500, Learning Rate = 0.1, Starting Temperature = 500, Reduction Factor = 0.95. It 
should be noted that these values were determined empirically over a number of pilot runs. 
They were selected so that the error would not converge either too fast or too slow.  

Three testing conditions were used, each aiming to test a specific level of 
generalizability of the learned parameters: a) speaker dependent, b) group average, and c) 
cross-validation. In the speaker dependent condition, parameters learned from each speaker 
were used in evaluating the synthesis accuracy for the same speaker. While the 
generalizability is relatively low, the parameters learned in this condition reflect more of the 
individual characteristics. In the group average condition, the averaged parameters of all 
speakers for each functional combination were used in evaluating the synthesis of each of the 
speakers. This condition was used to determine whether averaged parameters are 
generalizable to all speakers. The cross-validation condition offers an even stricter test of 
generalizability. This was done through leave-one-out cross-validation, in which the F0 of 
each speaker was synthesized with parameters averaged from all the rest of the speakers.  

The primary evaluation criteria include numerical synthesis accuracy, visual 
comparison of original and synthetic contours and perceptual appraisal. Synthesis accuracy is 
evaluated by calculating root-mean-square error (RMSE) and Pearson’s correlation 
coefficient (henceforth, correlation) comparing between original and synthesized F0 contours 
of each utterance, as shown in the following equations.  
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where y(ti) denotes the original F0 value at time ti and N is the total number of sample points 
of that utterance. RMSE indicates the average mismatch of the contours while correlation 
indicates the mismatch between the shape and the alignment of the contours. These two 
measurements have been shown to be effective (Hermes, 1998), and have been widely used 
as computational metrics in previous prosody modeling works (Black and Hunt, 1996; Jilka 
et al., 1999; Prom-on et al., 2009, 2011, 2012; Ross and Ostendorf, 1999; Taylor, 2000).  

To compare the performances of local and global optimizations, we applied both 
PENTAtrainer1 (Xu and Prom-on, 2010-2012) and PENTAtrainer2. In the application of 
PENTAtrainer1, depending on the testing condition, parameters were averaged for tone/stress, 
focus, syllable position and sentence modality. Global optimization was performed only in 
PENTAtrainer2. The annotation schemes in PENTAtrainer2 were designed to parallel the 
functional categories used in local optimization, so that the number of parameters are equal in 
the global and local optimizations. The full comparison of global and local optimizations in 
all three testing conditions was done only for the Mandarin and English corpora since they 
contained similar factors in the original studies (Liu et al., 2013).  

Repeated measures ANOVA were used for multifactor analysis, while paired t-test 
was used for the comparisons of different methods and conditions applied to data of the same 
speakers, particularly in the analysis of synthesis accuracies. The parameter distributions of 
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functional categories were analyzed using Student’s t-test. For the nature of the contrastive 
characteristics of underlying representations between functional categories, post-hoc analysis 
was performed only on the Thai corpus using Scheffé’s post-hoc test. This is because the 
Thai corpus was designed for primarily studying one main contributing prosodic factor while 
the English and Mandarin corpora were designed for studying interactions between various 
factors, none of which could be considered separately without others. 

Perceptual appraisal was conducted on native Thai participants to test the 
effectiveness of Thai tone simulation and the naturalness of synthetic F0 contours. This was 
done only on Thai because perceptual evaluations done on English and Mandarin with an 
equivalent of PENTAtrainer1 already achieved satisfactory results. Pitch target parameters of 
tone functions estimated earlier were used to synthesize F0 contours which were imposed 
onto four utterance in the form of “�a�n1 wa�2 X krab3”, which translates to “(This) reads 
X”. Here X is the target word with five alternate tones on two CV and two CVC syllables: 
“ka�”, “lo�”, “lon”, and “yang”. For creating synthetic stimuli, the four utterances were 
recorded by a native Thai speaker, with the mid-tone on the target syllable. Using the 
Synthesis tool, F0 contours of all five tones were synthesized from the learned parameters and 
imposed onto the target syllable, thus creating 20 synthetic stimulus utterances. Pitch 
modification was done using the PSOLA algorithm in Praat (Boersma and Weenink, 2012). 
As controls, the natural stimuli of the same utterances of all tonal combinations were 
recorded by the same speaker. There are thus 40 stimulus utterances in total. 

Thirteen native Thai listeners participated in the experiment, which was conducted 
through the ExperimentMFC of Praat. The stimulus utterances were randomly presented to 
the listeners. For each stimulus, listeners had to select, on the computer screen, the Thai word 
they just heard and select a naturalness score on a 5-level scale from terrible (1) to excellent 
(5). They were told that all stimuli were synthetic and did not know that natural stimuli were 
also included. Listeners were allowed to listen to the stimuli as many times as they preferred. 

4.3. Synthesis accuracy and perception results 
Table 4 shows the number of parameters and the overall synthesis accuracies of all three 
corpora for different testing conditions. For the speaker dependent condition, which directly 
uses speaker-specific optimized parameters, low RMSEs and high correlations can be seen 
across languages. More generalization of the functional parameters in the group average 
condition results in a dramatic reduction of the number of parameters (five-fold reduction for 
English and Thai, and eight-fold reduction for Mandarin) and synthesis accuracies (Thai: 
RMSE, t(4) = 3.55, p = 0.024; Correlation, t(4) = 3.74, p = 0.020; Mandarin, RMSE, t(7) = 
4.57, p = 0.001; Correlation, t(7) = 3.16, p = 0.008; English, RMSE, t(4) = 3.91, p = 0.009; 
Correlation, t(4) = 8.16, p < 0.001). This reduction of synthesis accuracies is expected as the 
parameters became more generalized and the speaker dependent characteristics were 
averaged out. Nevertheless, synthesis accuracies of group average condition are still rather 
high compared to our previous work (Prom-on et al., 2009, 2011). For the cross validation 
condition which excludes data of the testing speaker, relatively low errors and high 
correlations can still be seen for all three languages. This indicates the effectiveness and 
generalizability of pitch target parameters as underlying representations.  
 
Table 4. Summary of average RMSEs in semitone, correlation coefficients, and the numbers of 
parameter sets corresponding to essential functional combinations for Thai, Mandarin and English 
corpora. 

Corpora Synthesis Accuracy a Speaker 
Dependent 

Group 
Average 

Cross 
Validation b 

Thai RMSE 0.78 (0.05) 0.90 (0.06) 0.96 (0.07) 
Correlation 0.889 (0.012) 0.871 (0.014) 0.861 (0.017) 
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Number of Parameters 50 10 50 
Mandarin RMSE 2.16 (0.22) 2.72 (0.20) 3.01 (0.23) 

Correlation 0.903 (0.008) 0.868 (0.012) 0.847 (0.009) 
Number of Parameters 224 28 244 

English RMSE 2.07 (0.23) 2.77 (0.25) 2.98 (0.24) 
Correlation 0.836 (0.019) 0.772 (0.021) 0.757 (0.023) 

Number of Parameters 130 26 130 
a The RMSE are calculated in semitones in order to make the results comparable across speakers, especially between males 
and females (Xu, 2011). To compare with studies that report Hz values, the conversion can be done with the equation: Hz ≈ 
fref × exp(st × ln(2) / 12) – fref, where fref is the reference F0 in Hz, and st is RMSE in semitones. Note that the conversion can 
only be an approximation because RMSE calculation in Hz has to be done on variable reference F0 (i.e., that of the original) 
rather than speaker average F0. 
b the numbers of parameter sets for cross validation equal those of speaker dependent, but they were derived from speakers 
other than the testing speaker. 
 

