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Abstract

Background: Neural conversion from human embryonic stem cells (hESCs) has been demonstrated in a variety of systems
including chemically defined suspension culture, not requiring extrinsic signals, as well as in an adherent culture method
that involves dual SMAD inhibition using Noggin and SB431542 (an inhibitor of activin/nodal signaling). Previous studies
have also determined a role for activin/nodal signaling in development of the neural plate and anterior fate specification.
We therefore sought to investigate the independent influence of SB431542 both on neural commitment of hESCs and
positional identity of derived neural progenitors in chemically defined substrate-free conditions.

Methodology/Principal Findings: We show that in non-adherent culture conditions, treatment with SB431542 alone for 8
days is sufficient for highly efficient and accelerated neural conversion from hESCs with negligible mesendodermal,
epidermal or trophectodermal contamination. In addition the resulting neural progenitor population has a predominantly
caudal identity compared to the more anterior positional fate of non-SB431542 treated cultures. Finally we demonstrate
that resulting neurons are electro-physiologically competent.

Conclusions: This study provides a platform for the efficient generation of caudal neural progenitors under defined
conditions for experimental study.
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Introduction

Controlled, scalable and directed differentiation of hESCs to the

neural lineage is necessary for the study of mechanisms underlying

human neural development as well as in modeling disease and

(potentially) for cell based therapy. Several recent reports have

demonstrated neural conversion of hESCs using chemically defined

conditions [1–8]. Efficient neurogenesis in chemically defined

medium (CDM) is based on the default model of neurogenesis

[9,10] where culture conditions are designed to minimise extrinsic

and intrinsic signals that divert differentiation to alternate fates.

Recent studies suggest that inhibition of both the activin/nodal and

BMP arms of the TGFb signaling pathways are necessary for highly

efficient neural conversion of adherent hESC cultures [2]. In view of

the established effect of TGFb signaling on neural development and

the differential effects of BMP antagonists on neural regional

identity, this raises the issue of whether TGFb/SMAD inhibition

based methods impose different positional identities on neural

progenitors to those observed in defined conditions without the use

of extrinsic signals. Against this background, and using a suspension

culture neuralisation protocol, we sought to examine the effect of

activin inhibition alone on the efficiency of neural conversion from

hESCs and positional identity of neural progeny when grown in

defined substrate free conditions [1].

Results

Activin/Nodal inhibition promotes accelerated and
highly efficient neural conversion of hESCs

Under control conditions, hESCs can be readily converted to

neural cells over 16 days (Fig. 1A) with concomitant loss of

pluripotency markers OCT4 and NANOG, and up regulation of

neural progenitor markers MUSASHI (D8) and SOX1 (D 16). By

comparison, addition of the activin/nodal receptor kinase (ALK4/

5/7) inhibitor SB431542 results in accelerated loss of OCT4 and

NANOG by D4, and gain of both MUSASHI (D4) and SOX1

(D8, Fig. 1B). Resulting cells are negative for mesendodermal

markers T and HNF3b, epidermal marker KRTAP (keratin
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Figure 1. SB431542 accelerates neural induction from hESCs. Neural induction from hESCs using the HNM alone leads to loss of pluripotency
markers OCT4 and NANOG by day 8 and concomitant acquisition of neuroectodermal markers MUSASHI (day 8) and SOX1 (day 16) by
immunocytochemical analysis (A). Transcriptional analysis confirms loss of mesendodermal markers (T, HNF3b) by day 8 (A). SB431542 accelerates loss
of pluripotency markers OCT4 and NANOG to day 4, and up-regulation of neural marker MUSASHI to day 4 and SOX1 to day 8 (B). RT-PCR confirms
loss of mesendodermal markers (T, HNF3b) by day 8 and absence of epidermal marker (KRTAP) and trophectodermal markers (bHCG, CDX2) in both
control and SB431542 treated cells (B). Quantitative immunohistochemistry confirms significant acceleration in loss of pluripotency and expression of
neural markers when using SB431542 compared to control (C). * = p,0.05, ** P,0.01, Scale bars: all 100 mm.
doi:10.1371/journal.pone.0007327.g001
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associated protein) and trophectodermal markers bHCG and

CDX2 (Fig. 1). Quantitative immunohistochemistry confirms

accelerated efficient neuralisation with 50.762.0% MUSASHI

positive cells at day 4 compared to 3.261.2% in control

conditions, and 40.667.0% SOX1 positive compared to negligible

SOX1 positive cells in the control group at day 8. Staining for

SOX 1 positivity at day 16 was 90.461.3% in the SB431542

treated cells and 46.467.4% under control conditions (Fig. 1C).

