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Abstract 

 

Pattern recognition receptors (PRR) detect microbial products and induce cytokines 

which shape the immunological response. Interleukin-12 (IL-12) is a proinflammatory 

cytokine important for the differentiation of T helper 1 (Th1) cells which produce IFN-γ 

to activate macrophages and eradicate intracellular pathogens. In contrast, interleukin-

10 (IL-10) is an immunosuppressive cytokine that minimises immune-driven host 

pathology, but can also lead to defective pathogen clearance. The regulation of IL-10 

and IL-12 is therefore of interest due to their central roles in the orchestration of an 

effective but regulated immune response. C57BL/6 and BALB/c mice differ 

significantly in their resistance to several pathogens. We observed that macrophages 

generated from these mice produce reciprocal levels of IL-10 and IL-12 in response to 

the bacterial ligands LPS and Pam3CSK4, which activate TLR4 and TLR2 respectively, 

and heat-killed Burkholderia pseudomallei, a Gram-negative bacterium which activates 

TLR2 and TLR4. We have investigated this differential cytokine production in order to 

further dissect the molecular mechanisms underlying the regulation of IL-10 and IL-12. 

Detailed analyses of protein production, signal transduction and transcriptional kinetics 

have identified a type I IFN dependent, but IL-27 independent mechanism for the 

differential production of IL-10 in LPS and heat-killed B.pseudomallei stimulated 

C57BL/6 and BALB/c macrophages. Microarray analysis of LPS stimulated C57BL/6 

and BALB/c macrophages further revealed potential regulatory networks that may 

differ between these mouse strains. These findings highlight key pathways responsible 

for the regulation of IL-10 and IL-12, and may provide valuable information on factors 

contributing to the ability of C57BL/6 and BALB/c mice to clear bacterial infections.   
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BH-FDR Benjamini-Hochberg False Detection Rate 

BMDC bone marrow derived dendritic cell 
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RLR RIG-I-like receptor 
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STAT signal transducer and activator of transcription 
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TLR Toll-like receptor 
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1.1 An overview of the Immune Response 

A complete immune response consists of both innate and adaptive phases. The innate 

immune system is composed of many cell types including macrophages, dendritic cells 

(DC), natural killer (NK) cells, eosinophils, basophils and mast cells. Macrophages and 

DCs are phagocytic cells which have particularly important functions in the recognition 

of infection due to their expression of pattern recognition receptors (PRRs). These 

receptors are germ-line encoded, and recognise conserved microbial motifs present on 

the surface or within microorganisms (Medzhitov 2007). The recognition of infection 

by these cells initiates the inflammatory response by inducing the production of 

cytokines and chemokines and recruiting other immune cells to the site of infection 

(Medzhitov 2007). Macrophages, of which there are several specialised subsets, 

additionally play a first role in the containment of infection through their antimicrobial 

activities such as the production of reactive oxygen species (ROS) (Gordon et al. 2005). 

There are also several subsets of DC including conventional DCs, (cDC, also known as 

myeloid DC (mDC)), specialised in alerting components of the adaptive immune system 

by migrating to lymphoid organs and activating T cells, and plasmacytoid DCs (pDCs), 

specialised in the production of type I interferon (IFN) (Banchereau et al. 1998; 

Colonna et al. 2004; Hashimoto et al. 2011). Antigen presenting cells (APCs, which can 

include both DCs and macrophages), stimulate CD4
+
 T cells through the presentation of 

antigen in the context of major histocompatibility complex (MHC) class II, and the 

ligation of co-stimulatory molecules (Steinman 2007). Under the additional influence of 

innate cytokine production, CD4
+
 T cells expand and differentiate into distinct T helper 

(Th) subsets, each with specialised effector functions (Murphy et al. 2000). Th1 cells 

express the master transcription factor Tbet, produce the hallmark cytokine IFN-γ, and 
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are particularly important in immune defence against intracellular pathogens (Mosmann 

et al. 1986; Sher et al. 1992; Szabo et al. 2000; Flynn et al. 2001). Th2 cells express the 

master transcription factor GATA3, produce the hallmark cytokines IL-4, IL-5 and IL-

13, and are important in immune responses against parasitic helminths (Mosmann et al. 

1986; Zheng et al. 1997; Maizels et al. 2012). Th17 cells express the master 

transcription factor RORγT, produce the hallmark cytokines IL-17A and IL-17F, and 

are important in immune response against fungal infections and some extracellular 

bacteria (Ivanov et al. 2006; Veldhoen et al. 2006; O'Quinn et al. 2008). Forkhead box 

protein 3 (FOXP3) expressing regulatory T cells (Treg) are an additional subset of 

CD4
+ 

T cell which have an important role in regulating immune responses to maintain 

immunological tolerance and homeostasis (Bacchetta et al. 2007; Rudensky 2011). 

CD8
+
 T cells are activated by antigen presentation in the context of MHC class I and 

through their cytotoxic functions can mediate the killing of infected cells, but also 

produce cytokines such as IFN-γ (Harty et al. 2000). B cells constitute an additional 

critical arm of the adaptive immune system through their production of antibodies, and 

their increasingly appreciated immunoregulatory functions (Mauri et al. 2012). Thus, 

the immune response is a complex network of cells, the activity of which must be 

carefully coordinated to ensure effective pathogen clearance with minimal damage to 

the host. Two cytokines, which contribute to the orchestration of many of these 

processes are interleukin-10 (IL-10) and interleukin-12 (IL-12). 

 

1.2 The role of IL-12 in the immune response 

IL-12 was first isolated and characterised in the late 1980’s as a 70-kD product of an 

Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell line (Kobayashi et al. 
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1989). It was initially named ‘NK cell stimulatory factor’ due to its ability to induce 

cytotoxic activity, IFN-γ production, and enhance phytohaemahglutinin (PHA) induced 

proliferation of human peripheral blood lymphocytes (Kobayashi et al. 1989). In this 

study, IL-12 was also found to be a heterodimeric cytokine, the first described of its 

kind, composed of disulphide linked 40-kD and 35-kD subunits which are now known 

as p40 and p35 (Kobayashi et al. 1989). Since then, a substantial amount of research has 

been dedicated to understanding the regulation and the biological activities of IL-12.  

IL-12 is the founding member of the IL-12 family cytokines which also includes IL-23, 

IL-27 and IL-35 (Vignali et al. 2012). All cytokines in this family are heterodimeric, 

and subunits are shared between family members. For example, p40 is also a 

component of IL-23 when bound to p19 (Oppmann et al. 2000), and p35 is a component 

of IL-35 when bound to Ebi3 (Collison et al. 2007; Niedbala et al. 2007). Ebi3 

additionally dimerises with p28 to form IL-27 (Pflanz et al. 2002).  

 

1.2.1 Cellular sources and targets of IL-12 

IL-12 is produced predominantly by phagocytic cells including monocytes, 

macrophages and DCs in response to microbial products (D'Andrea et al. 1992; 

Macatonia et al. 1995). Activated T and NK cells are the main cell types that express 

the IL-12 receptor and therefore respond to this cytokine (Desai et al. 1992). The IL-12 

receptor is composed of two subunits, IL-12Rβ1 and IL-12Rβ2 (Presky et al. 1996). 

Signalling downstream of the IL-12 receptor activates the Janus kinase (JAK)-Signal 

Transducer and Activator of Transcription (STAT) pathway, in which activated receptor 

associated Janus family tyrosine kinases induce the phosphorylation and activation of 

STAT molecules. STATs then homo- or hetero-dimerise and translocate to the nucleus 
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where they can regulate gene expression (Leonard et al. 1998). In the case of the IL-12 

receptor, JAK2 and tyrosine kinase 2 (TYK2) are associated with the IL-12 receptor 

(Bacon et al. 1995a) and upon the binding of IL-12, mediate the activation of STAT4 

(Bacon et al. 1995b; Jacobson et al. 1995). Other STATs have been shown to be 

activated downstream of the IL-12 receptor (Jacobson et al. 1995), however most of the 

biological activity of IL-12 on T and NK cells is dependent on STAT4 (Kaplan et al. 

1996; Thierfelder et al. 1996).  

 

1.2.2 IL-12 and the regulation of immune responses 

One of the most widely known roles of IL-12 is to promote the differentiation of naïve 

T cells into IFN-γ producing Th1 cells (Hsieh et al. 1993; Manetti et al. 1993; 

Macatonia et al. 1995). IL-12 therefore enhances immune system activation, and is 

consequently classed as a proinflammatory cytokine, bridging innate and adaptive 

immune systems. IL-12 can also drive IFN-γ production from NK cells (Kobayashi et al. 

1989; Chan et al. 1991). Importantly, the synergy of IL-12 with other activation signals 

such IL-2 and in the case of T cells, T cell receptor/CD3 and CD28 signalling, ensures 

robust IFN-γ production from these cells (Trinchieri 2003). IFN-γ is a potent activator 

of macrophages (Varesio et al. 1984), which possess many antimicrobial effector 

functions (Gordon et al. 2005). Thus, this network forms a positive feedback loop 

where macrophage or DC derived IL-12, drives the differentiation of Th1 cells to 

produce IFN-γ which further activates effector mechanisms of the innate immune 

system. 
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The ability of IL-12 to induce the differentiation of Th1 cells and promote IFN-γ 

production from NK cells is critically important in protective immune responses against 

several intracellular parasitic and bacterial pathogens. For example, in the mouse model 

of infection with the intracellular protozoan parasite Leishmania major (L.major), the 

blockade of IL-12 in resistant C57BL/6 mice resulted in a reduction of IFN-γ 

production from lymph node cells, and exacerbated disease (Sypek et al. 1993). 

Conversely, the treatment of susceptible BALB/c mice with recombinant IL-12 lessened 

disease severity and this was dependent on IFN-γ (Heinzel et al. 1993; Sypek et al. 

1993). In further support of a central role for IL-12 in protection against L.major 

infection, IL-12p40 deficient mice are unable to control L.major infection, and this can 

be rescued with the administration of IL-12 (Park et al. 2000). This study also 

demonstrated the need for IL-12 to be present throughout the infection to maintain a 

protective Th1 response (Park et al. 2000).  

 

Similarly, in the mouse model of Toxoplasma gondii (T.gondii) infection, another 

intracellular protozoan parasite, Th1 derived IFN-γ is important for the generation of a 

protective immune response (Gazzinelli et al. 1992). Further, treatment of mice with 

anti-IL-12 or anti-IFN-γ antibodies led to 100% mortality during the acute phase of 

infection, whereas all control mice survived demonstrating an important role for both 

cytokines in protective immunity (Gazzinelli et al. 1994). The presence of IL-12 

throughout the infection has also been shown to be necessary for the maintenance of the 

Th1 response in this model (Yap et al. 2000). IL-12 also induces IFN-γ production from 

NK cells during this infection (Gazzinelli et al. 1994). This has a protective role, 

illustrated by the finding that the survival of T.gondii infected severe combined 
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immunodeficient (SCID) mice was enhanced by IL-12 treatment in an IFN-γ and NK 

cell dependent manner (Gazzinelli et al. 1993). IL-12, in synergy with TNF-α, also 

induces IFN-γ production from NK cells in response to infection with the intracellular 

bacterium Listeria monocytogenes (L.monocytogenes) (Tripp et al. 1993). This is 

essential for the early containment of infection (Tripp et al. 1994), although CD4
+
 Th1 

and CD8
+
 cytotoxic T cell responses are also important for L.major clearance and long 

term resistance to reinfection (Pamer 2004).  

 

The acid-fast bacillus Mycobacterium tuberculosis (M.tuberculosis) provides a further 

example of the importance of IL-12 induced Th1 responses in protection against 

intracellular bacterial infection (Flynn et al. 2001; O'Garra et al. 2013). In the mouse 

model, IFN-γ is essential for protection against M.tuberculosis infection (Cooper et al. 

1993; Flynn et al. 1993). IL-12p35 deficient mice, which specifically lack the bioactive 

form of IL-12 (IL-12p70), were less able to control M.tuberculosis bacterial replication 

than wild type (WT) mice, and had reduced recruitment of IFN-γ producing CD4
+
 T 

cells to the lung (Cooper et al. 2002). Of note, in this study, IL-12p40 deficient mice 

were much more severely affected (Cooper et al. 2002), highlighting the additional 

roles of IL-12p40 outside of the formation of bioactive IL-12.  In humans, mutations in 

Ifngr1, Ifngr2, Il12rb1 and Il12b (which encodes IL-12p40) have been linked to 

susceptibility to mycobacterial disease (Alcais et al. 2005). However, as IL-12p40 is a 

component of IL-23 and IL-12Rβ1 is additionally a component of the IL-23 receptor 

(Oppmann et al. 2000), a role for IL-23 cannot be excluded.  
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In comparison to intracellular bacterial and parasitic infections, IL-12 may have less of 

an important role in generating protective immune responses against viral infections. In 

a murine model of flu, IL-12p40 blockade reduced IFN-γ production, but only at early 

time points (Monteiro et al. 1998).  In a model of murine lymphocytic choriomeningitis 

virus (LCMV) infection, IL-12p35 deficient mice had no defect in the generation of 

anti-viral responses (Cousens et al. 1999). However, in the absence of type I IFN, an 

important mediator of anti-viral responses (Garcia-Sastre et al. 2006), IL-12 was 

necessary to induce IFN-γ production from CD8
+
 T cells in an alternative immune 

pathway which offered some protection (Cousens et al. 1999). In addition, treatment 

with exogenous IL-12 has been shown to enhance IFN-γ production from NK cells and 

anti-viral immune responses against murine cytomegalovirus (Orange et al. 1995).  

 

Thus, IL-12 has roles that are beneficial to the host in several infection settings. 

Moreover, owing to its ability to enhance cellular immune responses including CD8
+
 T 

cell and NK cell cytotoxic function (Gately et al. 1994), IL-12 may have therapeutic 

potential in anti-cancer treatments (Colombo et al. 2002).  However, proinflammatory 

immune responses, including those driven by IL-12, can be harmful to the host and give 

rise to infection induced immunopathology or autoimmunity if not appropriately 

regulated (Moore et al. 2001). It is therefore critical that these pathways are carefully 

controlled in order to provide protection to the host.  

 

1.3 The role of IL-10 in the immune response 

IL-10 was initially characterised as a ‘cytokine synthesis inhibitory factor’ (CSIF) 

secreted from a murine Th2 clone (Fiorentino et al. 1989). At this time, IL-10 was 
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shown to inhibit IFN-γ production from Th1 clones, proposed to be most likely by an 

indirect mechanism (Fiorentino et al. 1989). IL-10 was also found to inhibit 

proinflammatory cytokine production from macrophages, suggesting a wider role for 

IL-10 in the regulation of inflammation (Fiorentino et al. 1991a).  It was soon found 

that the inhibitory effect of IL-10 was mediated through the dampening of APC activity 

(Fiorentino et al. 1991b; Macatonia et al. 1993), solidified by the finding that IL-10 

inhibits IFN-γ production from Th1 cells by suppressing macrophage derived IL-12 

(Hsieh et al. 1993; Murphy et al. 1994).  

 

IL-10 is now considered a key immunoregulatory cytokine, produced by most cells of 

the immune system (Saraiva et al. 2010). IL-10, a homodimeric cytokine, is the 

founding member of the IL-10 family cytokines. IL-19, IL-20, IL-24, IL-22, IL-26, IL-

28A, IL-28B and IL-29 are also within this cytokine family although of these, only IL-

10 has clearly established anti-inflammatory activity (Ouyang et al. 2011). Of note, IL-

28A, IL28B and IL-29 are also members of the type III IFN family (Trinchieri 2010). A 

viral homologue of the Il10 gene, ebvIL-10, has been described in EBV (Moore et al. 

1990). IL-10 homologues are also present in the genomes of other viruses, implying that 

‘capture’ of the Il10 gene may facilitate viral immune evasion by dampening the host 

immune response (Slobedman et al. 2009). In keeping with this, while retaining 

immunosuppressive activity (Hsu et al. 1990), ebvIL-10 does not retain all of the 

immunostimulatory activities of mammalian IL-10 (Vieira et al. 1991). In addition to 

well characterised anti-inflammatory function, IL-10 can enhance the activity of 

cytotoxic CD8
+
 T cells (Chen et al. 1991) and the survival and antibody production of B 

cells, particularly in the human system (Rousset et al. 1992). 
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1.3.1 Cellular sources and targets of IL-10 

IL-10 is produced by innate and adaptive immune cells including macrophages, mDCs, 

mast cells, neutrophils, eosinophils, NK cells, B cells all subsets of CD4
+
 T cells and 

CD8
+
 T cells (Saraiva et al. 2010). To date, pDCs have not been described to produce 

IL-10 (Boonstra et al. 2006; Kaiser et al. 2009). The IL-10 receptor is expressed on 

most haematopoietic cells however, the highest level of expression is on macrophages 

and DCs (Murray 2006), in keeping with these populations being the main target of IL-

10 activity (Moore et al. 2001). The IL-10 receptor is composed of IL-10R1 (Liu et al. 

1994) and IL-10R2 subunits (Kotenko et al. 1997). IL-10R1 is important for the binding 

of IL-10, whereas IL-10R2, also used in the signalling of other IL-10 cytokine family 

members including IL-22, IL-26, IL-28A, IL-28B and IL-29 (Ouyang et al. 2011), is 

critical for signal transduction (Kotenko et al. 1997). Downstream of the IL-10 receptor, 

JAK/STAT signalling is activated involving the activation of JAK1 and TYK2 receptor 

associated tyrosine kinases and subsequent activation of STAT3 (Finbloom et al. 1995). 

Other STATs can be activated downstream of the IL-10 receptor (Moore et al. 2001), 

however STAT3 is considered most important for immunosuppressive activity (Takeda 

et al. 1999; Lang et al. 2002; Williams et al. 2004).   

 

Exactly how IL-10 mediates its suppressive effects is not yet fully understood, although 

the expression of STAT3 dependent genes is essential. Thus, as opposed to STAT3 

directly inhibiting gene expression, IL-10 is thought to induce the expression of 

inhibitory factors through STAT3 activation, which then in turn inhibit the expression 

of proinflammatory cytokines and chemokines (Murray 2005). Importantly, IL-10 only 
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inhibits a subset of genes expressed in activated macrophages and DCs showing that 

there is some specificity in the inhibitory mechanisms of IL-10 signalling (Lang et al. 

2002). The action of these inhibitory factors has been shown to be mainly at the level of 

transcription (Murray 2005; Smallie et al. 2010). For example, in human macrophages, 

IL-10 inhibits the elongation of the tumour necrosis factor (Tnf) transcript (Smallie et al. 

2010).  IL-10 has also been shown to inhibit the transcription of Il12b (IL-12p40) and 

Il12a (IL-12p35) (Aste-Amezaga et al. 1998). More recently, the transcription factor 

nuclear factor, interleukin 3 regulated (NFIL3) has been identified as a STAT3 

dependent target of IL-10 that mediates the inhibition of Il12b (IL-12p40) transcription 

(Smith et al. 2011). The transcriptional repressors Ets variant 3 (ETV3) and Strawberry 

notch homologue 2 (SBNO2) have also been identified as downstream targets of IL-10 

signalling, and may be involved in mediating the anti-inflammatory effects of IL-10 (El 

Kasmi et al. 2007). A more recent study in which IL-10 induced STAT3 binding sites 

were analysed on a genome-wide scale, proposed over 40 additional transcription factor 

targets of IL-10 signalling (Hutchins et al. 2012). Further studies will be required to 

confirm the relevance of these factors in the induction of IL-10 mediated anti-

inflammatory responses (Hutchins et al. 2012). There is however also evidence for IL-

10 post-transcriptionally regulating target genes as IL-10 mediated expression of 

microRNA-187 has been shown to directly negatively regulate TNF-α production in 

human monocytes (Rossato et al. 2012).   

 

Although most studies have focused on the effects of IL-10 on macrophages and DCs, 

recent findings have suggested that IL-10 may also act directly on CD4
+
 T cells. In a 

model of intestinal inflammation, Th17 cells were found to express the IL-10 receptor, 
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and inhibition of IL-10 receptor activity specifically on these cells lead to an increase in 

proinflammatory IL-17A expressing effector T cells (Huber et al. 2011). It has also 

been suggested that IL-10 may directly act on Tregs to maintain their expression of 

FOXP3 (Murai et al. 2009). Of note, a later study also reported that IL-10 receptor 

expression on Tregs was necessary for their suppressive function, although FOXP3 

expression was not affected (Chaudhry et al. 2011). Thus, IL-10 may act directly on T 

cells, although the implications of this are currently unclear.  

 

1.3.2 The regulation of immune responses by IL-10 

A proinflammatory immune response is critical in the protection against infectious 

diseases. In the absence of adequate regulation however, an immune response can 

become over exuberant and cause damage to the host. Inappropriate immune responses 

can also cause host damage when they occur in response to self, or non-harmful stimuli 

such as commensal bacteria or innocuous antigens e.g. pollen.  The production of IL-10 

can prevent this scenario due to its immunosuppressive properties (Moore et al. 2001). 

However, not every immune response has the potential to cause damage to the host and 

in these situations, the inappropriate production of IL-10 can inhibit what would 

otherwise be a protective response. The consequence of this can be the onset of chronic 

infection (Moore et al. 2001). The production of IL-10 is therefore essential, but the 

balance of IL-10 is important to ensure protection from immunopathology, without an 

inappropriate inhibition of the immune response.   
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1.3.2.1  The role of IL-10 in protection against immunopathology 

In the context of infection, pathogens which strongly stimulate the immune system can 

induce potentially damaging inflammatory responses.  In these situations, the 

production of IL-10 is beneficial to the host and likewise a deficiency in IL-10 

production is detrimental. An example of this is septic shock, where inflammatory 

mediators can drive multi-organ failure and even death during severe bacterial 

infections (De Kock et al. 2010). Mice with a disruption in the Il10 gene are more 

susceptible to this syndrome, at least in part due to their enhanced production of TNF-α 

and IFN-γ (Berg et al. 1995). Conversely, the treatment of mice with IL-10 protects 

them from lipopolysaccharide (LPS)-induced shock and this correlates with a decrease 

in TNF-α production (Howard et al. 1993). In the murine model of endotoxic shock, it 

has been shown that non-T cells are an important source of protective IL-10 (Roers et al. 

2004). IL-10 also prevents immunopathology during infections with the parasites 

Plasmodium chabaudi chabaudi (P.chabaudi) (Li et al. 1999), the causative agent of 

malaria, and T.gondii (Gazzinelli et al. 1996; Suzuki et al. 2000). In these infections, 

strong Th1 mediated immune responses are mounted against the parasite and in the 

absence of IL-10, enhanced mortality is experienced (Gazzinelli et al. 1996; Li et al. 

1999).  For example, IL-10 deficient P.chabaudi infected mice show elevated plasma 

levels of IFN-γ and TNF-α (Li et al. 1999). Blockade of IFN-γ in IL-10 deficient mice 

reduced morality and blockade of TNF-α significantly, but not completely, ameliorated 

immunopathology (Li et al. 1999; Li et al. 2003). IL-10 deficient T.gondii infected mice 

show higher levels of TNF-α, IL-12 and CD4
+
 lymphocyte derived IFN-γ in response to 

infection (Gazzinelli et al. 1996). Depletion of CD4
+
 cells protected these mice from 

immunopathology (Gazzinelli et al. 1996). Thus IL-10 is protective against excessive 
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Th1-based immune responses. The source of protective IL-10 in these infections has 

been shown to be the Th1 effector cells themselves (Jankovic et al. 2007; Freitas do 

Rosario et al. 2012). This demonstrates the concept that IL-10 is produced as a part of a 

self-regulating negative-feedback loop (O'Garra et al. 2007). IL-10 protection against 

immunopathology is also seen in infections with the parasite Trypanosoma cruzi 

(T.cruzi) (Hunter et al. 1997) and the bacterium Helicobacter hepaticus (H.hepaticus) 

(Kullberg et al. 1998). In T.cruzi infection, IL-10 deficiency correlated with enhanced 

IFN-γ derived from T cells and elevated IL-12 production, the neutralisation of which 

reduced mortality (Hunter et al. 1997). In H.hepaticus infection, immunopathology was 

associated with enhanced IFN-γ and TNF-α production in IL-10 deficient mice, and IL-

12 or IFN-γ neutralisation resulted in reduced immunopathology (Kullberg et al. 1998).  

 

A role for IL-10 has also been identified in the protection against inappropriate 

inflammatory responses to commensal microorganisms in the gut. This was originally 

demonstrated by the finding that IL-10 deficient mice develop colitis (Kuhn et al. 1993) 

associated with enhanced Th1 responses (Berg et al. 1996). It was later shown that this 

onset of colitis was dependent on the presence of commensal gut flora (Sellon et al. 

1998). It has since been shown that T cells are an important source of protective IL-10 

in this context (Roers et al. 2004). In humans, genetic studies have shown that IL-10 is 

strongly associated with the development of Ulcerative Colitis (Franke et al. 2008) and 

Crohn’s disease (Franke et al. 2010). Further, mutations in genes encoding the IL-10 

receptor chains (Il10ra and Il10rb) are associated with early-onset inflammatory bowel 

disease (Glocker et al. 2009), further implicating a role for IL-10 in the natural 

protection against these conditions.  
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IL-10 may also have a protective role in the setting of allergic asthma, which constitutes 

an inappropriate Th2 based response in association with IgE production and 

eosinophilia in response to an innocuous antigen such as pollen (Hawrylowicz et al. 

2005). For example, a study which compared the cytokine levels in bronchial lavage 

fluid (BAL) from healthy and asthmatic individuals, found reduced levels of IL-10 in 

the BAL of asthma sufferers (Borish et al. 1996). Further, it has been postulated that the 

induction of IL-10 from T cells may be the mechanism of action for glucocorticoids 

which are given as therapy to asthma patients (O'Garra et al. 2008). In mouse models of 

allergic asthma, the intranasal administration of IL-10 during the challenge phase 

reduced the infiltration of inflammatory cells including neutrophils and eosinophils, into 

the bronchial tissues (Zuany-Amorim et al. 1995), supporting a protective role for IL-10.  

 

1.3.2.2  The inhibition of protective immune responses by IL-10 

Not every immune response has the potential to cause pathology in the absence of 

immunoregulatory mechanisms however, and there are several instances where anti-

inflammatory mechanisms, such as the production of IL-10, actually hinder an 

otherwise protective response. For example, in the mouse model of L.monocytogenes 

infection, IL-10 deficiency enhanced resistance to infection without increasing tissue 

damage (Dai et al. 1997). Similarly, in the mouse model of M.tuberculosis infection, 

IL-10 deficient mice generated an elevated Th1 response and were more protected 

against infection with lower bacterial loads compared to WT (Redford et al. 2010). In 

L.major infection, IL-10 deficient mice were able to completely clear infection whereas 

WT mice developed a chronic, low grade infection (Belkaid et al. 2001; Belkaid et al. 
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2002). There is also evidence in humans that high levels of IL-10 correlate with the 

development of severe leishmaniasis, further supporting a detrimental role for IL-10 in 

the immune response against this pathogen (Nylen et al. 2007).  IL-10 may additionally 

inhibit protective immune responses against viral infection, illustrated by the finding 

that blockade of the IL-10 receptor can improve the clearance of chronic LCMV 

infection, associated with an increased prevalence of virus-specific T cells (Brooks et al. 

2006; Ejrnaes et al. 2006). In these instances, the induction of IL-10 by infection may 

be an immune evasion strategy by the pathogen to facilitate persistence within the host 

(Redford et al. 2011). The generation of a robust immune response is also desirable in 

the context of vaccination and conceivably, the production of IL-10 during vaccination 

may be detrimental in this process (O'Garra et al. 2008). In support of this concept, a 

recent study has shown that blockade of IL-10 signalling at the time of BCG 

vaccination can enhance vaccination efficacy, resulting in a reduction in the bacterial 

load after M.tuberculosis challenge (Pitt et al. 2012).  

 

1.3.2.3  The complex roles of IL-10 in autoimmune diseases and anti-tumour immune 

responses 

IL-10 has been implicated in both the protection against and promotion of autoimmune 

diseases, depending on the condition. Rheumatoid arthritis (RA) is an inflammatory 

condition affecting the joints in which TNF-α is an important pathological factor 

(Brennan et al. 1989). The neutralisation of endogenous IL-10 in cultures derived from 

human synovial tissue enhanced proinflammatory cytokine production, suggesting that 

IL-10 may be protective in this condition (Katsikis et al. 1994). In addition, treatment of 

rats with IL-10 in a collagen-induced model of arthritis was able to reduce the 
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frequency of arthritis onset, and the severity of already established disease (Persson et 

al. 1996). Experimental autoimmune encephalitis (EAE) is the animal model for 

multiple sclerosis (MS), an inflammatory condition of the central nervous system 

(Sospedra et al. 2005). IL-10 has been suggested to be protective against EAE by the 

finding that IL-10 deficient mice develop EAE with enhanced severity (Bettelli et al. 

1998; Samoilova et al. 1998).  In contrast, IL-10 has been suggested to promote 

systemic lupus erythematosis (SLE), an autoimmune condition affecting multiple 

organs and associated with the production of autoantibodies recognising nuclear 

components (Banchereau et al. 2006). The neutralisation of IL-10 in SLE prone NZB/W 

F1 mice reduces the onset of disease (Ishida et al. 1994) and in humans, IL-10 

polymorphisms have been associated with the development of SLE although this may 

be dependent on the population (Beebe et al. 2002). Given the importance of 

autoantibodies in driving this condition, IL-10 may promote disease by having 

immunostimulatory effects on B cells (Rousset et al. 1992; Beebe et al. 2002).   

 

Currently, the role of IL-10 in anti-tumour immune responses is unclear and studies so 

far have implied that the function of IL-10 may be dependent on the context (Mocellin 

et al. 2005).  For example, it has been suggested that the induction of IL-10 by tumour 

associated macrophages can create an immunosuppressed environment that is 

permissive for tumour growth (Kim et al. 2005). However, it has also been proposed 

that the immunostimulatory activity of IL-10 on cytotoxic CD8
+
 T cells may enhance 

anti-tumour immunity (Fujii et al. 2001). In addition, the heterogeneity of cancer as a 

disease may contribute to varying roles of IL-10 in anti-tumour immune responses 

(O'Garra et al. 2008).   
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Thus, the importance of IL-10 in the regulation of immune responses is verified by the 

multitude of immunological systems it has been shown to have roles in.  

 

1.4 Macrophages and the immune response 

We have discussed so far the importance of IL-10 and IL-12 in the immune response. 

Macrophages are an important source of these cytokines, and together with monocytes 

and DCs can collectively be referred to as the mononuclear phagocyte system. 

Mononuclear phagocytes, originally defined by their adherent and phagocytic 

capabilities, were initially thought to be derived from rapidly dividing bone marrow 

progenitors termed promonocytes (van Furth et al. 1968). Based on findings using 

peritoneal macrophages, it was put forward that bone marrow derived promonocytes 

entered the circulation as monocytes, which then migrated to the tissues to become 

macrophages (van Furth et al. 1968). It was also shown that this process can be 

promoted by an inflammatory stimulus (van Furth et al. 1968).  Further study of 

lymphoid organ populations led to the discovery of DCs which had distinct properties 

and functions from other mononuclear phagocytes (Steinman et al. 1973; Steinman et al. 

1974a; Steinman et al. 1974b). This began to give a concept of the mononuclear 

phagocyte heterogeneity that we are aware of today (Auffray et al. 2009b). The terms 

monocyte, macrophage and DC each encompass a diverse range of cells. In mice, blood 

monocytes can be divided into patrolling Gr1/Ly6C
-
CX3CR1

hi
, and inflammatory 

Gr1/Ly6C
+
CX3CR1

lo 
subsets (Geissmann et al. 2003; Auffray et al. 2007; Serbina et al. 