The results of perceptual appraisal displayed in Fig. 9 show no significant differences 
in tone identification (t(24) = 0.48, p = 0.632), naturalness (t(24) = 1.79, p = 0.086) or 
reaction time of response (t(24) = 0.51, p = 0.612). Comparable tone identification rates, 
naturalness ratings and reaction times for both natural and synthetic stimuli shown in Fig. 9 
indicate a high quality of the simulated Thai tones.  
 

 
Fig. 9. Means and standard errors of (A) tone identification rate, (B) naturalness rating, and (C) 
reaction time in the Thai perceptual evaluation. In each panel, the left bar is for the natural stimuli 
while the right bar for the synthetic stimuli. 
 

To determine the quantitative improvement of global over local optimizations, we 
compared the synthesis accuracies of the two methods in all testing conditions, and the results 
are shown in Table 5. Using a repeated measures ANOVA, we found that global optimization 
has significantly higher accuracies than local optimization consistently in both English and 
Mandarin corpora for all testing conditions (English: RMSE, F(1,24) = 34.13, p < 0.001; 
Correlation, F(1,24) = 18.40, p < 0.001; Mandarin: RMSE, F(1,42) = 35.18, p < 0.001; 
Correlation, F(1,42) = 51.89, p < 0.001). Even in the case of group average parameters 
learned through global optimization, the synthesis accuracies were significantly higher than 
those of speaker dependent parameters learned through local optimization (English: RMSE, 
t(4) = 2.34, p = 0.040; Correlation, t(4) = 2.47, p = 0.035; Mandarin: RMSE, t(7) = 3.81, p = 
0.003; Correlation, t(7) = 2.91, p = 0.011). This indicates the effectiveness of global 
optimization over local optimization and also the generalizability of the invariant underlying 
representations.  

 
Table 5. Comparison of synthesis accuracies between local and global optimizations for English and 
Mandarin corpora. Both local and global optimizations use the same annotation structure. 
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Corpora Optimization 
Method 

RMSE Correlation 

Speaker 
Dependent 

Group 
Average 

Cross 
Validation 

Speaker 
Dependent 

Group 
Average 

Cross 
Validation 

English 
Local a 3.25 (0.24) 3.68 (0.14) 3.94 (0.16) 0.737 (0.011) 0.728 (0.013) 0.713 (0.016) 

Global b 2.07 (0.23) 2.77 (0.25) 2.98 (0.24) 0.836 (0.019) 0.772 (0.021) 0.757 (0.023) 

Mandarin 
Local 3.26 (0.22) 3.66 (0.24) 4.24 (0.25) 0.826 (0.017) 0.814 (0.016) 0.745 (0.015) 

Global 2.16 (0.22) 2.72 (0.20) 3.01 (0.23) 0.903 (0.008) 0.868 (0.012) 0.847 (0.009) 
a via PENTAtrainer1 (Xu and Prom-on, 2010-2012)  
b via PENTAtrainer2 (this study) 

4.4. Graphical comparison 
Graphical comparison provides detailed case-by-case analysis of synthesis accuracy. This 
section shows the comparisons between original and synthesized F0 contours, as shown in Fig. 
10-12. Synthesized F0 contours in each figure were generated from function-specific (which 
is also speaker-independent) parameters shown in Table 6-8. Both the original and 
synthesized contours were averaged across speakers and repetitions. To make the 
comparisons more directly, the F0 contours are time-normalize with regard to the syllable. 
But time-normalization is done only for plotting these graphs. No duration manipulation has 
been done to either the original or synthetic utterances, and all the syllables in the synthetic 
contours still have their original durations.  

4.4.1. Thai 
Fig. 10 shows the comparison of original and synthesized F0 contours of the Thai corpus. The 
overall close fit between the two indicates that PENTAtrainer2 can generate most of the 
contextual tonal variations with the learned tonal targets. Interestingly, there are a few cases 
where the predictions deviate from the original. For example, particularly in short-short 
vowel combinations, when H tone was followed by tones that approach a relatively low F0, 
such as M, L or R, the synthesized contours are lower than the original. Since the same pitch 
targets can simulate H tone in other cases, this error could be attributed to the well-
established phenomenon of anticipatory raising (Gandour et al., 1994; Potisuk et al., 1997). 
Also, consistent mismatches in the H-H sequence in both long-long and short-short vowel 
combinations, but not in other H-tone related cases, suggest that speakers may have slightly 
changed the pitch target for a second H tone by increasing either slope or strength. This 
phenomenon is worth further investigations. 
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Fig. 10. Graphical comparisons of original (red dotted line) and synthesized (black solid line) F0 
contours of the Thai corpus. Y-axis displays F0 values in semitone. Vertical lines mark syllable 
boundaries. In the upper panels both syllables have long vowels, while in the lower panels both 
syllables have short vowels. 

4.4.2. Mandarin 
Fig. 11 shows comparisons of the original and synthesized F0 contours of the Mandarin 
corpus. Similar to the Thai corpus, in most cases, PENTAtrainer2 can accurately synthesize 
F0 contours that are very close to the original, based on only 26 sets of parameters. The ones 
that stand out are when L tone is under focus and followed by a sequence of N tones. These 
mismatches are attributable to an independent articulatory-related phenomenon known as 
post-low bouncing (Chen and Xu, 2006). This is an articulatory mechanism specific to very 
low F0 and so is different from the normal mode of target approximation. A separate 
mechanism incorporated into the qTA model (which does not involve target variaiton) is 
needed for this phenomenon, as is done in Prom-on et al. (2012). Fig. 11 also shows, more 
importantly, how the Mandarin N tone, which is known to be severely influenced by the 
preceding tone (Chao, 1968), can be accurately simulated with a single underlying mid-level 
pitch target and weak approximation strength for each sentence modality. This not only 
effectively eliminates the need to treat weak tones like the Mandarin N tone as targetless 
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(Shih, 1987) or underspecified (Myers, 1998), but also demonstrates, more importantly, how 
contextual variability as extensive as in this case can be effectively modeled. 

Sentence modality has also been successfully modeled and simulated as consisting of 
two functional categories, as shown in Fig. 11. Observable intonational features 
discriminating interrogative question from declarative statement as previously reported (Ho, 
1977; Liu and Xu, 2005; Ni and Kawai, 2004; Shen, 1990) have been captured by the 
underlying categorical pitch targets. This compares favorably to previous work in modeling 
Mandarin Chinese and Cantonese question intonation (Fujisaki et al., 2005; Gu et al., 2006; 
Ni and Hirose, 2006; Yuan et al., 2002). It should be noted that the reason that the pre-focus 
H tone which is in the sentence-initial position, appears to be flat although having a large m 
value is because this pre-focus H tone syllable has a very short duration and no other nearby 
contextual variation. With such a limited information, the optimized m value would reflect 
only the best fit but may not conform with the traditional phonological form of H tone. 
 