Activin/Nodal inhibition results in neural precursors with
a caudal identity

Despite robust MUSASHI and SOX1 expression, we found

that addition of SB431542 failed to induce high levels of PAX6

expression (6.761% PAX6 positive cells at day 8 compared to

31.263.4% in control conditions, Fig. 2C). To examine further

the influence of SB431542 on positional identity of neural

progenitors we undertook transcriptional profiling of rostro-caudal

markers. In addition to consistent down regulation of PAX6,

SB431542 treatment down-regulated all other anterior markers

tested including OTX1, OTX2 and EN2 when compared to

control conditions where these anterior markers are clearly

expressed (Fig. 2A&B). Immunohistochemistry of the anterior

marker OTX2 revealed significant down-regulation in SB431542

treated cells compared to control (3.361.4% vs. 33.763.6% in the

control group). In contrast, posterior markers GBX2, HOXB6 and

HOXC8 by transcriptional analysis are strongly expressed in the

Figure 2. Activin/nodal inhibition using the small compound SB431542 imposes a posterior positional identity on derived neural
progenitors. Under control conditions, transcriptional profiling reveals expression of a range of rostro-caudal markers, indicating an heterogeneous
positional identity of neural precursors (A). Immunohistochemistry confirms the presence of anterior markers PAX6 and OTX2 (A). Treatment with SB431542
causes a significant downregulation of anterior positional markers including PAX6, OTX1, OTX2 and the midbrain marker EN2 by transcriptional analysis and
significantly reduced expression of PAX6 and OTX2 by immunohistochemistry compared to control conditions (B&C). Posterior markers including GBX2,
HOXB6 and HOXC8 in the SB431542 treated group are strongly expressed at the RNA level (B) and quantitative immunohistochemistry of posterior marker
HOXB4 (C) reveals significant upregulation with SB431542 treatment. Transcriptional profiling of dorso-ventral markers suggests that a predominantly
dorsal identity within the caudal neuraxis is demonstrated by SB431542 generated hESC-NPCs (D). Scale bars all 100 mm * = p,0.05, *** P,0.001.
doi:10.1371/journal.pone.0007327.g002
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SB431542 treated cells, suggesting a direct neural conversion of

hESCs to cells with caudal spinal cord regional identity (Fig. 2B).

This is reinforced by HOXB4 quantitative immunohistochemistry

showing significant up-regulation in SB431542 treated cells

22.863.5% vs. 10.762.4% in control conditions (Fig. 2C).

Transcriptional profiling of dorsal-ventral markers reveals a

predominantly dorsal identity within the caudal neuraxis following

SB431542 treatment, identified by PAX7 expression, very weak

expression of the intermediate domain markers IRX3 and PAX6,

and an absence of the ventral marker NKX2.2 (Fig. 2D).

Neurons generated using SB431542 are electro-
physiologically competent

Precursors plated at day 16 generated highly enriched neurons

expressing b-III-tubulin after 4 days and synapsin, a marker of

neuronal maturation, from 7 days (Fig. 3A). Electrophysiological

recordings were next made to characterize the functional

properties of caudal neurons generated using SB431542 from 28

days post plating for terminal differentiation. Current injection

(300 ms pulses of between +20–100 pA) into terminally differen-

tiated neurons elicited action potentials in the majority of cells

tested (Fig. 3B). The action potentials were blocked by TTX

indicating that they were mediated by voltage-dependent Na+

channels. Neurons generated using SB431542 also exhibited

currents mediated by ionotropic glutamate receptors as evidenced

by the fact that the selective agonists AMPA and NMDA evoked

responses in these cells (Fig. 3C). In addition to currents evoked by

exogenous application of agonists, we also observed that these

neurons displayed currents evoked by synaptic activation of

ionotropic glutamate receptors. ‘Bursts’ of synaptic responses

could be elicited in an external recording solution containing

picrotoxin to block inhibitory GABAA receptor activation – these

‘bursts’ were blocked by TTX (Fig. 3D). Finally, we were able to

record TTX-resistant miniature synaptic events from SB431542

generated neurons. These events were blocked by the selective

AMPA receptor antagonist, CNQX, confirming that these events

were mediated by synaptically located AMPA receptors (Fig. 3E).