2008). DCs are a heterogeneous population including several subsets of mDC (or cDC) 

such as CD4
-
CD8α

-
, CD4

-
CD8α

+
 and CD4

+
CD8α

- 
DC, and pDCs (Hashimoto et al. 
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2011). Macrophages constitute many types of tissue resident phagocytes including lung 

alveolar macrophages, liver Kupffer cells and central nervous system microglial cells 

(Gordon et al. 2005). Due to a lack of high-fidelity subset specific surface markers, 

several factors must be taken into consideration when categorising mononuclear 

phagocytes including phenotype, function, anatomical location, and also developmental 

origin (Geissmann et al. 2010b). For example, a common macrophage/DC progenitor in 

the bone marrow has been shown to give rise to monocytes, several macrophage and 

cDC subsets, and pDC (Fogg et al. 2006; Auffray et al. 2009a). However, other tissue 

resident macrophages derive from embryonic precursor cells, independent of the rest of 

the mononuclear phagocytic system (Ginhoux et al. 2010; Schulz et al. 2012). A recent 

initiative to understand the relationship between mononuclear phagocytes using gene 

expression signatures has identified a ‘macrophage core’ signature derived from 

peritoneal macrophages, lung macrophages, microglia and splenic red-pulp 

macrophages (Gautier et al. 2012). Comparing this signature to that of other 

mononuclear phagocyte populations will further aid the classification of these cells 

(Gautier et al. 2012).  

 

Although in reality a diverse population, macrophages have been linked to functions 

including the clearance of apoptotic cells and tissue repair (Gordon et al. 2005). Their 

expression of PRRs further makes them important in immuno-surveillance, cytokine 

production and antimicrobial effector mechanisms (Gordon et al. 2005). In addition to 

the tissue specific classifications, functional classifications such as that of M1 and M2, 

have also been made. M1 macrophages are considered to be ‘classically’ activated 

meaning that they are stimulated by LPS (or other TLR ligands) and IFN-γ (Mosser et 
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al. 2008a). They produce high levels of proinflammatory cytokines, including IL-12, 

and are thought to be important in immune defence, although may have pathogenic 

roles in autoimmune conditions (Mosser et al. 2008a). M2 macrophages, or 

alternatively activated macrophages, are stimulated by the Th2 associated cytokines IL-

4 or IL-13 (Gordon et al. 2010). The expression of Arginase-1 is a key feature and they 

are suggested to have important roles in tissue repair (Gordon et al. 2010) and immune 

defence against helminths (Anthony et al. 2006). A further subset known as ‘regulatory’ 

macrophages has also been proposed. Originally characterised in the context of 

concomitant stimulation with immune complexes and proinflammatory stimuli such as 

LPS, these macrophages produce low levels of IL-12p40 and high levels of IL-10 

(Gerber et al. 2001), imparting them with anti-inflammatory activity (Mosser et al. 

2008a), although their exact identity and role in vivo is unclear.  

 

The development of macrophages is largely dependent on the expression of the M-CSF 

receptor (Dai et al. 2002) and in the study of macrophage biology, several researchers 

have made use of M-CSF differentiated bone marrow derived macrophages (BMDM). 

The most similar in vivo counterpart to this in vitro derived cell type is currently 

unknown (Geissmann et al. 2010a) however, owing to the heterogeneity of macrophage 

populations, the findings made using these cells may not be applicable to every in vivo 

macrophage subtype. Nevertheless, due to the relative ease in generating large numbers 

of these cells and the homogeneity of the resulting population, the use of in vitro 

derived macrophages has been invaluable in the detailed studies of several innate 

immune processes such as the molecular regulation of cytokine production and the 

biology of inflammation (Geissmann et al. 2010a). Thus, murine BMDM remain a 
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mainstay of immunological research. Ultimately however, it will be important to relate 

the findings made in this cell type to macrophage or monocyte populations found in 

vivo, and in the human system. 

 

1.5 The recognition of infection and signal transduction by PRRs 

The induction of cytokine production by macrophages and DCs is largely dependent 

upon ligation of PRRs. These receptors mediate the recognition of infection by 

detecting the presence of conserved microbial motifs (Janeway 1989), known as 

pathogen associated molecular patterns (PAMPs) (Medzhitov 2007). Signalling through 

these PRRs also induces the production of chemokines and the up-regulation of co-

stimulatory molecules, all of which are important for recruitment of other cells to the 

site of infection and activation of adaptive immune responses (Medzhitov 2007). There 

are several different families of PRR including Toll-like receptors (TLRs, Table 1.1), C-

type lectin receptors, NOD-like receptors and RIG-I-like receptors, all of which mediate 

the recognition of different classes of PAMP and initiate distinct but overlapping 

signalling cascades upon activation (Takeuchi et al. 2010). 

  

1.5.1 TLR-induced signal transduction 

Originally identified in Drosophila (Hashimoto et al. 1988), TLRs were the first PRRs 

identified in mammals (Medzhitov et al. 1997), and have subsequently been the most 

studied PRR family. TLRs can be expressed either at the surface of the cell, or 

endosomally and each TLR binds a specific set of microbial ligands, inducing homo- or 

hetero-dimerisation, and signal transduction (Jin et al. 2008) (Table 1.1). TLRs 1, 2, 4, 
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5, and 6 are expressed on the cell surface and mainly recognise bacterial motifs. TLR 3, 

7, and 9 are present on endosomal surfaces and mainly detect nucleic acids from viruses 

or internalised bacteria (Kumar et al. 2011). The above TLRs are conserved between 

mouse and human. Other TLRs however, such as TLR 8 and 10 have been shown to be 

non-functional in the murine system (Jurk et al. 2002; Hasan et al. 2005). Conversely, 

TLR11, 12 and 13 are not present in the human (Kawai et al. 2010) (Table 1.1).  

 

TLRs are all type I transmembrane proteins and have a highly conserved cytoplasmic 

Toll/IL-1R homology (TIR) domain (Kawai et al. 2010). Upon ligand induced 

homotypic or heterotypic dimerisation, adaptor molecules Myeloid differentiation 

primary response gene (MyD88) or TIR domain-containing adaptor inducing IFN-β 

(TRIF) are recruited to initiate signal transduction (Medzhitov et al. 1998; Yamamoto et 

al. 2003a). All TLRs engage the MyD88-dependent pathway with the exception of 

TLR3, which exclusively recruits TRIF (Yamamoto et al. 2003a) (Figure 1.1). With use 

of the additional co-adaptors toll-interleukin 1 receptor domain containing adaptor 

protein (TIRAP) (Horng et al. 2002) and TRIF-related adaptor molecule (TRAM) 

(Yamamoto et al. 2003b), TLR4 has the unique ability of being able to recruit MyD88 

and TRIF, thereby activating both pathways (Figure 1.1). Of note, TLR4 induces the 

MyD88 pathway before the TRIF pathway, which becomes activated only after 

endocytosis of the receptor (Kagan et al. 2008). TLR2 has also been shown to utilise the 

co-adaptor TIRAP in the activation of the MyD88-dependent signalling pathway 

(Horng et al. 2002) (Figure 1.1). The signalling downstream of TLRs is highly complex, 

with both MyD88 and TRIF activating multiple unique and shared pathways which 

promote the production of pro- and anti-inflammatory cytokines (Figure 1.1).  
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1.5.1.1 MyD88 dependent TLR signalling  

In macrophages and DCs, activation of the MyD88 signalling pathway initiates the 

formation of a signalling complex composed of MyD88, IRAK family kinases, namely 

IRAK4, IRAK1 and IRAK2, and the E3 ligase TNF receptor-associated factor 6 

(TRAF6) (Kawai et al. 2010). This complex mediates the activation of transforming 

growth factor (TGF)-β activated kinase 1 (TAK1), a mitogen-activated protein kinase 

kinase kinase (MAP 3-kinase). TAK1 then activates the NF-κB pathway and the MAP 

kinase pathways which are crucial for the production of many cytokines (Bhoj et al. 

2009)(Figure 1.1). In the case of TLR4, TRAF3 is also recruited to MyD88 and the 

subsequent degradation of TRAF3 is important for MAP kinase activation and 

proinflammatory cytokine production (Tseng et al. 2010).  

 

TAK1 activates the NF-κB pathway through the activation of the IκB kinase (IKK) 

complex (Bhoj et al. 2009). The IKK complex induces degradation of IκB proteins 

which hold NF-κB transcription factor dimers, composed of combinations of RelA 

(p65), RelB, c-Rel, p50 and p52 subunits, in an inactive state (Hayden et al. 2008). 

Upon degradation of IκB proteins, NF-κB dimers are free to translocate to the nucleus 

and modulate gene expression (Hayden et al. 2008).  The IKK complex also mediates 

the activation of tumour progression locus-2 (TPL-2), a MAP 3-kinase, through 

proteolysis of the inhibitory NF-κB precursor protein p105 (Gantke et al. 2011). Once 

activated, TPL-2 phosphorylates the MAP 2-kinases, MEK 1 and 2, which in turn 

activate the MAP kinases extracellular-signal-regulated kinase (ERK) 1 and 2 (from 

here referred to as ERK) (Dumitru et al. 2000). This TPL-2/ERK dependent pathway is 
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important in the regulation of several cytokines including TNF-α and IL-10 but also 

negatively regulates IL-12 and IFN-β (Dumitru et al. 2000; Banerjee et al. 2006; Kaiser 

et al. 2009). The activation of MAP kinases other than ERK, including p38α/β/γ/δ and 

the c-Jun N-terminal kinases 1/2/3 (JNK1/2/3) which are activated by the MAP-2 

kinases MKK3/4/6 and MKK4/7, respectively, also occurs downstream of MyD88 

signalling (Symons et al. 2006). The activation of MAP kinases has many downstream 

effects which modulate cytokine production including activation of the activator protein 

1 (AP-1) transcription factor, composed of dimers from the Fos, Jun, activating 

transcription factor (ATF) and Jun dimerising partner (JDP) protein families (Karin et al. 

1997).  

 

In addition to the NF-κB and MAP kinase pathways, interferon regulatory factors (IRF) 

are also activated downstream of the MyD88 dependent pathway (Figure 1.1). IRF5 is 

induced downstream of MyD88/TRAF6 and is important for the production of several 

proinflammatory cytokines (Takaoka et al. 2005). IRF8 has also been shown to interact 

with TRAF6 and modulate inflammatory cytokine production in response to LPS (Zhao 

et al. 2006). IRF1 interacts directly with MyD88 (Negishi et al. 2006) and induces IL-

12 downstream of TLR4 (Liu et al. 2003a), and type I IFN downstream of TLR9 in 

mDCs (Schmitz et al. 2007). In pDCs, MyD88 signalling downstream of TLR7 and 9 

additionally leads to the recruitment of TRAF3 and TRAF6 (Honda et al. 2004; 

Oganesyan et al. 2006), which promote the activation of IRF7 and type I IFN 

production (Honda et al. 2005b) (Figure 1.1). Of note, the Myd88-dependent pathway is 

also activated downstream of the IL-1 receptor (Muzio et al. 1997).  
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1.5.1.2  TRIF dependent TLR signalling 

The TRIF pathway is only activated downstream of TLR3 and TLR4 (Yamamoto et al. 

2003a) (Figure 1.1). TRIF recruits TRAF6 (Sato et al. 2003), and with the additional 

recruitment of TNFR-associated death domain protein (TRADD), receptor interacting 

protein-1 (RIP-1) and the E3 ubiquitin ligase Pellino-1, activates TAK-1 (Kawai et al. 

2010). Subsequently, NF-κB and MAP kinase pathways are activated and these induce 

cytokine production (Kawai et al. 2010) (Figure 1.1). TRIF also recruits TRAF3, which 

forms a signalling complex with the IKK proteins TANK-binding kinase 1 (TBK1) and 

IKK-ε (Fitzgerald et al. 2003; Hacker et al. 2006). Signalling through this complex 

leads to the activation of IRF3 which induces the production of type I IFN in TLR 3 and 

4 stimulated APCs (Doyle et al. 2002) (Figure 1.1).  

 

1.5.1.3  PI(3)K/AKT/mTOR signalling induction by TLRs 

TLR ligation also activates the mammalian target of rapamycin (mTOR) pathway 

downstream of MyD88 and TRIF (Schmitz et al. 2008) (Figure 1.1). This occurs via 

activation of the Phosphatidylinositol 3-kinase (PI(3)K)/AKT pathway, in which PI(3)K 

becomes activated and recruits the kinase AKT. AKT is then activated by 

phosphorylation which leads to the downstream inhibition of tuberous sclerosis 

complex protein 1/2 (TSC2-TSC1), an inhibitor of mTOR complex 1 (mTORC1) 

(Weichhart et al. 2009). In macrophages, monocytes and mDCs, inhibition of mTORC1 

modulates the production of pro- and anti-inflammatory cytokines, confirming its role 

in innate immune responses (Ohtani et al. 2008; Schmitz et al. 2008; Weichhart et al. 

2008). In pDCs, mTOR activates IRF7 to mediate the production of type I IFN 
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downstream of TLR9 (Cao et al. 2008). An mTORC2 complex also exists, although the 

role it plays in signal transduction downstream of TLRs remains unclear (Weichhart et 

al. 2009). 

 

1.5.2 Non-TLR PRR signal transduction 

1.5.2.1  CLRs 

Transmembrane bound C-type lectin receptors (CLRs) can also act as PRRs 

(Geijtenbeek et al. 2009). For example the CLR Dectin-1 (also known as CLEC7a), 

recognises mycobacterial motifs (Rothfuchs et al. 2007), fungal β-glucans (Reid et al. 

2009) and the pure β-glucan, Curdlan (LeibundGut-Landmann et al. 2007). 

Downstream of Dectin-1, the MAP Kinase ERK is activated and this is dependent on 

spleen tyrosine kinase (SYK) (Slack et al. 2007). The MAP 3-kinase RAF1, nuclear 

factor of activated T-cells (NFAT), NF-κB and caspase recruitment domain 9 (CARD9) 

are also activated downstream of this receptor (Reid et al. 2009). Dectin-1 ligation 

alone can stimulate cytokine production in bone marrow derived DCs (BMDCs) but not 

BMDMs (Goodridge et al. 2009), illustrating the principle that signalling downstream 

of PRRs can be cell-type specific.  

 

1.5.2.2  NLRs 

NOD-like receptors (NLRs) are expressed in the cytoplasm of the cell. The NLR family 

includes NOD1, NOD2 and NLRP1-10 (Franchi et al. 2009). These receptors detect a 

range of ligands which include the muramyl dipeptide (MDP) motif of peptidoglycan 

present within most types of bacteria (recognised by NOD2), and bacterial and viral 
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RNA (recognised by NLRP3). Through the recruitment of the adaptor protein RIP2 

(Inohara et al. 2000; Ogura et al. 2001), NOD1 and NOD2 signalling induces NF-κB  

and MAP kinase activation (Inohara et al. 2005). It has more recently been shown that 

NOD2 can activate IRF3, and hence type I IFN production in response to ssRNA 

(Sabbah et al. 2009). NLR family members can also induce the assembly of the 

inflammasome, the best characterised of which is the NLPR3 inflammasome (Schroder 

et al. 2010). The inflammasome is a multi-protein complex which mediates the 

activation of the enzyme caspase-1. Activated capsase-1 mediates the proteolytic 

cleavage and maturation of IL-1 family cytokines (e.g. IL-1β, IL-18) into their 

biologically active forms, making this process important for the induction of 

proinflammatory responses (Martinon et al. 2002).  

 

1.5.2.3  RLRs 

The RIG-I-like receptor (RLR) family includes retinoic acid inducible gene-1 (RIG-I), 

melanoma differentiation-associated gene 5 (MDA-5) and laboratory of genetics and 

physiology 2 (LGP2) (Pichlmair et al. 2007). Like the NLRs, these are cytosolic PRRs. 

Mitochondrial anti-viral signalling protein (MAVS, also known as IPS-1) is important 

for signalling downstream of RIG-1 and MDA-5 (Seth et al. 2005). Signalling through 

these receptors ultimately induces the activation of IRF3, IRF7 and NF-κB, and MAP 

kinases which promote the production of cytokines including type I IFN (Pichlmair et al. 

2007). LGP-2 was thought to be a negative regulator of RIG-1 and MDA-5 activity, 

although more recent evidence suggests that LGP-2 may be important in the promotion 

of type I IFN production downstream of RIG-1 and MDA-5 (Satoh et al. 2010).  
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1.6 The molecular mechanisms of IL-10 regulation 

The mechanisms of IL-10 regulation are diverse, owing to the fact that almost all cells 

of the immune system have been shown to make IL-10 (Saraiva et al. 2010). Within the 

innate immune system macrophages, mDCs but not pDCs are all sources of IL-10 

(Boonstra et al. 2006; Kaiser et al. 2009). Within the adaptive immune system effector 

and regulatory CD4
+
 T cells, cytotoxic CD8

+
 T cells and B cells produce IL-10. Other 

cells including mast cells, eosinophils, neutrophils and NK cells have also been shown 

to produce IL-10, although the molecular mechanisms governing IL-10 production in 

these immune cells are still only superficially characterised (Saraiva et al. 2010).   

 

1.6.1 The regulation of IL-10 production in macrophages and mDCs 

In macrophages and mDCs, the induction of Il10 expression and ultimate production of 

IL-10 protein, is dependent on stimulation with microbial products through PRRs 

(Saraiva et al. 2010). IL-10 production from macrophages and mDCs can be induced by 

several TLR ligands. In particular, it has been proposed that TLR2 is specialised in the 

production of IL-10 (Agrawal et al. 2003; Dillon et al. 2004), although IL-10 

production also occurs downstream of TLR3, TLR4 and TLR9 (Boonstra et al. 2006; 

Kaiser et al. 2009). Importantly, the level of IL-10 produced by macrophages and DCs 

has been shown to differ. For example, CpG (TLR9) stimulated macrophages make the 

most IL-10, followed by mDCs, followed by pDCs which do not make any IL-10 in 

response to CpG, despite all these cell types expressing TLR9 in the mouse (Boonstra et 

al. 2006; Kaiser et al. 2009). In addition, TLR3 ligation can induce IL-10 production in 

macrophages, but not mDCs (Boonstra et al. 2006). A further example is the PRR 
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Dectin-1 which is a potent inducer of IL-10 in mDCs (Rogers et al. 2005; Slack et al. 

2007), but does not induce cytokine production in macrophages (Goodridge et al. 2009). 

Collectively, these findings suggest that the intrinsic capacity of innate cell types to 

make IL-10 may not be the same.  

 

1.6.1.1  The induction of IL-10 by PRRs 

Upon TLR ligation, IL-10 production is dependent on the presence of the adaptor 

proteins MyD88 and/or TRIF, according to the TLR stimulated. For example, 

stimulation of macrophages or mDCs via TLR9, which depends on the MyD88 pathway, 

fails to induce any IL-10 in the absence of MyD88 (Boonstra et al. 2006). Likewise, 

stimulation of TLR3 in the absence of its only downstream adaptor TRIF, almost 

completely abrogates IL-10 production (Boonstra et al. 2006). TLR4 is able to activate 

both MyD88 and TRIF dependent pathways, and optimal induction of IL-10 by TLR4 

has been shown to require both of these adaptors (Boonstra et al. 2006). Downstream of 

MyD88 and TRIF, the E3 ligase TRAF3 which is recruited by both TRIF and MyD88, 

has been reported to be important for IL-10 production in CpG, LPS and Poly I:C 

stimulated macrophages (Hacker et al. 2006). TRAF3 is also essential for the 

production of type I IFN production, but not proinflammatory cytokines such as IL-12 

(Hacker et al. 2006). This report also showed that TRAF6, which is additionally 

recruited downstream of MyD88 and TRIF (Kawai et al. 2010), was not required for IL-

10 production downstream of TLR4 (Hacker et al. 2006).  

 

The activation and recruitment of adaptor proteins and TRAF3/6 collectively leads to 

the activation of MAP kinases, IRFs and the PI(3)K/AKT/mTOR pathway. The 
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activation of the MAP kinases ERK is critical for the positive regulation of IL-10 in 

macrophages and mDCs stimulated with TLR 2, 4 and 9 ligands (Yi et al. 2002; Dillon 

et al. 2004; Banerjee et al. 2006; Kaiser et al. 2009) (Figure 1.2). In addition, the 

differential capacity of macrophages, mDCs and pDCs to make IL-10 (Boonstra et al. 

2006) may to correspond to the differential level of ERK activation in these cells 

(Kaiser et al. 2009). In keeping with this, the MAP 3-kinase TPL-2, the upstream 

regulator of ERK in this context (Dumitru et al. 2000), has been shown to positively 

regulate IL-10 in TLR4 and TLR9 stimulated macrophages and mDCs (Banerjee et al. 

2006; Kaiser et al. 2009) (Figure 1.2). Downstream of ERK activation, the transcription 

factor c-Fos which can form part of the AP-1 transcription factor (Karin et al. 1997), 

may be important for the induction of Il10 expression (Dillon et al. 2004; Kaiser et al. 

2009).  Indeed, an AP-1 consensus binding site has been shown within a conserved non-

coding sequence downstream of the Il10 gene (Wang et al. 2005) (Figure 1.2), and 

inhibition of Fos or Jun reduced IL-10 production in TLR2 stimulated human 

macrophages (Hu et al. 2006). ERK activation has further been shown to regulate the 

production of IL-10 by the phosphorylation of histone H3 at sites in the Il10 promoter 

in macrophages stimulated with immune-complexes and LPS (Zhang et al. 2006). This 

activity was proposed to allow transcription factors to bind at the Il10 locus and hence 

induce gene expression (Zhang et al. 2006). The induction of IL-10 by the CLR Dectin-

1 in DCs requires the activation of spleen tyrosine kinase (SYK) and also the 

downstream activation of ERK, but is independent of c-Fos (Rogers et al. 2005; Slack 

et al. 2007). Activation of the MAP kinase p38 further positively regulates IL-10 in 

macrophages and mDCs (Foey et al. 1998; Yi et al. 2002; Jarnicki et al. 2008; Kim et al. 

2008). Together with ERK activation, p38 has been shown to activate the downstream 
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kinases mitogen- and stress-activated protein kinase (MSK) 1 and 2 (Ananieva et al. 

2008) (Figure 1.2). This promotes the binding of the transcription factors cAMP 

response element-binding (CREB) and ATF1 to the Il10 gene which in turn positively 

regulate IL-10 (Ananieva et al. 2008) (Figure 1.2). The role of the third MAPK, JNK in 

the regulation of IL-10 is less well studied and although it has been reported that the 

inhibition of JNK reduces IL-10 production in TLR2 stimulated human macrophages 

(Hu et al. 2006), the inhibitor used in this study is known to be of poor specificity (Bain 

et al. 2007).  

 

The PI(3)K/AKT/mTOR pathway has also been shown to positively regulate IL-10 

downstream of TLR activation. Inhibition of the PI(3)K/AKT pathway was found to 

suppress TLR2 induced IL-10 production in human monocytes (Martin et al. 2003). In 

this study, the activation of ERK was proposed to be important in the regulation of IL-

10 downstream of PI(3)K/AKT signalling (Martin et al. 2003).  In LPS stimulated 

murine mDCs, the PI(3)K/AKT pathway has been shown to promote the production of 

IL-10 through the activation of mTOR (Ohtani et al. 2008)(Figure 1.2). This has also 

been shown in LPS activated human monocytes (Weichhart et al. 2008). A recent report 

has added further complexity to these regulatory networks by finding that p38 can 

activate mTOR independently of PI(3)K, proposing that this is one of the mechanisms 

whereby p38 can positively regulate IL-10 (Katholnig et al. 2013) (Figure 1.2).  

Glycogen synthase kinase 3 β (GSK3-β) is a constitutively active kinase which inhibits 

IL-10 production by modulating the DNA binding activity of the transcription factor 

CREB (Martin et al. 2005). This kinase is phosphorylated and inhibited by PI(3)K/AKT 

signalling downstream of TLR activation, providing a further mechanism of positive IL-
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10 regulation by the PI(3)K/AKT pathway (Martin et al. 2005; Ohtani et al. 2008) 

(Figure 1.2).  

 

Several lines of evidence propose that NF-κB may modulate the production of IL-10 in 

APCs. Firstly, upstream of the murine Il10 promoter, a DNase I-hypersensitivity site 

(HSS-4.5), indicative of unstructured chromatin, has been identified in IL-10-producing 

macrophages and mDC and contains a putative conserved NF-κB binding site (Saraiva 

et al. 2005) (Figure 1.2). This study also showed that the NF-κB family member p65 

bound to this site (Saraiva et al. 2005). Secondly, Nfkb1 deficient macrophages have 

reduced IL-10 production (Banerjee et al. 2006; Cao et al. 2006). Although this is in 

part due to inhibition of the TPL-2/MEK/ERK pathway as one of the functions of NF-

κB1 (p105) is to stabilise TPL-2 (Gantke et al. 2011), restoration of ERK signalling 

could not fully rescue IL-10 production suggesting an ERK-independent role for NF-

κB1 (p105) in the regulation of IL-10 (Banerjee et al. 2006). Thirdly, p50 homodimers 

have been reported to form a complex with CREB-binding protein (CBP) and bind 

within the proximal Il10 promoter in LPS stimulated macrophages (Cao et al. 2006) 

(Figure 1.2). Lastly, IKK2 deletion has been shown to reduce LPS induced IL-10 

production from macrophages (Kanters et al. 2003). However, a caveat of this study is 

that IKK2 is upstream of TPL-2 (Gantke et al. 2011). Thus, the role of the NF-κB 

pathway independent of the TPL-2/ERK pathway cannot be determined in this system 

(Kanters et al. 2003). NF-κB has further been shown to play a role in the induction of 

IL-10 from splenic macrophages stimulated with dsRNA (Chakrabarti et al. 2008). NF-

κB was found to bind the Il10 promoter at a distal site (Figure 1.2), and this was shown 

to be dependent on the activation of protein kinase R (PKR) (Chakrabarti et al. 2008). 
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Several additional transcription factors have been reported to regulate IL-10 in 

macrophages and mDCs both through the identification of binding sites within the Il10 

promoter, and functional experiments (Figure 1.2). A c-MAF responsive element has 

been identified within the human Il10 promoter and c-MAF was reported to enhance IL-

10 production from human monocytes when stimulated with LPS in the presence of IL-

4 (Cao et al. 2005). This study also showed a role for c-MAF in promoting IL-10 

production from LPS stimulated fetal-liver derived macrophages in the presence and 

absence of IL-4 (Cao et al. 2005). A STAT motif has been identified approximately 120 

bp upstream of the human Il10 transcriptional start site and it was proposed that LPS 

induced STAT3 binding to this site to regulate IL-10 in human B cell and monocyte cell 

lines (Benkhart et al. 2000) (Figure 1.2). In LPS stimulated human monocytes, the 

induction of IL-10 by mTOR may be dependent on STAT3 (Weichhart et al. 2008) 

(Figure 1.2). An additional STAT motif has been identified further upstream in both 

human and mouse Il10 promoters (Mosser et al. 2008b). In the murine macrophage cell 

line, RAW264.7, a specific protein 1 (SP1) binding site was identified within the Il10 

promoter and was important for trans-activation of the Il10 gene (Brightbill et al. 2000). 

Simultaneously, another group identified this motif and reported that both SP1 and SP3 

can bind to regulate Il10 promoter activity (Tone et al. 2000) (Figure 1.2). A subsequent 

report identified an additional SP1 site much further upstream in a human monocytic 

cell line and it was shown that p38 activity downstream of LPS stimulation was 

required for SP1 activation (Ma et al. 2001). Of note, no role for ERK in the regulation 

of IL-10 was reported in this study, in contrast to several reports in primary murine cells 

(Yi et al. 2002; Dillon et al. 2004; Banerjee et al. 2006; Kaiser et al. 2009). The varying 
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reports on the requirement for specific promoter motifs or signalling pathways in the 

production of IL-10 may be a consequence of different experimental systems, 

highlighting the complexity of IL-10 regulation (Saraiva et al. 2010). 

CCAAT/enhancer-binding protein (C/EBP) binding sites have also been identified 

within the Il10 promoter (Brenner et al. 2003) (Figure 1.2). It was further found that 

C/EBPβ and C/EBPδ binding at these sites can cooperate with SP1 binding for maximal 

transactivation of the Il10 gene (Liu et al. 2003b). A role for the transcription factor 

pre-B cell leukaemia homeobox 1 (PBX1) and its co-factor PBX-regulating protein 1 

(PREP1) has also been identified in the regulation of IL-10 production in macrophages 

downstream of p38, although this was in response to apoptotic cells and not LPS 

(Chung et al. 2007).  

 

Thus, to date much is known about the regulation of PRR induced IL-10 in various 

types of innate cell, in particular in the context of LPS stimulation (Figure 1.2). 

However, there are still several aspects which are not clear. For example, the upstream 

pathways important for the activity of the various transcription factors proposed to 

regulate IL-10 are not fully understood. A comprehensive understanding of distinct and 

overlapping IL-10 inducing factors in different innate cell types is also lacking. In 

addition, as mentioned, some studies have shown that chromatin modifications at the 

Il10 locus may be involved in the regulation of Il10 gene expression (Saraiva et al. 

2005; Zhang et al. 2006). However, which upstream signals induce these chromatin 

modifications and how they cooperate with transcription factor binding is only partially 

understood.  
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1.6.1.2  The negative regulation of IL-10 in macrophages and DCs  

Several IRFs are activated downstream of PRR signalling and many of these are 

involved in the positive regulation of proinflammatory cytokine production (Kawai et al. 

2010). However, the regulation of IL-10 provides an exception to this as in human LPS 

stimulated GM-CSF differentiated monocytes, IRF5 has been reported to directly 

negatively regulate IL-10 (Krausgruber et al. 2011). Other cellular mechanisms of IL-10 

inhibition also exist. For example, the histone deacetylase 11 (HDAC11) negatively 

regulates IL-10 production in LPS stimulated murine macrophages and human DCs, 

potentially by affecting the binding of SP1 and STAT3 (Villagra et al. 2009).  

 

Post-transcriptional mechanisms are additionally important in the negative regulation of 

IL-10 production. It has long been known that the 3’-untranslated region (3’UTR) of 

Il10 mRNA mediates its destabilisation, thus negatively impacting on overall IL-10 

production (Powell et al. 2000). More recently, a role for microRNAs and RNA binding 

proteins which bind the 3’UTR, has also become apparent. The microRNA hsa-miR-

106a has been shown to target and degrade Il10 mRNA in cell lines (Sharma et al. 

2009). MicroRNAs can however have complex indirect effects on IL-10 regulation. For 

example, IL-10 is indirectly regulated by miR-21 which inhibits programmed cell death 

protein 4 (PDCD4), negative regulator of IL-10 production (Sheedy et al. 2010). 

Further negative post-transcriptional regulation of Il10 mRNA is mediated by 

Tristetraprolin (TTP), an RNA binding protein that binds the AU-rich element (within 

the 3’UTR) of Il10 mRNA and promotes degradation (Stoecklin et al. 2008). The 

inhibition of TTP is one mechanism whereby p38 activation positively regulates IL-10 
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production (Tudor et al. 2009). MicroRNA-4661 also interferes with TTP by blocking 

its binding at the 3’UTR and as a result, enhances IL-10 production (Ma et al. 2010).  

 

1.6.1.3  The regulation of IL-10 in macrophages and DCs by autocrine and paracrine 

factors 

Added complexity to the regulation of IL-10 is provided by autocrine and paracrine 

regulatory loops. Firstly, IL-10 can inhibit its own production by inducing the 

production of the dual phosphatase DUSP1 which negatively regulates p38 activation, 

and hence decreases IL-10 production (Hammer et al. 2005). IL-10 can also induce the 

production of TTP which destabilises Il10 mRNA (Stoecklin et al. 2008; Gaba et al. 

2012). Conversely, IL-10 can induce the expression of Tpl2 (Lang et al. 2002), a 

positive regulator of IL-10 (Banerjee et al. 2006; Kaiser et al. 2009). The feed-forward 

self-regulatory loop of IL-10 has been shown to be dependent on STAT3 in human 

macrophages (Staples et al. 2007).    

 

Endogenous and exogenous type I IFNs can further enhance IL-10 production from 

macrophages and DCs. This was first shown in human monocytes where high 

concentrations of IFN-α enhanced IL-10 production, provided the cells were also 

stimulated with LPS (Aman et al. 1996). Subsequently, type I IFN signalling was 

shown to be important for optimal IL-10 production in LPS stimulated macrophages 

(Chang et al. 2007a) and M.tuberculosis infected macrophages (Mayer-Barber et al. 