 
Fig. 11. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours 
of the Mandarin corpus, averaged across five repetitions and eight speakers. The Y-axis displays F0 
values in semitone. The vertical lines mark syllable boundaries. Bold-and-underline indicates a focus 
placement on that syllable. L-S and H-F are separate categories for L-tone sandhi and sentence-final 
H tone, respectively. Synthesis was done using parameters shown in Table 7. 
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4.4.3. English 
The overall high synthesis accuracy for the English corpus seen earlier is also confirmed by 
graphical comparison of original and synthesized F0 contours shown in Fig. 12. Worth 
pointing out in particular here is that there is no sign of increasing difference toward the end 
of the sentences between the synthetic and original F0 contours that would indicate any 
declination effect missed by the modeling process. This seems to provide support for our 
choice, as explained in 4.1, that there is no need to explicitly model declination. The most 
noticeable mismatches are in the word “Bloomingdales” when under focus, as seen in the 
lowest two rows. This was due to the creaky voice at the end of the last syllable in the 
original, whose F0 is known to be difficult to track smoothly (Sun and Xu, 2002). Previously 
observed interaction between focus and sentence modality in terms of surface F0 contours 
(Cooper et al., 1986; Pell, 2001; Xu and Xu, 2005) is successfully simulated using only 26 
sets of categorical parameters representing four functional layers: stress, focus, syllable 
position and sentence modality. Compared to previous attempts to model English intonation 
(Jilka et al., 1999; Grabe et al., 2007; Taylor, 2000), the present results show both accurate F0 
contours and high generalizability, as the learned parameters are directly related to 
communicative functions. 
 

 
Fig. 12. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours 
averaged across eight repetitions and five speakers. The Y-axis displays F0 values in semitone. The 
vertical lines mark syllable boundaries. Bold-face indicates a focus placement and underline indicates 
a stress syllable of that word. All the synthetic contours were generated with parameters shown in 
Table 8. 
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4.5. Parameter analysis 
Given that the qTA parameters all have articulatory meanings, detailed analysis of the 
parameters learned by PENTAtrainer2 can reveal various information of both modeling and 
theoretical interests. 

4.5.1. Thai 
Table 6 shows averaged parameters of all Thai tones in different vowel lengths. All 
parameters significantly differ depending on the tonal categories (m: F(4,49) = 56.81, p < 
0.001; b: F(4,49) = 71.07, p < 0.001; λ: F(4,49) = 9.23, p < 0.001). This indicates that the 
variability of estimated parameters within tone groups is significantly less than between 
groups. It also indicates that despite the variability in surface acoustics, the learned 
underlying tonal representations are consistently distinct from each other. Compared between 
different vowel lengths, target slope and strength are not significantly different, but target 
height of M tone is higher in short vowels than in long vowels (F(1,49) = 5.37, p = 0.026). 
This difference might suggest that M has two tonal targets so as to enhance the vowel length 
contrast similar to what is found in Finnish (Vainio et al., 2010). It is also possible that the 
difference in the learned target height is due to other factors. For example, M may have a 
weak strength, just like the Mandarin neutral tone (Chen and Xu, 2006). But the estimation of 
such weak strength requires the presence of consecutive M tones preceded by different tones, 
as is the case in the Mandarin corpus, which is lacking in the current corpus. This issue 
therefore has to be resolved by future studies. 
 
Table 6. Means and standard errors of parameters of Thai tones in different vowel lengths. 
Tone Vowel Length m (st/s) b (st) λ 

0 (Mid) 
Long 5.5 (1.8) -3.0 (0.4) 15.4 (0.9) 

Short 1.9 (2.7) -1.7 (0.2) 14.1 (1.2) 

1 (Low) 
Long -2.3 (3.7) -4.1 (0.4) 16.4 (2.9) 

Short 4.8 (2.4) -4.6 (0.3) 19.5 (0.8) 

2 (Falling) 
Long -27.3 (2.5) 1.4 (0.3) 18.9 (1.8) 

Short -26.7 (2.3) 1.9 (0.4) 24.3 (3.0) 

3 (High) 
Long 12.1 (2.5) -0.1 (0.6) 14.2 (1.7) 

Short 11.8 (6.5) 1.2 (0.9) 13.9 (1.8) 

4 (Rising) 
Long 19.1 (2.8) -3.4 (0.1) 21.4 (2.5) 

Short 19.8 (3.6) -2.9 (0.2) 25.8 (1.5) 
 

Post-hoc analysis of target slope has revealed categorical tonal patterns. Static tones 
are generally not significantly different target slopes from one another, although there was a 
marginal difference between H and L. (M-L: p = 0.968, M-H: p = 0.205, L-H: p = 0.050). 
Slope of M and L significantly differ from those of dynamic tones (M-F: p < 0.001; M-R: p = 
0.001; L-F: p < 0.001; L-R: p < 0.001). Slope of H, however, was not different from that R 
(H-R: p = 0.293), but significantly different from F (H-F: p < 0.001). These results agree with 
the traditional classification of Thai tone based on a static-dynamic dichotomy (Abramsom, 
1962). 

Comparing the parameter distributions of each tone to the reference values (0 for m 
and b, total mean for λ) reveals more distinctive properties of each tone. F and R, traditionally 
defined as dynamic tones, have slopes significantly lower or higher than zero, respectively, 
regardless vowel length. (F-Long: t(4) = 10.85, p < 0.001; F-Short: t(4) = 11.66, p < 0.001; 
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R-Long: t(4) = 6.92, p = 0.002; R-Short: t(4) = 5.57, p = 0.005). This indicates the distinctive 
properties of dynamic tones. On the other hand, slope of L was not significantly different 
from zero regardless of vowel length (L-Long: t(4) = 0.63, p = 0.565; L-Short: t(4) = 1.98, p 
= 0.119). Slope of M and H was significantly higher than zero only in long vowels but not in 
short vowels (M-Long: t(4) = 3.15, p = 0.035; H-Long: t(4) = 4.84; p = 0.008; M-Short: 
t(4)=0.70, p = 0.523; H-Short: t(4) = 1.83, p = 0.141). Further inspection of the means of 
target slope in Table 6 suggests that H should have a shallow rising target while M a static 
target. For target height, only H was found to be not significantly different from zero 
regardless of vowel length (H-long t(8) = 1.72, p = 0.123). M, L and R have height values 
significantly lower than the total mean (M-Long: t(4) = 8.57, p = 0.001; M-Short: t(4) = 7.68, 
p = 0.002; L-Long: t(4) = 9.27, p = 0.001; L-Short: t(4) = 17.03; p < 0.001; R-Long: t(4) = 
33.89, p < 0.001; R-Short: t(4) = 16.16, p < 0.001), while only F tone has height significantly 
higher than zero (H-Long: t(4) = 4.74, p = 0.009; H-Short: t(4) = 4.64, p = 0.010). For 
strength, only M has significantly lower λ compared to the total mean (M-Long: t(4) = 3.47, p 
= 0.026; M-Short: t(4) = 3.67, p = 0.021). These contrastive properties in target parameters 
indicate the uniqueness and invariability of underlying representations of Thai tones, which 
can be also seen in Fig. 13, where the target parameters are displayed in a quasi-three-
dimensional manner. The clustering of the five tones by m and b is quite clear, with little 
cross-tone overlap. Also can be seen is that the same tones carried by long and short vowels 
are clustered together without any clear separation. 

