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Context: Disorders of adrenal development result in significant morbidity and mortality. However,
the molecular basis of human adrenal development, and many forms of disease, is still poorly
understood.

Objectives: We evaluated the role of two new candidate genes, CBP/p300-interacting transacti-
vator, with Glu/Asp-rich C-terminal domain, 2 (CITED2), and pre-B-cell leukemia transcription fac-
tor 1 (PBXT1), in human adrenal development and disease.

Design: C/ITED2 and PBX1 expression in early human fetal adrenal development was assessed using
RT-PCR and in situ hybridization. The regulation of CITED2 and PBX1 by steroidogenic factor-1
(SF-1) and dosage-sensitive sex reversal, adrenal hypoplasia congenital, critical region on the X
chromosome, gene-1 (DAX1) was evaluated in NCI-H295R human adrenocortical tumor cells by
studying promoter regulation. Finally, mutational analysis of CITED2 and PBX1 was performed in
patients with primary adrenal disorders.

Results: CITED2 and PBX1 are expressed in the human fetal adrenal gland during early develop-
ment. Both genes are activated by SF-1 in a dose-dependent manner in NCI-H295R cells, and,
surprisingly, PBX1 is synergistically activated by SF-1 and DAX1. Mutational analysis failed to reveal
significant coding sequence changes in individuals with primary adrenal disorders.

Conclusions: CITED2 and PBXT1 are likely to be important mediators of adrenal development and
function in humans, but mutations in these genes are not common causes of adrenal failure in
patientsin whom a molecular diagnosis remains unknown. The positive interaction between DAX1
and SF-1 in regulating PBXT may be an important mechanism in this process. (J Clin Endocrinol
Metab 94: 678-683, 2009)

drenal failure can be difficult to diagnose in children and is
A associated with significant mortality and morbidity. Al-
though 21-hydroxylase deficiency and autoimmune Addison
disease remain the most likely diagnoses in early infancy and
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childhood, respectively, a range of metabolic, infectious, infil-
trative/destructive, and developmental etiologies can result in a
spectrum of adrenal disorders presenting throughout the pedi-
atric and adolescent years (1). Because some of these conditions

Abbreviations: AHC, Adrenal hypoplasia congenita; CITED2, CBP/p300-interacting trans-
activator, with Glu/Asp-rich C-terminal domain, 2; DAX1, dosage-sensitive sex reversal,
adrenal hypoplasia congenital, critical region on the X chromosome, gene-1; PBX1, pre-
B-cell leukemia transcription factor 1; SF-1, steroidogenic factor-1; WT, wild type.
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have different natural histories, potential associated features, and
varying modes of inheritance, making a correct diagnosis and un-
dertaking appropriate treatment and counseling are essential.

The past decade has seen steady progress in our understand-
ing of the molecular basis of adrenal disease, especially in the area
of adrenal developmentand regulation (2—4). Several single gene
disorders causing “adrenal hypoplasia” have now been reported
(2). For example, secondary adrenal hypoplasia can result from
pituitary dysfunction or isolated ACTH deficiency (e.g. HESX1,
SOX3, LHX3, LHX4, and TPIT). ACTH resistance (“familial
glucocorticoid deficiency”) can result from defects in ACTH sig-
naling pathways and related mechanisms (e.g. MC2R, MRAP,
and AAAS), and primary adrenal hypoplasia most frequently
occurs as an X-linked condition due to deletions or mutations in
the orphan nuclear receptor dosage-sensitive sex reversal, adre-
nal hypoplasia congenita (AHC), critical region on the X chro-
mosome, gene-1 (DAX1) (NROB1), although rare cases due to
defects in other factors (e.g. steroidogenic factor-1 [SF-1,
NRS5AT]) have been reported (2, 5-8). At present, a molecular
diagnosis can be reached in approximately 50% of infants or
children presenting with adrenal hypoplasia or resistance,and an
increasing number of syndromic associations and “non-classic”
variants of adrenal disorders are being described (4, 5, 7, 9-13).
However, although substantial progress has been made, a signifi-
cant proportion of cases of syndromic and nonsyndromic adrenal
hypoplasia and related disorders currently remain unexplained.