2011). As TRAF3 is also required for the production of type I IFN in LPS stimulated 

phagocytes, this may explain the requirement for this molecule in the optimal 

production of IL-10 downstream of TLR4 (Hacker et al. 2006). Type I IFN signalling 
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has also been shown to promote IL-10 production in LPS stimulated murine DCs 

(Escors et al. 2008). A role for STAT1, a critical component of signal transduction 

downstream of the type I IFN receptor (Stark et al. 1998), has been identified in the 

type I IFN mediated promotion of IL-10 in LPS stimulated macrophages, although no 

role for STAT3 was found (Guarda et al. 2011). Type I IFN has also been shown to 

induce IL-10 through the activation of the PI(3)K/AKT pathway in human DCs (Wang 

et al. 2010). The activation of this pathway led to the subsequent inhibition of GSK3-β 

and activation of CREB (Wang et al. 2010). This report also negated a role for STAT3 

in this process (Wang et al. 2010). Other studies have suggested that IRF-1 and STAT3 

are recruited to the Il10 promoter by IFN-α, although this was conducted in a human B 

cell line (Ziegler-Heitbrock et al. 2003). It has further been suggested that IL-27 is 

important for the optimal production of IL-10 in response to type I IFN in LPS 

stimulated murine macrophages (Iyer et al. 2010). In this report, it was proposed that 

IL-27 induced the direct binding of STAT1 and STAT3 to the Il10 locus, thereby 

enhancing expression (Iyer et al. 2010). However, others have reported that murine 

macrophages are not responsive to IL-27 (Kalliolias et al. 2008). Thus, the role of IL-27 

in the type I IFN mediated induction of IL-10 is currently unclear.   

 

In contrast, IFN-γ has been shown to inhibit the production of IL-10 in TLR2 stimulated 

human macrophages (Hu et al. 2006). The mechanism of IFN-γ mediated IL-10 

inhibition was reported to be through the inhibition of the PI(3)K-AKT pathway (Hu et 

al. 2006). This allowed GSK3-β to suppress AP-1 and CREB activity and hence IL-10 

production. This study also found that IFN-γ inhibited IL-10 through suppression of 

MAP kinase activation (Hu et al. 2006). 
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1.6.2 The regulation of IL-10 in other cell types 

IL-10 was initially characterised as a Th2 cytokine (Fiorentino et al. 1989) however, it 

is now known to be produced by all effector CD4
+
 T cell subsets, and CD8

+
 T cells 

(Saraiva et al. 2010). The mechanisms that induce IL-10 production in T cells are 

largely distinct from that of APCs and are still being characterised. This has been 

particularly difficult as factors required for subset differentiation are also thought to be 

required for IL-10 induction. For example, in Th2 cells, IL-4 which supports the 

differentiation of this subset, and the Th2 subset defining master regulator GATA3 are 

important for the production of IL-10 (Zhu et al. 2004; Shoemaker et al. 2006; Chang et 

al. 2007b). It is additionally known that GATA3 is able to modify the chromatin 

structure at the Il10 locus, but itself is not sufficient to induce transcription (Shoemaker 

et al. 2006). This suggests that factors in addition to GATA3 are required to induce IL-

10 production in this cell type. In Th1 cells, a strong TCR signal, IL-12, and its 

downstream signal transducer STAT4 are all required for the production of IL-10 

(Saraiva et al. 2009). In Th17 cells, again, the factors critical in the differentiation of 

this subset i.e. TGF-β, IL-6 and its downstream signal transducer STAT3, are necessary 

for IL-10 production (Stumhofer et al. 2007). Negative regulatory mechanisms which 

suppress IL-10 production in T cells have also been identified. For example the 

transcriptional repressor ETS-1 inhibits IL-10 production in Th1 cells (Grenningloh et 

al. 2005). The level of IL-10 production from Th cells can further be modulated by 

autocrine and paracrine factors. A central example of this is IL-27, which can enhance 

IL-10 production from the different Th subsets in a number of disease models (Freitas 

do Rosario et al. 2012; Hunter et al. 2012). In FOXP3
+
 Tregs which mediate their 
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suppressive activity at least in part through the production of IL-10 (Bacchetta et al. 

2007; Maynard et al. 2008; Lloyd et al. 2009), TGF-β is thought to be an important IL-

10 inducing factor (Maynard et al. 2007). Although the mechanisms of IL-10 induction 

in other cell types are even less well defined, in B cells, TLR ligation can stimulate IL-

10 production (O'Garra et al. 1992; Mauri et al. 2012). Some factors which regulate IL-

10 production in APCs do overlap with Th cells however. Similarly to APCs, ERK has 

been reported to be a requirement for IL-10 production in all Th subsets (Saraiva et al. 

2009). A role for c-MAF, which has been shown to promote IL-10 in macrophages in 

the presence of IL-4 (Cao et al. 2005), has also been implicated in the induction of IL-

10 in Th17 cells (Xu et al. 2009).   

 

1.7 The molecular mechanisms of IL-12 regulation 

The bioactive form of IL-12, IL-12p70, is composed of IL-12p40 and IL-12p35 

subunits (Kobayashi et al. 1989). As mentioned previously, these subunits can 

additionally dimerise with other molecules to generate IL-23 (p40:p19 heterodimer) 

(Oppmann et al. 2000) and IL-35 (p35:Ebi3 heterodimer) (Collison et al. 2007; 

Niedbala et al. 2007). IL-12p40 and IL-12p35 are induced in monocytes, macrophages 

and DCs (including pDC), in response to microbial stimuli (D'Andrea et al. 1992; 

Macatonia et al. 1995; Jarrossay et al. 2001; Boonstra et al. 2006). IL-12p40 is mainly 

produced by cells that go on to make bioactive IL-12p70, whereas IL-12p35 mRNA can 

be detected in many immune cell types (Wolf et al. 1991; D'Andrea et al. 1992). IL-

12p40 and IL-12p35 subunits must however be made by the same cell for IL-12p70 to 

be produced (Wolf et al. 1991). Thus, the regulation of IL-12 gains complexity due to 

the necessity to coordinate subunit production. IL-12p40 is made in excess and can be 



Chapter 1: General Introduction 

 

 62 

secreted as both a monomer and a homodimer (Wolf et al. 1991). Of note, it has been 

reported that IL-12p40 homodimers can antagonise the activity of IL-12 in vitro and in 

vivo (Gillessen et al. 1995; Gately et al. 1996). More recently however, it has been 

suggested that IL-12p40 homodimers may facilitate DC migration and subsequent T 

cell activation in a model of M.tuberculosis infection (Khader et al. 2006). Thus, the 

function of IL-12p40 homodimers, if any, remains unclear. Conversely, there is no 

evidence that IL-12p35 is secreted unless dimerised with IL-12p40 (Wolf et al. 1991), 

and the production of IL-12p35 is considered to be the limiting factor in IL-12p70 

production (Snijders et al. 1996).  

 

1.7.1 The induction of IL-12 by PRRs 

Among the PRRs, TLRs including TLR 2, 3, 4 and 9 have been described to induce the 

production of IL-12 in human and mouse phagocytes (Goriely et al. 2008). As is the 

case with IL-10, the level of IL-12 production depends on the subset of cell e.g. 

macrophage, mDC or pDC. This may be a reflection of differential TLR expression 

(Jarrossay et al. 2001), or different molecular mechanisms of cytokine regulation in the 

various cell types (Grumont et al. 2001). In addition, different TLRs may have a 

differential capacity to induce IL-12 production. For example, TLR2 has been reported 

to induce the bioactive form of IL-12 less efficiently than TLR4 in human immature 

DCs (Re et al. 2001). TLR2 also induces lower levels of IL-12p35 than TLR4 in human 

monocyte derived DCs, linked to differential TLR-adaptor use (Goriely et al. 2006). 

The study of IL-12 regulation has been also complicated by the fact that stimulation 

with a single TLR ligand often only inefficiently induces IL-12 production (Lyakh et al. 

2008). Thus, several studies have been conducted in the presence of IFN-γ, a potent 
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inducer of IL-12p40 and IL-12p35, provided that cells are concomitantly stimulated 

with a TLR ligand (Hayes et al. 1995). In addition, stimulation of phagocytes with 

multiple TLRs, ideally targeting both Myd88 and TRIF dependent pathways, is 

considered important for optimal IL-12p70 production (Gautier et al. 2005; Napolitani 

et al. 2005; Ouyang et al. 2007).  

 

Downstream of TLRs, IRFs are important positive regulators of IL-12p40 and IL-12p35 

production (Figure 1.3). The activation of IRF1 has been shown to be required for the 

optimal production of IL-12p35, but not IL-12p40 in LPS and LPS/IFNγ stimulated 

macrophages (Liu et al. 2003a). In this study, LPS/IFN-γ treatment induced IRF1 

binding to the Il12a (IL-12p35) locus in murine peritoneal macrophages and human 

blood-derived monocytes (Liu et al. 2003a). This contrasted with a previous report in 

which LPS/IFN-γ induced IL-12p40 was dramatically reduced in IRF1 deficient murine 

peritoneal macrophages (Taki et al. 1997), although the duration of IFN-γ treatment 

differed between these studies. IRF1 has been shown to interact with MyD88 to mediate 

the synergistic effect of CpG/IFN-γ treatment on IL-12p35 production in DCs (Negishi 

et al. 2006). IL-12p35 mRNA levels were also reduced in Irf1
-/-

 DCs treated with CpG 

alone (Negishi et al. 2006), supporting a role for IRF1 in the regulation of IL-12p35 in 

the absence of IFN-γ. IRF1 may further cooperate with Sp1 sites (Liu et al. 2003a) 

which are present in the Il12a (IL-12p35) promoter and important for LPS/IFN-γ 

induced IL-12p35 production (Goriely et al. 2003). IRF3 is also involved in the 

regulation of IL-12p35 (Figure 1.3). In murine DCs stimulated with LPS, IRF3 

deficiency led to a reduction in IL-12p35 mRNA expression and IL-12p70 production 

(Goriely et al. 2006). Further, IRF3 is recruited to the Il12a (IL-12p35) promoter in 
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TLR4 or TLR3 but not TLR2 stimulated human DCs, implying a role for IRF3 in IL-

12p35 regulation downstream of the TRIF dependent pathway (Goriely et al. 2006).  

 

In the context of IL-12p40, IRF5 has a positive regulatory role in TLR 3, 4, 5, 7 and 9 

stimulated spleen-derived murine macrophages (Takaoka et al. 2005) (Figure 1.3). IRF5 

is also required for the production of IL-12p40 in TLR9 stimulated murine mDC and 

pDC (Takaoka et al. 2005).  More recently, IRF5 has been shown to promote both IL-

12p40 and IL-12p35 mRNA expression in LPS stimulated GM-CSF differentiated 

human monocytes (Krausgruber et al. 2011). IRF5 may also be involved in mediating 

synergistic IL-12p40 production induced by stimulation with multiple TLRs (Ouyang et 

al. 2007).  IRF8 has been associated with the induction of IL-12p40, but mainly in the 

context of IFN-γ co-stimulation (Figure 1.3). In LPS/IFN-γ stimulated RAW 264.7 cells, 

transfection of IRF8 led to Il12b (IL-12p40) promoter activation, potentially binding an 

ETS site in the Il12b promoter and synergising with IRF1 (Wang et al. 2000). It has 

additionally been reported that IRF8 interacts with TRAF6 in LPS/IFN-γ stimulated 

RAW 264.7 cells in a mechanism that promotes the production of IL-12p40 and other 

proinflammatory cytokines (Zhao et al. 2006). IRF8 may further be required for the 

induction of IL-12p35 in LPS and LPS/IFNγ stimulated peritoneal macrophages, again 

in synergy with IRF1 (Liu et al. 2004).  

 

In addition to IRFs, NF-κB is an important positive regulator of IL-12 production 

downstream of TLRs (Figure 1.3). A Rel-binding element was identified within the 

Il12b (IL-12p40) promoter (Murphy et al. 1995), and upon LPS stimulation, c-Rel is 

required for IL-12p40 production in macrophages (Sanjabi et al. 2000; Grumont et al. 
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2001). A C/EBP site (Plevy et al. 1997) and an ETS consensus site, the latter of which 

binds PU.1 and ETS2 (Ma et al. 1997), also exist within the Il12b (IL-12p40) promoter 

(Figure 1.3). Binding at these sites functionally cooperates with c-Rel and, in the case of 

the ETS site, IRFs to activate the Il12b (IL-12p40) promoter (Ma et al. 1997; Plevy et al. 

1997; Gri et al. 1998; Wang et al. 2000). In DCs, c-Rel containing complexes are 

specifically required for IL-12p35 production in response to LPS and other stimuli 

(Grumont et al. 2001), suggesting that c-Rel may regulate IL-12p40 and IL-12p35 

differently in macrophages and DCs. Another study showed that overexpression of c-

Rel in RAW264.7 cells enhanced IL-12p35 promoter activity in response to LPS or 

LPS/IFN-γ (Liu et al. 2003a).  

 

MAP kinases are also activated down-stream of TLRs (Kawai et al. 2010). Of these, the 

MAP kinase JNK has been suggested to positively regulate IL-12p70 in TLR 2, 4 and 5 

stimulated human monocyte derived DCs (Agrawal et al. 2003), however, the 

pharmacological inhibitor used in this study does not have optimal specificity (Bain et 

al. 2007). The same study also reported that the MAP kinase p38 promotes the 

production of IL-12p70 (Agrawal et al. 2003), in keeping with an earlier report showing 

that LPS stimulated macrophages derived from Mkk3
-/-

 mice, which are unable to 

activate p38, produce reduced levels of IL-12p40 and IL-12p35 mRNA (Lu et al. 1999). 

More recently however, several studies have implied that p38 acts as a negative 

regulator of IL-12 (Jarnicki et al. 2008; Yang et al. 2010). 

 

PRRs other than TLRs, such as the C-type lectin Dectin-1, have also been studied for 

their potential to induce IL-12 in DCs however, it was found that this receptor 
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preferentially induces IL-23, and only a small amount of IL-12p70 (LeibundGut-

Landmann et al. 2007). In a related concept, unlike the IL-12p70 promoting effect of 

TLR/TLR synergy (Gautier et al. 2005; Napolitani et al. 2005; Ouyang et al. 2007), the 

combination of TLR2 and NOD2 ligands (which are present in pathogens such as 

M.tuberculosis) also preferentially induces IL-23 as opposed to IL-12p70 (Gerosa et al. 

2008). Further, it has recently been shown that the combination of RLR and TLR 

activation, inhibits the production of IL-12p40 in a mechanism that involves the 

obstruction of IRF5 by IRF3 at the Il12b (IL-12p40) promoter, independently of type I 

IFN (Negishi et al. 2012).  

 

As an additional step of regulation, once the IL-12p35 and IL-12p40 subunits have been 

transcribed and translated, further post-translational modifications are made (Carra et al. 

2000). In the case of IL-12p40, the alterations are only minor, however, IL-12p35 

undergoes significant glycosylation which has been proposed to be a determining factor 

in the amount of bioactive IL-12p70 produced by the cell (Carra et al. 2000).  

 

1.7.2 The negative regulation of IL-12 

As mentioned earlier, a key negative regulator of IL-12 in murine and human systems is 

the anti-inflammatory cytokine, IL-10 (D'Andrea et al. 1993; Hsieh et al. 1993). 

Endogenous IL-10 has been shown to regulate IL-12p70 production from both 

macrophages and mDCs, and exogenous IL-10 can regulate production of IL-12p70 

from these cells and pDCs (Boonstra et al. 2006). The inhibition of IL-12 by IL-10 has 

been proposed to be in part at the level of transcription, with dampening of both IL-

12p40 and IL-12p35 mRNA expression (Aste-Amezaga et al. 1998). Although the exact 
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mechanisms by which IL-10 inhibits IL-12 production remain incompletely understood, 

it has recently been shown that IL-10 induces the production of the transcription factor 

NFIL3 which binds upstream of the IL-12p40 promoter and suppresses transcription 

(Smith et al. 2011).  

 

IL-12 production is also negatively regulated by activation of the MAP kinase ERK 

which occurs downstream of PRR signalling. This inhibitory activity of ERK is both 

dependent and independent of IL-10 (Yi et al. 2002; Agrawal et al. 2003; Dillon et al. 

2004; Kaiser et al. 2009), and has been shown to involve the transcription factor c-Fos 

(Dillon et al. 2004). p38 activation can also negatively regulate IL-12 (Jarnicki et al. 

2008), although as mentioned above, the positive regulation of IL-12 by p38 has also 

been reported (Lu et al. 1999; Agrawal et al. 2003). The inhibitory activity of p38 

activation on IL-12 production is thought to be mainly dependent on the production of 

IL-10 (Jarnicki et al. 2008), although it has been shown that p38 can inhibit IL-12 

production by destabilising IL-12p40 mRNA independently of IL-10 (Yang et al. 2010).  

The inconsistencies in the role of p38 activation in the regulation of IL-12 may reflect 

differences in cell type, cell density or level of stimulus used in each experimental 

system.  

 

PI(3)K signalling also inhibits IL-12 production in TLR4, TLR2 and TLR9 stimulated 

DCs and this was suggested to be independent of IL-10 (Fukao et al. 2002). Others have 

shown the inhibition of IL-12 by PI(3)K signalling to be partially mediated through the 

inhibition of GSK3, a positive regulator of IL-12 (Ohtani et al. 2008). IL-12 is further 

negatively regulated by mTOR in TLR stimulated macrophages and DCs (Ohtani et al. 
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2008; Schmitz et al. 2008; Weichhart et al. 2008). Some findings suggest this is 

independent of IL-10 (Weichhart et al. 2008), whereas others imply that the up-

regulation of IL-10 by mTOR is important for the inhibition of IL-12 (Ohtani et al. 

2008).  

 

1.7.3 The modulation of IL-12 production by T cell signals, and autocrine and 

paracrine factors 

Other than through the effect of Th1 derived IFN-γ (Hayes et al. 1995), T cells are able 

influence the production of IL-12. Direct signalling from T cells through CD40/CD40L 

interaction has been shown to enhance IL-12p70 production in DCs (Cella et al. 1996), 

although in vivo this requires concomitant stimulation with microbial products (Schulz 

et al. 2000). Interestingly, it has also been reported that extended pre-treatment (20 h or 

more) with the Th2 cytokines IL-4 and IL-13 can promote the production of IL-12p70 

from LPS or Staphylococcus aureus (S.aureus) stimulated PBMC although when added 

during stimulation, the presence of these cytokines conversely inhibited IL-12p70 

production (D'Andrea et al. 1995).   

 

Autocrine and paracrine type I IFN production has also been shown to regulate IL-12, 

however, the effects of type I IFN on IL-12 production have been difficult to dissect 

(Lyakh et al. 2008). For example, the addition of high levels of type I IFN have been 

shown to negatively regulate S.aureus induced IL-12 production independently of IL-10 

in primary human monocytes (Byrnes et al. 2001). However, the stimulations in this 

study were done in the presence of IFN-γ, the activity of which is has been shown to be 

affected by type I IFN (Rayamajhi et al. 2010). In the context of LCMV infection, the 
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blockade of endogenous type I IFN has been shown to enhance IL-12 levels in the 

serum, and IL-12 production from splenocytes (Cousens et al. 1997).  In contrast, 

endogenous type I IFN has been reported to be important for the optimal production of 

IL-12 in DCs that have been individually or co-stimulated with MyD88 and TRIF 

dependent TLR ligands (Gautier et al. 2005). Thus, the effect of type I IFN on IL-12 

production appears to be dependent on the context.  

 

1.8 The coordinate regulation of IL-10 and IL-12 

The literature to date has reported several mechanisms of IL-10 and IL-12 regulation in 

macrophages and DCs. Some of these mechanisms are opposing, for example ERK 

positively regulates IL-10 whilst negatively regulating IL-12 (Yi et al. 2002; Agrawal et 

al. 2003; Dillon et al. 2004; Kaiser et al. 2009). Similarly, the activation of the PI(3)K 

pathway promotes IL-10 but inhibits IL-12 (Ohtani et al. 2008; Weichhart et al. 2008). 

However, some of these mechanisms have a similar effect on IL-10 and IL-12, for 

example NF-κB family transcription factors have been reported to promote both IL-10 

and IL-12 production (Murphy et al. 1995; Saraiva et al. 2005; Zhang et al. 2006).  This 

gives rise to extensive cross-regulation between the IL-10 and IL-12 regulating 

molecular networks. The dissection of these pathways is further complicated by the 

robust inhibition of IL-12 by IL-10 (D'Andrea et al. 1993; Murphy et al. 1994; Hsieh et 

al. 1995). The currently known interactions between the pathways that regulate IL-10 

and IL-12 are summarised in Figure 1.4. IFN-γ, produced mainly by NK cells and T 

cells, promotes IL-12 production while inhibiting IL-10 production (Hayes et al. 1995; 

Hu et al. 2006) (Figure 1.4). Type I IFN, which can be produced by macrophages and 

DCs, conversely promotes IL-10 production but has unclear roles on the regulation of 
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IL-12 (Chang et al. 2007a; Lyakh et al. 2008). As type I IFN has an increasingly 

appreciated important role in immunoregulation (Trinchieri 2010), discussed in more 

detail below, a better understanding of how this cytokine affects the regulation of IL-10 

and IL-12 may be relevant to many immunological processes.  

 

1.9 The role of type I IFN in the immune response 

Originally identified in the 1950s (Isaacs et al. 1957), the type I IFNs constitute a group 

of cytokines including 14 IFN-α’s in mice (13 IFN-α’s in human), and the singular IFN-

β (Decker et al. 2005). Other type I IFNs e.g. IFN-ε, have also been described although 

their roles are only recently being characterised (Fung et al. 2013). Of the type I IFNs, a 

genetic evolutionary study has revealed that in humans, IFN-α 6, 8, 13 and 14 are 

highly conserved implying that they have non-redundant roles that are beneficial to the 

host (Manry et al. 2011). Type II IFN (IFN-γ) and type III IFNs (IL-28A, IL-28B and 

IL-29) also contribute the broader family of IFNs. The relationship between the 

functions of IFNs and how they may affect the activity of one another is an active area 

of research, particularly as several downstream signalling components are shared 

between the type I, II and III IFN receptors (Trinchieri 2010).   

 

1.9.1 Cellular sources and targets of type I IFN 

Type I IFNs are produced by a diverse range of cells within the body, including most 

immune cell types (Trinchieri 2010). All type I IFNs signal through a ubiquitously 

expressed common receptor, the type I IFN receptor, which is composed of two 

subunits, IFNAR1 and IFNAR2 (Platanias 2005). Despite the use of this shared receptor, 
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it is known that the various type I IFNs can mediate different biological effects on their 

target cells (van Boxel-Dezaire et al. 2006). How type I IFNs mediate distinct 

biological effects through the same receptor is still unclear, although a recent study has 

suggested a role for the relative stability of the type I IFN ligand/receptor complexes 

(Thomas et al. 2011). Downstream of the type I IFN receptor, several different 

signalling cascades are induced (Platanias 2005). The best described of these is the 

JAK/STAT pathway. The tyrosine kinases TYK2 and JAK1 are associated with 

IFNAR1 and IFNAR2 chains, respectively, and become activated upon ligand binding. 

These kinases then phosphorylate and activate STAT1 and STAT2, which interact with 

IRF9 to form a complex known as ISGF3 (Stark et al. 1998; Decker et al. 2005). This 

complex translocates to the nucleus of the cell where it binds DNA at IFN-stimulated 

response elements (ISRE), and regulates gene expression. Signalling through the type I 

IFN receptor also induces the formation of STAT1/STAT1 homodimers which bind at 

elements known as gamma activated sites (GAS) within DNA to regulate gene 

expression (Stark et al. 1998; Decker et al. 2005). This latter pathway also mediates 

signalling downstream of the IFN-γ receptor (Shuai et al. 1992). Other STATs, such as 

STAT3 and STAT5, can additionally be activated downstream of the type I IFN 

receptor (Platanias 2005). In addition to JAK/STAT signalling, MAP kinases are 

activated downstream of the type I IFN receptor including p38 (Uddin et al. 1999) (Li et 

al. 2004), and ERK2 (David et al. 1995), although the latter has been less well 

documented.  The PI(3)K pathway can additionally be activated by type I IFN (Uddin et 

al. 1995), and this has wide-ranging effects including the regulation of gene expression, 

mRNA translation and pro- and anti-apoptotic effects (Platanias 2005).  
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1.9.2 The regulation of immune responses by type I IFN 

Ultimately, signalling via the type I IFN receptor induces the expression of interferon 

inducible genes (ISGs). Type I IFN was first characterised in the context of anti-viral 

immunity (Isaacs et al. 1957) and indeed, several ISGs such as Irf1, Ifitm3 and Oasl, 

have been shown to inhibit viral replication (Schoggins et al. 2011). In contrast, several 

reports have implicated a detrimental role for type I IFN in mouse models of 

intracellular bacterial infections including L.monocytogenes (Auerbuch et al. 2004; 

Carrero et al. 2004; O'Connell et al. 2004) and M.tuberculosis (Manca et al. 2005). The 

mechanisms of detrimental type I IFN during intracellular bacterial infection in the 

mouse model are not fully defined, although type I IFN mediated inhibition of 

protective IL-1 in the context of M.tuberculosis has been reported (Mayer-Barber et al. 

2011). In tuberculosis patients, a type I and type II IFN related gene expression 

signature in the blood has been shown to correlate with the radiological extent of 

disease (Berry et al. 2010) although the role of type I IFN in humans is unclear. In the 

setting of L.monocytogenes, type I IFN has been shown to promote lymphocyte 

apoptosis leading to a dampening of the innate immune response, at least in part due to 

the induction of IL-10 production by phagocytic cells (Carrero et al. 2006). It has also 

been shown that type I IFN can mitigate responsiveness to IFN-γ in L.monocytogenes 

infected macrophages (Rayamajhi et al. 2010). These findings may further help to 

explain the relative resistance of type I IFN receptor deficient mice to this bacterium.  

 

Aside from infectious diseases, type I IFN has been implicated in the pathogenesis of 

autoimmune diseases such as SLE where ISGs are overexpressed in active disease 

(Bennett et al. 2003), and type I IFN is considered to contribute to the breakdown of 
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peripheral tolerance (Banchereau et al. 2006). Conversely, type I IFN has been used as a 

therapy in the treatment of MS (Ann Marrie et al. 2006). Although the mechanism IFN 

therapy action is unclear, it is interesting that in patients treated with IFN-β, Il10 mRNA 

levels are increased (Rudick et al. 1996) and as discussed earlier, IL-10 has been linked 

to the suppression of EAE, the animal model of MS (Bettelli et al. 1998; Samoilova et 

al. 1998). Type I IFN has relatively successfully been used in the treatment of some 

types of cancer e.g. hairy cell leukaemia and melanoma however, most likely owing to 

the diverse roles of type I IFN, this treatment can induce serious side-effects (Rizza et al. 

2010).   

 

1.9.3 The regulation of type I IFN production in macrophages and DCs 

Innate cells including macrophages, mDCs and pDCs produce type I IFN in response to 

the recognition of microbial products by PRRs (Trinchieri 2010). In macrophages and 

mDCs, TLRs 3 and 4 induce type I IFN via the TRIF-dependent pathway (Yamamoto et 

al. 2003a). Downstream of this pathway, IRF3 phosphorylation and dimerization, in co-

operation with NF-κB, induces expression of Ifnb1 (encodes IFN-β) (Doyle et al. 2002). 

The Ifnb1 gene itself contains consensus binding sites for IRFs and NF-κB transcription 

factors, in addition to AP-1 sites (Honda et al. 2005c), and there is evidence for co-

operation between these factors in the induction of Ifnb1 expression (Thanos et al. 

1995). More recently, a cluster of κB binding sites was identified downstream of the 

Ifnb1 gene that bind NF-κB complexes containing RelA, and are required for optimal 

Ifnb1 expression downstream of LPS (Goh et al. 2010). The expression of Ifna genes 

depends on the induction of a positive feedback loop in which IFN-β signals through the 

type I IFN receptor and induces the expression of IRF7 which upon phosphorylation, 
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promotes the expression of Ifna genes (Marie et al. 1998). IFN-α4 may be an exception 

to this as it does not depend on STAT1 (and by proxy type I IFN signalling), for 

expression (Marie et al. 1998). In contrast, TLRs 7 and 9 induce the production of IFN-

α and IFN-β by the activation of IRF7 through the MyD88 dependent pathway (Honda 

et al. 2005b) (Figure 1.1). TLR 7 and 9 mediated type I IFN production is best 

documented in pDCs which preferentially express these TLRs  and IRF7, at least in 

humans,  (Jarrossay et al. 2001; Kadowaki et al. 2001; Izaguirre et al. 2003) and may 

more efficiently mediate trafficking of ligands such as CpG to endosomal compartments, 

where IRF7 is activated (Honda et al. 2005a; Colonna 2007). In pDC, the 

PI(3)K/mTOR pathway contributes to the production of type I IFN via IRF7 activation 

downstream of TLR9 (Cao et al. 2008) (Figure 1.1). TLR9 has also been shown to 

induce type I IFN in mDC via MyD88 and IRF1 interactions (Schmitz et al. 2007) 

(Figure 1.1). Of note, although it is generally considered that TLR2 does not induce 

type I IFN (Toshchakov et al. 2002), viral ligands may be able to induce type I IFN 

through the activation of TLR2 in murine inflammatory monocytes (Barbalat et al. 

2009). Other PRRs such as the RLR RIG-I, induce robust type I IFN production in 

response to viral nucleic acids through the activation of IRF3, IRF7, NF-κB and MAP 

kinases (Pichlmair et al. 2007). The NLRs NOD1 and NOD2 have also been shown to 

induce type I IFN in response to Helicobacter pylori (Watanabe et al. 2010) and 

M.tuberculosis infection (Pandey et al. 2009), respectively. 

 

Similarly to other cytokines, negative regulatory mechanisms also exist which can 

attenuate the production of type I IFN. In TLR4 and TLR9 stimulated macrophages and 

mDCs, the TPL-2/ERK pathway has been shown to negatively regulate IFNβ 
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production (Kaiser et al. 2009; Yang et al. 2011a), and this may depend on the 

transcription factor c-Fos (Kaiser et al. 2009). In contrast however, this pathway 

promotes type I IFN production in pDC (Kaiser et al. 2009).  

 

1.10  Using inbred strains of mice to study the immune response 

The use of inbred mouse strains such as C57BL/6, BALB/c or 129, has underpinned 

many of the biological advances over the last century. Further, the development of gene 

targeting technology in the mouse (Evans et al. 1981), for which Mario Capecchi, 

Martin Evans and Oliver Smithies were awarded the 2007 Nobel Prize in Physiology or 

Medicine, revolutionised biological research by allowing investigators to genetically 

modify their mammalian model organism. The sequencing of the C57BL/6 mouse 

genome (Waterston et al. 2002) has been another major advance, by revealing a striking 

similarity between the human and mouse genomes and allowing investigators to 

experimentally link phenotypic traits to causative genetic components. Thus, the mouse 

model is often the organism of choice for immunologists. 

 

1.10.1 The impact of genetic background: C57BL/6 and BALB/c mice 

Arguably, the most commonly used mouse strain is C57BL/6. A large part of this is 

because the majority of genetically modified mice are made on a C57BL/6 background. 

This is because stable embryonic stem (ES) cells can most easily be derived from 129 

mice (Ware et al. 2003), which share the MHC (H-2
b
) haplotype with C57BL/6 mice. 

Due to their differing coat colours, the success of 129 ES cell injection into C57BL/6 

blastocysts can be determined by chimerism in the pup coat colour (Seong et al. 2004). 
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Subsequent mutant mice are backcrossed onto the C57BL/6 genetic background which 

historically has been considered to have desirable breeding characteristics (Seong et al. 

2004). This has meant that much immunological research is based on the C57BL/6 

mouse. While useful in terms of being able to compare results across different studies, it 

is unclear if C57BL/6 mice are a good model of human disease (Seok et al. 2013), or if 

other strains may be more representative. Indeed, different mouse strains differ in their 

susceptibility to infection and have been frequently compared in an attempt to better 

understand mechanisms of susceptibility and resistance.  

 

Two inbred mouse strains frequently used in comparative studies are C57BL/6 and 

BALB/c as these mice differ in their outcome of infection with several pathogens. For 

example, C57BL/6 mice are considered more resistant than BALB/c mice to L.major 

infection (Sacks et al. 2002). This has been previously correlated to a dominant Th1 

response in C57BL/6 mice and a dominant Th2 response in BALB/c mice (Heinzel et al. 