 

 
Fig. 13. Four-dimensional/Four-way display of the learned target parameters of Thai tones by five 
speakers. The filled and unfilled circles represent long and short vowels, respectively. The X and Y 
axes represent target slope and target height, and circle width represents target strength. The large 
ovals are manually added to highlight the clustering. 
 

4.5.2. Mandarin 
Table 7 shows average parameters representing interactions between tone, focus and sentence 
modality in the Mandarin corpus. Comparing parameters of Mandarin full tones in on-focus 
regions with post-focus regions, we found significant interactions of target slope and height 
between tone and focus (m: F(3,126) = 19.86, p < 0.001; b: F(3,126) = 14.68, p < 0.001), and 
a significant interaction of target slope between tone and modality (m: F(4,126) = 2.62, p = 
0.038). These interactions indicate that pitch targets of Mandarin tone depend on both focus 
and modality. Specifically, target slopes of R and F, in both statement and question 
modalities, are steeper in on-focus than in post-focus regions, while target heights of H and L 
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tones, also in both modalities, are higher in on-focus than in post-focus regions. Compared to 
pre-focus region, both slope and height of H, L and L-sandhi tones in on-focus regions also 
have larger values. We also found that the rate of target approximation of full tones in post-
focus region was significantly higher than those of on-focus regions (F(1,126) = 16.34, p < 
0.001). These results indicate the effects of on-focus enhancement, which expands the F0 
range of on-focus syllables, and post-focus compression, which compresses the F0 range of 
all post-focus syllables (Cooper et al., 1985; Xu, 1999; Xu and Xu, 2005; Xu et al., 2012). 
The pitch targets of Mandarin full tones are also largely consistent with the acoustic 
observations in previous empirical research (Xu, 1997, 1999) and the initial modeling attempt 
(Prom-on et al., 2009), with the exception of L here that has positive target slope. This is 
because of the limited tonal contexts of L tone in this corpus. 
 
Table 7. Means and standard errors of parameters of Mandarin tones in different focus regions and 
sentence modalities. For focus function, PRE, ON, and POS stand for pre-focus, on-focus, and post-
focus regions, respectively. For modalities, S stands for statement modality and Q stands for question 
modality. 

Focus Tone 
m (st/s) b (st) λ 

S Q S Q S Q 

PRE H 72.5 (8.1) 75.1 (7.8) -0.9 (0.6) -0.8 (0.6) 53.4 (4.5) 51.6 (3.8) 

L -0.4 (4.1) 3.4 (8.5) -11.1 (0.8) -9.3 (0.7) 39.0 (2.9) 42.5 (7.3) 

L-S a 22.6 (13.1) 36.4 (11.1) -3.6 (1.5) -2.2 (1.2) 56.6 (10.1) 51.8 (9.5) 

ON H -15.0 (13.1) -2.2 (9.6) 2.8 (0.8) 3.6 (0.7) 27.9 (2.6) 32.1 (4.0) 

R 96.8 (2.3) 91.2 (4.1) -5.7 (1.0) -4.6 (0.8) 29.2 (3.7) 30.5 (3.5) 

L 70.4 (11.3) 58.5 (10.1) -16.6 (1.3) -13.7 (1.2) 19.7 (1.2) 22.2 (1.8) 

L-S 92.5 (3.5) 85.0 (5.9) -4.8 (1.2) -3.4 (1.0) 27.8 (3.2) 27.3 (3.2) 

F -78.1 (7.3) -41.1 (10.7) 4.2 (0.5) 4.4 (0.9) 30.5 (2.0) 35.4 (3.8) 

POS N -3.7 (10.8) 6.9 (3.7) -11.5 (1.1) -6.4 (0.9) 14.6 (0.3) 14.2 (0.7) 

H 11.6 (13.1) 18.9 (7.7) -1.8 (1.2) -0.2 (0.7) 51.9 (12.5) 32.4 (9.9) 

H-F b -3.4 (1.6) 1.7 (5.3) -11.5 (1.0) 3.1 (0.7) 35.3 (9.2) 15.9 (1.9) 

R 77.1 (6.9) 75.3 (6.6) -6.3 (1.0) -3.3 (1.9) 41.5 (10.1) 48.3 (9.5) 

L 17.8 (14.6) -0.1 (15.3) -11.9 (1.5) -9.1 (1.5) 30.9 (3.5) 33.6 (7.1) 

F -24.4 (12.5) -6.2 (7.4) -0.3 (0.7) 1.6 (0.5) 48.2 (8.6) 43.2 (8.2) 
a Low tone sandhi 
b High tone at the final syllable of the utterance 
 

Like Thai, the clear separation of the learned Mandarin tonal parameters can be also 
seen in a quasi-multi-dimensional display shown Fig. 14. Here only the parameters in the on-
focus condition and statement modality are shown. The total tonal space is much larger than 
that of the Thai tones in Fig. 12. But this is likely related to the fact that these Mandarin tones 
are under focus, while the Thai tones were said with neutral focus.  
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Fig. 14. Multi-dimensional display of the learned target parameters of Mandarin tones by eight 
speakers. The X and Y axes represent target slope and target height, and circle width represents target 
strength. The large ovals are manually added to highlight the clustering.  
 

Mandarin N tone has traditionally been considered as toneless with no specific target 
because its F0 varies greatly with the preceding tone (Chao, 1968). It has been argued that N 
tone actually has a static mid target but with a weak articulatory force (Chen and Xu, 2006; 
Liu et al., 2013). This is supported by Table 7, where we can see a very small slope value for 
N, indicating that the type of its target is probably static. Target height of N tone was roughly 
between those of H and L tone. Compared to full tones, strength of N is significantly lower in 
both modalities (Statement; N-H: t(14) = 3.53, p = 0.002; N-R: t(14) = 3.59, p = 0.001; N-L: 
t(14) = 2.73, p = 0.008; N-F: t(14) = 3.53, p = 0.002; Question; N-H: t(14) = 2.97, p = 0.005; 
N-R: t(14) = 2.66, p = 0.009; N-L: t(14) = 4.58, p < 0.001; N-F: t(14) = 3.92, p < 0.001), 
which is explains the gradual slopes across several N-tone syllables in Fig.11, and provides 
support for the weak articulatory strength hypothesis (Chen and Xu, 2006).  