To verify that the NMDA receptors expressed also pass Ca2+ we

performed Fluo-3 Ca2+ imaging. Addition of 100 mM NMDA

triggered significant intracellular Ca2+ influx (Fig. 3Fi&ii).

Discussion

Lineage restriction and cell fate specification are the conse-

quence of interplay of multiple developmental signals, which are

regulated in a spatio-temporal manner. Here we demonstrate that

activin/nodal inhibition using the compound SB431542 influences

both the timing of neural conversion of human hESCs as well as

positional identity of neural progenitors consistent with the role of

nodal signaling in antagonizing pluripotency and its requirement

for forebrain specification.

A pre-requisite for experimental and therapeutic studies of hESCs

derived neural progenitors is the ability to efficiently neuralise and

then predictably manipulate lineage restriction and regional identity.

Recognition that under defined and serum free conditions ES cells

will undergo neurogenesis, by minimising extrinsic and intrinsic

signals that divert differentiation to alternate fates, allows the

manipulation and study of mechanisms underlying both neural

induction and neural lineage specification [2,8,9,11]. Neural

induction in this system is based on the default model of neurogenesis

which results typically in precursors with an anterior identity [9,10].

The activin/nodal signaling pathway has been implicated in the

inhibition of default neurectodermal differentiation and in the

maintenance of pluripotency in hESCs [12]. This pathway

cooperates with the FGF signaling pathway to maintain hESC

pluripotency [13]. In-vivo studies also suggest that nodal acts as an

inhibitor of neuroectoderm specification in mice [14]. Further-

more, the role of Nodal inhibition in neural induction in both

mouse and human ESCs in-vitro has also been suggested [10,12].

Against this background, we first investigated the effect of activin/

nodal inhibition alone on the timing and efficiency of neural

conversion from hESCs. Our results demonstrate that SB431542

(an activin/nodal receptor kinase inhibitor) accelerates the process

of neural induction from hESCs, an observation consistent with its

known actions on inhibiting pluripotency [15]. Specifically, we

find that the time taken to reach the major milestones of neural

induction (down-regulation of pluripotency markers and upregula-

tion of neural markers) is 4 days compared to 8 days under control

conditions, suggesting a significant increase in efficiency of neural

conversion using SB431542 alone.

In addition to neural conversion, there is accumulating evidence

to implicate nodal signaling in forebrain specification. Specifically,

ablation studies have shown that the anterior visceral endoderm

(AVE) is necessary for normal forebrain development with nodal

signaling being critical in this process [16–18]. The finding in this

study that nodal inhibition imposes a posterior positional identity

on hESC-derived neural progenitors is thus consistent with the

known function of nodal in vertebrate neurodevelopment. The

downregulation of OTX2 in SB431542 treated cultures is also

consistent with studies implicating the wild-type function of this

gene in normal anterior fate specification [19]. Similarly, the

relative absence of PAX6 in SB431542 treated cultures is in

keeping with the established role of PAX6 as a key regulator of

forebrain development. Previous studies have used PAX6 as an

early pan-neural progenitor marker [1,20,21] to show neural

lineage commitment and to support the neurogenic hypothesis of

dual SMAD inhibition by combined SB431542 and Noggin

treatment [2]. Since SB431542, and hence SMAD2/3, inhibition

alone is clearly sufficient for efficient neural conversion of hESCs,

it is likely that PAX6 expression primarily indicates positional

identity in this context.

We next demonstrate that neurons derived following SB431542

treatment of hESCs are electro-physiologically competent. In

addition demonstration that NMDA triggered significant intracel-

lular Ca2+ influx suggests that SB431542 generated neurons may

be a good model with which to study the downstream

physiological effects of various paradigms of NMDA receptor

activation in human neurons, including synaptic plasticity, gene

expression changes, as well as excitotoxicity.

In summary, we demonstrate that activin/nodal inhibition using

the compound SB431542 accelerates highly efficient neural

conversion of human ESCs. Derived neural progenitors have a

caudal identity consistent with the known effects of activin/nodal

signaling on anterior fate specification. The effect of different

neural induction protocols on the positional identity of resulting

progeny within the neuraxis is of clear importance for the

generation of defined neuronal populations. Together this study

provides a platform for the efficient generation of caudal neural

progenitors under defined conditions for experimental study.