Two candidate genes emerging as potential causes of primary
adrenal hypoplasia from work in mice are the transcriptional
regulators CBP/p300-interacting transactivator, with Glu/Asp-
rich C-terminal domain, 2 (CITED2) (Mendelian Inheritance in
Man 602937), and pre-B-cell leukemia transcription factor 1
(PBX1) (Mendelian Inheritance in Man 176310). Targeted dis-
ruption of Cited2 in mice results in adrenal agenesis, neurolog-
ical defects, and cardiac malformations (14), whereas Pbx1-de-
ficient mice have severe adrenal hypoplasia together with
pancreatic dysfunction, impaired gonadal development, and
skeletal abnormalities (15). Although both knockout models are
embryonic lethal, Cited2 haploinsufficient animals have mark-
edly impaired adrenal development when crossed with either
Sf1+/— or Wt1+/— strains (16), and Pbx1 haploinsufficient
animals are viable, and have smaller adrenal glands with im-
paired adrenocortical growth and steroidogenesis (17).

To date, the role of CITED2 and PBX1 in humans is poorly
understood, but they are candidate genes for unexplained cases
of adrenal hypoplasia with or without associated features. Here,
we demonstrate the expression of these genes in human fetal
adrenal development, their regulation by SF-1 and DAX1, and
mutational analysis of CITED2 and PBX1 in a cohort of patients
with primary adrenal disorders.

Materials and Methods

RT-PCR

Human fetal adrenal tissue from 7 and 10 wk gestation was provided
by the Medical Research Council/Wellcome Trust funded Human De-
velopmental Biology Resource with Research Ethics Committee ap-
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proval and informed consent. RNA was extracted using the TRIzoL
method (Invitrogen Corp., Paisley, UK), and RT-PCR was performed
according to the manufacturer’s protocol (35 cycles, Access Quick RT-
PCR System; Promega, Southampton, UK; detailed conditions are avail-
able on request). Primers for CITED2 were located within exon 2
(forward, 5'-CAGGAAGGTCCCCTCTATGTG-3’, and reverse, 5'-
GCGCCGTAGTGTATGTGCTC-3'),and for PBX1 within exon 4 (for-
ward, 5'-GTTCCCGATTTCTGGATGC-3’) and within exon 6 (re-
verse, 5'-CATGGGCTGACACATTGGTA-3'). Glyceraldehyde-3-
phosphate dehydrogenase was used as a positive control.

In situ hybridization

In situ hybridization analysis of CITED2 and PBX1 in early human
adrenal tissue was performed with ethical approval through the In House
Gene Expression Service of the Human Developmental Biology Re-
source. Human embryos/fetuses at selected stages were dissected and
fixed in 4% paraformaldehyde, then dehydrated and embedded in par-
affin wax. Sections of 7 um were cut using a standard microtome and
mounted on Superfrost Plus slides (BDH, Poole, UK). I# situ hybridiza-
tion was performed essentially as described by Wilkinson (18) using
digoxigenin 11 incorporated riboprobes generated from a pOTB7 vector
containing the 1903-bp full cDNA sequence of CITED2 and a pCR4-
TOPO vector containing the 1388-bp full cDNA sequence of PBX1
(both plasmids obtained from the Mammalian Gene Collection/Na-
tional Institutes of Health, Integrated Molecular Analysis of Gnomes
and their Expression identification nos. 3640855 and 8069084, re-
spectively). For antibody detection, slides were incubated with anti-
digoxigenin antibody conjugated with alkaline phosphatase (diluted
1:1000, containing 2% fetal calf serum). Expression patterns were
visualized using the nitro-blue tetrazolium chloride/5-bromo-4-
chloro-3'-indolyphosphate p-toluidine salt system (Roche, Welwyn
Garden City, UK). Sections were mounted in VectaMount (Vector
Laboratories, Burlingame, CA) and analyzed using the Axioplan2
imaging system (Zeiss, Jena, Germany). Sense probes for CITED2 and
PBX1 were tested on adjacent sections, and showed no staining above
background levels.