1989), although the mechanisms underlying this phenotype are complex with several 

genetic loci having been found to contribute to resistance (Sacks et al. 2002; Lipoldova 

et al. 2006). C57BL/6 mice are additionally more resistant than BALB/c mice to 

infection with Listeria spps (Mainou-Fowler et al. 1988) and Mycobacterium avium 

(Wakeham et al. 2000; Roque et al. 2007). BALB/c mice on the other hand have been 

shown to be more resistant than C57BL/6 mice to infections with T.gondii (Schluter et 

al. 1999) and Helicobacter spps (Mohammadi et al. 1996; Anderson et al. 2007). 

Although some immunological factors have been found to correlate with strain-

dependent outcomes of infection, the mechanisms underlying these traits are complex 

and only partially understood. Differences in resistance and susceptibility are not only 
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in the context of infectious diseases however. In IL-10 deficient mice, which 

spontaneously develop enterocolitis dependent on the presence of gut flora (Sellon et al. 

1998), mice on a C57BL/6 background were less susceptible to the onset of disease than 

mice on a BALB/c background (Berg et al. 1996). Similarly, in the Tbet
-/-

Rag
-/-

 mouse 

model of Ulcerative Colitis, mice on the C57BL/6 background are more resistant that 

those on the BALB/c background and this has been linked to the Cdcs1 locus on 

chromosome 3 (Ermann et al. 2011). Thus, C57BL/6 and BALB/c mice have different 

immunological responses in a number of contexts and these differences, along with 

comparisons to other strains of mice, have been studied in order to better understand 

immunological processes.  

 

1.10.2 Burkholderia pseudomallei as a model of C57BL/6 and BALB/c resistance 

and susceptibility.  

An additional pathogen to which C57BL/6 and BALB/c mice have differing resistance 

and susceptibility to is B.pseudomallei. B.pseudomallei is an environmental Gram-

negative bacterium and the causative agent of melioidosis (Wiersinga et al. 2006). 

Melioidosis is most prevalent in northern Australia and Southeast Asia, although cases 

of melioidosis are becoming more common in part due to the improvement of 

diagnostic techniques and increased global travel (Currie et al. 2008). Infection with 

B.pseudomallei can give rise to an array of clinical manifestations in humans. These 

include localised cutaneous disease after long-term asymptomatic infection (Ngauy et al. 

2005), pneumonia, or bacteraemia which may progress to septic shock (Currie et al. 

2010). Treatment of melioidosis requires prolonged antibiotic treatment with risk of 
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relapse at the end of treatment (Samuel et al. 2001) and the mortality rate is as high as 

40% in northeast Thailand (Limmathurotsakul et al. 2010).  

 

B.pseudomallei infection can be transmitted through soil or water and enters the host via 

the aerosol route or through skin abrasions (Wiersinga et al. 2006). As an intracellular 

bacterium, B.pseudomallei can invade and survive within host cells, including 

macrophages (Wiersinga et al. 2006). Several immunological responses have been 

shown to be activated by B.pseudomallei infection (Wiersinga et al. 2012). Studies 

investigating the innate recognition of B.pseudomalli in the murine system have shown 

that the bacterium can activate TLR2 and TLR4 in vitro (Wiersinga et al. 2007; West et 

al. 2008). B.pseudomallei mediated activation of TLR 2, 4 and 5 has also been shown in 

HEK293 cells expressing human and mouse TLRs (Wiersinga et al. 2007; Hii et al. 

2008; West et al. 2008). Murine in vivo studies have suggested that the presence of 

TLR2 is detrimental to the host during B.pseudomallei infection with the 1026b strain, 

whereas TLR4 has no effect (Wiersinga et al. 2007). Importantly however, TLR 

activation of B.pseudomallei may depend on the bacterial strain. For example, LPS 

derived from the B.pseudomallei strain BP-1 strain has been reported to activate TLR4 

(West et al. 2008) whereas LPS derived from the 1026b strain has been reported to 

activate TLR2 (Wiersinga et al. 2007). There is also evidence for the importance of 

TLRs in regulating immune responses to B.pseudomallei infection from human genetic 

studies as TLR4 and TLR5 variants have been associated with protection and disease 

(West et al. 2012; West et al. 2013). Additional studies have shown a critical role for 

MyD88 but not TRIF in protective immune responses to B.pseudomallei infection with 

the 1026b strain. This was correlated to a reduction in neutrophil influx into the lung of 
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intra-nasally infected Myd88
-/- 

mice compared to WT (Wiersinga et al. 2008). Thus, the 

role of TLRs in B.pseudomallei infection is being elucidated. B.pseudomallei is further 

recognised by the NLRs NLRC4 and NLRP3, important for the production of IL-1 and 

IL-18 (Miao et al. 2010; Ceballos-Olvera et al. 2011). Cytokines that have been shown 

to be protective during B.pseudomallei infection include IL-12, IL-18 and IFN-γ as 

IFN-γ deficient, IL-12p35 deficient, and IL-18 deficient mice all rapidly succumb to 

infection (Haque et al. 2006; Ceballos-Olvera et al. 2011). Innate production of IFN-γ, 

driven by IL-12 and IL-18, appears to be important in the early containment of infection, 

however antigen specific CD4
+
 T cells are ultimately required to control infection at 

later stages, with a less important role for B cells (Haque et al. 2006). Conversely, IL-1 

may have a detrimental role during infection as IL-1 treated mice are more susceptible, 

and IL-1R deficient mice have enhanced resistance (Ceballos-Olvera et al. 2011).  

 

Although progress has been made in understanding correlates of protection in response 

to this pathogen, the mechanisms mediating differential resistance in human populations 

is unknown. As the differing resistance of C57BL/6 and BALB/c mice has been 

suggested to represent the spectrum of disease caused by B.pseudomallei in humans 

(Leakey et al. 1998), C57BL/6 and BALB/c mice have been studied to gain insight into 

the factors which may contribute to differing outcomes of infection. An early 

comparative study showed that C57BL/6 mice are more resistant to B.pseudomallei than 

BALB/c mice (Leakey et al. 1998). BALB/c mice develop acute disease correlating 

with high bacteraemia and death within 96 hours (Leakey et al. 1998). C57BL/6 mice 

remain asymptomatic before developing chronic disease, although still succumb to 

infection 2-6 weeks post infection (Leakey et al. 1998). The difference in strain 
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resistance is most clear when mice are infected by the intravenous or intra-peritoneal 

route, although it can still be seen by the intranasal route (Tan et al. 2008; Titball et al. 

2008). Differential resistance in C57BL/6 and BALB/c mice has been observed with 

several strains of B.pseudomallei including KHW, EB6103, K96243 and 576 (Tan et al. 

2008; Titball et al. 2008).  

 

Investigations into mechanisms underlying the differential resistance of C57BL/6 and 

BALB/c mice to B.pseudomallei have shown that C57BL/6 mice are able to better 

control infection than BALB/c mice within the first day, implicating a role for innate 

mechanisms in mediating differential resistance (Hoppe et al. 1999). In addition, an 

enhanced ability of C57BL/6 peritoneal exudate cells and BMDM to control bacterial 

replication compared to BALB/c has been reported (Leakey et al. 1998; Breitbach et al. 

2006). Given that an essential role for macrophages in protection against disease has 

been shown in both C57BL/6 and BALB/c mice (Breitbach et al. 2006), this may imply 

that genetic differences at the level of the phagocyte contribute to resistance or 

susceptibility. However, a relatively higher induction of proinflammatory cytokines in 

BALB/c mice has also been correlated to the enhanced susceptibility of this strain (Ulett 

et al. 2000a; Ulett et al. 2000b; Liu et al. 2002; Tan et al. 2008). This suggests a 

potential contribution of immunopathology to the onset of acute disease in BALB/c 

mice. Thus, the mechanisms mediating the differential resistance of C57BL/6 and 

BALB/c mice to B.pseudomallei infection are still incompletely understood, although 

pathogen control and immunopathology may both contribute to the ultimate outcome of 

infection.  
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1.11  Project perspective: Using C57BL/6 and BALB/c mice to study 

the regulation of IL-10 and IL-12 

Preliminary data from the O’Garra laboratory showed that in response stimulation with 

certain TLR ligands, macrophages from C57BL/6 mice produce high levels of IL-10, 

whereas macrophages from BALB/c mice produce low levels of IL-10. In addition, it 

was suggested that IL-12 production may be higher from BALB/c macrophages than 

from C57BL/6 macrophages. IL-10 and IL-12 are critical cytokines in regulating 

immune responses. We therefore expanded on these preliminary findings, using 

differential IL-10 and IL-12 production in C57BL/6 and BALB/c macrophages as a 

model to dissect the molecular mechanisms underlying the regulation of these cytokines. 

After a broad assessment of cytokine production in C57BL/6 and BALB/c macrophages 

stimulated with a range of TLR ligands, non-TLR PRR ligands and heat-killed bacteria, 

we focussed our studies on investigating differential cytokine production in response to 

LPS (TLR4), Pam3CSK4 (TLR2) and heat-killed B.pseudomallei (TLR2/4). Thus, in 

addition to investigating the mechanisms of IL-10 and IL-12 regulation, this study 

highlights core differences between the innate immune responses of C57BL/6 and 

BALB/c mice which could potentially contribute to the differential resistance of these 

mice to infection with B.pseudomallei, or other pathogens. 
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Table 1.1 The TLR family in mouse and man.  

TLR4 also interacts with LPS binding protein (LBP) which aids LPS binding to CD14. CD14 

transfers LPS to TLR4 which forms a complex with myeloid differentiation factor 2 (MD2) to 

initiate signal transduction (Miyake 2006). CD36 acts as an accessory receptor for TLR2:6 

(Miyake 2006). Adapted from (Kumar et al. 2011) with additional information from (Blasius et 

al. 2010) and (Koblansky et al. 2013).  

TLR 

(homo/hetero-

dimer) 

Location of 

expression 
Ligand 

Functional 

in human? 

Functional 

in mouse? 

TLR1:2 Surface 

-Triacyl lipopeptides 

(bacterial cell wall) 

-Pam3CSK4 (synthetic) 

Yes Yes 

TLR2:6 

(CD36) 
Surface 

-Diacyl lipopeptides 

(bacterial cell wall) 

 

Yes Yes 

TLR3 Endosome 
-ssRNA/dsRNA (virus) 

-Poly I:C (synthetic) 
Yes Yes 

TLR4 

(LBP/CD14/ 

MD2) 

Surface 
- LPS (Gram-ve bacterial 

cell wall component) 
Yes Yes 

TLR5 Surface 
-Flagellin (flagellated 

bacteria) 
Yes Yes 

TLR7 Endosome 
-ssRNA (virus) 

-R848 (synthetic) 
Yes Yes 

TLR8 Endosome 
-ssRNA (virus) 

-R848 (synthetic) 
Yes No 

TLR9 Endosome 

-dsDNA (virus) 

-CpG DNA motif (bacteria) 

-hemozoin (Plasmodium) 

Yes Yes 

TLR10 Endosome Unknown Yes No 

TLR11 Surface 
-Profilin (T.gondii) 

-Uropathogenic bacteria 
No Yes 

TLR12 (Surface) -Profilin (T.gondii) No Yes 

TLR13 Endosome Unknown No Yes 
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Figure 1.1 Summary of TLR signalling in macrophages and DCs.  

Examples of TLR ligands are shown above each TLR in grey. Note the differential use of 

adaptors (dark blue) by each TLR and how each adaptor can activate overlapping and distinct 

pathways. pDC-specific pathways are highlighted in red. Adapted from  (Kawai et al. 2010). 



Chapter 1: General Introduction 

 

 84 

 

Figure 1.2 The induction of IL-10 by TLRs in macrophages, monocytes and DCs.  

TLR4 signalling, given as an example here, depends on both MyD88 and TRIF adaptor proteins 

which collectively lead to the activation of the NF-κB pathway, MAP kinases (ERK, p38), the 

PI(3)K/AKT/mTOR pathway and IRFs (not shown here).  Both MyD88 and TRIF are required 

for optimal IL-10 production. These signalling pathways lead to chromatin remodelling and the 

activation of transcription factors which bind at the Il10 locus. DNase hypersensitivity sites 

(HSS) have been shown within the Il10 locus of IL-10 producing APCs. HSS-4.5 contains an 

NF-κB binding site but the roles of the other HSS sites are unknown. A TATA box and several 

transcription factor binding motifs are present in the Il10 promoter (denoted by black lines). 

Direct transcription factor binding has not yet been shown for all of them in APCs. If known, 

links between upstream signalling pathways and transcription factors are shown. Adapted from 

(Mosser et al. 2008b; Saraiva et al. 2010).  
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Figure 1.3 The induction of IL-12 by TLRs (and IFN-γ) in macrophages and DCs.  

TLR4 signalling is shown here as an example as the majority of studies are conducted with this 

stimulus. Both MyD88 and TRIF contribute to IL-12 production in this context. In addition to 

the regulatory pathways shown, IRF5 may have a role in the induction of Il12a, and IRF8 may 

synergise with IRF1 for the induction of Il12a. Adapted from (Goriely et al. 2008).  
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Figure 1.4 The co-ordinate regulation of IL-10 and IL-12 in macrophages and DCs. 

Downstream of TLR stimulation, the MAP kinases p38 and ERK positively regulate IL-10. NF-

κB and the PI(3)K/AKT pathway also positively regulate IL-10. IL-12 is positively regulated by 

NF-κB and IRFs, of which IRF5 has also been shown to negatively regulate IL-10. IL-10 is a 

central inhibitor of IL-12. ERK, p38 and mTOR have all been shown to inhibit IL-12 dependent 

and independently of IL-10. These regulatory pathways can further be manipulated by the 

activity of type I IFN and IFN-γ. IFN-γ positively regulates IL-12 through the activation of IRFs, 

whereas IL-10 is negatively regulated through the inhibition of ERK, p38 and PI(3)K/AKT. 

Type I IFN positively regulates IL-10 and in DCs, this has been shown to be through the 

activation of PI(3)K/AKT pathway. It is not clear if there are other mechanisms of inducing IL-

10 downstream of type I IFN, or if this mechanism is applicable in macrophages. Type I IFN 

can positively or negatively regulate IL-12, dependent on the cellular context.  
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2.1 Mice 

The following strains of mice were bred and maintained at the MRC National Institute 

for Medical Research (NIMR) under specific pathogen-free conditions in accordance 

with the Home Office, UK, Animal Scientific Procedures Act, 1986: C57BL/6 WT; 

BALB/c WT; 129S8 WT; C57BL/6 Il10
-/-

; BALB/c Il10
-/-

; C57BL/6 Rag1
-/-

Mom; 

BALB/c Rag2
-/-

. To generate F1 mice, C57BL/6 female mice were crossed to BALB/c 

male mice. The progeny of this breeding was intercrossed to generate C57BL/6 x 

BALB/c F2 mice.  Tlr2
-/-

, Tlr4
-/-

, Trif
-/-

 and Myd88
-/-

 breeding pairs, all on a C57BL/6 

background, were provided by S. Akira (Osaka University, Osaka, Japan), C57BL/6 

Ifnar1
-/-

 breeders originated from B&K (Grimston, England), and C57BL/6 Tccr
-/-

 

(referred to as Il27ra
-/-

 in text) breeders were provided by Genentech (San Francisco, 

USA). These mice were also bred and maintained at NIMR. 129S6SvEv-Stat1
tm1Rds

, 

which have a disrupted Stat1 gene, and 129S6SvEv control mice were purchased from 

Taconic (Taconic Farms Inc.). C57BL/6J and BALB/cJ mice were purchased from 

Jackson Laboratories (Bar Harbour, USA). All mice used for in vitro experiments were 

female, between 8-16 weeks of age. All mice used for in vivo experiments were female, 

between 2-4 months of age and were age matched within experimental groups.  

 

2.2 Reagents 

2.2.1 Cell culture medium  

cRPMI culture medium (RPMI 1640; 5% heat-inactivated FCS; 0.05 mM 2-

Mercaptoethanol (Sigma); 10 mM HEPES buffer; 100 U/ml penicillin; 100 µg/ml 
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streptomycin; 2 mM L-glutamine;  1 mM sodium pyruvate) was used for all in vitro 

experiments. Unless stated, all components were purchased from BioWhittaker.  

 

2.2.2 PRR ligands and heat-killed bacteria 

Cells were treated with either cRPMI culture medium (control), Salmonella Minnesota 

LPS (Alexis), Pam3CSK4 (InvivoGen), heat-killed B.pseudomallei 576, heat-killed 

B.pseudomallei K9 (both from DSTL, Porton Down), heat-killed Listeria 

monocytogenes (provided by DNAX), CpG1668 (TriLink Biotech), R848 (InvivoGen), 

Poly I:C (InvivoGen) or Curdlan (WAKO). Dose and duration of stimulation are 

indicated in figure legends.  

 

2.2.3 Recombinant cytokines and monoclonal antibodies 

When indicated, cells were treated with recombinant murine IFN-β (PBL), IFN-γ 

(R&D) or IL-27 (R&D). Anti-IL-10 receptor (αIL-10R) monoclonal blocking antibody 

(1B1.3a, rat IgG1) and isotype control (GL113, rat IgG1) (O'Farrell et al. 1998) were 

gifts from DNAX (now Merck, USA) and were grown and purified by Harlan 

Laboratories (USA). Details of treatment are described in the relevant figure legends. 

 

2.2.4 Inhibitors 

PD184352 (MEK1 inhibitor) and SB203580 (p38 inhibitor) (Bain et al. 2007) were 

kind gifts from Sir Philip Cohen (University of Dundee). PD184352 was used at a final 

concentration of 1 µM and SB203580 was used at a final concentration of 2.5 µM. 
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Inhibitor stocks were diluted in DMSO, and DMSO vehicle controls are included in 

experiments. These doses were based on recommendations by Bain et al. for maximal 

efficiency with minimal off-target effects (Bain et al. 2007), and were confirmed by 

previous titrations in the O’Garra laboratory. 

 

2.3 In vitro differentiation and stimulation of macrophages and DCs 

2.3.1 Generation of bone marrow derived macrophages (BMDM) 

Bone marrow (BM) was isolated from femurs and tibias by gentle flushing with cRPMI. 

BM cells were cultured (37
o
C, 5% CO2), in 90 mm petri dishes (Sterilin Ltd.) at 0.5x10

6
 

cells/ml in cRPMI supplemented with 10% FCS and 20% L929-cell conditioned 

medium (LCCM), which contains M-CSF. LCCM was generated from the L929 cell 

line with the assistance of Jackie Wilson (Large Scale Laboratory Facility, NIMR). On 

day 4, cells were fed with 10 ml cRPMI, 10% FCS, 20% LCCM. On day 6, non-

adherent cells were removed and adherent cells harvested by gentle flushing with cold 

PBS (GIBCO, Invitrogen). Cells were plated in flat bottomed 48-well tissue culture 

plates (Corning Inc.), 500 µl per well, at 1x10
6
 cells/ml (unless otherwise stated) in 

cRPMI. Cells were rested for 20 h, then stimulated by adding PRR ligands or heat-

killed bacteria in a volume of 50 µl directly to rested cells. Pharmacological inhibitors 

or recombinant cytokines were added in a volume of 25 µl.  

 

2.3.2 Generation of bone marrow derived DCs (BMDC) 

BM was isolated as for BMDM. Red blood cells (RBC) were lysed with 0.83% 

ammonium-chloride. BM cells were cultured (37
o
C, 5% CO2), in flat bottomed 6-well 
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plates (Corning Inc.) at 1x10
6
 cells/ml in cRPMI, supplemented with 10 ng/ml GM-CSF 

(Schering-Plough). On days 2 and 4, non-adherent cells were removed and GM-CSF 

supplemented medium replaced. On day 6, non-adherent cells were harvested and re-

plated in cell-culture petri-dishes (Corning Inc.) at 0.5x10
6 

cells/ml in GM-CSF 

supplemented medium for 16 h after which non-adherent cells were again harvested and 

plated in flat bottomed 48-well tissue culture plates (Corning Inc.), 500 µl per well, at 

1x10
6
 cells/ml and stimulated immediately.  

 

2.4 Quantification of cytokine production by ELISA 

Supernatants were collected from cell cultures and cytokine concentrations measured by 

enzyme-linked immunosorbent assay (ELISA). Maxisorp 96-well plates (Nunc, Thermo 

Scientific) were used for the assay. Commercially available kits were used according to 

the manufacturer’s instructions to quantify the concentration of IFN-β (PBL), IL-12p70 

(eBioscience), TNF-α (eBioscience), IL-27 (eBioscience), and IL-1β (R&D). Matched-

pair sandwich ELISAs were used to measure IL-10 and IL-12p40 concentrations. The 

assay details are summarised in Table 2.1. ELISA plates were read on a Safire
2
 

microplate reader (Tecan). Standard curve calculations and cytokine concentrations 

were determined using Magellan software (Tecan).  
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Table 2.1 Assay details for ELISA 

Cytokine Standard and 

starting 

concentration 

Coating 

antibody 

Detection 

(biotinylated) 

antibody 

HRP-

streptavidin 

Developing 

substrate 

Detection 

limit 

IL-10 Recombinant 

IL-10 (R&D) 

10 ng/ml 

JES5-2A5 

5 µg/ml 

(DNAX) 

SXC-1 

0.25 µg/ml 

(BD) 

1 µg/ml 

(Jackson 

Immuno-

Research) 

TMB 50 pg/ml 

IL-12p40 Recombinant 

IL-12p40 

(R&D) 

50 ng/ml 

C15.6.7 

5 µg/ml 

(DNAX) 

C17.8 

0.5 µg/ml 

(DNAX) 

1 µg/ml 

(Jackson 

Immuno-

Research) 

ABTS 50 pg/ml 

IL-12p70 10 ng/ml (kit) (kit) (kit) TMB 20 pg/ml 

IFN-β 1000 pg/ml (kit) (kit) (kit) TMB 20 pg/ml 

TNF-α 10 ng/ml (kit) (kit) (kit) TMB 20 pg/ml 

IL-1β 10 ng/ml (kit) (kit) (kit) TMB 20 pg/ml 

IL-27 10 ng/ml (kit) (kit) (kit) TMB 20 pg/ml 

 

2.5 Western blotting analysis of cellular proteins 

2.5.1 Protein extraction and quantification  

For BMDM, cells were harvested on day 6 and rested in cRPMI 1% FCS (to lower 

background signal noise due to serum responses) for 20 h. Cells were stimulated as 

indicated, after which medium was removed and cells lysed with RIPA buffer  

composed of 50 mM Tris HCl (Sigma), pH 8; 150 mM NaCl (Sigma); 2 mM EDTA 

(Sigma); 2 mM sodium pyrophosphate (Sigma); 50 mM sodium fluoride (Sigma); 0.1% 

SDS (BioRad); 1% NP-40 (Fluka); 0.5% deoxycholate acid (Sigma); 100 mM vanadate 

(Sigma); complete EDTA-free protease inhibitor cocktail (Roche). For splenocytes, 

spleens were harvested and homogenised through a 70 µM sieve, RBC lysed with 
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0.83% ammonium chloride, and plated in 6-well tissue culture plates at 5x10
6
 cells/well 

in cRPMI, 1% FCS. Cells were rested for 5 h before treatment with recombinant 

cytokines. At the indicated times, cells were washed with PBS and lysed with RIPA 

buffer. Whole cell lysates were centrifuged for 10 min at 4
o
C and supernatant was 

collected. Protein concentration was measured using a reducing agent compatible 

Bicinchoninic Acid (BCA) Protein Assay Kit according to the manufacturer’s 

instructions (Thermo scientific).  

 

2.5.2 Protein separation and visualisation 

Protein samples were denatured in SDS sample buffer (5 min, 95
o
C), and resolved by 

electrophoresis on a 12.5% SDS-polyacrylamide gel. 5-35 µg protein was loaded onto 

each gel, according to the protein being assayed and always consistent between 

experimental groups. Protein was transferred to a polyvinylidene fluoride (PVDF) 

membrane (Millipore). The membrane was blocked in 5% non-fat dried milk (Marvel) 

or bovine serum albumin (BSA) (Sigma) diluted in 0.05% PBS/Tween for 1 h at room 

temperature (RT) with agitation. Membranes were probed at 4
o
C overnight with 

primary antibodies anti-phospho-ERK1/2(T185-Y187) (Invitrogen); anti-ERK1/2 

(Invitrogen); anti-phospho-p38(T180-Y182) (Cell signalling); anti-p-38 (Cell 

signalling); anti-phospho-STAT1(Y701) (Cell signalling); anti-STAT1 (Cell Signalling) 

or anti-Actin (Calbiochem) diluted in 5% milk or BSA (0.05% PBS/Tween). All 

primary antibodies were used at a dilution of 1:1000 with the exception of anti-Actin 

which was used at 1:5000. Membranes were rinsed in 0.05% PBS/Tween 4 times for 15 

min each and incubated with goat anti-Rabbit IgG HRP-conjugated (Southern Biotech) 

or anti-mouse IgM HRP-conjugated secondary antibody (Calbiochem) diluted in 5% 
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milk (0.05% PBS/Tween) for 1 h at RT with agitation.  Both secondary antibodies were 

used at a dilution of 1:2000. Membranes were rinsed again in 0.05% PBS/Tween as 

before. To visualise protein, membranes were incubated with ECL western blotting 

substrate (Thermo Scientific) for 1 min at RT and exposed to X-ray film (Kodak).  

 

2.6 RNA isolation and purification 

Supernatant was removed from stimulated cells at the indicated time-points. Cells were 

washed once in pre-warmed PBS. Cells were lysed immediately with RLT buffer 

(Qiagen) and lysates stored at -80
o
C. RNA was isolated according to the manufacturer’s 

instructions using an RNeasy Mini kit (Qiagen) with an on-column DNase digestion 

step to remove contaminating DNA (RNase-Free DNase kit, Qiagen). Purified RNA 

concentration was determined with a Nanodrop spectrophotometer (Nanodrop1000, 

Thermo Scientific).   

 

2.7 cDNA preparation and real-time quantitative PCR (qPCR) 

analysis 

cDNA was synthesised from purified RNA using a High Capacity cRNA Reverse 

Transcription Kit (Applied Biosystems). The reaction mixture is summarised in Table 

2.2. The following PCR protocol was used to convert RNA to cDNA (Veriti Thermo 

Cycler, Applied Biosystems): Step 1 - 10 min 25
o
C; Step 2 - 2 h 37

 o
C; Step 3 - 5 min 

85
 o

C. This was followed by an RNA degradation step in which cDNA was incubated 

with RNase H (final concentration 0.03 U/µl, Invitrogen) at 37
o
C for 30 min. cDNA 

was then diluted to 5 ng/µl in Nuclease-free H2O (Promega).  
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Table 2.2 Reaction mixture for cDNA synthesis 

Reagent Volume Final concentration Source 

Cellular RNA 10 µl n/a n/a 

Reverse transcriptase buffer 2 µl n/a Applied Biosystems 

dNTPs 0.8 µl 4 mM Applied Biosystems 

Random Primers 2 µl n/a Applied Biosystems 

Multiscribe reverse transcriptase 1 µl 2.5 U/µl Applied Biosystems 

RNAsin (Ribonuclease inhibitor) 0.5 µl 1 U/µl Promega 

Nuclease-free H2O 3.7 µl n/a Promega 

 

qPCR was conducted using the TaqMan Assay system (Applied Biosystems). Reaction 

mixtures, summarised in Table 2.3, were made up in 96-well plates (optical reaction 

plates, Applied Biosystems), including a no-cDNA template control and a water only 

control to ensure reagents were not contaminated. The primer-probes used are 

summarised in Table 2.4.  

 

Table 2.3 qPCR reaction mixture (per well) 

Reagent Volume Final concentration Source 

Primer-probe 0.5 µl 900 nM Applied Biosystems 

TaqMan Universal Master Mix 5 µl n/a Applied Biosystems 

cDNA 4.5 µl 2.25 ng/µl n/a 
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Table 2.4 TaqMan primer-probes for qPCR 

Target Gene Applied Biosystems code 

Il10 Mm00439616_m1 

Il12a Mm00434165_m1 

Ifnb1 Mm00439552_s1 

Tlr2 Mm00442346_m1 

Tlr3 Mm00446577_g1 

Tlr4 Mm0045273_m1 

Hprt1 Mm00446968_m1 

 

The following PCR protocol was used for quantitative PCR reactions (7900HT; Applied 

Biosystems): Step 1 - 2 min 50
o
C; Step 2 - 10 min 95

o
C; Step 3 - 15 seconds 95

o
C; Step 

4 - 1 min 60
o
C. Steps 3-4 were repeated 40 times. Fluorescence was detected at step 4. 

The gene expression value, expressed in relative units (RU), for each sample was 

determined and normalised to the house-keeping gene Hprt1 using the delta Ct (ΔCt) 

calculation: ΔCtgene = 1.8
(CtHprt1-Ctgene) 

x 100,000. 

 

2.7.1 Primer Design for the quantification of premature Il10 mRNA  

To quantify premature (unspliced) Il10 mRNA transcripts, TaqMan primer/probe pairs 

were designed so that the forward (sense) primer and TaqMan probe annealed within an 

exonic sequence (in this case exon 3 of the 5 Il10 exons), and the reverse (antisense) 

primer annealed within an intronic sequence (in this case intron 3). Primers were 

designed using Primer Express 2.0 software and were custom made by Applied 

Biosystems. Primer sequences are summarised in Table 2.5.  
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Table 2.5 Premature Il10 mRNA primer probe sequences 

Forward Primer 5’-AGCATGGCCCAGAAATCAAG-3’ 

TaqMan Probe 5’-CTCAGGATGCGGCTGA-3’ 

Reverse Primer 5’-AGAACGCATCTGCTACTCACACA-3’ 

 

2.8 Microarray analysis 

Cells were stimulated with 10 ng/ml LPS or media (control) at 1x10
6 

cells/ml in a 48 

well plate (500 µl cells/well) for 0.5, 1, 3, 5 and 8 h. RNA was isolated and purified as 

for qPCR analysis.  

 

2.8.1 Verification of RNA quality 

The quality of RNA was determined using an Agilent 2100 Bioanalyzer (Agilent 

Technologies). All RNA samples had a RIN (RNA integrity number) of 10, meaning 

that RNA was not degraded and of high quality (Schroeder et al. 2006). All RNA 

quality analysis was done by Dr Christine Graham (Division of Immunoregulation, 

NIMR, London).  

 

2.8.2 Preparation of RNA for microarray analysis 

RNA preparation for microarray was carried out using the Illumina®TotalPrep-96 RNA 

Amplification kit. In summary, 300 ng of total RNA was converted to cDNA by reverse 

transcription, and then purified. The cDNA was then transcribed in vitro to synthesise 

biotinylated antisense, or complementary, RNA molecules (cRNA). The synthesised 

cRNA then underwent a further purification step. RNA concentration was determined 
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using a Nandrop1000 (Thermo Scientific). All RNA amplification was done by Dr 

Christine Graham (Division of Immunoregulation, NIMR, London).  

 

2.8.3 Microarray processing 

1500 ng cRNA was loaded onto 6 sample Illumina BeadChip Arrays (MouseWG-6 v2). 

BeadChips were then incubated for 16-20 h in hybridisation chambers to allow sample 

hybridisation. The following day, BeadChips were put through a series of wash steps, 

blocked, treated with streptavidin Cy-3 to ‘stain’, washed, allowed to dry, and stored 

away from the light until scanned. BeadChips were scanned by an Illumina iSCAN 

array scanner. Intensity values were generated and background signal subtracted using 

BeadStudio software (Illumina).  Microarray processing was done with the assistance of 

Dr Harsha Jani (Division of Systems Biology, NIMR, London).  

 

2.8.4 Microarray data analysis 

2.8.4.1 Pre-analysis data processing, normalisation, fold change and statistical 

analyses 

Further analysis of microarray data was done using GeneSpring GX version 12.1 

(Agilent Technologies). All data shown was subjected to the following data processing 

and normalisation steps which are standardly done to remove non-biological technical 

variation between samples or array chips (Quackenbush 2002). A lower threshold of 

signal intensity was set to 10, meaning that all expression values below this were set to 

10. The expression values were then log transformed (base 2) and scaled to the 75
th

 

percentile of all samples. Following this, the expression value of each gene was 
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normalised to the median expression of that gene across all samples. After 

normalisation, all gene probes were filtered on ‘Flags’, a parameter which indicates the 

relative quality of a sample. Flags can be called as ‘Present’, ‘Marginal’, or ‘Absent’. 