Materials and Methods

hESC culture and neural induction
The hESC lines H9 obtained from the WiCell Research

Institute (Madison, WI) and HuES9 (hES facility, Harvard

University, Cambridge, MA) were used for this study, between

passages 30 and 70. Human ESC culture and neural induction

were carried out using an adapted protocol from that previously

Generation of Caudal hESC-NSCs
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Figure 3. Plated aggregates give rise to bIII positive neurons (A, upper image) that mature to synapsin positivity (A, lower image)
within one week. SB431542 treated hESCs give rise to neurons that are electrophysiologically active. Current-clamp recording from an SB431542
generated neuron (28 days post-plating) showing that injection of positive current, from a resting membrane potential of –58 mV, gives rise to action
potentials which are blocked by the voltage-dependent Na+ channel blocker, TTX (300 nM) (B). Whole-cell voltage-clamp recording from an
SB431542 generated neuron at 28 days post-plating, held at –60 mV, showing responses to bath application of the selective agonists AMPA (50 mM)
and NMDA (100 mM) – both agonists evoke inward currents which are associated with increases in the noise level of the recording (C). In the presence
of picrotoxin (50 mM) and in nominally Mg2+-free external recording solution TTX-sensitive ‘bursts’ of excitatory synaptic inputs are present in
SB431542 generated neurons (28 days post-plating, D). Examples of CNQX-sensitive miniature EPSCs recorded from an SB431542 generated neuron
at 28 days post-plating held at –70 mV and recorded in the presence of TTX (300 nM) and picrotoxin (50 mM) in an external recording solution
containing 1 mM MgCl2 to block NMDA receptor-mediated currents (E). NMDA receptor activation SB431542 generated neurons (28 days post-
plating) causes intracellular Ca2+ influx. Example Fluo-3 fluorescence images (Fi) of SB431542 generated neurons before and after treatment with
NMDA (100 mM for 1 minute). For comparison, a fluorescence image is also shown of the same field of cells 1 minute after treatment with ionomycin,
which causes massive Ca2+ influx and dye saturation, as well as an image after treatment with ionomycin + MnCl2, which quenches the dye, giving a
fluorescence value approximately equivalent to 100 nM Ca2+ (Fii) [26]. The images are pseudocoloured: cold colours indicate low fluorescence, and
warm colours indicate high fluorescence.
doi:10.1371/journal.pone.0007327.g003
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published [1]. Briefly, hESCs were propagated in defined medium

supplemented with 8 ng/ml of FGF2, 10 ng/ml of Activin [22]

and 10 ng/ml of insulin. To generate NPCs, hESCs were first

washed in phosphate buffered saline (PBS), enzymatically

dissociated from the underlying mouse embryonic fibroblast

feeder layer by gentle pipetting. Detached colonies were

subsequently centrifuged and washed in fresh medium. Colonies

were next chopped at 150 mm intervals using a McIlwain tissue

chopper (Mickle Engineering, Gomshall, U.K.) before being

plated at a low density in chemically defined medium (CDM

which consisted of 50% IMDM (Gibco) plus 50% F12 plus

glutamax (Gibco), supplemented with 1.75 mM human recombi-

nant insulin (Roche), 0.38 mM transferrin (Roche), 450 mM of

monothioglycerol (Sigma), 10 ml/ml lipids (Gibco) and 5 mg/ml

bovine serum albumin fraction V (Sigma)) in 10-cm culture dishes

on an orbital shaker to prevent sphere aggregation or adherence.

Human ESC-NSCs were maintained in CDM in the presence of

20 ng/ml of FGF2 from day 8. 10 mM SB431542 (Tocris

Bioscience, Bristol, UK) was added to the experimental group

from day 0–8.

Reverse Transcription-Polymerase Chain Reaction
Total RNA was extracted from dissociated and washed cells

using the RNeasy Mini Kit (Qiagen, Valencia, CA) following the

manufacturer’s instructions. The samples were next treated with

RNAse-free DNase (Qiagen) and cDNA was synthesized from

2 mg of RNA using Moloney murine leukemia virus reverse

transcriptase (Invitrogen) and oligo-dT primers. Polymerase chain

reaction (PCR) was carried out using Taq polymerase (Invitrogen).

PCR products were separated on a 2% agarose gel and visualized

with SYBR-Green (Invitrogen). The expression of the housekeep-

ing gene HPRT was used to normalize PCR reactions. Forward

and reverse primer sequences, annealing temperatures and PCR

cycles are provided in the supplementary information (Table S1).