Reporter and expression vector construction

Based on previously published mouse data (14, 17) and analysis for
putative SF-1 binding sites (MatInspector, www.genomatix.de) (19), a
3.3-kb upstream region of the CITED2 promoter and a 910-bp upstream
region of the PBX1 promoter were PCR amplified and cloned into a
pGL4.10[luc2] luciferase reporter vector (Promega). Expression vectors
(pCMX) containing SF-1 [wild-type (WT) and mutant G35E] and DAX1
(WT and mutants R267P, A300P, 1439S) cDNAs have been described
previously (10, 20-22).

Transient gene expression assays

Transient gene expression assays were performed in 96-well plates
(Techno Plastic Products, Trasadingen, Switzerland) using a NCI-
H295R human adrenocortical tumor cell line, Lipofectamine 2000 (In-
vitrogen), and a dual-luciferase reporter assay system (Promega) with
cotransfection of pPRLSV40 Renilla luciferase (Promega) as a marker of
transfection efficiency.

To analyze the effects of SF-1 on CITED2 and PBX1 regulation,
increasing doses of pPCMXWT or mutant SF-1 expression vectors (10,
20, 50, and 100 ng/well) were cotransfected with either pGL4.10-CIT-
ED2-luc or pGL4.10-PBX1-lucreporters (100 ng/well). Activation of the
promoters by SF-1 and DAX1 was studied using 100 ng pCMXWTSF1
together with increasing doses of PCMXWTDAXT (2, 5, 10, 20, and 50
ng/well). The synergistic effects of DAX1 were evaluated further using
DAX1 mutants associated with severe (R267P, A300P) or milder (1439S)
phenotypes (50 ng/well) (10, 22).

In all studies, cells were lysed 48 h after transfection and luciferase
assays performed using a FLUOstar Optima fluorescence microplate
reader (BMG Labtech, Aylesbury, UK). All data were standardized for
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FIG. 1. CITED2 and PBX1 expression in human fetal adrenal. A, RT-PCR of CITED2 and PBXT at 7 and 10 wk gestation. (=), water control. B and C, In situ hybridization
of CITED2 and PBXT in human fetal adrenal tissue at Carnegie Stage 20 (7 wk gestation). GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

Renilla coexpression. Results are shown as the mean = SEM of at least
three independent experiments, each performed in triplicate.

Patient cohort

Direct sequencing of CITED2 and PBX1 was undertaken in a diverse
cohort of patients with primary adrenal failure, with or without associ-
ated features. In many cases, mutations in several other relevant candi-
date genes [DAX1 (NROB1), SF1 (NRSA1), MC2R, AAAS, CYP11A1,
STAR, and ACD] had been excluded (supplemental Table 1, which is
published as supplemental data on The Endocrine Society’s Journals
Online web site at http://jcem.endojournals.org), and common steroi-
dogenic defects (21-hydroxylase deficiency), autoimmune disorders, and
metabolic disorders (e.g. X-linked adrenoleukodystrophy) were not de-

tected. In a cohort from one center, 36 patients (31 males, five females)
were analyzed for mutations in CITED2 and PBX1. Additional features
present in several patients with more complex phenotypes included go-
nadal, cardiac, and renal abnormalities, and intrauterine growth restric-
tion or Intrauterine growth retardation, Metaphyseal dysplasia, AHC,
and Genital anomalies syndrome features (9) (supplemental Table 1A).
In another cohort, PBX1 was analyzed in 20 patients with a predominant
ACTH-resistance phenotype (supplemental Table 1B). Finally, CITED2
was sequenced in a group of 15 patients with a predominant adrenal
hypoplasia phenotype (supplemental Table 1C). The Human Random
Control-1 DNA Panel (British Caucasian) (Human Random Control-1
DNA Panel, European Collection of Cell Cultures, UK) was used as control
genomic DNA for the analysis of previously unreported polymorphisms.