We retained gene probes that had ‘Present’ flag calls to a confidence level of p<0.01 in 

100% of the samples within any one experimental condition.  Further fold change filters 

and statistical analyses of data were carried out as described in Chapter 5, Figure 5.3.  

 

2.8.4.2  Clustering analyses 

Two types of clustering were used in our analyses to group genes based on their 

expression patterns - hierarchical and k-means clustering. Pearson Uncentered distance 

metric with average linkage was used in all cases unless specified. Hierarchical 

clustering constructs a dendogram in which the genes are represented in a relationship 

‘tree’, and allows visualisation of all clustered genes within one heat map (Do et al. 

2008). k-means clustering segregates genes with similar patterns into a user defined 

number of clusters (Do et al. 2008) and allows the visualisation of isolated clusters. All 

clustering analysis was carried out using GeneSpring software.  

 

2.8.4.3  Gene Ontology analysis 

The Gene Ontology (GO) project has developed a defined terminology with which 

biological functions and processes are described, and has used these to annotate genes 

with their respective functions (Harris et al. 2004). GO analysis, conducted using 

GeneSpring software, thus determines if a group of genes is significantly associated 

with any biological functions or processes within the GO database (p<0.05).    
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2.8.4.4  Pathway and upstream regulator analyses by IPA 

Pathway and upstream regulator analyses were conducted using Ingenuity Pathway 

Analysis (IPA) (Ingenuity® Systems, www.ingenuity.com). Ingenuity relies on 

information that is present within a manually curated database, the Ingenuity 

Knowledge Base (Calvano et al. 2005). Significant association of gene lists to a 

biological pathway was determined by Fisher’s Exact Test, with Benjimini-Hochberg 

multiple testing correction (p<0.01). Association of a gene list to an upstream 

transcriptional regulator was determined by a significant overlap with the mechanistic 

network of the regulator (p<0.05), and a significant activation z-score. The activation z-

score is calculated based on the direction of gene expression, and how that correlates 

with the known activity of the transcriptional regulator. A value of less than -2 denotes 

a transcriptional regulator is inhibited. A value of more than 2 denotes a transcriptional 

regulator is activated (Ingenuity® Systems, www.ingenuity.com). In this analysis, gene 

expression levels were entered in the context of C57BL/6 vs. BALB/c or vice versa. 

Thus, the z-scores denoted a relative activation level between C57BL/6 and BALB/c 

macrophages.  

 

2.8.4.5  Transcription factor binding site enrichment analysis by PSCAN 

The online resource PSCAN (Zambelli et al. 2009) was used to determine the presence 

of significant transcription factor binding site (TFBS) motif enrichment within selected 

gene lists. If present, duplicate transcripts were removed from gene lists to eliminate 

bias and genes were entered into PSCAN in their RefSeq identifier format. Of note, 

PSCAN did not recognise RefSeq identifiers which had only predicted sequences, 

http://www.ingenuity.com/
http://www.ingenuity.com/
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(denoted by an XM annotation as opposed to an NM annotation in RefSeq identifier). 

This accounted for 15% of the genes being analysed. TFBS enrichment was assessed 

within the sequence region -950 to +50 relative to the transcriptional start site, described 

in more detail in Chapter 5, section 5.3.7.2. Enrichment was considered significant if 

p<0.05, with Bonferroni multiple testing correction applied.  

 

2.8.4.6 Quality control analysis of microarray samples 

Prior to the identification of significantly differentially expressed genes in C57BL/6 and 

BALB/c macrophages, a quality control analysis was carried out to ensure the integrity 

of the data. All samples from the experiment were hierarchically clustered according to 

condition using GeneSpring software. This groups samples based on their similarity, 

and therefore technical replicates with an experiment should cluster together. In our data 

set, the 0 h and media treated groups clustered together, but within their respective 

mouse strains (Figure 2.1 A). This suggested that 0 h cells and media control cells had 

similar transcriptional profiles, but that these were different between C57BL/6 and 

BALB/c macrophages. Note that one outlier sample, BALB/c 1 h media replicate 3, was 

removed from the analysis at this stage as it did not cluster with the other unstimulated 

samples. All LPS stimulated samples grouped within their technical triplicates (Figure 

2.1 A), confirming the reliability of the experiment. We also noted that the samples 

from early stimulation time-points (0.5 and 1 h) clustered closely to the unstimulated 

samples within their respective strains (Figure 2.1 A) suggesting that the impact of 

differential basal C57BL/6 and BALB/c gene expression differences overpowers the 

effect of LPS stimulation at this stage. The 3, 5 and 8 h LPS stimulated samples 

however clustered away from the rest, but still separated according to strain (Figure 2.1 
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A). A similar observation was made when looking at the data by principle component 

analysis (PCA) plot, a technique which reduces the variability in the data to a small 

number of dimensions, in this case 3 (Figure 2.1 B). This clearly showed that most of 

the variation in the data was attributable to LPS stimulation. In this format however, the 

distinction between C57BL/6 and BALB/c macrophages was less apparent (Figure 2.1 

B). As a final quality control step, we plotted the normalised intensity of Il10, Ifnb1 and 

Il12a expression over time to confirm that the profile was consistent with our previous 

qPCR results (Figure 2.1 C).  

 

2.8.4.7 Comparison of basal gene expression in C57BL/6 and BALB/c macrophages 

Our initial analysis of gene expression in C57BL/6 and BALB/c macrophages showed 

that several genes were differentially expressed between the strains prior to stimulation 

(see Figure 5.2). We conducted a more formal analysis of these basal differences which 

revealed that 797 genes were differentially expressed at baseline (Figure 2.2 A). GO 

terms associated with these genes included ‘Immune system process’, ‘Antigen binding’ 

and ‘MHC protein complex’ (Figure 2.2 B). These differentially expressed genes may 

be relevant to the differential immune responses of C57BL/6 and BALB/c macrophages 

and were therefore included in later analyses.  

 

2.9  In vivo experiments 

All in vivo experiments were conducted with the assistance of Evangelos Stavropoulos 

(Division of Immunoregulation, NIMR).  
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2.9.1 LPS administration 

Mice were administered with 150 µg LPS diluted in 300 µl PBS via the intra-peritoneal 

(i.p.) route. Control mice were administered with 300 µl PBS. Mice were sacrificed at 1, 

3 and 6 h.  

 

2.9.2 Spleen processing and RNA extraction 

Spleens were dissected, immediately homogenised in 2 ml TRI Reagent (Ambion) and 

frozen at -80
o
C in 1 ml aliquots for later processing. Total splenic RNA was isolated by 

adding 100 µl 1-bromo-3-chloropropane to 1 ml of spleen homogenate, vortexing and 

incubating at RT for 5 min, followed by centrifugation. The aqueous phase containing 

the RNA was collected and 200 µl ethanol added. RNA was then purified using 

RiboPure™ Kit (Ambion), according to the manufacturer’s instructions. RNA was 

prepared for qPCR analysis as explained in Section 2.7.  

 

2.9.3 Serum processing and cytokine quantification  

Blood was collected from mice and allowed to coagulate at RT for 5 h or overnight at 

4
o
C. Samples were then centrifuged at 13,000 rpm at RT for 20 min. Serum was 

separated and stored at -80
o
C for later protein analysis. IL-10 concentration in serum 

was determined using a Mouse Cytokine/Chemokine Magnetic Bead Panel (Milliplex 

MAP kit, Merk Millipore) according to the manufacturer’s instructions.  Samples were 

analysed using a Luminex 200™ analyser (Luminex). The range of detection for IL-10 

was 10-9900 pg/ml.  
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2.10  Statistical analysis 

Graphpad Prism software 5 was used to analyse data by one-way ANOVA with 

Tukey’s post-hoc test. Microsoft Excel was used to analyse data by two-tailed Student’s 

t-test. Statistical tests performed for each experiment and significance values are 

indicated in the figure legends.  
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Figure 2.1 Quality control analysis of microarray samples.  

(A) Data was normalised to the median of each gene and filtered on flags. Unsupervised 

hierarchical clustering on conditions (followed by entities) was carried out using the Differential 

distance metric with Wards linkage rule, recommended by GeneSpring for time series data. 

Colour range indicates normalised intensity. (B) PCA plot of samples analysed by microarray. 

(C) Plots of normalised intensity (log2) of Il10, Ifnb1 and Il12a mRNA expression as 

determined by microarray. Graphs show means of three samples ±SD. *p<0.05, **p<0.01, 

***p<0.001 as determined by Student’s t-test between C57BL/6 and BALB/c LPS stimulated 

samples only at each time point. 
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Figure 2.2 Genes differentially expressed at baseline in C57BL/6 and BALB/c 

macrophages associate with MHC protein and immune response GO terms.  

(A) Analysis strategy of differential basal gene expression in unstimulated C57BL/6 and 

BALB/c macrophages. (B) GO analysis of differentially expressed genes in unstimulated 

C57BL/6 and BALB/c macrophages.  
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Chapter 3. The regulation of IL-10 in C57BL/6 

and BALB/c macrophages 
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3.1 Background 

Proinflammatory immune responses are critical in the defence against pathogens, 

however, excessive inflammation can cause immune-mediated damage to the host. IL-

10 is an anti-inflammatory cytokine produced by almost all immune cell types, 

including macrophages and mDCs (Saraiva et al. 2010). IL-10 has an important role in 

dampening proinflammatory immune responses and is thought to act primarily at the 

level of the APC (Moore et al. 2001). The non-redundant role of IL-10 in the prevention 

of immune-mediated damage is illustrated by the finding that IL-10 deficient mice 

develop colitis in response to commensal gut flora (Kuhn et al. 1993; Sellon et al. 1998). 

However, the inappropriate production of IL-10 can limit the efficacy of immune 

responses and contribute to chronic infection (Belkaid et al. 2001; Ejrnaes et al. 2006; 

Redford et al. 2010). Hence, IL-10 is central in mediating the balance between 

immunopathology and chronic infection.    

 

In macrophages and mDCs, the production of IL-10 is largely dependent on the 

stimulation of PRRs by microbial products (Saraiva et al. 2010). Of note, macrophages 

have been shown to be more potent producers of IL-10 than mDCs in response to TLR 

ligation (Boonstra et al. 2006; Kaiser et al. 2009), suggesting that not all cells have the 

same capacity to produce IL-10. Downstream of TLR ligation, the adaptor proteins 

MyD88 and/or TRIF initiate the activation of signalling pathways which regulate 

cytokine production (Kawai et al. 2010). The TPL-2/ERK pathway (Yi et al. 2002; 

Dillon et al. 2004; Banerjee et al. 2006; Kaiser et al. 2009), p38 MAPK (Yi et al. 2002; 

Jarnicki et al. 2008; Kim et al. 2008) and the PI(3)K/AKT/mTOR pathway (Ohtani et al. 

2008; Weichhart et al. 2008) all have roles in the positive regulation of IL-10 
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downstream of TLR activation. Several transcription factors are associated with 

transactivation of the Il10 gene in macrophages and mDCs such as NF-κB family 

members (Kanters et al. 2003; Saraiva et al. 2005; Banerjee et al. 2006; Cao et al. 

2006), c-Fos (Agrawal et al. 2003; Dillon et al. 2004; Kaiser et al. 2009), CREB and 

ATF1 (Ananieva et al. 2008), c-Maf (Cao et al. 2005), C/EBP-β and δ (Brenner et al. 

2003; Liu et al. 2003b; Csoka et al. 2007), SP1, SP3 (Brightbill et al. 2000; Tone et al. 

2000) and STAT3 (Benkhart et al. 2000). In contrast, IRF5 has been identified as a 

negative regulator of IL-10 in human monocytes (Krausgruber et al. 2011). Stimulus 

induced chromatin modifications have also been reported in macrophages at the Il10 

locus and may contribute to Il10 gene expression (Saraiva et al. 2005; Zhang et al. 

2006). Post-transcriptional regulation of IL-10 can be mediated by the activity of 

microRNAs which can dampen or enhance IL-10 production, depending on their target 

and mode of action (Sharma et al. 2009; Ma et al. 2010; Sheedy et al. 2010). 

Additionally, the mRNA binding protein TTP post-transcriptionally inhibits IL-10 

production by destabilising Il10 mRNA (Stoecklin et al. 2008; Tudor et al. 2009). 

 

In addition to direct TLR signals, autocrine and paracrine factors present in the 

extracellular environment further modulate IL-10 production. For example, IFN-γ 

dampens IL-10 production in macrophages through the inhibition of the PI(3)K 

pathway and MAP kinases (Hu et al. 2006). Conversely, type I IFN can enhance IL-10 

production in murine macrophages and human monocytes (Aman et al. 1996; Chang et 

al. 2007a; Teles et al. 2013). In murine macrophages, this has been proposed to require 

IL-27 (Iyer et al. 2010). However, the role of IL-27 in the regulation of innate IL-10 

production is unclear as another study found that murine macrophages did not respond 
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to IL-27 and in human monocytes, IL-27 actually inhibited IL-10 production (Kalliolias 

et al. 2008).  

 

Thus, the regulation of IL-10 is determined by the integration of several molecular 

pathways. Further, due to the combinatorial nature of IL-10 regulation, the precise 

mechanisms governing the IL-10 production in response to different TLR ligands or 

more complex stimuli such as an intact bacterium, remain incompletely understood.   
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3.2 Investigating the regulation of IL-10 in C57BL/6 and BALB/c 

macrophages: Study Aims 

Preliminary data from our laboratory suggested that C57BL/6 macrophages produce 

higher levels of IL-10 than BALB/c macrophages in response to TLR stimulation. With 

the intention of using this strain difference as a tool to investigate the molecular 

mechanisms of IL-10 regulation, we aimed to answer the following questions: 

 

1. In response to which TLR and non-TLR PRR stimuli do C57BL/6 and BALB/c 

macrophages differentially regulate IL-10, and can this be recapitulated with 

heat-killed bacteria? 

2. What is the mechanism of differential IL-10 production in C57BL/6 and 

BALB/c macrophages? 

3. Can differential IL-10 production in C57BL/6 and BALB/c macrophages be 

translated into an in vivo setting? 
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3.3 Results 

 

3.3.1 Investigation into TLR ligand and heat-killed bacteria induced IL-10 

production in C57BL/6 and BALB/c macrophages 

3.3.1.1 C57BL/6 and BALB/c macrophages produce distinct levels of IL-10 when 

stimulated with TLR ligands or heat-killed bacteria 

We chose to stimulate C57BL/6 and BALB/c macrophages with ligands for TLRs 2, 3 

and 4 as each has been previously reported to induce IL-10 from macrophages 

(Boonstra et al. 2006; Hu et al. 2006). In addition, this choice of TLR encompassed cell 

surface expressed TLRs (TLR 2 and 4) and an endosomally expressed TLR (TLR 3) 

(Akira et al. 2004). C57BL/6 and BALB/c BMDM were stimulated for 24 h with 

titrated concentrations of the TLR ligands LPS (TLR4), Pam3CSK4 (TLR2) and Poly 

I:C (TLR3) (Figure 3.1 A). In all three conditions, as the stimulus dose increased, IL-10 

production generally increased in both C57BL/6 and BALB/c macrophages. However at 

all doses of stimulus where IL-10 was substantially induced, IL-10 levels were higher in 

C57BL/6 macrophages (Figure 3.1 A).  

 

We also investigated differential IL-10 production from C57BL/6 and BALB/c 

macrophages in response to the TLR9 ligand CpG1668 which is also known to induce 

IL-10 in innate cells (Boonstra et al. 2006), and the TLR7 ligand R848 which is less 

well studied in the context of IL-10 regulation. Although IL-10 production was robustly 

induced in response to both stimuli, we found that the difference in relative IL-10 

production from C57BL/6 and BALB/c macrophages was not consistent between 

experiments (Appendix Figure 7.1). We were unable to identify the source of this inter-
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experiment variation, and it could not be explained by the batch of CpG1668 or R848, 

but possibly could be due to changes in batches of media or FCS. It was thus decided to 

discontinue the use of these TLR ligands in this study. C57BL/6 and BALB/c 

macrophages were also stimulated with the non-TLR PRR ligands MDP (NOD2 ligand) 

and Curdlan (Dectin-1 ligand). Neither of these ligands induced detectable levels of IL-

10 in either C57BL/6 or BALB/c macrophages (data not shown), in agreement with 

published findings (Franchi et al. 2009; Goodridge et al. 2009).  

 

Purified PRR ligands stimulate only one receptor, whereas upon infection with a 

bacterium or virus, innate cells are presented with a host of PRR ligands that are 

incorporated into the microbe. Thus, to investigate if differential IL-10 production by 

C57BL/6 and BALB/c macrophages could be recapitulated with whole bacteria, we 

extended our study to analyse IL-10 production in response to titrated doses of heat-

killed B.pseudomallei (HkBps) and heat-killed L.monocytogenes (HkLm). Both of these 

bacteria are intracellular pathogens, however L.monocytogenes is a Gram-positive 

bacterium (Hamon et al. 2006), whereas B.pseudomallei is a Gram-negative bacterium 

(Wiersinga et al. 2006). C57BL/6 and BALB/c macrophages were stimulated with two 

isolates of HkBps, 576 and K9 (Figure 3.1 B). IL-10 production was induced in 

C57BL/6 and BALB/c macrophages in response to both isolates of HkBps, and as seen 

with TLR ligands, C57BL/6 macrophages consistently produced more IL-10 than 

BALB/c macrophages (Figure 3.1 B). Similarly, in response to HkLm (Figure 3.1 C), 

IL-10 production was induced in both strains, but was significantly higher in C57BL/6 

macrophages (Figure 3.1 C). These results confirmed that C57BL/6 and BALB/c 
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macrophages have a differential capacity to produce IL-10 in response to TLR ligands 

and heat-killed bacteria.  

 

3.3.1.2  TLR2, TLR4, MyD88 and TRIF contribute to HkBps induced IL-10 

production 

As B.pseudomallei has been reported to activate both TLR2 and TLR4 (Wiersinga et al. 

2007; Hii et al. 2008; West et al. 2008), we decided to focus our study on differential 

IL-10 production induced by LPS (TLR4), Pam3CSK4 (TLR2) and HkBps. This would 

allow us to investigate the mechanisms governing differential IL-10 production in 

response to a biologically relevant, combined TLR2 and TLR4 stimulus, and the 

individual TLR2 and TLR4 ligands themselves. Further, C57BL/6 mice are more 

resistant to B.pseudomallei infection than BALB/c mice, and this difference has been 

proposed to represent the spectrum of disease in humans (Leakey et al. 1998; Hoppe et 

al. 1999; Titball et al. 2008). However, the mechanisms underlying this differential 

susceptibility are currently incompletely understood. Including HkBps in this study 

therefore provided an opportunity to further explore strain-dependent immunological 

responses to B.pseudomallei which could potentially be relevant to broader mechanisms 

of disease with this pathogen. 

 

We elected to use HkBps576, as this isolate induced relatively higher levels of IL-10 

than HkBpsK9 (Figure 3.1B). However, previous studies examining TLR activation by 

B.pseudomallei have used BP-1 (West et al. 2008), KHW (Hii et al. 2008) and 1026b 

(Wiersinga et al. 2007) isolates. In addition, HkBps576 (from here on referred to as 

HkBps) has been reported to have an atypical LPS structure (Anuntagool et al. 2000). 
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We therefore sought to confirm the contribution of TLR2 and TLR4 to HkBps induced 

IL-10 production in our system using TLR deficient macrophages. We also assessed the 

dependence of HkBps induced IL-10 on the TLR adaptor proteins MyD88 and TRIF as 

the former is essential for TLR2 signalling, whereas both contribute to TLR4 signalling 

(Kawai et al. 2010). Macrophages were generated from WT, Tlr4
-/-

, Tlr2
-/-

, Trif
-/-

 and 

Myd88
-/-

 mice (all on C57BL/6 background) and stimulated with LPS, Pam3CSK4 or 

HkBps over a time-course up to 24 h (Figure 3.2). LPS induced IL-10 production 

peaked at 6 h in WT macrophages, and as expected was abrogated in Tlr4
-/-

, but not 

Tlr2
-/-

 macrophages. LPS induced IL-10 was not detectable in the absence of MyD88 

and was severely reduced in the absence of TRIF, only being detected at a low level at 

24 h (Figure 3.2). This is in agreement with previous findings that both MyD88 and 

TRIF are required for IL-10 production downstream of TLR4 (Boonstra et al. 2006). 

Pam3CSK4 induced IL-10 increased up to 24 h and also as anticipated, was abrogated 

in the absence of TLR2 and MyD88, but not substantially affected in the absence of 

TRIF or TLR4 (Figure 3.2). HkBps induced IL-10 production peaked at 12-24 h in WT 

macrophages (Figure 3.2). In Tlr2
-/-

 macrophages, IL-10 production was decreased at 6, 

12 and 24 h relative to WT macrophages during HkBps stimulation. IL-10 production 

was also decreased in HkBps stimulated Tlr4
-/- 

macrophages relative to WT, and this 

decrease was considerably more pronounced than in Tlr2
-/-

 macrophages (Figure 3.2). 

Therefore both TLR2 and TLR4 contribute to HkBps induced IL-10, although TLR4 

appears to play a more dominant role. Trif
-/- 

macrophages stimulated with HkBps 

produced similarly reduced levels of IL-10 to Tlr4
-/- 

macrophages (Figure 3.2), in 

keeping with a dominant role for TLR4, and stressing the importance of the TRIF 

pathway downstream of this receptor. No IL-10 was induced by HkBps in the absence 
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of MyD88 (Figure 3.2), suggesting that IL-10 production in response to HkBps is 

completely dependent on TLR signalling. These data confirm that in our system, TLR2 

and TLR4 significantly contribute to the production of IL-10 in response to HkBps.  

 

3.3.2 Investigation into the mechanisms of differential IL-10 production in LPS, 

Pam3CSK4 and HkBps stimulated C57BL/6 and BALB/c macrophages. 

3.3.2.1 C57BL/6 macrophages produce higher levels of IL-10 compared to BALB/c 

macrophages throughout the response to LPS, Pam3CSK4 and HkBps. 

To investigate differential production of IL-10 in response to LPS, Pam3CSK4 and 

HkBps in more detail, C57BL/6 and BALB/c macrophages were stimulated with 

optimal doses of these ligands over a time-course up to 24 h (Figure 3.3). C57BL/6 

macrophages produced significantly higher levels of IL-10 than BALB/c macrophages 

throughout the response to all three stimuli (Figure 3.3).  The deficiency in IL-10 

production from BALB/c macrophages is therefore consistent across the duration of the 

response, and not a reflection of either delayed induction of IL-10, or premature 

termination of IL-10 production in macrophages from this strain.  

 

3.3.2.2 C57BL/6 mDCs do not produce higher levels of IL-10 than BALB/c mDCs 

when stimulated with LPS or Pam3CSK4.  

In addition to macrophages, DCs are an important component of the innate immune 

response. To determine if higher IL-10 production was also seen in C57BL/6 TLR2 or 

TLR4 activated mDCs, C57BL/6 and BALB/c BMDC were stimulated for 24 h with 

optimal doses of LPS or Pam3CSK4 (Figure 3.4 A).  IL-10 production from mDCs was 

similar between the strains when stimulated with LPS (Figure 3.4 A). In response to 
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Pam3CSK4 however, IL-10 production was significantly higher in BALB/c mDCs 

compared to C57BL/6 mDCs (Figure 3.4 A). Thus, there is a difference in IL-10 

production from C57BL/6 and BALB/c mDC, but the trends seen are distinct from 

those between macrophages derived from C57BL/6 and BALB/c mice. This implies that 

the mechanisms of TLR induced IL-10 regulation are not completely conserved in 

macrophages and mDCs. We also stimulated C57BL/6 and BALB/c mDCs with 

Curdlan, a ligand for the non-TLR PRR Dectin -1 (Figure 3.4 B). In keeping with 

previous reports (Rogers et al. 2005; Slack et al. 2007), IL-10 was robustly induced by 

Curdlan (Figure 3.4 B). However, IL-10 production was substantially higher in 

C57BL/6 mDCs than BALB/c mDCs in response to this stimulus (Figure 3.4 B), in 

keeping with our observations in TLR stimulated macrophages.  

 

3.3.2.3 The level of Tlr mRNA expression does not correlate with the level of IL-10 

production in C57BL/6 and BALB/c macrophages.  

We have observed that C57BL/6 macrophages produce higher levels of IL-10 than 

BALB/c macrophages in response to LPS, Pam3CSK4 and HkBps across all doses of 

stimulus and all time points assayed (Figure 3.1 and 3.3). To determine if differential 

IL-10 production was simply a result of differential TLR expression between the strains, 

we investigated the expression level of Tlr mRNA in C57BL/6 and BALB/c 

macrophages. Tlr2 mRNA expression was slightly lower in BALB/c macrophages 

compared to C57BL/6 (Figure 3.5 A). In contrast, there was no significant difference in 

Tlr4 mRNA expression between the strains (Figure 3.5 A). As we also previously 

observed higher IL-10 production in TLR3 stimulated C57BL/6 macrophages (Figure 

3.1 A), we additionally determined the relative expression of Tlr3 mRNA and again 
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found no difference between the strains (Figure 3.5 B). Thus, there was no clear 

correlation between the level of Tlr mRNA expression and the level of IL-10 production 

in C57BL/6 and BALB/c macrophages. This suggests that Tlr expression does not 

govern the level of IL-10 production in macrophages from these two strains of mice.  

 

3.3.2.4 ERK1/2 and p38 are central regulators of IL-10, but are similarly activated in 

TLR2 and TLR4 stimulated C57BL/6 and BALB/c macrophages.  

Several pathways and molecules are known to regulate IL-10 production downstream of 

TLR2 and TLR4 (Saraiva et al. 2010). Among these, the MAP kinases ERK1/2 

(referred to here as ERK) and p38 have been reported to be key regulators of TLR 

induced IL-10, as inhibition of ERK or p38 activation substantially reduces IL-10 

production in C57BL/6 macrophages and mDC (Dillon et al. 2004; Banerjee et al. 

2006; Jarnicki et al. 2008; Kim et al. 2008; Kaiser et al. 2009). To establish the 

importance of these factors in the regulation of IL-10 downstream of TLR2 and TLR4 

in both C57BL/6 and BALB/c macrophages, we treated cells with PD184352, a 

pharmacological inhibitor of MEK1, the MAP 2-kinase which phosphorylates and 

activates ERK, and SB203580, a pharmacological inhibitor of p38 (Bain et al. 2007). 

Cells were pre-treated with individual inhibitors or combined inhibitors (or with DMSO 

as a vehicle control) for 1 hour. Cells were then stimulated with LPS or Pam3CSK4 for 

24 h (Figure 3.6). DMSO did not affect IL-10 production in either C57BL/6 or BALB/c 

macrophages (Figure 3.6 A and B). In LPS stimulated macrophages, individual 

MEK1/ERK or p38 inhibition decreased IL-10 production in both strains (Figure 3.6 A). 

Of note, in C57BL/6 macrophages the requirement for ERK and p38 for IL-10 

production was comparable, whereas in BALB/c macrophages the requirement for p38 
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seemed dominant over the requirement for ERK in response to LPS (Figure 3.6 A). 

Dual inhibition of ERK and p38 had an additive effect in LPS stimulated macrophages 

and resulted in very low levels of IL-10 production in C57BL/6 macrophages, and 

undetectable levels of IL-10 production in BALB/c macrophages (Figure 3.6 A). In 

Pam3CSK4 stimulated cells, individual MEK1/ERK or p38 inhibition reduced IL-10 

production in both strains and in BALB/c macrophages, was sufficient to completely 

abrogate IL-10 production (Figure 3.6 B). In contrast to LPS stimulation, dual 

MEK1/ERK and p38 inhibition completely abolished IL-10 production in Pam3CSK4 

stimulated C57BL/6 and BALB/c macrophages (Figure 3.6 B). These data confirm the 

central roles of ERK and p38 in C57BL/6 and BALB/c macrophages as regulators of 

IL-10 downstream of TLR2 and TLR4.  

 

We then considered that differential activation of these MAP kinases may be 

responsible for the distinct levels of IL-10 produced by TLR2 and TLR4 stimulated 

C57BL/6 and BALB/c macrophages. To investigate this further, we assessed the 

phosphorylation (activation) of ERK and p38 in C57BL/6 and BALB/c macrophages at 

0, 7.5, 15, 30 and 60 min post LPS or Pam3CSK4 stimulation (Figure 3.7). In LPS 

stimulated cells, ERK phosphorylation was clearly detectable from 7.5 min and peaked 

at 15 min, but was similar in C57BL/6 and BALB/c macrophages (Figure 3.7). In 

Pam3CSK4 stimulated cells, ERK phosphorylation had slower kinetics, peaking at 30 

min post-stimulation but again was similar between the strains (Figure 3.7). p38 

phosphorylation was detectable by 7.5 min in both LPS and Pam3CSK4 stimulated cells 

and was similar in C57BL/6 and BALB/c macrophages (Figure 3.7). Total levels of 

ERK and p38 were likewise consistent in C57BL/6 and BALB/c macrophages (Figure 
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3.7). These data suggest that low IL-10 production by TLR2 or TLR4 stimulated 

BALB/c macrophages is not due to differential activation of ERK or p38 within the first 

hour of stimulation. 

 

3.3.2.5 LPS, Pam3CSK4 and HkBps differentially induce Il10 transcription in 

C57BL/6 and BALB/c macrophages.  

In order to gain further insight into the mechanisms mediating differential IL-10 

production in C57BL/6 and BALB/c macrophages, Il10 mRNA levels were analysed 

over a detailed time-course in LPS, Pam3CSK4 and HkBps stimulated cells (Figure 3.8). 

Il10 mRNA initially peaked at 0.5-1 h in LPS stimulated C57BL/6 macrophages and 

then declined. This was followed by a pronounced second peak of Il10 mRNA at 4 h 

post LPS stimulation, from which point the Il10 mRNA again declined (Figure 3.8). In 

clear contrast, LPS stimulated BALB/c macrophages only had one small Il10 mRNA 

peak at 0.5-1 h post-stimulation and no second Il10 mRNA peak (Figure 3.8). In 

Pam3CSK4 stimulated cells, Il10 mRNA expression peaked at 0.5 h in both C57BL/6 

and BALB/c macrophages and rapidly declined thereafter with no second Il10 mRNA 

peak in either strain. Although the overall profiles of Il10 mRNA expression were 

similar in Pam3CSK4 stimulated C57BL/6 and BALB/c macrophages, at each time 

point C57BL/6 macrophages expressed higher levels of Il10 mRNA (Figure 3.8). In 

addition, whereas Il10 mRNA in Pam3CSK4 stimulated BALB/c macrophages returned 

to baseline by 4 h, it appeared sustained above baseline in C57BL/6 macrophages up to 

12 h (Figure 3.8). In HkBps stimulated cells, C57BL/6 macrophages expressed an initial 

Il10 mRNA peak at 0.5 h followed by a second and more pronounced peak at 4 h. 

However, as was seen in LPS stimulation, HkBps stimulated BALB/c macrophages, had 
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only one smaller initial Il10 mRNA peak at 0.5 h and no second Il10 mRNA peak 

(Figure 3.8). 

 

The differences in C57BL/6 and BALB/c Il10 mRNA production observed (Figure 3.8) 

are likely to underlie the differential IL-10 protein production by these cells. The 

contrasting profiles of Il10 mRNA expression observed in LPS and Pam3CSK4 

stimulated macrophages however, suggest that distinct mechanisms underlie differential 

C57BL/6 and BALB/c IL-10 production in response to these stimuli. As TLR4 has a 

larger contribution to HkBps induced IL-10 than TLR2 (see Figure 3.2), and the profile 

of HkBps induced Il10 mRNA is similar to that seen in LPS stimulated cells (Figure 

3.8), it is possible that common or overlapping mechanism(s) mediate differential IL-10 

production of C57BL/6 and BALB/c macrophages in response to LPS and HkBps.  

 

3.3.2.6 LPS and HkBps stimulated C57BL/6 macrophages express higher levels of 

Ifnb1 mRNA and IFN-β protein than BALB/c macrophages. 