4.5.3. English 
For the English corpus, the objective is to analyze pitch targets of stressed and 

unstressed syllables in different focus regions and at relative positions across sentence 
modalities. Table 8 shows the functional parameters representing interactions between these 
factors. Target slope shows a significant three-way interaction between stress, focus and 
modality (F(1,104) = 9.43, p = 0.003). For word-final stressed syllables under focus, the 
target slope is negative in statement, indicating a fall, but positive in question, indicating a 
rise, regardless of position in sentence (Statement: non-sentence-final, t(4) = 4.53, p = 0.004; 
sentence-final, t(4) = 3.50, p = 0.011; Question: non-sentence-final, t(4) = 4.96, p = 0.003; 
sentence-final, t(4) = 13.59, p < 0.001). Non-word-final stressed syllables under focus also 
have rising target slope in question (non-sentence-final: t(4) = 7.45, p < 0.001; penultimate-
sentence-final: t(4) = 2.27, p = 0.047) but static slope in statement (non-sentence-final: t(4) = 
0.41, p = 0.338; penultimate-sentence-final: t(4) = 0.26, p = 0.360). These specific target 
types are consistent with the observed surface F0 contours reported previously (Eady and 
Cooper, 1986; Hadding-Koch and Studdert-Kennedy, 1964; Liu et al., 2013; O'Shaughnessy 
and Allen, 1983). Furthermore, the learned categorical parameters here are more 
representative and generalizable, given that they can predict F0 contours that closely resemble 
those of the original, as shown in Fig. 12.  

For target height, a significant interaction was found between focus and modality 
(F(2,104) = 3.20, p = 0.045). Particularly in the post-focus region, target height is positive in 
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question (t(24) = 6.12, p < 0.001), but negative in statement (t(24) = 2.18, p = 0.041), 
indicating extensively raised or lowered F0 as found in previous studies (Eady and Cooper, 
1986; Liu et al., 2013; Pell, 2001). Moreover, in question modality, on-focus target height of 
the sentence-final stressed syllable are significantly different from the baseline depending on 
its position in word; positive for word-final (t(4) = 3.86, p = 0.008) and negative for non-
word-final (t(4) = 5.24, p = 0.002). This indicates an important role of syllable position in the 
sentence-final word in realizing the focus contrast in the question modality. 
 
Table 8. Means and standard errors of parameters of English intonation. The four factors considered 
are (word) stress, focus, syllable position, and sentence modalities. For stress, U denotes unstressed 
syllable, S denotes non-final stressed syllable in a multi-syllabic word, and S0 denotes word-final 
stressed syllable. For syllable position, N denotes non-final, PF denotes penultimate sentence final, 
and F denotes sentence final. 

Focus Syllable 
Position Stress 

m (st/s) b (st) λ 

S Q S Q S Q 

PRE 
N 

U 2.5 (1.0) -8.1 (3.7) -1.4 (0.5) -1.2 (0.4) 30.1 (3.3) 44.0 (9.3) 

S -9.0 (8.0) 6.3 (16.8) 2.2 (0.9) 1.4 (1.1) 38.7 (15.5) 24.3 (5.7) 

S0 31.0 (15.7) 6.0 (4.6) -2.6 (1.9) -0.4 (0.8) 48.4 (21.1) 70.1 (18.4) 

PF a U -30.2 (17.2) 0.9 (21.3) 1.7 (6.5) 1.4 (5.3) 23.2 (19.3) 49.9 (21.3) 

ON 

N 
S 14.2 (34.5) 32.7 (4.4) -7.8 (7.5) -3.2 (1.9) 10.1 (3.6) 49.0 (21.0) 

S0 -69.6 (15.4) 49.6 (10.0) 2.9 (3.2) 1.3 (1.4) 11.3 (4.1) 14.0 (1.4) 

PF S -8.2 (31.6) 18.7 (8.2) -3.6 (7.3) -2.8 (0.5) 26.1 (14.6) 25.4 (1.7) 

F S0 -68.2 (19.5) 63.0 (4.6) -0.8 (3.7) 5.7 (1.5) 11.7 (4.2) 16.2 (3.2) 

POS 

N U 14.9 (10.3) -1.2 (2.1) -6.9 (1.3) 5.6 (1.2) 30.5 (3.1) 25.3 (6.5) 

PF 
U 8.6 (24.8) 0.1 (5.7) -1.2 (8.1) 8.6 (4.1) 24.7 (10.2) 29.4 (16.4) 

S 6.1 (21.1) 26.0 (20.4) -1.7 (7.3) 10.2 (4.6) 47.0 (22.1) 7.0 (3.0) 

F 
U -29.5 (20.1) -5.0 (7.5) -8.9 (1.6) 7.0 (1.3) 14.7 (4.9) 28.5 (2.6) 

S0 -71.8 (18.1) 15.0 (6.0) -7.8 (6.4) 6.8 (1.4) 26.1 (18.5) 65.0 (21.5) 

 

5. Hypothesis testing case studies 
With its ability to automatically learn underlying parametric representations that can be used 
in predictive synthesis of realistic F0 contours, PENTAtrainer2 can also serve as a hypothesis 
testing tool. Part of this capability can be already seen in the parameter analysis in the 
previous section. Here we will explore the capability further with three case studies, each 
testing a specific issue of some theoretical relevance. Unlike the modeling done so far, which 
has been driven by the goal to achieve the best results possible, when using PENTAtrainer2 
as a hypothesis testing tool, manipulations can be introduced that may lead to either enhanced 
or reduced synthesis quality. In this way we will be able to see the direct consequences of 
specific hypotheses. In the three studies presented below, the manipulations are achieved by 
using specific annotation schemes. The outcome of the individual hypotheses are then 
assessed by comparing the synthetic accuracies. 

5.1. Case study A: Underlying representation of Mandarin L tone sandhi 
Tone sandhi is a linguistic phonenomenon whereby a lexical tone changes its form due to 
various factors, e.g., adjacent tone, position in word, part of speech, etc. (Chen, 2000). 
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Mandarin L tone (Tone 3) is a well-known example of contextual sandhi. It is said to change 
to R tone when followed by another L tone (Chao, 1968). Perceptual evidence shows that the 
sandhi-derived R tone is indistinguishable from the lexical R tone (Peng, 2000; Wang and Li, 
1967), and F0 analyses show close though not full resemblance of the derived and original R 
tone. It is therefore generally accepted that the Mandarin L tone sandhi involves a categorical 
tonal shift. This case study therefore uses a low-controversy issue to test if the assessment of 
the nature of a tonal variation agrees well with prior empirical evidence. 

The test was done by setting up three hypotheses on the representation of the 
Mandarin L tone: A1: There is no underlying tonal change, and so the observed variations are 
coarticulatory; A2: L tone changes to R tone before another L tone; and A3: L tone changes 
to a new tone before another L tone. For A1 and A2, the syllable in a tone sandhi context was 
annotated as L or R, respectively. For A3, it was annotated as a new category named L-S. 
Both speaker dependent and group average simulations were carried out for each hypothesis. 
Paired t-test was then used to compare the synthesis accuracies between the hypotheses. 
Table 9 shows the synthesis accuracies resulting from simulating each tone sandhi hypothesis. 
The synthesis accuracies of hypotheses A2 and A3 are not significantly different (RMSE: p = 
0.414, t(7) = 0.22; Correlation: p = 0.394, t(7) = 0.28). Hypothesis A1 shows significantly 
lower accuracy than both of the other two (A1 vs A2; RMSE: p < 0.001, t(7) = 6.90; 
Correlation: p < 0.001, t(7) = 6.36; A1 vs A3; RMSE: p < 0.001, t(7) = 5.76; Correlation = 
0.001, t(7) = 5.40). These statistical results indicate that the underlying target of the sandhi L 
tone can be either a separate category or the same as the R tone target, but clearly not a L-
tone target. This is consistent with previous findings based on acoustic analyses and 
perceptual tests (Peng, 2000; Wang and Li, 1967; Xu, 1997). 
 