Mutational analysis

A 700 After institutional board approval and with informed
600 consent, genomic DNA was extracted from peripheral
blood lymphocytes, and the entire coding regions of CIT-
= 500 1 ED?2 (exon 2, three primer pairs) and PBX1 (exons 1-9,
a nine primer pairs) were amplified by PCR (specific condi-
% 400 - tions and primer sequences available on request). PCR
CITED2 X products were purified by gel extraction (QIAGEN, Craw-
- 300 ley, UK) or by using exonuclease I (New England Biolabs,
n_:' 200 - Ipswich, MA)/shrimp alkaline phosphatase (USB, Colum-
bus, OH) and then subjected to direct sequencing using dye
100 terminator sequencing kits (dRhodamine/BigDyev1.1; PE
Applied Biosystems Inc., Foster City, CA) in an automated
0 capillary based sequencer (MegaBACE1000; Amersham
SF-IWT 0 10 20 50 100 Biosciences Inc., Piscataway, NJ). Sequencher version 4.1
SF-1 G35E 0 0 0 0 0 10 20 50 100 (Genecodes Corp., Ann Arbor, MI) was used to analyze
the data.
B 500 -
400 Results
=
£ 300 CITED2 and PBX1 expression
PBX1 oic’, Analysis of CITED2 and PBX1 by RT-PCR
S 2001 showed abundant expression of these genes in RNA
7 derived from 7 and 10-wk human fetal adrenal
100 - glands (Fig. 1A). This expression was confirmed by
in situ hybridization on human fetal adrenal tissue at
0- Carnegie Stage 20 (7 wk gestation) (Fig. 1, Band C).
SFA{WT 0 10 20 50 100

SF-1G35E 0 0 0 O 0 10

experiments each performed in triplicate. RLU, Relative light units.

20 50 100

FIG. 2. Activation of CITED2 (3.3 kb) (A) and PBXT (910 bp) (B) promoters by WT or mutant
(G35E) SF-1 (0—100 ng/well) in NCI-H295R cells. Data shown as mean = sem of three

Transcriptional regulation of CITED2
and PBX1

Several putative SF-1 binding sites were identified
within the proximal promoter regions of CITED2
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FIG. 3. A, Cotransfection of increasing doses of WT DAX1 (0-50 ng/well) together with WT SF-1 (100 ng/well) shows a dose-dependent activation of the PBX1
promoter. B, By comparing the effects of WT DAX1 alone (50 ng/well, lane 2), WT SF-1 alone (100 ng/well, lane 6), and WT DAX1 (50 ng/well) and WT SF-1 (100 ng/
well) together (lane 7), synergistic activation of the PBX7 promoter is seen. This synergistic activation is attenuated when naturally occurring DAX1 mutants associated
with severe (R267P, A300P) or mild (1439S) forms of X-linked adrenal hypoplasia are studied (all 50 ng/well). Data represent the mean = sem of triplicate experiments
(unpaired t tests: WT >R267P, A300P; P < 0.01; 1439S >R267P, A300P; P < 0.05). RLU, Relative light units.

(3.3 kb) and PBX1 (910 bp), as has been reported previously in
the mouse (12). Cotransfection of SF-1 with reporter constructs
containing these regions showed dose-dependent activation of the
CITED2 promoter by SF-1 (up to 6-fold) (Fig. 2A), whereas the
PBX1 promoter showed 2-fold activation (Fig. 2B).

Coexpression of the nuclear receptor DAX1 with SF-1 had
only limited effects on regulation of the CITED2 promoter (data
not shown). In contrast, synergistic activation was observed
when SF-1 and DAX1 were coexpressed with the PBX1 pro-
moter (4-fold higher than empty vector, 2.7- fold greater than
SF-1 alone) (Fig. 3). This increased activation was lost when
DAX1 mutants associated with severe X-linked adrenal hyp-
oplasia (R267P, A300P) were cotransfected instead of WT
c¢DNA, and partially reduced when the 1439S mutant associated
with a milder, late-onset form of X-linked adrenal hypoplasia
was studied (Fig. 3B).