Microarray data generated by another member of the O’Garra laboratory prior to this 

investigation, suggested that C57BL/6 macrophages may induce higher levels of type I 

IFN than BALB/c macrophages in response to LPS at early time-points (Wu, O’Garra, 

unpublished). We were interested in this observation as it has been reported previously 

that type I IFN positively regulates IL-10 in LPS stimulated macrophages (Chang et al. 

2007a) and parallel work in the O’Garra laboratory showed that this was also the case in 

M.tuberculosis infected macrophages (Ewbank, McNab, O’Garra unpublished). In order 

to determine if there was differential production of type I IFN in LPS, Pam3CSK4 or 

HkBps stimulated C57BL/6 and BALB/c macrophages, the expression of Ifnb1 mRNA 



Chapter 3: The regulation of IL-10 in C57BL/6 and BALB/c macrophages 

 

 122 

was determined by qPCR in these cells (Figure 3.9 A). Upon LPS stimulation, Ifnb1 

mRNA expression peaked at 1 h in both C57BL/6 and BALB/c macrophages. However, 

C57BL/6 macrophages expressed significantly higher levels of Ifnb1 mRNA than 

BALB/c macrophages (Figure 3.9 A). No substantial increase in Ifnb1 mRNA was seen 

in Pam3CSK4 stimulated C57BL/6 or BALB/c cells (Figure 3.9 A). This is in keeping 

with reports that Pam3CSK4 does not induce type I IFN due to its inability to activate 

the TRIF pathway (Toshchakov et al. 2002). In HkBps stimulated macrophages, Ifnb1 

mRNA was induced in both C57BL/6 and BALB/c macrophages, with maximal 

expression at 1 h. As with LPS stimulation, HkBps induced Ifnb1 mRNA expression 

was significantly higher in C57BL/6 macrophages than BALB/c macrophages (Figure 

3.9 A). IFN-β protein production was also quantified (Figure 3.9 B). Although the 

overall levels were quite low, the trends of IFN-β protein production largely followed 

that of Ifnb1 mRNA. When detectable, IFN-β protein was higher in C57BL/6 

macrophages compared to BALB/c macrophages stimulated with LPS or HkBps (Figure 

3.9 B). IFN-β production from Pam3CSK4 stimulated cells was generally below the 

limit of detection and not consistently different between the strains (Figure 3.9 B).  

 

3.3.2.7 Type I IFN signalling mediates the second peak of Il10 mRNA and 

contributes to higher levels of IL-10 protein production in LPS and HkBps 

stimulated C57BL/6 macrophages. 

We observed that LPS and HkBps stimulated C57BL/6 macrophages produce more IL-

10 than BALB/c macrophages; express two peaks of Il10 mRNA whereas BALB/c 

macrophages only have one; and produce more Ifnb1 mRNA and IFN-β protein than 

BALB/c macrophages. We therefore hypothesised that type I IFN may be responsible 
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for inducing the second wave of Il10 mRNA in C57BL/6 macrophages, and hence 

higher levels of IL-10 protein production. This would be in keeping with a positive role 

for type I IFN in the regulation of IL-10 (Chang et al. 2007a). Further, this would be 

consistent with both C57BL/6 and BALB/c macrophages expressing very low levels of 

Ifnb1 mRNA and IFN-β protein upon Pam3CSK4 stimulation (see Figure 3.9), and 

consequently only one early peak of Il10 mRNA (see Figure 3.8), and consistently 

lower levels of IL-10 protein (see Figure 3.3). 

 

To determine if type I IFN was inducing the second peak of Il10 mRNA and hence 

higher levels of IL-10 in LPS and HkBps but not Pam3CSK4 stimulated C57BL/6 

macrophages, C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 macrophages (which lack a 

functional type I IFN receptor), were stimulated with LPS, Pam3CSK4 and HkBps over 

a time-course. Levels of Il10 mRNA expression and IL-10 protein production were then 

determined (Figure 3.10). Strikingly, while the first peak of Il10 mRNA was mostly 

unaffected by the absence of type I IFN signalling, the second peak was completely 

abrogated in LPS stimulated C57BL/6 Ifnar1
-/- 

macrophages (Figure 3.10 A). In 

Pam3CSK4 stimulated cells, Il10 mRNA was slightly lower at 3, 4 and 6 h, then 

elevated at 12 h in C57BL/6 Ifnar1
-/- 

macrophages compared to C57BL/6 WT 

macrophages, although in general was not substantially affected (Figure 3.10 A). In 

HkBps stimulated macrophages, the first peak of Il10 mRNA was unaffected in 

C57BL/6 Ifnar1
-/- 

macrophages, but similarly to LPS stimulation, the second Il10 

mRNA peak was abrogated in the absence of type I IFN signalling (Figure 3.10 A). 

Analysis of IL-10 protein levels showed that in both LPS and HkBps stimulated cells, 

the level of IL-10 produced by C57BL/6 Ifnar1
-/-

 macrophages was reduced relative to 



Chapter 3: The regulation of IL-10 in C57BL/6 and BALB/c macrophages 

 

 124 

C57BL/6, and was now comparable to the levels produced by BALB/c macrophages 

(Figure 3.10 B). This was despite C57BL/6 Ifnar1
-/-

 macrophages expressing a stronger 

initial peak of Il10 mRNA than BALB/c macrophages (Figure 3.10 A). Unexpectedly, 

in Pam3CSK4 stimulated cells the level of IL-10 produced by C57BL/6 Ifnar1
-/-

 

macrophages was enhanced relative to C57BL/6 macrophages (Figure 3.10 B). 

 

Thus, the second peak of Il10 mRNA in LPS and HkBps stimulated C57BL/6 

macrophages is completely dependent on endogenous type I IFN signalling. Further, 

loss of the second Il10 mRNA peak translates to a significant reduction in IL-10 

production, to a level similar to that observed in BALB/c macrophages. This does not 

occur in Pam3CSK4 stimulated cells where Il10 mRNA is only marginally affected, and 

IL-10 protein production actually increases in the absence of type I IFN signalling. Thus, 

the presence of type I IFN appears to be critical for the higher level of IL-10 production 

in C57BL/6 macrophages compared to BALB/c macrophages in response to LPS and 

HkBps, but not Pam3CSK4. 

 

3.3.2.8 Treatment with exogenous IFN-β enhances IL-10 production in both C57BL/6 

and BALB/c macrophages. 

We next considered that if a reduced level of type I IFN is responsible for the lower IL-

10 production in LPS and HKBps stimulated BALB/c macrophages, then the addition 

of type I IFN may rescue IL-10 production in BALB/c macrophages. To assess whether 

we could enhance IL-10 production by the addition of type I IFN, we treated C57BL/6 

and BALB/c macrophages with 2 or 20 ng/ml IFN-β for 2 h prior to stimulation with 

LPS or HkBps for 24 h (Figure 3.11). We chose a 2 h pre-incubation period as this 
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provided an enhanced effect of IFN-β relative to IFN-β addition at the time of 

stimulation (data not shown). Treatment of unstimulated C57BL/6 or BALB/c cells with 

IFN-β did not induce IL-10 production (Figure 3.11). In LPS stimulated cells, the 

addition of IFN-β enhanced IL-10 production in both C57BL/6 and BALB/c 

macrophages (Figure 3.11). Therefore BALB/c macrophages are able to elevate their 

production of IL-10 in response to IFN-β, provided that the cells are also TLR 

stimulated. Once treated with IFN-β, the levels of LPS induced IL-10 were similar in 

C57BL/6 and BALB/c macrophages, although still marginally higher in C57BL/6 

macrophages (Figure 3.11). In HkBps stimulated cells, the addition of IFN-β again 

enhanced IL-10 in C57BL/6 and BALB/c macrophages, but under all conditions, the 

levels of IL-10 remained significantly higher in C57BL/6 macrophages (Figure 3.11). 

Thus, the addition of IFN-β enhanced IL-10 production in LPS and HkBps stimulated 

macrophages from both strains, but did not fully rescue IL-10 production in BALB/c 

macrophages to the level of the C57BL/6.  

 

3.3.3 Investigation into the mechanisms of type I IFN mediated regulation of IL-

10 in C57BL/6 and BALB/c macrophages.  

3.3.3.1 The second peak of Il10 mRNA in C57BL/6 macrophages is likely to be 

mediated by a transcriptional mechanism 

We sought to more fully understand how type I IFN induces the second peak of Il10 

mRNA and thus higher levels of IL-10 protein in C57BL/6 macrophages. Specifically, 

we wanted to confirm that the second peak of Il10 mRNA was the result of active 

transcription from the Il10 gene. The level of unspliced premature mRNA is considered 

a better correlate of de novo transcription than the mature mRNA level which is a 
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combination of de novo transcription and mRNA degradation (Guhaniyogi et al. 2001). 

We therefore designed qPCR primers to amplify a section of the Il10 mRNA transcript 

containing an intronic sequence, making it possible to quantify the unspliced premature 

Il10 mRNA transcript (see Materials and Methods). C57BL/6 and BALB/c 

macrophages were stimulated with LPS over a time-course and mature and premature 

Il10 mRNA levels were quantified (Figure 3.12). In C57BL/6 macrophages, the 

premature Il10 transcript level peaked at 15 min to 1 h and again at 4 h post stimulation, 

from which point it then declined (Figure 3.12). In general, expression of the precursor 

Il10 transcript had similar kinetics to the mature Il10 transcript but as expected, shifted 

slightly earlier in time (Figure 3.12). In BALB/c macrophages, a similar trend was seen 

where the precursor Il10 transcript followed similar kinetics to the mature Il10 mRNA, 

with only one initial peak that was shifted slightly earlier in time (Figure 3.12). This 

data supports the hypothesis that the type I IFN dependent second peak of mature Il10 

mRNA in C57BL/6 macrophages is driven by active transcription from the Il10 gene.  

 

3.3.3.2 IL-27 is not required for type I IFN mediated enhancement of IL-10 

production in macrophages.  

We show that type I IFN signalling is central in driving the higher levels of IL-10 in 

LPS and HkBps stimulated C57BL/6 macrophages compared to BALB/c macrophages 

(see Figure 3.10). It has been reported that in LPS stimulated BMDM, type I IFN 

induces IL-27, which then in turn is required for the optimal enhancement of IL-10 by 

type I IFN (Iyer et al. 2010). However, in contrast, others have shown that murine 

macrophages are unresponsive to IL-27 (Kalliolias et al. 2008), suggesting that this may 

not be a requirement for type I IFN to enhance IL-10 production. We sought to 
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determine if the type I IFN mediated enhancement of IL-10 production that we observe 

is dependent on IL-27. Further, as IFN-β treatment did not fully rescue IL-10 

production in BALB/c macrophages (Figure 3.11), we considered the possibility that 

BALB/c macrophages are lacking an additional factor required for maximal induction 

of IL-10 by type I IFN, a candidate for which could be IL-27. 

 

To begin to address these questions, C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 

macrophages were stimulated with LPS or HkBps and IL-27 production was quantified 

(Figure 3.13 A). IL-27 was strongly induced in C57BL/6 and BALB/c macrophages and 

in response to LPS, IL-27 production was slightly higher in BALB/c macrophages. In 

LPS and HkBps stimulated C57BL/6 Ifnar1
-/-

 macrophages, IL-27 production was 

drastically reduced (Figure 3.13 A). This is in agreement with previous studies showing 

a role for type I IFN in the promotion of IL-27 (Molle et al. 2010). In keeping with this, 

the addition of IFN-β significantly increased IL-27 production in both C57BL/6 and 

BALB/c LPS stimulated macrophages (Figure 3.13 B). Thus, LPS and HkBps 

stimulated BALB/c macrophages are not deficient in their production of IL-27, and LPS 

stimulated BALB/c macrophages are able to enhance IL-27 production upon IFN-β 

treatment.  

 

To determine if IL-27 is able modulate IL-10 production in C57BL/6 or BALB/c 

macrophages, cells were treated with 2 or 20 ng/ml IL-27 either 2 h prior to stimulation, 

or at the time of stimulation with LPS (Figure 3.14). As IL-27 production was largely 

dependent on type I IFN signalling (see Figure 3.13 A), we also included C57BL/6 

Ifnar1
-/-

 macrophages as these cells have lower endogenous IL-27, and so the effects of 
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IL-27 treatment may be more exaggerated. However, IL-27 treatment had no effect on 

IL-10 production in C57BL/6, BALB/c or C57BL/6 Ifnar1
-/-

 macrophages (Figure 3.14), 

suggesting that IL-27 does not modulate IL-10 production in this cell type under any 

conditions tested.  

 

To assess the possible dependence of IL-10 production on endogenous IL-27, we 

compared IL-10 production from LPS and HkBps stimulated macrophages from 

C57BL/6, BALB/c, C57BL/6 Ifnar1
-/-

 and C57BL/6 Il27ra
-/-

 (which lack a functional 

IL-27 receptor) mice over a time-course (Figure 3.15 A).  No significant difference in 

IL-10 production was found between C57BL/6 and C57BL/6 Il27ra
-/- 

macrophages, and 

both produced more IL-10 than BALB/c or C57BL/6 Ifnar1
-/-

 macrophages (Figure 3.15 

A). To directly investigate if IL-27 was required for type I IFN to enhance IL-10 

production, C57BL/6 and C57BL/6 Il27ra
-/-

 macrophages were treated with IFN-β and 

stimulated with LPS (Figure 3.15 B). The enhancement of IL-10 by IFN-β treatment 

was unimpaired in C57BL/6 Il27ra
-/-

 macrophages, demonstrating that this mechanism 

was independent of IL-27 (Figure 3.15 B). As this data contradicted a recent report (Iyer 

et al. 2010), we confirmed the absence of a functional IL-27 receptor in our C57BL/6 

Il27ra
-/-

 mice and the viability of our recombinant IL-27 preparation. C57BL/6 and 

C57BL/6 Il27ra
-/-

 splenocytes were treated with IL-27 or as a positive control, IFN-γ, 

for 10 and 30 min. The phosphorylation of STAT1 on Tyr-701 was determined as both 

the IL-27 receptor and IFN-γ receptor are known to phosphorylate STAT1 on this site 

(Platanias 2005; Hall et al. 2012) (Figure 3.15 C). IL-27 treatment induced robust 

STAT1 phosphorylation in C57BL/6 but not C57BL/6 Il27ra
-/-

 splenocytes. However, 

STAT1 phosphorylation was triggered by IFN-γ in both C57BL/6 and C57BL/6 Il27ra
-/-
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splenocytes (Figure 3.15 C). This confirms that the C57BL/6 Il27ra
-/-

 mice used here 

have a specific deficiency in IL-27 receptor signalling, and that our recombinant IL-27 

preparation is functional. Together, these data demonstrate that although IL-27 is 

induced in C57BL/6 and BALB/c macrophages in a predominantly type I IFN 

dependent manner, IL-27 is not involved in the type I IFN mediated enhancement of IL-

10 production in LPS or HkBps stimulated macrophages. 

 

3.3.3.3 STAT-1 has an important role in the type I IFN mediated induction of IL-10.  

Signalling via the type I IFN receptor activates several pathways, the most well studied 

of which is the JAK-STAT pathway (Platanias 2005). Downstream of the type I IFN 

receptor, JAK phosphorylation of STAT molecules induces formation of STAT1-

STAT2 heterodimers which in turn bind IRF9 to form the ISGF3 complex. This 

complex binds genes containing ISREs and mediates their transcription (Stark et al. 

1998). STAT1-STAT1 homodimers are also formed downstream of the type I IFN 

receptor and these regulate transcription of genes containing GAS elements. These 

pathways are important for the induction of IFN-regulated genes (Stark et al. 1998). 

STAT1 has also been previously linked to the induction of IL-10 by type I IFN (Guarda 

et al. 2011) and there are putative STAT binding sites within the Il10 locus (Benkhart et 

al. 2000; Mosser et al. 2008b).  

 

We therefore investigated the role of STAT-1 in the regulation of IL-10 by type I IFN in 

our system by using STAT1 deficient mice. The only STAT1 deficient mice available to 

us were 129 Stat1
tm1Rds

 mice (129S6/SvEv genetic background) which have a disruption 

in the Stat1 gene. 129 WT and 129 Stat1
tm1Rds

 macrophages were stimulated with LPS 
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for 24 h (Figure 3.16 A).  No significant difference in IL-10 production was observed 

between WT and STAT1 deficient mice, however, the overall amount of IL-10 

production was very low (Figure 3.16 A). Indeed, when we had previously compared 

LPS induced IL-10 production from C57BL/6, BALB/c and 129S8 macrophages, we 

found that similar to BALB/c, 129S8 macrophages are low IL-10 producers (Figure 

3.16 B). Although this experiment used 129 mice on the S8 background and the 129 

Stat1
tm1Rds

 mice are on an S6/SvEv background, this suggested to us that macrophages 

derived from the 129 strain may be low IL-10 producers. Therefore 129 macrophages 

may be unlikely to induce a type I IFN dependent second peak of Il10 mRNA, and 

consequently a lack of type I IFN signalling, or STAT1, may not affect IL-10 

production in 129 macrophages. Thus, to assess the role of STAT1 in type I IFN 

mediated regulation of IL-10 using 129 Stat1
tm1Rds

 mice, IFN-β was added to 129 WT 

and 129 Stat1
tm1Rds

 macrophages 2 or 12 h prior to LPS stimulation, and IL-10 

production was quantified (Figure 3.16 C).  The addition of IFN-β 2 or 12 h prior to 

LPS stimulation, enhanced IL-10 production in both 129 WT and 129 Stat1
tm1Rds

 

macrophages (Figure 3.16 C). Importantly however, the relative increase in IL-10 

production in response to IFN-β treatment was greatly reduced in 129 Stat1
tm1Rds

 

macrophages relative to WT, particularly after a 12 h IFN-β pre-incubation (Figure 3.16 

C). This suggests that STAT1 is an important component of the mechanism by which 

type I IFN regulates IL-10. The finding that 129 Stat1
tm1Rds

 macrophages are able to 

enhance IL-10 production after IFN-β treatment however (Figure 3.16 C), suggests that 

STAT1 independent mechanisms may also be present.   
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3.3.3.4 STAT-1 is phosphorylated in LPS stimulated C57BL/6 and BALB/c 

macrophages but not C57BL/6 Ifnar1
-/-

 macrophages.  

Our data (Figure 3.16 C), and a previously published report (Guarda et al. 2011) 

suggest that type I IFN largely depends on STAT1 to promote IL-10 production. We 

postulated that the relatively low levels of IFN-β produced by BALB/c macrophages 

(see Figure 3.9) may not sufficiently activate STAT-1 and that this may be linked to the 

absence of a type I IFN dependent second peak of Il10 mRNA in this strain (see Figure 

3.8). To investigate this, we assessed STAT-1 phosphorylation in LPS stimulated 

C57BL/6 and BALB/c macrophages at 1, 2, 4 and 6 h post-stimulation. We also 

included C57BL/6 Ifnar1
-/- 

macrophages in the experiment to be able to confirm that 

any STAT-1 phosphorylation present in WT macrophages was dependent on type I IFN 

signalling. In C57BL/6 macrophages, STAT-1 phosphorylation was strongest at 2 h but 

was still detectable at 4 and 6 h (Figure 3.17). In BALB/c macrophages, STAT1 

phosphorylation was again seen at 2, 4 and 6 h and was not markedly different 

compared to C57BL/6 macrophages (Figure 3.17).  No STAT1 phosphorylation was 

detected in C57BL/6 Ifnar1
-/- 

macrophages, confirming that type I IFN signalling was 

responsible for the STAT1 activation in C57BL/6 WT cells (Figure 3.17). Of note, total 

STAT1 levels were greatly reduced in C57BL/6 Ifnar1
-/- 

macrophages compared to 

C57BL/6 or BALB/c macrophages, in keeping with a reported role for basal levels of 

type I IFN signalling in the maintenance of STAT1 expression (Gough et al. 2010). In 

contrast, the level of total STAT-1 appeared consistent in C57BL/6 and BALB/c 

macrophages. Thus, the low level of IFN-β produced by LPS stimulated BALB/c 

macrophages appears sufficient to phosphorylate STAT1 to a level comparable to 

C57BL/6 macrophages. This suggests that a deficiency in STAT1 phosphorylation, at 
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least at Tyr-701, is not responsible for the lack of a second peak of Il10 mRNA in 

BALB/c macrophages.  

 

3.3.4 Investigation into the genetic factors regulating differential IL-10 

production in LPS, Pam3CSK4 and HkBps stimulated C57BL/6 and 

BALB/c macrophages.  

Our investigation so far has provided significant insight into the mechanisms that 

regulate differential IL-10 production in C57BL/6 and BALB/c macrophages. We were 

further interested in understanding the genetic factors which contribute to this 

phenotype. A commonly used approach to gain an understanding of the genetic 

elements that control a phenotype, is the genetic cross (Flint et al. 2012). In this study 

design, mice derived from two different inbred strains are crossed to produce an F1 

generation. The F1 generation is then intercrossed to produce a genetically diverse F2 

generation. Phenotyping and genotyping of the F2 generation can then detect areas of 

the genome that are significantly associated with a given phenotype (Flint et al. 2012). 

Thus, as a complimentary approach to investigating the mechanisms underlying 

differential IL-10 production in LPS, Pam3CSK4 and HkBps stimulated C57BL/6 and 

BALB/c macrophages, we analysed IL-10 production from C57BL/6 x BALB/c F1 and 

F2 macrophages.  

 

3.3.4.1 C57BL/6 x BALB/c F1 macrophages produce intermediate levels of IL-10  

F1 mice were derived from C57BL/6 females and BALB/c males. C57BL/6, BALB/c 

and C57BL/6 x BALB/c F1 macrophages (derived from 7 individual F1 mice) were 

stimulated with LPS for 6 h, Pam3CSK4 for 24 h and HkBps for 24 h (Figure 3.18). 
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These time points were chosen to represent peak IL-10 production with the respective 

stimuli, based on previous experiments (see Figure 3.3). In response to each stimulus, 

F1 macrophages produced levels of IL-10 that were almost exactly intermediate 

between C57BL/6 and BALB/c macrophages (Figure 3.18). By definition, the F1 

population is identical as each mouse is heterozygous at every loci for C57BL/6 and 

BALB/c alleles. Thus, as expected, macrophages derived from different F1 mice 

produced similar amounts of IL-10 (Figure 3.18). This intermediate F1 phenotype 

suggests that the genetic factor(s) contributing to the level of IL-10 production are not 

dominant in either C57BL/6 or BALB/c mice. This could be the result of one co-

dominant locus, or the result of many interacting genes contributing to IL-10 production.  

 

3.3.4.2 Preliminary analysis of LPS, Pam3CSK4 and HkBps stimulated C57BL/6 x 

BALB/c F2 macrophages shows segregation of the genetic factors 

controlling IL-10 production.   

Unlike the F1 population, the F2 population is genetically diverse due to the 

heterozygosity of the F1 parents. Thus, the genetic factor(s) which control IL-10 

production will segregate within the population. The type of segregation observed can 

provide information about the nature of the trait-determining genetic factors. For 

example, if a trait is controlled by one gene or a small number of linked genes, a 

phenotypic ratio of 1 C57BL/6 (homozygous): 2 F1 (heterozygous): 1 BALB/c 

(homozygous) would be predicted. If several genetic loci determine the level of IL-10 

production, the F2 generation may have a spectrum of IL-10 production. We began by 

analysing IL-10 production from a relatively small number of C57BL/6 x BALB/c F2 

mice. Macrophages derived from five C57BL/6, five BALB/c, and fourteen C57BL/6 x 
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BALB/c F2 macrophages (labelled A-N) were stimulated with LPS for 6 h, Pam3CSK4 

for 24 h and HkBps for 24 h (Figure 3.19). In response to all three stimuli, the F2 

population displayed diverse levels of IL-10 production. Some F2 macrophages e.g. A 

and B (orange boxes), produced consistently low levels of IL-10 in response to all three 

stimuli (Figure 3.19). However, other F2 macrophages e.g. F and H (green boxes), 

produced low levels of IL-10 in response to LPS or HkBps, but even more IL-10 than 

C57BL/6 mice in response to Pam3CSK4 (Figure 3.19). This suggests that different 

genes may control the level of IL-10 production in response to LPS and HkBps 

compared to Pam3CSK4 as they are segregating separately in the F2 population (Figure 

3.19). This would fit with our previous data, suggesting that a common type I IFN 

signalling dependent mechanism underlies the level of IL-10 production in both LPS 

and HkBps stimulated cells, but not Pam3CSK4 stimulated cells (see Figure 3.10). With 

this conservative number of F2 mice it is difficult to clearly determine the segregation 

pattern of IL-10 production, however, given that several mice had an IL-10 expression 

level that was distinct from C57BL/6, BALB/c and what would be predicted from the 

F1 population (see Figure 3.18), the regulation of IL-10 production in C57BL/6 and 

BALB/c macrophages may be controlled by several distinct genetic loci.  

 

3.3.5 Investigation into IL-10 production in C57BL/6 and BALB/c mice in vivo.   

3.3.5.1 LPS treatment induces higher Il10 and Ifnb1 mRNA expression in the spleen 

of C57BL/6 Rag1
-/-

 mice compared to BALB/c Rag2
-/-

 mice 

The majority of experiments so far in this investigation have been focussed on 

macrophages stimulated in vitro. We next investigated if we could translate our key 

observations into an in vivo setting. To do this, we treated C57BL/6 Rag1
-/-

 and BALB/c 
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Rag2
-/-

 mice by i.p. injection with 150 µg LPS (or the equivalent volume of PBS as a 

control) for 1, 3 and 6 h (Figure 3.20). Although the duration of these experiments is 

short and the adaptive immune response is unlikely to be activated within this time-

frame, RAG1 or RAG2 deficient mice which lack T and B cells were used as peritoneal 

B cells are known to produce IL-10 in response to LPS (O'Garra et al. 1992) and may 

therefore confound our results. At the chosen time-points, spleens were collected for the 

analysis of Il10 and Ifnb1 mRNA expression, and serum was collected for IL-10 protein 

analysis (Figure 3.20). PBS treated mice expressed low levels of splenic Il10 mRNA, 

and Ifnb1 mRNA and serum IL-10 was undetectable (Figure 3.20, top). LPS treatment 

elevated Il10 mRNA expression at 1, 3 and 6 h in the spleens of both C57BL/6 Rag1
-/-

 

and BALB/c Rag2
-/-

mice compared to the PBS controls (Figure 3.20, bottom). At each 

time point, Il10 mRNA expression was higher in spleens of C57BL/6 Rag1
-/-

 mice 

(Figure 3.20). LPS treatment also elevated expression of Ifnb1 in the spleen, 

predominantly at 1 h post-injection. Similarly to Il10 mRNA, Ifnb1 mRNA was more 

highly expressed in C57BL/6 Rag1
-/-

 than BALB/c Rag2
-/-

mice (Figure 3.20). The level 

of IL-10 protein in the serum of LPS treated mice was at its highest at 1 h post-injection, 

but was highly variable and not significantly different between the strains at this time-

point (Figure 3.20). IL-10 levels were lower but still present in the serum at 3 h post-

injection and at this time were significantly higher in C57BL/6 Rag1
-/-

 mice (Figure 

3.20). By 6 h, serum IL-10 levels were almost back to baseline in both C57BL/6 Rag1
-/-

 

and BALB/c Rag2
-/-

mice (Figure 3.20). Thus, although the differences in IL-10 serum 

levels were not profound in this in vivo model, the splenic mRNA data was concordant 

with our in vitro macrophage results with higher levels of Il10 mRNA and Ifnb1 mRNA 

expression in C57BL/6 compared to BALB/c mice.  
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3.4 Discussion 

IL-10 is an anti-inflammatory cytokine with an important role in limiting immune 

mediated damage to the host (Moore et al. 2001). Macrophages are potent producers of 

IL-10 in response to TLR ligation (Saraiva et al. 2010). However, owing to the complex 

nature of IL-10 regulation, a full understanding of the combined factors which regulate 

this cytokine in response to different stimuli is incomplete. To further our understanding 

of IL-10 regulation, we compared IL-10 production from C57BL/6 and BALB/c 

macrophages stimulated with purified PRR ligands and heat-killed bacteria. We 

observed that C57BL/6 macrophages produce higher levels of IL-10 than BALB/c 

macrophages when stimulated with LPS (TLR4), Pam3CSK4 (TLR2), or heat-killed 

B.pseudomallei (TLR2/4), and focussed our studies on these three stimuli. Our data 

shows that a type I IFN dependent but IL-27 independent mechanism regulates 

differential IL-10 production in LPS and heat-killed B.pseudomallei, but not 

Pam3CSK4 stimulated C57BL/6 and BALB/c macrophages.  

 

3.4.1 Mechanisms of differential IL-10 production in C57BL/6 and BALB/c 

macrophages 

Our initial studies into the mechanisms underlying differential IL-10 production in 

TLR2, TLR4 and TLR2/4 stimulated C57BL/6 and BALB/c macrophages demonstrated 

no clear correlation between Tlr mRNA expression and the level of IL-10 production. 

Although we did not assess TLR expression at the protein level, a recent report showed 

that TLR4 surface expression is equivalent in C57BL/6 and BALB/c BMDM and 

resident peritoneal macrophages (Tsukamoto et al. 2013). Thus, we reason that 
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differential TLR expression is unlikely to be a driving force behind strain-dependent IL-

10 production in macrophages. We additionally compared ERK and p38 activation 

within the first hour of TLR2 and TLR4 stimulation in C57BL/6 and BALB/c 

macrophages as these MAP kinases are important for the positive regulation of IL-10 

downstream of TLRs (Foey et al. 1998; Yi et al. 2002; Dillon et al. 2004; Kaiser et al. 

2009). However, we found no evidence for differential activation of these signalling 

molecules in C57BL/6 and BALB/c macrophages within this early time-frame.  

 

We went on to study the transcriptional profile of Il10 mRNA in LPS, Pam3CSK4 and 

heat-killed B.pseudomallei stimulated C57BL/6 and BALB/c macrophages. Our 

detailed kinetics of Il10 mRNA expression revealed that C57BL/6 macrophages express 

two peaks of Il10 mRNA when stimulated with LPS or heat-killed B.pseudomallei, 

whereas BALB/c macrophages only express one. To our knowledge, this biphasic 

regulation of Il10 gene expression in C57BL/6 macrophages has not previously been 

described. The further finding that C57BL/6 macrophages produce higher levels of IFN-

β than BALB/c macrophages when stimulated with LPS or heat-killed B.pseudomallei, 

lead us to investigate the role of type I IFN in strain-dependent IL-10 production. We 

found that the second peak of Il10 mRNA in LPS or heat-killed B.pseudomallei 

C57BL/6 macrophages was dependent on type I IFN signalling. Further, the abrogation 

of the second Il10 mRNA peak resulted in a significant reduction in IL-10 protein levels 

in these cells. Thus, type I IFN is central in mediating differential IL-10 production in 

LPS and heat-killed B.pseudomallei stimulated C57BL/6 and BALB/c macrophages. 

These findings are in keeping with previous reports that endogenous type I IFN is 

important for the production of IL-10 in LPS stimulated C57BL/6 macrophages (Chang 
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et al. 2007a) and that the TRIF pathway, which induces type I IFN downstream of 

TLR4 (Yamamoto et al. 2003a), contributes to IL-10 production (Boonstra et al. 2006). 

However, our novel findings indicate that this regulatory loop is absent in BALB/c 

macrophages. Despite complete abrogation of the second peak of Il10 mRNA in 

C57BL/6 Ifnar1
-/-

 macrophages, the first Il10 mRNA peak at 30 min was largely 

unaffected by the absence of type I IFN signalling. This suggested that type I IFN is 

important for the maintenance of IL-10 production, in agreement with the recent 

findings of Pattison et al., where the absence of type I IFN only affected Il10 mRNA 

expression at later time points (Pattison et al. 2012). This may also suggest that type I 

IFN produced in response to stimulation, as opposed to basal type I IFN production 

which has been found to have widespread cellular effects (Gough et al. 2012), may be 

most important for the induction of the second peak of Il10 mRNA. This could be 

formally tested with the use of a blocking antibody against the type I IFN receptor 

during stimulation, although a complete abrogation of type I IFN mediated signalling 

would have to be confirmed.  