Immunocytochemistry
Cells plated down on poly-D-lysine/laminin coated glass

coverslips were fixed with 4% fresh paraformaldehyde for 20

minutes at room temperature and washed three times with PBS (or

1 hour for spheres with subsequent cryoprotection in 30% sucrose

prior to OCT embedding and cryostat sectioning). Samples were

next blocked for 1 hour at room temperature with 0.3% Triton/

PBS/5% goat serum and then incubated overnight with primary

antibody in 0.2% Triton/PBS/2% goat serum at 4uC. After three

washes in PBS, secondary antibody (goat anti-mouse, Alexa Fluor

488 or 555, 1:1000) in PBS/Hoechst (1:4000) was next applied for

1 hour at room temperature. Primary antibodies used included

Oct4 (1:100; Santa Cruz Biotechnology Inc.), Musashi1 (1:500;

Chemicon), Sox1 (1:200, Chemicon), b-III tubulin (1:500; Sigma-

Aldrich), SynapsinI (1:500; Calbiochem), Pax6 and HoxB4 (1:50;

Developmental Studies Hybridoma Bank [DSHB], Iowa City).

Electrophysiological recordings
Whole-cell current-clamp and voltage clamp recordings were

made from SB431542 generated neurons at room temperature

(2162uC) using an Axopatch-1C amplifier (Molecular Devices,

Union City, CA) using methods as described previously[23,24].

Briefly, coverslips containing SB431542 generated neurons were

transferred to a recording chamber perfused with an external

recording solution composed of (in mM): 152 NaCl, 2.8 KCl, 10

HEPES, 2 CaCl2, 10 glucose pH 7.3 (320–330 mOsm). Patch

pipettes were made from thick-walled borosilicate glass (Harvard

Apparatus, Kent, UK) and filled with a K-gluconate-based

internal solution containing (in mM): 155 K-gluconate, 2 MgCl2,

10 Na-HEPES, 10 Na-PiCreatine, 2 Mg2-ATP and 0.3 Na3-GTP,

pH 7.3 (300 mOsm). For current-clamp recordings to determine

the intrinsic firing of SB431542 generated neurons, the external

recording solution was supplemented with antagonists of gluta-

mate and GABA ligand-gated ion channels (CNQX 5 mM; D-AP5,

50 mM, picrotoxin, 50 mM; strychnine 20 mM). For the recording

of whole-cell AMPA- and NMDA-evoked currents and synapti-

cally-mediated glutamate receptor responses the external solution

was supplemented with picrotoxin (50 mM) and strychnine

(20 mM). In all experiments where NMDA receptor-mediated

responses were studied a saturating concentration of the co-

agonist, glycine (50 mM), was also added to the external recording

solution. Miniature excitatory postsynaptic currents (mEPSCs)

recorded in solutions supplemented with 300 nM tetrodotoxin

(TTX), picrotoxin (50 mM), strychnine (20 mM) and MgCl2
(1 mM). Events were recorded for 5–10 minutes at a holding

potential of –70 mV. Fluo-3 Ca2+ imaging was performed as

described [25]. Cells were loaded with 5 mM Fluo3-AM (Invitro-

gen) for 20 minutes at room temperature, followed by extensive

washing in fresh medium. Images before and after NMDA

application were taken on a Leica AF6000 LX imaging system. To

verify the dynamic range of the indicator, it was first saturated by

adding ionomycin (50 mM) to the cells, then quenched by the

addition of MnCl2 (10 mM) which gives a fluorescence value

approximately equivalent to 100 nM Ca2+ [26].

Quantification and Statistical Analysis
All experiments used a minimum number of 3 unless otherwise

stated. A p value of ,0.05 was considered statistically significant.

Values are expressed as the mean6SEM. The Mann-Whitney

rank-sum test was used for nonparametric analysis using

GraphPad Prism 4 (Graph-Pad Software, Inc., San Diego).

Supporting Information

Table S1 Primer sequences and RTPCR conditions

Found at: doi:10.1371/journal.pone.0007327.s001 (0.07 MB

DOC)

Acknowledgments

We are grateful to K. Westmore, X. He, P. Baxter, K. Gupta, A. Serio, B.

Bilican, D. Webber, S. Stacpoole, A. Joannides, and D. Story for valuable

technical support.

Author Contributions

Conceived and designed the experiments: RP SC. Performed the

experiments: RP. Analyzed the data: RP NDA SC. Contributed

reagents/materials/analysis tools: RP SC. Wrote the paper: RP AC

NDA SC. Financial support: AC. Final approval of manuscript: AC DW

GH. Performed electrophysiological recordings: CAP.