Table 9 Synthesis accuracies of implementing each tone sandhi hypothesis. 

Hypothesis 
Speaker+Function Specific Functional Specific 

RMSE Correlation RMSE Correlation 

A1: Sandhi L  L 2.41 (0.21) 0.863 (0.005) 2.90 (0.23) 0.838 (0.012) 

A2: Sandhi L  R 2.16 (0.20) 0.902 (0.008) 2.75 (0.23) 0.863 (0.012) 

A3: Sandhi L  another category 2.16 (0.22) 0.903 (0.008) 2.72 (0.20) 0.868 (0.012) 
 

Fig. 15 shows the comparisons between original and synthesized F0 contours of each 
hypothesis. It should be noted that F0 raising in N-tone sequence after a focused L tone is due 
to the post-low bouncing effect (Prom-on et al., 2012) mentioned earlier and not the focus of 
the present study. For hypothesis A1, the mismatch occurs not only on the second syllable but 
also on the third syllable when it is under focus since it shares the same category as the 
focused L tone sandhi on the second syllable. Hence A1 is invalidated by these mismatches. 
In contrast, hypotheses A2 and A3 led to almost identical contours. Nevertheless, in a 
statement when the third syllable is under focused (Column 3), hypothesis A3 has slightly 
better matched contour in the second syllable than A2. This is because, when treated 
separately as in hypothesis A3, the original R tone category has lower pitch target than L tone 
sandhi as shown in Table 8. Treating them as the same target thus results in a compromised 
pitch target. This result is therefore slightly in favor of hypothesis A3, i.e., the most accurate 
representation of Mandarin third tone sandhi is as a separate tonal category. Surprisingly, this 
result agrees well with previous empirical findings that the sandhi-L tone is close but not 
identical to the R tone (Kuo et al., 2007; Peng, 2000; Xu, 1997) 
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Fig. 15. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours 
resulting from implementing each tone sandhi hypothesis. Each contour was averaged across eight 
repetitions and five speakers. 
 

5.2. Case study B: Target bearing unit – rhyme vs syllable 
In all the synthesis with PENTAtrainer2 performed so far, we have used the syllable as the 
temporal interval of each target approximation, regardless of whether the syllable-initial 
consonant is voiced, or whether the language is tonal. This practice is based on previous 
evidence that the entire syllable is the tone-bearing unit (Liu et al., 2013; Wong and Xu, 2007; 
Xu, 1998). However, because there is no F0 during a voiceless consonant, it is also reasonable 
to assume that voiceless intervals are irrelevant for realizing underlying tonal contours, as has 
been argued based on phonetic data (Howie, 1974; Rose, 1988), and assumed in some 
phonological accounts of tone (Duanmu, 2000; Yip, 2002; Zhang, 2004). More frequently, 
the issue of the exact temporal interval of tonal unit is left vague. For the purpose of 
computational modeling, however, the issue is unavoidable. In this case study, we aim to test 
more explicitly whether rhyme (B1) or syllable (B2) is the pitch target bearing unit, as 
illustrated in Fig. 16. In hypothesis B1, the target approximation process is implemented only 
in the rhyme region, and during the voiceless interval, the F0 dynamic state is assumed to be 
unchanged. In hypothesis B2, the target approximation process is implemented throughout 
the syllable, including the voiceless interval. Only the English corpus was used in this case 
study, because it is the only one containing sufficient number of voiceless consonants. An 
added benefit of testing this in an English database is that, for a non-tonal language, there is 
even less justification for the syllable to be the pitch target bearing unit, unless the 
mechanism is universal across languages. For each hypothesis, the Learning tool was 
configured either to skip the voiceless interval for hypothesis B1 or to start target 
approximation from the onset of the voiceless interval for hypothesis B2. Only the speaker 
dependent testing condition was used. Paired t-test was used to determine the difference 
between the two hypotheses. The error calculation was only done in the voiced region where 
F0 measurement was possible. 
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Fig. 16. Illustrations of hypotheses B1 (red) and B2 (blue). A solid black line indicates F0, while a 
dashed blue line indicates virtual F0 during voiceless onset. A red arrow indicates the direct transfer of 
F0 dynamic state. For each hypothesis, pitch target is localized either to the rhyme (B1, red solid line) 
or to the syllable (B2, blue solid line) 
 

As shown in Table 10, using the syllable as target approximation interval, as in 
hypothesis B2, resulted in more accurate synthesized F0 contours than using the rhyme as the 
target approximation interval, as in hypothesis B1 (RMSE: p = 0.003, t(4) = 5.25; Correlation: 
p < 0.001, t(4) = 7.76). This provides a clear support for the syllable as the target 
approximation interval for English. Fig. 17 further shows the effect of implementing each 
hypothesis on the F0 contour of an example utterance. The largest observable mismatches due 
to different hypotheses are around two voiceless intervals (as indicated by the blue arrows). 
For example, at the beginning of “something”, starting the target approximation at the onset 
of the rhyme (B1) means to start the F0 rise at that point. In contrast, starting the target 
approximation at the onset of the syllable (B2) means that much of the F0 rise is achieved 
during the voiceless interval, and by the onset of the rhyme F0 is already rather high, as 
indeed seems to be the case in the original contour. This case study therefore provides 
support for the syllable rather than the rhyme to be the temporal interval of realizing 
underlying pitch targets even in a non-tonal language like English. 
 
Table 10. Synthesis accuracies of implementing each target bearing unit hypothesis. 
Hypothesis RMSE Correlation 

B1: Rhyme 2.73 (0.27) 0.741 (0.018) 

B2: Syllable 2.07 (0.23) 0.836 (0.019) 
 

 
Fig. 17. Effect of assigning different target approximation intervals for voiceless consonants. Vertical 
lines demarcate the voiced regions as well as syllable boundaries. The blue arrows indicate the 
voiceless intervals where the effect of different hypotheses can be clearly observed.  
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5.3. Case study C: Effect of level of functional specificity  
The articulatory-functional approach to prosody modeling as implemented in PENTAtrainer2 
is not a sure guarantee for the best prosody synthesis. This is because the number of 
functional layers (cf. 5.3 for definition of annotation layers) being modeled also have to be 
appropriate for a given corpus. With too many layers there could be over fit as well as 
confounding, and with too few layers there could be under fit (as well as possible 
confounding). But PENTAtrainer2 can be actually used as a tool to verify if sufficient 
number of functional layers have been annotated, or if any of annotated layers are redundant. 
Functional layers referred to here are those carrying communicative meaning such as lexical 
tone, lexical stress, focus and sentence type. This case study was to explore PENTAtrainer2’s 
sensitivity to changes in functional specificity by testing four hypotheses about the 
appropriate number of functional layers in the English corpus, using only the speaker 
dependent modeling condition. The baseline case, hypothesis C1, is when only the word 
stress layer is imposed. Hypotheses C2 and C3 add to the baseline either the focus or 
sentence modality layer, respectively. Hypothesis C4 adds both focus and modality. 
Parameters of each hypothesis were learned separately. The synthesis accuracies were 
compared using paired t-tests. 