 

We postulated that in LPS and heat-killed B.pseudomallei stimulated BALB/c 

macrophages, the lower level of IFN-β production in response to stimulation may be 

responsible for the lack of secondary Il10 transcription in this strain. Differential 

production of type I IFN in C57BL/6 and BALB/c mice has been shown in the context 

of Newcastle disease virus infection where it was associated with variant alleles at the 

If-1 locus on chromosome 3 (De Maeyer-Guignard et al. 1986). However, differential 

type I IFN production has only been previously implied in LPS stimulated macrophages 

by a delayed profile of IFN-inducible genes in BALB/c macrophages relative to 
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C57BL/6 (Wells et al. 2003). Our observation that the addition of IFN-β enhanced IL-

10 production in both C57BL/6 and BALB/c macrophages, demonstrated that BALB/c 

macrophages do have the ability to regulate IL-10 in response to type I IFN and thus 

lower type I IFN induction by LPS and HkBps may contribute to lower IL-10 

production. We did not however consistently observe a complete rescue of IL-10 

production from BALB/c macrophages through the addition of IFN-β, even at high dose. 

There are several possible explanations for this. Firstly, it could be that together with 

differential type I IFN production, there is a difference in responsiveness to type I IFN 

in C57BL/6 and BALB/c macrophages. If this is the case, the addition of type I IFN 

alone would not be sufficient to rescue IL-10 production in BALB/c macrophages. 

Differential type I IFN responsiveness of C57BL/6 and BALB/c mice has been 

previously reported in context of the IRF2 deficient skin psoriasis model (Arakura et al. 

2007). IRF2 deficient C57BL/6 mice spontaneously develop psoriasis associated with 

heightened responsiveness to type I IFN (Hida et al. 2000). BALB/c IRF2 deficient 

mice however do not develop disease, and this was attributed to lower type I IFN 

responsiveness in this strain (Arakura et al. 2007).  More detailed investigations into the 

activation of type I IFN mediated signal transduction in C57BL/6 and BALB/c 

macrophages in our system would help to clarify this issue. Secondly, the induction of 

the second peak of Il10 mRNA in C57BL/6 macrophages may be the result of a 

combined IFN-β and IFN-α mediated signal, as all type I IFNs signal through the same 

receptor (Stark et al. 1998). Thus, the addition of IFN-β alone may not fully recapitulate 

the type I IFN requirement for secondary Il10 mRNA expression. We did attempt to 

quantify IFN-α2 and IFN-α5 production in LPS and heat-killed B.pseudomallei 

C57BL/6 and BALB/c macrophages as these IFN-α’s had been previously detected by 
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microarray in LPS stimulated C57BL/6 and BALB/c macrophages (Wu, O’Garra, 

unpublished). However, we found that neither were reliably detectable by qPCR in 

either strain. This suggests that IFN-α may not play a role in our system, although it is 

possible that IFN-α production is below the limit of detection by qPCR, or that IFN-α’s 

other than 2 and 5 are induced in response to these stimuli. Lastly, the timing of 

endogenous type I IFN production may be important in the downstream regulation of 

Il10 expression. For example, factors activated or induced downstream of the type I IFN 

receptor may be required to synergise with factors activated by TLR signalling. As we 

added IFN-β 2 h prior to stimulation, it is possible that this does not fully replicate the 

signalling events induced by endogenous type I IFN. Nevertheless, the complete lack of 

a second Il10 mRNA peak in C57BL/6 Ifnar1
-/-

 macrophages and subsequent reduction 

in IL-10 protein production to the level of the BALB/c, demonstrates the importance of 

type I IFN in driving the higher levels of IL-10 production in C57BL/6 macrophages in 

response to LPS and heat-killed B.pseudomallei.  

 

It is generally accepted that TLR2 does not induce type I IFN in macrophages due to the 

lack of TRIF pathway activation (Doyle et al. 2002; Toshchakov et al. 2002). More 

recently however, this view has been challenged by a report that TLR2 can directly 

induce type I IFN in response to Pam3CSK4 in macrophages via a Myd88/IRF1/IRF7 

dependent pathway (Dietrich et al. 2010). Other studies have shown that TLR2 

activation can induce type I IFN in bone marrow cells, but only in response to vaccinia 

virus, not Pam3CSK4 (Barbalat et al. 2009). Thus, the induction of type I IFN by 

bacterial TLR2 ligands remains controversial and may vary according to the cell type. 

We observed that relative to LPS or heat-killed B.pseudomallei stimulation, the level of 
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IFN-β produced by Pam3CSK4 stimulated cells was negligible. Our findings are 

therefore more in agreement with the widespread view that the capacity of Pam3CSK4 

to induce type I IFN is limited (Doyle et al. 2002; Toshchakov et al. 2002). This may 

explain the different kinetics of IL-10 protein production in Pam3CSK4 stimulated 

compared to LPS and heat-killed B.pseudomallei stimulated macrophages, and the lack 

of a second Il10 mRNA peak in C57BL/6 cells. Surprisingly, in Pam3CSK4 stimulated 

C57BL/6 Ifnar1
-/-

 macrophages, despite Il10 mRNA only being modestly affected by 

the absence of type I IFN, IL-10 protein levels were elevated compared to C57BL/6 WT 

at 24 h. Of note, there was only a difference in IL-10 protein production in C57BL/6 

WT and C57BL/6 Ifnar1
-/-

 macrophages after 12 h, suggesting a delayed effect of the 

absence of type I IFN signalling. Thus, in the context of TLR2 stimulation, an 

extremely low level of induced type I IFN may antagonise the production of IL-10, 

potentially by a post-transcriptional mechanism. Alternatively, the absence of basal type 

I IFN may be influencing IL-10 production in response to this stimulus.  A role for 

induced or basal type I IFN in the regulation of Pam3CSK4 induced IL-10 production 

has not previously been described and warrants further investigation. However, the 

inability to clearly distinguish differential type I IFN production in Pam3CSK4 

stimulated C57BL/6 and BALB/c macrophages and the enhancement of IL-10 

production in the absence of type I IFN in response to this stimulus, do not support a 

role for type I IFN in mediating differential IL-10 production in Pam3CSK4 stimulated 

C57BL/6 and BALB/c macrophages. As the magnitude of peak Il10 mRNA at 30 min 

was consistently lower in Pam3CSK4 stimulated BALB/c macrophages compared to 

C57BL/6 macrophages, a potential mechanism could include enhanced transcription 

from the Il10 gene in C57BL/6 macrophages as a result of differential TLR signalling, 
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(independent of p38 or ERK). However, given that the mRNA dynamics at later time 

points appear to determine downstream IL-10 protein levels in LPS and heat-killed 

B.pseudomallei stimulated macrophages, the maintenance of Il10 mRNA above 

baseline in Pam3CSK4 stimulated C57BL/6 macrophages but not BALB/c, may also be 

relevant to differential IL-10 production. Further investigation is required to determine 

if the prolonged Il10 mRNA levels observed in C57BL/6 macrophages are a 

consequence of continued expression, or enhanced stability of Il10 mRNA in this strain.  

 

In our initial analysis, we also observed higher IL-10 production in C57BL/6 

macrophages compared to BALB/c macrophages when stimulated with Poly I:C and 

heat-killed L.monocytogenes. In view of our finding that type I IFN mediates 

differential IL-10 production in response to TLR4 stimulation, we postulate that type I 

IFN may also have a role in the differential IL-10 production downstream of Poly I:C, 

which itself is able to induce type I IFN in macrophages (Doyle et al. 2002). The innate 

recognition of L.monocytogenes has previously been associated with TLR2, with a less 

important role for TLR4 (Seki et al. 2002; Torres et al. 2004). It may be that differential 

IL-10 production in response to heat-killed L.monocytogenes is mediated by a similar 

mechanism as Pam3CKS4 stimulated cells, although as L.monocytogenes also 

stimulates additional PRRs such as TLR5 (Hayashi et al. 2001) and NOD2 (Leber et al. 

2008), other factors may also contribute.  
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3.4.2 The mechanisms of type I IFN mediated IL-10 regulation in LPS and heat-

killed B.pseudomallei stimulated cells 

The observation that type I IFN signalling induces an increase in Il10 mRNA levels 

manifested by a second peak in C57BL/6 macrophages, strongly suggested that type I 

IFN promotes IL-10 production through a transcriptional mechanism. This was 

confirmed by the quantification of premature Il10 mRNA, which also had a second peak 

of Il10 mRNA from 4-6 h post LPS stimulation in C57BL/6 macrophages and is in 

agreement with previous studies which have also suggested a transcriptional mechanism 

of Il10 regulation by type I IFN (Ziegler-Heitbrock et al. 2003; Wang et al. 2010). 

However, an additional stabilising effect of type I IFN on Il10 mRNA, which has not 

been previously studied, cannot be discarded at this stage and we are currently 

investigating this possibility.  

 

IL-27 is a cytokine with pleiotropic functions (Hall et al. 2012; Vignali et al. 2012). In 

the context of immunoregulatory roles, it is established that IL-27 enhances IL-10 

production from various effector T cell subsets (Awasthi et al. 2007; Fitzgerald et al. 

2007; Stumhofer et al. 2007; Batten et al. 2008; Anderson et al. 2009; Freitas do 

Rosario et al. 2012). In keeping with previous reports (Molle et al. 2010), we observed 

that IL-27 was positively regulated by type I IFN. Interestingly, although BALB/c 

macrophages express low levels of type I IFN, their production of IL-27 was not 

impaired. This could be because only a small amount of type I IFN is required for IL-27 

production or that in BALB/c macrophages, IL-27 is induced by an additional signal. 

Although the effects of IL-27 on innate cell populations are less clearly defined, it has 

been reported that in LPS stimulated macrophages, type I IFN requires the induction of 
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IL-27 to optimally enhance IL-10 production (Iyer et al. 2010). The results of our study 

contradict that of Iyer et al. as have we found that IL-10 production from C57BL/6 

macrophages in response LPS and heat-killed B.pseudomallei was unaffected by the 

absence of IL-27 signalling. We also show that treatment of cells with IL-27 failed to 

modulate IL-10 production in media or LPS treated C57BL/6, BALB/c or C57BL/6 

Ifnar1
-/-

 macrophages. Additionally, the enhancement of IL-10 by IFN-β treatment was 

independent of IL-27 signalling.  Thus, we have no evidence to suggest that IL-27 

regulates IL-10 production in macrophages. A potentially relevant difference between 

our study and that of Iyer et al. is that our investigations of type I IFN mediated 

regulation of IL-10 have mainly centred around IFN-β, whereas that of Iyer et al. 

focussed on IFN-α (Iyer et al. 2010). As type I IFNs are known to mediate differential 

effects despite signalling through the same receptor (van Boxel-Dezaire et al. 2006; 

Thomas et al. 2011), it is conceivable that the requirements of IFN-β and IFN-α for the 

induction of IL-10 may be different, the former being independent of IL-27 but the 

latter requiring IL-27. Nevertheless, our findings are in keeping with those of an earlier 

study showing that resting murine macrophages are unresponsive to IL-27 (Kalliolias et 

al. 2008). This study from Kalliolias et al. further showed a negative impact of IL-27 on 

IL-10 production in human monocytes (Kalliolias et al. 2008). Thus, the regulation of 

IL-10 by IL-27 in monocytes and macrophages is disputed in the literature and our 

study may help to resolve this issue.  

 

In our investigation into the involvement of STAT1 in type I IFN mediated regulation 

of IL-10, we observed similar phosphorylation of STAT1 at Tyr-701 in LPS stimulated 

C57BL/6 and BALB/c macrophages. STAT1 Tyr-701 phosphorylation was dependent 
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on type I IFN in C57BL/6 macrophages. Therefore, despite a reduced level of type I 

IFN production in BALB/c macrophages, STAT1 Tyr-701 phosphorylation was not 

substantially impaired. This may imply that responses to type I IFN other than the 

phosphorylation of STAT1 at Tyr701 are lacking in BALB/c macrophages. Of note, the 

STAT1-α isoform is also phosphorylated by type I IFN signalling at Ser727 and this 

modification has been reported to alter STAT1 transcriptional activity (Bancerek et al. 

2013). In light of this, it would be interesting to additionally compare STAT1 Ser727 

phosphorylation in C57BL/6 and BALB/c macrophages stimulated with LPS and/or 

treated with type I IFN.  

 

Our finding that LPS stimulated STAT1 deficient 129 macrophages had a greatly 

reduced enhancement of IL-10 upon IFN-β treatment, supports an important role for 

STAT1 in this process. However, the effects of type I IFN on IL-10 production were not 

completely abrogated in the absence of STAT1, suggesting the presence of STAT1 

independent pathways of IL-10 regulation by type I IFN. This is in contrast to a 

previous study using STAT1 deficient C57BL/6 macrophages which showed that the 

enhancement of IL-10 by IFN-β and IFN-α addition to LPS stimulated cells was 

completely dependent on STAT1 (Guarda et al. 2011). The differences between this 

study and ours could be due to the genetic background of the mouse, or that we 

quantified IL-10 at 24 h, whereas Guarda et al. quantified IL-10 at 4 h. STAT1 

independent pathways of IL-10 regulation in response to type I IFN may include the 

PI(3)K/AKT pathway which has been shown to mediate the type I IFN dependent 

regulation of IL-10 in human DCs (Wang et al. 2010). Activation of the MAP kinases 

p38 (Uddin et al. 1999; Li et al. 2004) and potentially ERK2 (David et al. 1995) has 
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also been reported to occur downstream of the type I IFN receptor. As positive 

regulators of IL-10 (Foey et al. 1998; Yi et al. 2002; Dillon et al. 2004), it is possible 

that p38 and ERK contribute to the regulation of IL-10 by type I IFN. However, in this 

investigation we noted that upon the inhibition of p38 and MEK1/ERK activation in 

C57BL/6 macrophages, IL-10 production was completely abrogated in Pam3CSK4 but 

not LPS stimulated cells. This difference may reflect the presence of a p38 and ERK 

independent IL-10 inducing pathway that is activated downstream of LPS, but not 

Pam3CSK4, a candidate for which could be type I IFN.   

 

3.4.3 Genetic factors underlying differential IL-10 production in C57BL/6 and 

BALB/c macrophages 

We generated C57BL/6 x BALB/c F1 and F2 mice to gain insight into the genetic 

variation that contributes to differential IL-10 production in C57BL/6 and BALB/c 

macrophages. The F1 population displayed an intermediate phenotype between the 

parental strains. This result may be indicative of genetic factors that have incomplete 

dominance, or potentially a gene dosage effect. As an example, if the level of type I IFN 

production determines the level of IL-10 production in LPS and heat-killed 

B.pseudomallei stimulated macrophages, an intermediate production of type I IFN from 

F1 macrophages could give rise to an intermediate level of IL-10. In this respect, it 

would be interesting to determine the level of Ifnb1 expression and IFN-β production in 

F1 macrophages stimulated with LPS or heat-killed B.pseudomallei. The F1 

macrophages analysed in this study were derived from a cross of C57BL/6 female and 

BALB/c male mice. In future studies, it will also be important to assess F1 macrophages 

derived from the reciprocal cross (BALB/c female, C57BL/6 male) to exclude any 



Chapter 3: The regulation of IL-10 in C57BL/6 and BALB/c macrophages 

 

 147 

parental genetic effects. Although macrophages derived from only fourteen F2 mice 

were analysed, our preliminary findings suggest that the F2 population may produce a 

spectrum of IL-10 levels. Thus, it may be that the several genetic loci determine the 

ultimate level of IL-10, meaning that differential IL-10 production may be a complex 

genetic trait. Continuation of analysis of F2 mice to add to this dataset would help to 

clarify this issue. Of note, genetic intercross studies which go on to identify associated 

genetic loci by statistical linkage analysis, typically require in the region of at least 

100+ F2 mice in order to sufficiently power the study (Flint et al. 2012). This has been 

outside of the scope of the current work, but may form a basis for future investigations. 

 

3.4.4 Differential IL-10 and type I IFN production in C57BL/6 and BALB/c 

macrophages in the context of bacterial infection 

C57BL/6 mice are more resistant than BALB/c mice to B.pseudomallei infection 

(Leakey et al. 1998). The mechanism of this strain difference, and if it involves 

differing resistance to the pathogen or immunopathology is unclear. We showed that 

heat-killed B.pseudomallei induces IL-10 in macrophages through both TLR2 and 

TLR4, however the dependence of heat-killed induced B.pseudomallei IL-10 production 

on type I IFN and the more severe decrease in IL-10 production from Tlr4
-/-

 

macrophages relative to Tlr2
-/-

, implies that TLR4 is dominant for the production of this 

cytokine. We observed higher IL-10 production in heat-killed B.pseudomallei 

stimulated C57BL/6 macrophages compared to BALB/c. Comparative studies of 

C57BL/6 and BALB/c mice infected with B.pseudomallei by the intra-nasal route have 

shown higher levels of Il10 mRNA in the lungs and livers of C57BL/6 mice (Liu et al. 

2002). A later study of C57BL/6 and BALB/c mice infected by the aerosol route, 
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reported the presence of IL-10 in the lungs and spleens of C57BL/6 mice, but not 

BALB/c mice (Tan et al. 2008). These findings are congruent with our results and 

suggest that our findings of differential IL-10 production in vitro, may translate to an in 

vivo B.pseudomallei infection model, although the in vivo sources of IL-10 have not 

been confirmed in these studies.  

 

The significance of IL-10 production in B.pseudomallei infection is currently unclear 

and there are no published findings on the outcome of B.pseudomallei infection in IL-10 

deficient mice. However, some reports have implicated a role for uncontrolled 

inflammation in the greater susceptibility of BALB/c mice. For example, higher 

expression of liver proinflammatory cytokine mRNA, including that of IL-6, TNF-α, 

IL-1β and IFN-γ has been observed in BALB/c mice (Ulett et al. 2000a; Ulett et al. 

2000b). In an aerosol infection study, BALB/c mice were found to produce higher 

levels of IL-6, TNF-α and IFN-γ protein compared to C57BL/6 mice in the lung and the 

spleen (Tan et al. 2008). As IL-10 is an inhibitor of proinflammatory cytokine 

production (Moore et al. 2001), it is possible that type I IFN driven IL-10 may have a 

protective role in reducing immune mediated pathology in C57BL/6 mice. Importantly 

however, type I IFN has many immuno-modulatory effects (Trinchieri 2010), and 

differential type I IFN production in C57BL/6 and BALB/c macrophages may influence 

the outcome of infection with B.pseudomallei, independently of IL-10. Of note, a 

differential capacity of C57BL/6 and BALB/c phagocytes to contain bacterial 

replication has also been implicated as a mechanism for strain-dependent resistance to 

B.pseudomallei infection (Leakey et al. 1998; Breitbach et al. 2006). Further, BALB/c 

mice critically depend on iNOS to control bacterial replication, whereas in C57BL/6 
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mice, the absence of iNOS improved the course of disease (Breitbach et al. 2011). Thus, 

the full mechanisms leading to resistance in C57BL/6 mice and susceptibility in 

BALB/c mice may be multifaceted.   

 

3.4.5 IL-10 and type I IFN production in C57BL/6 and BALB/c mice in vivo 

We finally extended our study to assess LPS induced IL-10 and type I IFN production 

from RAG deficient C57BL/6 and BALB/c mice in vivo. The splenic mRNA data 

correlated well with our previous in vitro findings that Il10 and Ifnb1 mRNA production 

were higher in the C57BL/6. Although our study was over too short a time-frame to 

assess the survival of LPS administered mice, BALB/c mice have been described to be 

more sensitive to endotoxin challenge than C57BL/6 mice (Yang et al. 2011b). Further, 

IL-10 is known to be protective in animal models of septic shock (Berg et al. 1995) and 

non-T cells have been suggested to be an important source of protective IL-10 in this 

model (Roers et al. 2004). These reports may be congruent with our mRNA data, 

however, we did not find a substantial difference in IL-10 production in the serum of 

RAG deficient C57BL/6 and BALB/c mice. Of relevance, our earlier findings indicated 

that LPS and Pam3CSK4 stimulated C57BL/6 and BALB/c mDCs do not differentially 

produce IL-10 in the way that macrophages do, suggesting that mechanisms of strain-

dependent IL-10 production are not conserved amongst macrophages and DCs. This 

may not be surprising as it has been previously proposed that macrophages and DCs 

differ in their level of IL-10 production, potentially linked to a lower activation of ERK 

in DCs compared to macrophages (Kaiser et al. 2009). Thus, it is possible that the 

serum IL-10 level is too general a read out for the macrophage-specific phenotype we 

are studying. A more directed approach of assessing IL-10 production from cells ex vivo, 
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such monocytes or tissue resident macrophages, may help us begin to assess if C57BL/6 

and BALB/c cells that have not been differentiated in vitro also differ in their level of 

IL-10 production. 
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Figure 3.1 C57BL/6 macrophages produce higher levels of IL-10 than BALB/c 

macrophages when stimulated with LPS, Pam3CSK4, Poly I:C, HkBps or HkLm. 

BMDM were generated from C57BL/6 and BALB/c mice. Cells were stimulated for 24 

h with (A) LPS, Pam3CSK4, or Poly I:C and (B) heat-killed B.pseudomallei (HkBps, 

576 or K9 isolates) or (C) heat-killed L.monocytogenes (HkLm) at the indicated doses. 

IL-10 protein in supernatants was quantified by ELISA (detection limit 50 pg/ml). 

Graphs show means ± SD of three cultures. *p<0.05, **p<0.01, ***p<0.001 as 

determined by Student’s t-test at each dose. Representative of two independent 

experiments.  
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Figure 3.2 TLR4, TLR2, TRIF and MyD88 contribute to IL-10 production in 

HkBps stimulated macrophages.  

BMDM were generated from WT, Tlr2
-/-

, Tlr4
-/-

, Trif
-/-

 and Myd88
-/-

 mice, all on a 

C57BL/6 background. Cells were stimulated with LPS (10 ng/ml), Pam3CSK4 (200 

ng/ml) or HkBps (10 HkBps: 1 BMDM) for the indicated times. IL-10 protein in cell-

free supernatants was measured by ELISA (detection limit 50 pg/ml). Graphs show 

means of three cultures ±SD. Significance (**p<0.01) represents each individual strain 

compared to C57BL/6 with the following exceptions: 
a
 Tlr2

-/-
; 

b
 Trif

-/-
; 

c
 Tlr4

-/-
, as 

determined by one-way ANOVA for each time point. Representative of two to three 

independent experiments. 
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Figure 3.3 LPS, Pam3CSK4 and HkBps stimulated C57BL/6 macrophages 

produce higher levels of IL-10 than BALB/c macrophages at all time-points during 

the response.  

C57BL/6 and BALB/c BMDM were stimulated with LPS (10 ng/ml), Pam3CSK4 (200 

ng/ml) or HkBps (10 HkBps:1 BMDM) for the indicated times. IL-10 protein was 

measured in supernatants by ELISA (detection limit 50 pg/ml). Graphs show means 

±SD of three cultures. *p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test 

at each time point. Representative of six independent experiments. 
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Figure 3.4 C57BL/6 DCs produce higher levels of IL-10 than BALB/c DCs when 

stimulated with Curdlan, but not LPS or Pam3CSK4. 

GM-CSF differentiated BMDC were generated from C57BL/6 and BALB/c mice. Cells 

were stimulated with (A) LPS (10 ng/ml), Pam3CSK4 (200 ng/ml) or (B) Curdlan (200 

µg/ml) for 24 h. IL-10 protein in cell free supernatants was measured by ELISA 

(detection limit 50 pg/ml). Graphs show means ± SD of three cultures. *p < 0.05; **p < 

0.01 as determined Student’s t-test. Representative of four or more independent 

experiments.  
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Figure 3.5 The level of Tlr mRNA expression in C57BL/6 and BALB/c 

macrophages does not correlate with IL-10 production. 

BMDM were generated from C57BL/6 and BALB/c mice. Total RNA was harvested 

and isolated from unstimulated cells. Tlr2, Tlr4 (A), and Tlr3 (B) transcript levels were 

determined by qPCR and normalised to Hprt1 mRNA. C57BL/6 and BALB/c cells 

were cultured on three separate occasions, each represented by one bar. Bars represent 

mean of triplicate cultures ± SD. *p<0.05 as determined by Student’s t-test. 
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Figure 3.6 ERK and p38 are important regulators of TLR2 and TLR4 induced IL-

10 in C57BL/6 and BALB/c macrophages.  

BMDM were generated from C57BL/6 (black bars) and BALB/c (white bars) mice and 

stimulated for 24 hours with (A) LPS (10 ng/ml) or (B) Pam3CSK4 (200 ng/ml) in the 

presence or absence of the MEK1 (ERK1/2) inhibitor PD184352, p38 inhibitor 

SB203580 or DMSO (vehicle control). Inhibitors were added 1 hour prior to stimulation. 

IL-10 protein in supernatants was measured by ELISA (detection limit 50 pg/ml). 

Graphs show means ± SD of three cultures. ***p<0.001 relative to DMSO control as 

determined by one-way ANOVA. Representative of three or more (LPS) or two 

(Pam3CSK4) independent experiments.   
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Figure 3.7 LPS and Pam3CSK4 induced phosphorylation of ERK1/2 and p38 is 

similar in C57BL/6 and BALB/c macrophages.  

BMDM were generated from C57BL/6 and BALB/c mice. Cells were stimulated with 

LPS (10 ng/ml) or Pam3CSK4 (200 ng/ml) for 0, 7.5, 15, 30 or 60 min. Whole cell 

protein extracts were generated and analysed by Western blot for total and phospho-

ERK1/2, and total and phospho-p38. Actin was used as a loading control on each 

membrane and representative actin blots are shown. Representative of one experiment.  
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Figure 3.8 Il10 mRNA expression differs in C57BL/6 and BALB/c macrophages 

stimulated with LPS, Pam3CSK4 and HkBps.  

C57BL/6 and BALB/c BMDM were stimulated with LPS (10 ng/ml), Pam3CSK4 (200 

ng/ml) or HkBps (10 HKBps: 1 BMDM) for the indicated times. Total RNA was 

harvested and isolated. Il10 transcript levels were determined by qPCR and normalised 

to Hprt1 mRNA. Graphs show means ± SD of three cultures. *p<0.05, **p<0.01, 

***p<0.001 as determined by Student’s t-test at each time point. Representative of four 

independent experiments.  
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Figure 3.9 LPS and HkBps stimulated C57BL/6 macrophages produce higher 

levels of Ifnb1 mRNA and IFN-β protein than BALB/c macrophages.  

C57BL/6 and BALB/c BMDM were stimulated for the indicated times with LPS (10 

ng/ml), Pam3CSK4 (200 ng/ml) or HkBps (10 HkBps: 1 BMDM). (A) Total RNA was 

harvested and isolated. Ifnb1 transcript levels were determined by qPCR and normalised 

to Hprt1 mRNA. (B) IFN-β protein levels in supernatants were determined by ELISA 

(detection limit 20 pg/ml). Graphs show means ± SD of three cultures. *p<0.05, 

**p<0.01, ***p<0.001 as determined by Student’s t-test at each time point. 

Representative of at least three independent experiments.  
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Figure 3.10 The second peak of Il10 mRNA in LPS and HkBps stimulated 

C57BL/6 macrophages is dependent on type I IFN signalling, and in the absence of 

type I IFN signalling, C57BL/6 IL-10 production is similar to BALB/c.  

C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 BMDM were stimulated for the indicated 

times with LPS (10 ng/ml), Pam3CSK4 (200 ng/ml) or HkBps (10 HkBps: 1 BMDM). 

(A) Total RNA was harvested and isolated. Il10 transcript levels were determined by 

qPCR and normalised to Hprt1 mRNA. (B) Supernatants were collected at the indicated 

times and IL-10 was measured by ELISA (detection limit 50 pg/ml). (A and B) Graphs 

show means of three cultures ±SD. Statistics show significance of C57BL/6 vs. BALB/c 

(*p<0.05 **p<0.01, ***p<0.001) or C57BL/6 vs. C57BL/6 Ifnar1
-/-

 (
+
p<0.05, 

++
p<0.01, 

+++
p<0.001) as determined by one-way ANOVA for each time point. Representative of 

two (A) or four (B) independent experiments.   
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Figure 3.11 Exogenous IFN-β enhances IL-10 production in C57BL/6 and BALB/c 

macrophages.  

C57BL/6 and BALB/c BMDM were treated with 2 or 20 ng/ml IFN-β for 2 h prior to 

24 h stimulation with LPS (10 ng/ml) or HkBps (10 HkBps: 1 BMDM). IL-10 protein in 

supernatants was measured by ELISA (detection limit 50 pg/ml). Graphs show means 

±SD of three cultures. *p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test. 

Representative of three or more independent experiments.  
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Figure 3.12 Premature Il10 mRNA follows similar dynamics to mature Il10 mRNA 

in LPS stimulated C57BL/6 and BALB/c macrophages.  

C57BL/6 (top) and BALB/c (bottom) BMDM were stimulated with LPS (10 ng/ml) for 

the indicated times. Total RNA was harvested and isolated. Mature and premature Il10 

transcript levels were determined by qPCR and normalised to Hprt1 mRNA. Graphs 

show means ± SD of three cultures. Representative of three similar independent 

experiments.  
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Figure 3.13 IL-27 is induced by LPS and HkBps stimulated C57BL/6 and BALB/c 

macrophages and is positively regulated by type I IFN.  

(A) C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 macrophages were stimulated for the 

indicated times with LPS (10 ng/ml) or HkBps (10 HkBps: 1 BMDM). Statistics show 

significance of C57BL/6 vs. BALB/c (*p<0.05, **p<0.01) or C57BL/6 vs. C57BL/6 

Ifnar1
-/-

 (
+++

p<0.001) as determined by one-way ANOVA for each time point. (B) 

C57BL/6 and BALB/c BMDM were stimulated for 24 h with LPS (10 ng/ml) in the 

presence or absence of IFN-β. Statistics compare LPS alone to LPS with 2 or 20 ng/ml 

IFN-β for C57BL/6 (**p<0.01; ***p<0.001) or BALB/c (
+
p<0.05; 

++
p<0.01) BMDM as 

determined by one-way ANOVA. (A and B) IL-27 protein was measured in 

supernatants by ELISA (detection limit 20 pg/ml). Graphs show means ±SD of three 

cultures. Representative of four independent experiments. 



Chapter 3: The regulation of IL-10 in C57BL/6 and BALB/c macrophages 

 

 164 

 

 

 

Figure 3.14 The addition of IL-27 does not modulate IL-10 production in C57BL/6, 

BALB/c or C57BL/6 Ifnar1
-/-

 macrophages.  

IL-27 was added 2 h prior to stimulation (top) or at the time of stimulation (bottom) to 

C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 BMDM. Cells were stimulated with LPS for 

24 h.  IL-10 protein levels in supernatants were measured by ELISA (limit of 50 pg/ml). 

Graphs show means of three cultures ±SD. Statistics compare LPS alone to LPS with 2 

or 20 ng/ml IL-27 for C57BL/6, BALB/c or C57BL/6 Ifnar1
-/-

 BMDM. Representative 

of two independent experiments.  
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Figure 3.15 IL-10 production is not affected by the absence of IL-27 signalling.  

(A) C57BL/6, BALB/c, C57BL/6 Ifnar1
-/- 

and C57BL/6 Il27ra
-/-

 BMDM were 

stimulated with LPS (10 ng/ml) or HkBps (500 HkBps: 1 BMDM). Statistics were 

determined by one-way ANOVA and show significance of C57BL/6 vs. C57BL/6 

Il27ra
-/-

 for each time point. This comparison is representative of three independent 

experiments. (B) C57BL/6 and C57BL/6 Il27ra
-/-

 BMDM were stimulated for 24 h with 

LPS in the presence or absence of 2 h pre-incubation with IFN-β. Statistics compare 

LPS alone to LPS with 2 or 20 ng/ml IFN-β for C57BL/6 (***p<0.001) or C57BL/6 

Il27ra
-/-

 (
+++

p<0.001) BMDM as determined by one-way ANOVA. Direct C57BL/6 vs. 

C57BL/6 Il27ra
-/-

 comparisons for each condition were determined by Student’s t-test. 

Representative of three independent experiments. (A and B) IL-10 protein levels in 

supernatants were measured by ELISA (detection limit 50 pg/ml). Graphs show means 

of three cultures ±SD. (C) Splenocytes from C57BL/6 WT and C57BL/6 Il27ra
-/-

 mice 

were stimulated with 50 ng/ml IL-27 or 10 ng/ml IFN-γ for 10 or 30 min. Whole cell 

extracts were generated and analysed by Western blot for total and phospho-STAT1 

(Tyr701). Actin was probed for on each membrane as a loading control, a representative 

Actin blot is shown.  Representative of two independent experiments.  
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Figure 3.16 The enhancement of IL-10 by IFN-β is predominantly STAT1 

dependent.  

