ELECTRONIC SUPPLEMENTARY MATERIAL

Distortion algorithm for the generation of stimuli

Manipulation of the faces was achieved by a non-linear transformation of the masked 3 template of each face, Figure S1. This transformation is like looking at the image in 4 an convex or concave mirror. The transformation acts in one axis of the image (either 5 row or column) at a time and is achieved line by line. Figure S2 shows how one line 6 of the original image is bent to achieve the corresponding line in the generated image. The bending degree is shown as θ_{ρ} for $\theta_{\rho} = [0 \cdot 90]$. The bending radius (r) is therefore 8 calculated as below 9

$$\rho = 2 \times 180 \times r \times (2\theta_{\rho}/(2 \times 180)) = 2r\theta_{\rho} \tag{1}$$

1

2

7

10

 $\therefore r = \rho/2\theta_{\rho}$

in which ρ is the length of the transformed line. This leads to a generated line with 11 length $d = 2rsin(\theta_{\rho})$. Subsequently d is scaled to achieve the same length as the original 12 line (ρ) . 13

To achieve a transformation equation to map the points in the original image to the 14 generated image we used the distance between points. Assume θ_0 is a unit angle between 15 two points that sweep the image in trigonometric angle $\alpha = [90 - \theta_{\rho} \cdot 90 + \theta_{\rho} - \theta_0]$. The 16 distance between the two points x_1 and x_2 can be calculated as below, 17

$$d(x_1, x_2) = r\cos(\alpha) - r\cos(\alpha + \theta_0).$$
⁽²⁾

The transformation equation is therefore achieved by integrating $d(x_1, x_2)$ between 18 $90 - \theta_{\rho}$ and α . 19

$$d_{int}(\alpha) = \int_{90-\theta_{\rho}}^{\alpha} d(x_1, x_2) d_{\alpha}$$

= $r(sin(\alpha + \theta_0)) - sin(\alpha + \theta_0)) + r(cos(\theta_{\rho} - \theta_0) - cos(\theta_{\rho}))$ (3)

Transformation equation (d_{int}) showed above is for convex transformation. For con-20 cave transformation the d_{int} is flipped over the diagonal axis (reversing the positions for 21 original and generated image). The convex transformation is shown as positive numbers 22 (k > 0) and concave transformation is shown as negative numbers (k < 0). Figure S3 23 shows the transformation equation for θ_{ρ} equal to +90(k = +6), +60(k = +3), 0(k = 0)24 and -90(k = -6) with $\theta_0 \rightarrow 0$ and $\rho = d = 500$. 25

FIGURE LEGENDS

Figure S1

Figure 5. Image distortion. (A) The original face, (B) the original masked face in which the area surrounding the face is masked by a green patch, (C) the manipulated face (k = +6)

Figure S2

Figure 6. The conversion from original image (blue curve) to the generated image (red $_{7}$ line). The generated image is what will be seen from a flat surface while the original $_{8}$ image is bent. The bending degree is shown as θ_{ρ} .

Figure S3

10

1

2

3

4

5

6

Figure 7. The conversion curves from the original image (horizontal axis) to the gener-	11
ated image (vertical axis) for $k = +6$ (blue curve), $k = +3$ (red curve), $k = original$ (green	12
curve) and $k = -6$ (cyan curve).	13