Table 11 shows the synthesis accuracies when different combinations of 
communicative functions were imposed. Excluding modality layer as in hypotheses C1 and 
C2 results in a severely lower synthesis quality than including modality (but excluding focus) 
in C3 (C1 vs C3; RMSE: p = 0.005, t(4) = 4.62; Correlation: p < 0.001, t(4) = 63.69; C2 vs 
C3; RMSE: p = 4.43, t(4) = 4.43; Correlation: p < 0.001, t(4) = 18.47). C4 has significantly 
higher synthesis accuracy than all the other hypotheses (C4 vs C1; RMSE: p = 0.001, t(4) = 
7.36; Correlation: p < 0.001, t(4) = 29.81; C4 vs C2; RMSE: p = 0.001, t(4) = 7.12; 
Correlation: p < 0.001, t(4) = 17.79; C4 vs C3; RMSE: p = 0.001, t(4) = 6.61; Correlation: p 
< 0.001; t(4) = 8.99). Including both focus and modality functions as in C4 yields a better 
improvement than the sum of the effects of both functions. Fig. 18 shows examples of 
original and synthesized F0 contours when different functional layers were included during 
training and synthesis. As more functions were added, the synthesized F0 contours become 
increasingly closer to the original. In hypotheses C1 and C2, the synthesized contours deviate 
from the original extensively, mainly due to the lack of modality-specific variations. 
Synthesized F0 contours of hypothesis C3 show significant improvement from C1 and C2, 
but the lack of focus still results in clear deviations from the original. When both focus and 
modality are included in hypothesis C4, the synthesized contours show an overall tight fit to 
the original, except the creaky-voice effects in the original as mentioned earlier.  

Overall, the results of this case study show that, for a controlled corpus like the one 
just tested, including all the originally designed prosodic functions in the modeling process 
led to a close fit of the synthetic F0 contours to the original, while excluding any of them led 
to clear deteriorations in the synthetic quality. This indicates that there is no overfitting when 
including all four functional layers. This deterioration implies that there are certain 
inconsistencies in underlying parameters of each category. For example, without the focus 
layer, parameters of each category would contain the variability due to both on-focus pitch 
range enhancement and post-focus compression. The consistency of functional parameters 
thus depends largely on the specification of the required functional layers. Furthermore, this 
case study also demonstrates that PENTAtrainer2 is indeed an effective tool for testing 
hypotheses regarding number of functional layers of prosody. 
 
Table 11. Synthesis accuracies of implementing each functional layer hypothesis. 
Hypothesis RMSE Correlation 
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C1: Stress 4.14 (0.48) 0.247 (0.024) 

C2: Stress + Focus 4.08 (0.47) 0.289 (0.021) 

C3: Stress + Sentence 2.96 (0.25) 0.675 (0.024) 

C4: Stress + Focus + Sentence 2.07 (0.23) 0.836 (0.019) 
 

 
Fig. 18. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours 
of an example utterance “You’re going to Bloomingdales with Elaine”. Each row corresponds to the 
results of implementing each functional layer hypothesis. C1: Word stress only, C2: Stress+focus, C3: 
Stress+modality, and C4: Stress+focus+modality. 
 

6. Discussion 
The results reported above have shown that it is possible to achieve automatic learning of 
invariant underlying melodic representations of communicative functions from real speech 
data, with which F0 contours closely matching those of the original can be predictively 
synthesized. We have achieved this with PENTAtrainer2, which combines simulation of 
articulatory mechanisms of pitch production, functional annotation, and analysis-by-synthesis 
stochastic optimization. Through this process, we have achieved a number of goals related to 
the questions raised in the Introduction about both contextual and non-contextual variations. 
First, we have shown that it is possible to find function-specific invariant representations 
(Tables 6, 7, 8) with which all the contextual variants can be generated. The illustration in Fig. 
19 provides a clear view of what this means. Fig. 19A displays F0 contours of four Mandarin 
sentences generated with target parameters shown in Table 7. In each plot only the third 
syllable has alternating tones while the tones of other syllables remain constant. Although the 
F0 contours of the neutral tone syllables vary extensively with the alternating tones of the 
third syllable, a single pitch target learned by PENTAtrainer2, represented by the red dotted 
lines, can generate all the contextual variants, including the peak-delay after the R tone (Xu, 
1998). This is mainly thanks to the target approximation mechanism simulated by the qTA 
model (Prom-on et al., 2009). What this demonstrates is that it is possible to achieve many-
to-one mappings from contextually variant surface acoustics to underlying phonetic 
representations. This contrasts with virtually all other modeling approaches, in which the 
mappings are at most many-to-many for contextual variants (e.g., Anderson et al., 1984; 
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Bailly and Holm, 2005; Black and Hunt, 1996; Fujisaki et al., 2005; Kochanski and Shih, 
2003; Sun, 2002; Taylor, 2000). 
 

 
Fig. 19. qTA-generated F0 contours imposed onto the original Mandarin sentence “Ta1 mai3 ma1 
ma0 men0 de0 le0 ma0”, generated with the functional target parameters learned by PENTAtrainer2 
shown in Table 8. The dashed red lines corresponding to the N tones are the learned underlying pitch 
targets. (The slight variations in these target lines is due to the difference in duration of the syllables, 
to which the tonal targets are synchronized.) Across the four curves, the only alternating tone is that 
of the third syllable, while other tones remain constant. The target of the second syllable, however, is 
changed into that of L-S in Table 7, in conformity with the third tone sandhi rule (Chao, 1968). The 
curves in the top plot are generated by parameters for statement in Table 7, while those of the lower 
plot are generated by parameters for questions. 

 
Second, we have shown that non-contextual variability can be modeled together with 

contextual variability by treating all targets as function-specific, and allowing each of them to 
be learned directly from speech signal based on function-specific annotations. With these 
targets F0 contours can be then generated by qTA with both functionally appropriate global 
patterns and articulatorily plausible local contours. As illustrated in Fig. 19B, the use of a 
new set of target parameters appropriate for the question modality result in F0 contours that 
are very similar to those of Fig. 19A, except an apparently smaller overall downtrend. This 
way of specifying and learning function-specific targets also allows unlimited number of 
functions to be represented, facilitated by a multi-layer annotation scheme that is purely 
functional. This eliminates the need to annotate observed surface prosodic forms like what is 
done in ToBI (Silverman et al., 1992), INTSINT (Hirst, 2011) or RaP (Breen et al., 2012). 