Mutational analysis of CITED2 and PBX1

Mutational analysis of CITED2 (n = 51) and PBX1 (n = 56)
in individuals with primary adrenal failure failed to reveal sig-
nificant coding sequence changes. Two polymorphisms were
found in CITED2. The previously reported ¢.21C>A transver-
sion (refSNP rs1131400) was found in 12% of the alleles (con-
sistent with control data). The previously unreported c.*47G>C
transversion was present in 2.0% of patient alleles and 2.2% of
186 control alleles. Two polymorphisms were detected in PBX1.
The previously described c.61G>A transversion (refSNP
rs2275558) was found as a heterozygous change in 26 % of pa-
tient alleles. The novel c.191 + 37_40delTTTT (intron 1-2)
change was present in 17% of patient alleles and in 13% of 128
control alleles.

Discussion

Although significant progress has been made in our identifica-
tion of several genetic causes of primary adrenal hypoplasia and

ACTH resistance syndromes, the underlying etiology remains
unknown in a substantial proportion of cases. Recently, the de-
scription of adrenal phenotypes associated with deletion of Cit-
ed2 or Pbx1 in the mouse has provided potential candidate genes
for analysis in patients with disorders of adrenal development
and function.

Here, we show that CITED2 and PBX1 are both expressed
during the early stages of human fetal adrenal development at a
time when the gland is undergoing significant morphological and
functional differentiation (3, 23) and concordant with expres-
sion of SF-1 (24).

Because SF-1 is an important regulator of many target genes
involved in adrenal development and function, we hypothesized
that SF-1-dependent regulation of CITED2 and PBX1 might
occur in humans. Recent studies have shown that Sf-1 can reg-
ulate Pbx1 expression in mice (17), and that Pbx1 and Cited2
may in turn mediate Sf1(Nr5al) expression in in vitro and in vivo
systems (16, 25). By focusing on a human adrenal cell line, we
have shown that SF-1 can strongly activate the human CITED2
promoter. Furthermore, although SF-1 appears to be a relatively
weak activator of the minimal promoter of human PBX1, syn-
ergistic activation of this promoter by SF-1 and DAX1 was ob-
served in adrenal cells. Although mutations in both DAX1 and
SF-1 can result in variable degrees of adrenal insufficiency, it
remains enigmatic how these two transcription factors interact
during adrenal development and function because most studies
have shown that DAX1 can act as a repressor of SF-1-mediated
transactivation (22,26-28). However, a recent report by Verrijn
Stuartet al. (29) has shown activation of the CYP11B1 promoter
by SF-1 and DAXT1 in an adrenal cell line, and both underex-
pression and overexpression of Dax1(Nr0b1) have had a detri-
mental effect on testis development (30-34). Together with the
synergistic activation of the PBX1 promoter shown in this re-
port, our findings suggest that DAX1 may also have an activating
role during certain stages of development, on specific promoters,
or together with cell-specific transcriptional complexes. This
mechanism may contribute to the impaired definitive zone de-
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velopment in patients with X-linked AHC because the synergy of
DAX1 was attenuated when naturally occurring severe and par-
tial DAX1 mutants were studied.

Given the phenotype of Cited2 and Pbx1 knockout and hap-
loinsufficient mice, together with the human expression and
transcriptional data obtained, mutational analysis of CITED2
and PBX1 was undertaken in a cohort of patients with adrenal
hypoplasia or adrenal failure phenotypes. A heterogeneous
cohort was deliberately chosen because it was possible that as-
sociated features could be present (e.g. cardiac defects with
CITED?2 and skeletal abnormalities with PBX1) (15, 35), or that
a variable spectrum of milder phenotypes could be seen if severe
loss-of-function was not compatible with survival. Although sev-
eral reported and novel polymorphisms were found, no nonsyn-
onymous mutations in CITED2 and PBX1 were discovered. Itis
possible that haploinsufficiency or copy number variations of
these genes could cause a phenotype in humans, which would not
have been detected in our analysis. However, because biallelic
variants (heterozygous single nucleotide polymorphisms) were
detected in most of the patients studied, haploinsufficiency of
CITED2 and/or PBX1 does not appear to be frequent. There-
fore, CITED2 and PBX1 are likely to be important mediators of
adrenal development and function in humans, but mutations in
these genes are unlikely to be a common cause of adrenal hyp-
oplasia or adrenal failure in those patients in whom the etiology
remains unknown.
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