References

1. Joannides AJ, Fiore-Heriche C, Battersby AA, Athauda-Arachchi P, Bouhon IA,
et al. (2007) A scaleable and defined system for generating neural stem cells from

human embryonic stem cells. Stem Cells 25: 731–737.

2. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, et al.

(2009) Highly efficient neural conversion of human ES and iPS cells by dual

inhibition of SMAD signaling. Nat Biotechnol.

3. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro
differentiation of transplantable neural precursors from human embryonic stem

cells. Nat Biotechnol 19: 1129–1133.

4. Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, et al. (2005) Derivation

of neural precursors from human embryonic stem cells in the presence of noggin.

Mol Cell Neurosci 30: 24–36.

Generation of Caudal hESC-NSCs

PLoS ONE | www.plosone.org 6 October 2009 | Volume 4 | Issue 10 | e7327



5. Erceg S, Lainez S, Ronaghi M, Stojkovic P, Perez-Arago MA, et al. (2008)

Differentiation of human embryonic stem cells to regional specific neural

precursors in chemically defined medium conditions. PLoS ONE 3: e2122.

6. Vallier L, Pedersen R (2008) Differentiation of human embryonic stem cells in

adherent and in chemically defined culture conditions. Curr Protoc Stem Cell

Biol Chapter 1: Unit 1D 4 1–1D 4 7.

7. Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, et al. (2005) Essential

roles of sphingosine-1-phosphate and platelet-derived growth factor in the

maintenance of human embryonic stem cells. Stem Cells 23: 1541–1548.

8. Ying QL, Smith AG (2003) Defined conditions for neural commitment and

differentiation. Methods Enzymol 365: 327–341.

9. Bouhon IA, Kato H, Chandran S, Allen ND (2005) Neural differentiation of

mouse embryonic stem cells in chemically defined medium. Brain Res Bull 68:

62–75.

10. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005)

Directed differentiation of telencephalic precursors from embryonic stem cells.

Nat Neurosci 8: 288–296.

11. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, et al. (2005)

Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells.

Proc Natl Acad Sci U S A 102: 11331–11336.

12. Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of

human embryonic stem cells along the neuroectodermal default pathway. Dev

Biol 275: 403–421.

13. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways

cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci

118: 4495–4509.

14. Camus A, Perea-Gomez A, Moreau A, Collignon J (2006) Absence of Nodal

signaling promotes precocious neural differentiation in the mouse embryo. Dev

Biol 295: 743–755.

15. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, et al. (2008) Inhibition

of Activin/Nodal signaling promotes specification of human embryonic stem

cells into neuroectoderm. Dev Biol 313: 107–117.

16. Stern CD (2001) Initial patterning of the central nervous system: how many

organizers? Nat Rev Neurosci 2: 92–98.
17. Varlet I, Collignon J, Robertson EJ (1997) nodal expression in the primitive

endoderm is required for specification of the anterior axis during mouse

gastrulation. Development 124: 1033–1044.
18. Thomas P, Beddington R (1996) Anterior primitive endoderm may be

responsible for patterning the anterior neural plate in the mouse embryo. Curr
Biol 6: 1487–1496.

19. Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2

functions in the formation and patterning of rostral head. Genes Dev 9: 2646–
2658.

20. Gajovic S, St-Onge L, Yokota Y, Gruss P (1997) Retinoic acid mediates Pax6
expression during in vitro differentiation of embryonic stem cells. Differentiation

62: 187–192.
21. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic

stem cell-derived motor neurons are sensitive to the toxic effect of glial cells

carrying an ALS-causing mutation. Cell Stem Cell 3: 637–648.
22. Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma S,

et al. (2006) Structural basis for the inhibition of activin signalling by follistatin.
EMBO J 25: 1035–1045.

23. Baxter AW, Wyllie DJ (2006) Phosphatidylinositol 3 kinase activation and

AMPA receptor subunit trafficking underlie the potentiation of miniature EPSC
amplitudes triggered by the activation of L-type calcium channels. J Neurosci 26:

5456–5469.
24. Soriano FX, Martel MA, Papadia S, Vaslin A, Baxter P, et al. (2008) Specific

targeting of pro-death NMDA receptor signals with differing reliance on the
NR2B PDZ ligand. J Neurosci 28: 10696–10710.

25. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of

nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:
260–265.

26. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium
based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171–

8178.

Generation of Caudal hESC-NSCs

PLoS ONE | www.plosone.org 7 October 2009 | Volume 4 | Issue 10 | e7327