Third, we have shown that the approach represented by PENTAtrainer2 is also highly 
economical. The parameters shown in Tables 6-8 are the entire sets of parameters needed to 
synthesize all the F0 contours of the three language corpora: 30 parameters for 2500 Thai 
disyllabic phrases, 84 parameters for 1280 Mandarin utterances, and 78 parameters for 960 
English utterances. Such small footprints are achieved not only by representing all contextual 
variants with invariant underlying targets as just mentioned, but also by allowing as few other 
degrees of freedom as possible. This is done, in particular, by eliminating virtually all degrees 
of freedom in timing by assuming full synchronization of the targets to the syllable, and full 
alignment of the edges of the temporal domains of all functions to syllable boundaries. Thus 
no variation in target parameters is needed for variable syllable durations. However, there are 
various other conceivable functions that we have not yet included in the present study, such 
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as topic shift, turn taking, emotion, attitude and speaking style. When they are included, the 
number of parameters will eventually increase. Some of these factors, as found in recent 
studies (Xu, Kelly and Smillie, 2013; Xu et al., 2013), could be implemented as global 
changes that alter all the target values in the same way, which would then result in an 
increase in the number of parameters. It should also be noted that the synthesis result in this 
study is still limited to only controlled corpora with fixed varying experimental factors. More 
work is still needed to test PENTAtrainer2’s ability to work with non-controlled corpora. 

Fourth, we have shown that with the small sets of learned targets, predictive synthesis 
at high-accuracies (Tables 4, 5) can be achieved, both in a speaker-dependent manner, which 
captures individuality, and in a speaker-independent manner, which captures language/dialect 
characteristics. In the latter case, high synthetic accuracies can be achieved either when group 
averages are applied to each of the individuals in the group, regardless of gender, or through 
cross-validation, in which F0 contours of an individual speaker are predicted by parameters 
summarized from all other members of the group, also regardless of gender. The illustrations 
in Fig. 19 are in fact examples of group average synthesis, in which the F0 contours are 
generated with mean parameters from eight speakers, four females and four males.  

Finally, we have shown the plausibility of using full-fledged prosody synthesis as a 
means of hypothesis testing for basic research. Computational modeling has often been used 
in basic research, but typically they are used to test a specific hypothesis on materials that are 
directly related to the hypothesis. The idea tested in the present project is rather different. 
That is, it is possible for a theory to demonstrate both validity and generalizability by 
showing its ability to predict full phonetic details that can be directly compared to real speech 
data, and especially details that are beyond the specific phenomena for which it was 
originally proposed. The appeal of this approach is that any phenomenon-specific hypothesis 
may have inadvertent consequences when used to make predictions on other aspects of the 
speech, but such consequences often remain hidden unless full-detailed synthesis has to be 
performed. Thus theory testing by full-scaled synthesis will help accelerate rather than harm 
theoretical development. For example, while the overall results of the present project have 
demonstrated the strengths of the target approximation hypothesis, the inability of 
PENTAtrainer2 in its present form to predict post-low bouncing as seen in rows 5-6 in Fig. 
11 shows that additional articulatory mechanisms still need to be considered, as has been 
done in Prom-on et al. (2012). The case studies reported in section 5 further show that a 
theory-based synthesis system can be used to test various specific hypotheses by 
manipulating various aspects of the learning-synthesis process. The confirmation of target 
shift in Mandarin L-tone sandhi in case study A in 5.1 shows the effectiveness of 
PENTAtrainer2 for separating phonological changes of underlying targets from phonetic 
variations due to articulatory mechanism. The results of case study B in 5.2 offer direct 
evidence that the temporal domain of target approximation is more likely to be the syllable 
rather than the rhyme. Case study C in 5.3 shows the high sensitivity of PENTAtrainer2 to 
the number of layers of functional annotation provided by the investigator. 

Beside what has been achieved, a number of caveats need to be mentioned. The first 
is that, although the derived underlying targets may be good enough for predictive synthesis, 
they may not be fully consistent with traditional phonetic descriptions. This is because the 
data-driven approach adopted here is fundamentally different from the classical rule-based 
approach to speech synthesis (Klatt, 1987) where a heavy reliance is on the theoretical 
knowledge of the researcher, which may or may not be accurate. On the other hand, targets 
derived from a data-driven approach may not be “accurate” either if the input data are not 
fully balanced.  For example, in the Mandarin corpus used in the present study, the L tone is 
preceded only by H and L-S, which is probably why its learned m is highly positive (Table 7). 
A more balanced tonal context may lead to an m value much closer to zero, which would be 
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more consistent with the theoretical description of the Mandarin tones. Second, the current 
version of PENTAtrainer2 simulates only F0 variations due to the normal target 
approximation process. It has not incorporated algorithms for simulating additional 
articulatory mechanisms, including, in particular, anticipatory raising (Gandour et al., 1994; 
Potisuk et al., 1997; Xu, 1999), post-low bouncing (Chen and Xu, 2006), consonantal 
perturbation (Silverman, 1986) and vowel intrinsic pitch (Whalen and Levitt, 1995). Of these, 
post-low bouncing has already been simulated in a separate study by adding an extra 
component added to qTA (Prom-on et al., 2012). Third, we did not do any duration modeling 
for this paper, and no duration values of synthetic sentences were changed from the original. 
Duration modeling will be performed in subsequent studies. Fourth, perceptual evaluation of 
the synthetic prosody was conducted only for Thai in this study as this has never been done 
before. For English and Mandarin, since Prom-on et al. (2009) tested the both the 
intelligibility and naturalness of the synthetic tone and focus and show very close 
performance between the two. Given the significant improvement of the global optimization 
method in the present study over the method used in Prom-on et al. (2009) in terms of 
numerical evaluation results as shown in Table 5, it is reasonable to expect no deterioration 
of perceptual quality from that study. Finally, there were no detailed numerical comparisons 
with other models performed in the present study. This is because, for such comparisons to be 
meaningful, three basic requirements had to be met: a) the availability of common speech 
corpora with annotations suitable for all models under comparison, b) the design of common 
tasks that all models are able to perform, and c) the actual implementation of the other 
models either by us or by the original authors. These requirements can be met only in future 
studies designed for the purpose of direct model comparisons. 

7. Conclusions 
The findings of the present study have demonstrated not only the ability of PENTAtrainer2 as 
a tool of prosody modeling and synthesis, but also the importance of directly addressing 
variability for the successful modeling of speech prosody in general. We have shown that the 
modeling of local contextual variability is not a dispensable burden, but a vital step toward 
effective modeling of non-contextual, i.e., function-driven variability. With the qTA model as 
the core of PENTAtrainer, we have achieved many-to-one mappings between surface 
prosody and underlying representations. This in turn allows targets to be directly associated 
with functional categories, and thus remain unique and invariant across local tonal contexts. 
When this intrinsic ability to handle variability is combined by the multi-layer functional 
annotation scheme and global stochastic optimization developed in this study, automatic 
learning of the target parameters and predictive synthesis of close-to-natural F0 contours of 
full phrases or sentences in three languages were achieved. Given the effectiveness of the 
current approach, it is potentially applicable to the segmental aspect of speech as well. 
Being both theory-based and trainable, PENTAtrainer can serve as a new type of tool for 
basic research. See supplementary materials for online address of PENTATrainer2 and its 
user manual, together with PENTAtrainer1, which is useful for sentence-by-sentence target 
estimation in small-scale studies and demonstrations.  
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