(A) 129 WT and 129 Stat1
tm1Rds

 (both 129S6/SvEv) BMDM were stimulated with LPS 

(10 ng/ml) for 24 h. (B) C57BL/6, BALB/c and 129 (129S8) BMDM were stimulated 

with LPS (10 ng/ml) for 24 h. (C) 129 WT and 129 Stat1
tm1Rds

 BMDM were stimulated 

with LPS (10 ng/ml) for 24 h in the presence or absence of 2 or 20 ng/ml IFN-β (2 or 12 

h pre-incubation). IL-10 levels in supernatants were measured by ELISA (detection 

limit 50 pg/ml). Graphs show means ± SD of three cultures. Statistics show (A) n.s. as 

determined by Student’s t-test; (B) ***p<0.001 as determined by one-way ANOVA; 

(C) *p<0.05, ***p<0.001 for WT, or 
+
p<0.05, 

++
p<0.01, 

+++
p<0.001 for Stat1

tm1Rds
 

BMDM, of LPS alone compared to LPS with 2 or 20 ng/ml IFN-β, as determined by 

one-way ANOVA. Direct WT and Stat1
tm1Rds

 comparison for each condition were 

determined by Student’s t-test (
#
p<0.05, 

##
p<0.01, 

###
p<0.001). Representative of two 

(A, C) or three (B) independent experiments. 
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Figure 3.17 STAT-1 is phosphorylated in C57BL/6 and BALB/c macrophages 

stimulated with LPS and is dependent on type I IFN signalling.   

BMDM were generated from C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 mice. Cells 

were stimulated with LPS (10 ng/ml) for 1, 2, 4 and 6 h. Whole cell protein extracts 

were generated and analysed by Western blot for total and phospho-STAT1. Actin was 

used as a loading control on each membrane and a representative actin blot is shown. 

Representative of two independent experiments.  
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Figure 3.18 C57BL/6 x BALB/c F1 macrophages produce intermediate levels of IL-

10. 

BMDM were generated from C57BL/6, BALB/c and 7 individual C57BL/6 x BALB/c 

F1 mice. Cells were stimulated with LPS (10 ng/ml) for 6 h, Pam3CSK4 (200 ng/ml) 

for 24 h or HkBps (10 HkBps:1 BMDM) for 24 h. IL-10 levels in supernatants were 

quantified by ELISA (detection limit 50 pg/ml). For C57BL/6 and BALB/c data, graphs 

show means ± SD of three cultures. For F1 data, each point represents IL-10 levels from 

macrophages derived from an individual F1 mouse (mean of three cultures). The F1 

error bars represent the 95% confidence interval of the F1 population, also represented 

by pink shading. The black dotted line represents the mean of the F1 population. The 

red dotted line represents half way between C57BL/6 and BALB/c IL-10 levels. 

Representative of one experiment.   
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Figure 3.19 C57BL/6 x BALB/c F2 macrophages show segregation in the level of 

IL-10 production.  

BMDM were generated from C57BL/6 (n=5), BALB/c (n=5) and C57BL/6 x BALB/c 

F2 mice (n=14, labelled A-N). Cells were stimulated with LPS (10 ng/ml) for 6 h, 

Pam3CSK4 (200 ng/ml) for 24 h, or HkBps (500 HkBps:1 BMDM) for 24 h. IL-10 

levels in supernatants were quantified by ELISA (detection limit 50 pg/ml). Each point 

represents IL-10 levels from macrophages derived from an individual mouse (mean of 

three cultures). The C57BL/6 and BALB/c error bars represent the 95% confidence 

interval of the populations also represented by grey (C57BL/6) and blue (BALB/c) 

shading with population means represented by black dotted lines. Red dotted lines 

represents half way between C57BL/6 and BALB/c IL-10 levels. For F2 data, graphs 

show means ±SD of triplicate cultures. Data pooled from two experiments.    
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Figure 3.20 LPS treatment induces higher levels of Il10 and Ifnb1 mRNA in 

C57BL/6 compared to BALB/c mice in vivo.  

C57BL/6 Rag1
-/-

 and BALB/c Rag2
-/-

 mice were injected i.p. with 150 µg LPS or the 

equivalent volume of PBS. At the indicated times mice were culled. Spleens were 

harvested, immediately homogenised in tri-reagent and total RNA was isolated. Il10 

and Ifnb1 transcript levels were determined by qPCR and normalised to Hprt1 mRNA. 

IL-10 levels in the serum were quantified by cytometric bead array (detection limit 10 

pg/ml). Graphs show individual mice ± SD (n=6 for PBS group, n=8 for LPS group, 

data pooled from two experiments). Statistics on LPS treated groups were determined 

by Student’s t-test at each time point (*p<0.05, **p<0.001). 
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Chapter 4. The Regulation of IL-12 in C57BL/6 

and BALB/c macrophages 
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4.1 Background 

IL-12 is a proinflammatory cytokine, predominantly made by monocytes, macrophages 

and DCs in response to microbial products (D'Andrea et al. 1992; Macatonia et al. 

1995; Trinchieri 2003). IL-12 has a central role in promoting immune responses by 

inducing the differentiation of naïve CD4
+
 T cells into IFN-γ producing Th1 cells 

(Hsieh et al. 1993; Manetti et al. 1993; Macatonia et al. 1995). IFN-γ is a potent 

activator of macrophage antimicrobial mechanisms (Gordon et al. 2005), and 

additionally enhances proinflammatory cytokine production from these cells (Hayes et 

al. 1995). Thus, phagocyte derived IL-12 induces the production of IFN-γ from Th1 

cells, which then further activates phagocytic cells, forming a positive feedback loop. 

IL-12 also has the capacity to induce IFN-γ production from NK cells (Kobayashi et al. 

1989; Chan et al. 1991) and enhance the cytotoxic activities of NK and CD8
+
 T cells 

(Gately et al. 1994). Through these mechanisms, IL-12 is critical in the generation of 

protective immune responses particularly against intracellular bacterial and parasitic 

pathogens including L.major, T.gondii, L.monocytogenes, M.tuberculosis and 

B.pseudomaelli (Sypek et al. 1993; Gazzinelli et al. 1994; Tripp et al. 1994; Cooper et 

al. 2002; Haque et al. 2006).  

 

IL-12 is a heterodimeric cytokine formed of two subunits, p40 and p35, which generate 

the active form of IL-12, IL-12p70 (Kobayashi et al. 1989). p40 and p35 can also 

dimerise with other subunits to form the cytokines IL-23 (p19:p40 heterodimer) 

(Oppmann et al. 2000) and IL-35 (Ebi3:p35 heterodimer) (Collison et al. 2007; 

Niedbala et al. 2007). Downstream of TLRs, IRF1 and IRF3 have been shown to be 

involved in the induction of IL-12p35 (Liu et al. 2003a; Goriely et al. 2006; Negishi et 
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al. 2006). In the case of IL-12p40, IRF5 and IRF8 have been more strongly implicated 

(Wang et al. 2000; Takaoka et al. 2005; Zhao et al. 2006; Ouyang et al. 2007), although 

roles in the regulation of IL-12p35 have also been described (Liu et al. 2004; 

Krausgruber et al. 2011). NF-κB family members, particularly c-Rel, are also important 

for the regulation of IL-12p40 and IL-12p35 in macrophages and DCs, respectively 

(Sanjabi et al. 2000; Grumont et al. 2001). IL-12p35 is further regulated at the post-

translational level which plays a role in determining the final level of bioactive IL-

12p70 produced by the cell (Carra et al. 2000). 

 

Importantly, due to its powerful proinflammatory activity, IL-12 is subject to several 

negative regulatory mechanisms, without which the host may experience severe 

immunopathology (Gazzinelli et al. 1996; Hunter et al. 1997; Kullberg et al. 1998). IL-

10 is one of the best described inhibitors of IL-12 (D'Andrea et al. 1993; Hsieh et al. 

1993; Trinchieri 2003). The molecular mechanisms of how IL-10 suppresses IL-12 

production are not fully known, although they are thought to be at least in part at the 

level of transcription (Aste-Amezaga et al. 1998). IL-10 however is not the only 

negative regulator of IL-12, with IL-10 independent roles for the MAP kinase ERK 

(Dillon et al. 2004; Kaiser et al. 2009), and the PI(3)K pathway (Ohtani et al. 2008), 

also having been described. The MAP kinase p38 has been reported to be an additional 

negative regulator of IL-12 downstream of TLR activation dependent and independent 

of IL-10 (Jarnicki et al. 2008; Yang et al. 2010). This is however in contrast to earlier 

studies which implicated a role for p38 in the positive regulation of IL-12 in DCs (Lu et 

al. 1999; Agrawal et al. 2003).  
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In addition to the positive regulatory effect of IFN-γ (Hayes et al. 1995), IL-12 

production can be modulated by other cytokines such as type I IFN. The precise role of 

type I IFN in the regulation of IL-12 production however, remains incompletely 

understood as some studies have shown a positive role for type I IFN in the regulation 

of IL-12 (Gautier et al. 2005), whereas others have shown a negative role for type I IFN 

in the regulation of IL-12 (Cousens et al. 1997; Byrnes et al. 2001).  

 

Thus, the regulation of IL-12 downstream of TLR activation is highly complex due to 

the multiple factors which collectively influence IL-12 production, and the need to 

coordinate IL-12p40 and IL-12p35 expression. Additionally, the mechanisms of IL-12 

regulation by other cytokines such as IL-10 which inhibits IL-12, and type I IFN which 

has context specific effects on IL-12, are incompletely understood.  
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4.2 Investigating the regulation of IL-12 in C57BL/6 and BALB/c 

macrophages: Study Aims 

We have found that IL-10 is differentially regulated in LPS (TLR4), Pam3CSK4 

(TLR2) and heat-killed B.pseudomallei (TLR2/4) stimulated C57BL/6 and BALB/c 

macrophages (Chapter 3). IL-10 was more highly expressed in C57BL/6 macrophages, 

and in the context of LPS and HkBps, this was dependent on type I IFN signalling, but 

independent of IL-27.  Preliminary data from the O’Garra laboratory suggested that in 

addition to IL-10, C57BL/6 and BALB/c macrophages may have a differential capacity 

to produce IL-12 in response to TLR ligands. Thus, due to the important role of IL-10 in 

the negative regulation of IL-12, and the uncertain role of type I IFN in the regulation of 

IL-12, we aimed to answer the following questions:  

 

1. Does IL-12 production differ in LPS, Pam3CSK4 or HkBps stimulated C57BL/6 

and BALB/c macrophages? 

2. If so, is differential IL-12 production a down-stream consequence of differential 

IL-10 and/or type I IFN production, or due to other mechanism(s)? 

3. Are additional proinflammatory cytokines such as TNF-α and IL-1β also 

differentially regulated in C57BL/6 and BALB/c macrophages? 
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4.3 Results 

4.3.1 IL-12p40 production is not consistently different between C57BL/6 and 

BALB/c macrophages, and IL-12p70 production is difficult to detect.  

In order to determine if C57BL/6 and BALB/c macrophages differentially express IL-

12 in response to LPS, Pam3CSK4 or HkBps, IL-12p40 protein production was 

quantified over a time-course of stimulation (Figure 4.1 A).  In LPS stimulated cells, 

IL-12p40 was generally similar between the strains with the exception of the 24 h time-

point when IL-12p40 production was higher in BALB/c macrophages (Figure 4.1 A). In 

Pam3CSK4 stimulated cells, IL-12p40 production was similar between the strains over 

the 24 h stimulation period albeit slightly elevated at 6 and 12 h in C57BL/6 

macrophages (Figure 4.1 A). IL-12p40 was strongly induced by HkBps but in contrast 

to the other stimulations, at 12 and 24 h IL-12p40 production was significantly higher in 

BALB/c compared to C57BL/6 macrophages (Figure 4.1 A). IL-12p40 is only one 

chain of the IL-12p70 heterodimer (Kobayashi et al. 1989), and also heterodimerises 

with p19 to form IL-23 (Oppmann et al. 2000). Thus, in order to more accurately 

determine IL-12 production, IL-12p70 levels were also quantified (Figure 4.1 B). In 

LPS and Pam3CSK4 stimulated cells, IL-12p70 protein production was not detectable 

at any time-point in either strain (Figure 4.1 B). In HkBps stimulated cells however, IL-

12p70 production was detectable in BALB/c, but not C57BL/6 macrophages (Figure 4.1 

B). This data suggested that BALB/c macrophages have a higher capacity to produce 

IL-12p70 than C57BL/6 macrophages in response to HkBps, although the trend of IL-

12p70 production in response to LPS or Pam3CSK4 was unclear at this time.  
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4.3.2 LPS, Pam3CSK4 and HkBps induce higher levels of Il12a mRNA 

expression in BALB/c macrophages.  

As we were able to detect IL-12p70 production in HkBps stimulated macrophages 

(Figure 4.1), we postulated that LPS and Pam3CSK4 stimulated macrophages may be 

able to produce IL-12p70, but that the levels were too low to be detected by ELISA. To 

gain insight into whether LPS and Pam3CSK4 stimulated macrophages had the 

potential to produce IL-12p70, Il12a mRNA expression (encodes IL-12p35), was 

quantified over a time-course in LPS, Pam3CSK4 and HkBps stimulated C57BL/6 and 

BALB/c macrophages (Figure 4.2).  Under all three stimulation conditions, Il12a 

mRNA expression was induced in both C57BL/6 and BALB/c macrophages (Figure 

4.2). However, at each time-point, BALB/c macrophages expressed significantly higher 

levels of Il12a mRNA than C57BL/6 macrophages (Figure 4.2).  C57BL/6 and BALB/c 

macrophages therefore express both subunits of IL-12p70 in response to LPS and 

Pam3CSK4, suggesting that IL-12p70 may be induced at a low level in response to 

these stimuli. Further, the consistently higher level of Il12a mRNA expression in 

BALB/c macrophages suggested that if we were able to detect LPS or Pam3CSK4 

induced IL-12p70, it may be higher in BALB/c macrophages.  

 

4.3.3 Higher levels of IL-12p70 in BALB/c macrophages are revealed at low cell 

density, and are independent of IL-10 in LPS and HkBps stimulated 

macrophages. 

As part of an in vitro experimental optimisation process, we carried out a cell density 

titration of C57BL/6 and BALB/c macrophages from 1x10
6
 cells/ml (the standard cell 

density which has been used in this study), to 0.25x10
6
 cells/ml, and stimulated the cells 
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with LPS, Pam3CSK4 and HkBps for 24 h (Figure 4.3 A). Somewhat unexpectedly, in 

all three stimulation conditions, we observed that as the cell density decreased, IL-

12p70 production increased (Figure 4.3 A). This cell density dependent effect was most 

pronounced in BALB/c macrophages which produced higher levels of IL-12p70 than 

C57BL/6 macrophages at all cell densities tested (Figure 4.3 A). From this data, we 

were able to make two conclusions. Firstly, a cell density dependent factor inhibits the 

production of IL-12p70 in macrophages. Secondly, BALB/c macrophages produce 

higher levels of IL-12p70 than C57BL/6 macrophages in response to LPS, Pam3CSK4 

and HkBps.  

 

We had previously established that C57BL/6 macrophages produce higher levels of IL-

10 than BALB/c macrophages (Chapter 3). As IL-10 is a negative regulator of IL-12 

(D'Andrea et al. 1993; Hsieh et al. 1993), we hypothesised that the higher level of IL-10 

production in C57BL/6 macrophages could be responsible for their lower level of IL-

12p70 production. Further, we postulated that the autocrine regulatory activity of IL-10 

may be more effective at high cell density. In this way, IL-10 could be responsible for 

the cell density dependent effect on IL-12p70 levels. To test these hypotheses, we 

performed a cell density titration of C57BL/6 Il10
-/-

 and BALB/c Il10
-/-

 macrophages. 

Cells were stimulated with LPS, Pam3CSK4 or HkBps for 24 h (Figure 4.3 B). In the 

absence of IL-10, overall IL-12p70 levels greatly increased in C57BL/6 and BALB/c 

macrophages, supporting an important role for IL-10 in the negative regulation of IL-12 

(Figure 4.3 B). We also found that in the absence of IL-10, the cell density dependent 

effect was reversed, with the levels of IL-12p70 generally increasing as the cell density 

increased (Figure 4.3 B). This suggested that IL-10 was indeed responsible for the 
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inhibitory cell density dependent effect on IL-12p70. Despite the overall increase in IL-

12p70 production however, BALB/c Il10
-/-

 macrophages still produced significantly 

higher levels of IL-12p70 than C57BL/6 Il10
-/-

 macrophages when stimulated with LPS 

or HkBps (Figure 4.3 B). Thus, differential IL-12p70 production in LPS and HkBps 

stimulated C57BL/6 and BALB/c macrophages remains present in the absence of IL-10. 

In contrast, in Pam3CSK4 stimulated cells, IL-12p70 production was equivalent in 

C57BL/6 Il10
-/-

 and BALB/c Il10
-/-

 macrophages (Figure 4.3 B), suggesting that 

differential IL-12p70 production in response to this stimulus is solely a consequence of 

differential IL-10 production.  

 

4.3.4 IL-12p70 production in LPS or HkBps stimulated C57BL/6 macrophages is 

not affected by endogenous type I IFN.  

In addition to IL-10, we had also previously established that C57BL/6 macrophages 

produce higher levels of IFN-β than BALB/c macrophages in response to LPS and 

HkBps (see Figure 3.9). Type I IFN has been reported to modulate IL-12 production in 

human and murine innate cell types (Byrnes et al. 2001; Gautier et al. 2005). However, 

whether type I IFN promotes or inhibits IL-12 production appears to depend on the 

context (Lyakh et al. 2008). We sought to determine if type I IFN, other than through 

the promotion of IL-10, was affecting IL-12p70 production in C57BL/6 macrophages. 

To test this, we investigated the production of LPS and HkBps induced IL-12p70 

production in C57BL/6 Ifnar1
-/-

 treated with an antibody which blocks signalling from 

the IL-10 receptor (α-IL-10R) (Figure 4.4). We compared this IL-12p70 production to 

that of C57BL/6 and BALB/c WT and Il10
-/-

 macrophages. C57BL/6 macrophages 

treated with α-IL-10R were also included to ensure that blockade of the IL-10 receptor 
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had a similar impact on IL-12p70 production as genetic Il10 deletion (Figure 4.4). This 

experiment was carried out at low cell density to optimise for IL-12p70 production. As 

previously demonstrated (see Figure 4.3 A), LPS and HkBps stimulated C57BL/6 

macrophages produced barely detectable levels of IL-12p70 (Figure 4.4). Treatment 

with α-IL-10R or genetic ablation of Il10, increased IL-12p70 production by a similar 

amount in C57BL/6 macrophages (Figure 4.4).  C57BL/6 Ifnar1
-/-

 macrophages 

produced similar levels of IL-12p70 to C57BL/6 macrophages in response to LPS or 

HkBps (Figure 4.4). Additional blockade of IL-10 receptor signalling did enhance IL-

12p70 production in LPS and HkBps stimulated C57BL/6 Ifnar1
-/-

 macrophages, but 

not beyond the levels observed in C57BL/6 Il10
-/-

 macrophages (Figure 4.4). Treatment 

with the isotype control antibody for the α-IL-10R had very little impact on IL-12p70 

production from C57BL/6 or C57BL/6 Ifnar1
-/-

 macrophages (Figure 4.4). Finally, 

although the levels of IL-12p70 produced by C57BL/6+α-IL-10R, C57BL/6 Il10
-/-

 and 

C57BL/6 Ifnar1
-/-

+α-IL-10R macrophages were now similar to those of BALB/c WT, 

BALB/c Il10
-/-

 macrophages produced markedly higher levels of IL-12p70 than all 

other groups in response to both LPS and HkBps (Figure 4.4). Thus, IL-12p70 

production in C57BL/6 Il10
-/- 

macrophages remains lower than in BALB/c Il10
-/-

 

macrophages, even in the absence of type I IFN signalling, suggesting that autocrine 

type I IFN signalling does not appear to affect IL-12p70 production in this system. 

 

4.3.5 BALB/c macrophages produce higher levels of TNF-α and IL-1β in 

response to LPS, Pam3CSK4 and HkBps. 

We sought to investigate if this trend of higher proinflammatory cytokine production 

was specific to IL-12p70, or was common across other proinflammatory cytokines such 
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as TNF-α and IL-1β. C57BL/6 and BALB/c macrophages were stimulated with LPS, 

Pam3CSK4 and HkBps over a time-course and TNF-α and IL-1β production were 

quantified (Figure 4.5). Unlike IL-12p70, both cytokines were readily detectable at 

normal cell density (1x10
6
 cells/ml) (Figure 4.5). In LPS stimulated macrophages, TNF-

α production peaked by 6 h post-stimulation and was consistently higher in BALB/c 

than C57BL/6 macrophages up to 24 h (Figure 4.5 A). In Pam3CSK4 and HkBps 

stimulated cells, TNF-α production peaked at 12 h post-stimulation, and again was 

consistently higher in BALB/c than C57BL/6 macrophages (Figure 4.5 A). Similarly, 

IL-1β production was consistently higher in BALB/c macrophages relative to C57BL/6 

macrophages under all three stimulation conditions (Figure 4.5 B).   

 

4.3.6 IL-10 accounts for differential proinflammatory cytokine production in 

response to Pam3CSK4 but not LPS or HkBps.  

As IL-10 can inhibit the production of proinflammatory cytokines from macrophages 

(Fiorentino et al. 1991a), we wanted to determine to what extent IL-10 was responsible 

for the differential TNF-α and IL-1β production in LPS, Pam3CSK4 and HkBps 

stimulated C57BL/6 and BALB/c macrophages. C57BL/6 Il10
-/-

 and BALB/c Il10
-/-

 

macrophages were stimulated with LPS, Pam3CSK4 or HkBps for 24 h and the 

production of these cytokines was quantified (Figure 4.6). We observed that LPS, 

Pam3CSK4 and HkBps induced TNF-α production was equivalent in C57BL/6 Il10
-/-

 

and BALB/c Il10
-/-

 macrophages (Figure 4.6 A). In contrast, IL-1β production remained 

higher in BALB/c Il10
-/-

 macrophages than C57BL/6 Il10
-/-

 macrophages in response to 

LPS and HkBps (Figure 4.6 B). In Pam3CSK4 stimulated cells however, C57BL/6 and 

BALB/c IL-1β production was equivalent in the absence of IL-10 (Figure 4.6 B). Thus, 
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differential TNF-α production is a consequence of differential IL-10 production in 

response to all three stimuli whereas reminiscent to IL-12p70 (Figure 4.3 B), the 

differential production of IL-1β is only dependent on IL-10 in Pam3CSK4 stimulated 

macrophages.  

 

4.3.7 Type I IFN may contribute to differential IL-1β production in LPS and 

HkBps stimulated C57BL/6 and BALB/c macrophages.   

Differential IL-10 production in LPS and HkBps stimulated C57BL/6 and BALB/c 

macrophages did not account for differential IL-1β production (Figure 4.6 B). However, 

type I IFN has been reported to inhibit IL-1β production in the context of LPS 

stimulation (Guarda et al. 2011) and M.tuberculosis infection (Mayer-Barber et al. 

2011). This prompted us to assess if type I IFN was affecting IL-1β production in our 

system. C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 macrophages were stimulated with 

LPS or HkBps over a time-course, and IL-1β production was quantified (Figure 4.7). In 

LPS stimulated cells, IL-1β production was enhanced in C57BL/6 Ifnar1
-/-

 macrophages 

relative to C57BL/6 WT, and was overall similar to the levels produced by BALB/c 

macrophages (Figure 4.7). In HkBps stimulated macrophages, IL-1β was again elevated 

in C57BL/6 Ifnar1
-/-

 macrophages compared to C57BL/6 WT, but remained slightly 

lower than the level of IL-1β produced by BALB/c macrophages. This data shows that 

type I IFN can inhibit IL-1β production in our system. Thus, type I IFN may be 

contribute to differential IL-1β production in LPS or HkBps stimulated C57BL/6 and 

BALB/c macrophages. 
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4.4 Discussion 

IL-12 is a proinflammatory cytokine with important roles in driving the differentiation 

of IFN-γ producing Th1 cells and IFN-γ production from NK cells (Trinchieri 2003). 

Our previous work identified that C57BL/6 macrophages produce higher levels of IL-10 

than BALB/c macrophages when stimulated with LPS, Pam3CSK4 and heat-killed 

B.pseudomalli. In the context of LPS and heat-killed B.pseudomallei, this was 

dependent on type I IFN signalling. Our investigation into relative IL-12 production 

from these macrophages revealed that IL-12p70, the biologically active form of IL-12, 

is more highly expressed in BALB/c macrophages. Differential IL-12p70 production 

was dependent on IL-10 in the context of Pam3CSK4 stimulation. However, LPS and 

heat-killed B.pseudomallei stimulated C57BL/6 macrophages continued to show 

reduced levels of IL-12p70 production compared BALB/c macrophages in the absence 

of IL-10 and this was not further affected by autocrine type I IFN. We additionally 

investigated TNF-α and IL-1β production in these cells and found they were more 

highly expressed in BALB/c macrophages. In all cases, differential TNF-α production 

was dependent on IL-10. Differential IL-1β production was only dependent on IL-10 in 

the context of Pam3CSK4 stimulation. Collectively, these results show that in 

comparison to BALB/c macrophages, C57BL/6 macrophages have a striking inability to 

produce substantial levels of IL-12p70 and potentially IL-1β, particularly in response to 

TLR4 stimulation.  
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4.4.1 Differential IL-12 production in C57BL/6 and BALB/c macrophages and 

the effect of cell density.  

In our initial experiments, conducted with cells at a density of 1x10
6
 cells/ml, we were 

unable to detect IL-12p70 production in response to LPS or Pam3CSK4 in either 

C57BL/6 or BALB/c macrophages. Difficulty in detecting IL-12p70 production from 

macrophages or DCs stimulated with single TLR ligands is well documented (Trinchieri 

2003). It is also reported that the stimulation of DCs with multiple TLR ligands, 

particularly combinations targeting both MyD88 and TRIF dependent pathways, 

enhances the production of IL-12p70 (Gautier et al. 2005). In keeping with this, we 

observed that B.pseudomallei, which activates TLR2 (MyD88), TLR4 (Myd88/TRIF) 

and potentially other TLR ligands, induced a higher level of IL-12p70 than TLR2 and 

TLR4 stimulation alone. However, even under these conditions, IL-12p70 production 

was only detectable in BALB/c macrophages. Further experiments revealed that IL-12 

production can be enhanced in both C57BL/6 and BALB/c macrophages by reducing 

the cell culture density. We additionally found that the inhibitory cell density dependent 

effect required the presence of IL-10, potentially attributable to a reduced production of 

IL-10 at low cell density, although this will require further clarification. Nevertheless, 

these findings highlight the sensitivity of IL-12 regulatory mechanisms and how they 

can be significantly altered by cell culture conditions. Regardless, throughout these 

experiments, in LPS and heat-killed B.pseudomallei stimulated cells, IL-12p70 

production was higher in BALB/c macrophages compared to C57BL/6, even in the 

absence of IL-10. We have therefore identified two potential causes for the historical 

difficulty in detecting IL-12p70 production from TLR stimulated murine macrophages 

and DCs in vitro, i) the density of the cell culture (although this may be difficult to 
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assess as many publications omit this information), and ii) the majority of investigators 

use cells derived from C57BL/6 mice.  

 

4.4.2 Mechanisms of differential IL-12 production in C57BL/6 and BALB/c 

macrophages.  

The finding that differential IL-12p70 production was independent of IL-10 in TLR4 

stimulated cells but dependent on IL-10 in TLR2 stimulated cells, suggests that the 

MyD88-independent signalling pathway, TRIF, may be contributing to elevated levels 

of IL-12p70 production in LPS and heat-killed B.pseudomallei stimulated BALB/c 

macrophages. In TLR3/4 stimulated macrophages, the TRIF pathway is essential for the 

induction of type I IFN (Yamamoto et al. 2003a) which has been shown to both inhibit 

(Cousens et al. 1997; Byrnes et al. 2001) and promote (Gautier et al. 2005) IL-12 in 

different contexts. In our system however, endogenous type I IFN did not affect IL-

12p70 production in the presence or absence of IL-10, as shown by the similar level of 

IL-12p70 production from C57BL/6 Il10
-/-

 macrophages and C57BL/6 Ifnar1
-/-

 

macrophages treated with a blocking α-IL-10R antibody. Given the substantial decrease 

in IL-10 production in C57BL/6 Ifnar1
-/-

 macrophages compared to C57BL/6 WT 

macrophages that we previously observed, we were surprised to find that the absence of 

type I IFN signalling had no effect on IL-12p70 regulation. This may suggest that only a 

small amount of IL-10 is required to maximally inhibit IL-12 production in C57BL/6 

macrophages. This may also be the case in BALB/c macrophages given the dramatic 

increase in IL-12p70 production upon the removal of IL-10, despite a relatively small 

amount of IL-10 being produced in BALB/c WT cells.  

 



Chapter 4: The regulation of IL-12 in C57BL/6 and BALB/c macrophages 

 

 186 

Although clearly independent of endogenous type I IFN, we still postulate that the 

mechanisms underlying differential IL-12p70 production in LPS and heat-killed 

B.pseudomallei stimulated C57BL/6 and BALB/c macrophages may be due to the TRIF 

signalling pathway for two reasons. Firstly, the earlier observation that type I IFN is 

differentially expressed in C57BL/6 and BALB/c macrophages is indicative of 

differences in TRIF pathway activity. Secondly, as IL-12p40 production does not 

consistently correlate with IL-12p70 production in our experiments, and IL-12p35 

production is generally considered the limiting factor IL-12p70 production (Snijders et 

al. 1996), we hypothesise that strain differences in Il12a (IL-12p35) expression may 

underlie differential IL-12p70 production. Further, the TRIF pathway, via the activation 

of IRF3, has been reported to regulate Il12a expression in LPS stimulated murine DC 

(Goriely et al. 2006). Thus, collectively our data may indicate differential activity of the 

TRIF pathway and potentially IRF3 in TLR4 stimulated C57BL/6 and BALB/c 

macrophages. Analysis of IL-12p70 production from TLR3 stimulated C57BL/6 and 

BALB/c macrophages which recruit only TRIF (Yamamoto et al. 2003a) may help to 

further establish if this is the case. Of note, if present, differences in this pathway may 

be complex as TRIF positively regulates Ifnb1 and Il12a, which are oppositely 

expressed in C57BL/6 and BALB/c macrophages.  

 

4.4.3 Mechanisms of differential TNF and IL-1β production in C57BL/6 and 

BALB/c macrophages 

The absence of differential TNF-α and IL-1β production in Pam3CSK4 stimulated IL-

10 deficient C57BL/6 and BALB/c macrophages further indicated that the potential to 

induce proinflammatory cytokines downstream of TLR2 was equivalent in C57BL/6 
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and BALB/c macrophages, provided that  IL-10 is absent. In LPS and heat-killed 

B.pseudomallei stimulated cells, TNF-α production was also equivalent in C57BL/6 and 

BALB/c macrophages in the absence of IL-10. Thus, the positive regulatory signals that 

govern TNF-α production may be similarly activated in C57BL/6 and BALB/c 

macrophages. However, the regulation of TNF-α is complex involving transcriptional 

mechanisms, post-transcriptional mechanisms and processing of pre-TNF-α protein at 

the cell surface (Raabe et al. 1998; Dumitru et al. 2000; Rousseau et al. 2008). Thus, it 

is difficult to determine at this stage if all of these processes are happening equivalently 

in C57BL/6 and BALB/c macrophages in the absence of IL-10, or if different steps are 

happening at different rates, ultimately leading to a similar level of TNF-α protein 

production.    

 

IL-1β remained differentially expressed in LPS and heat-killed B.pseudomallei 

stimulated C57BL/6 and BALB/c macrophages in the absence of IL-10. In contrast to 

what we observed with IL-12p70 however, IL-1β production was enhanced in C57BL/6 

Ifnar1
-/-

 macrophages relative to C57BL/6 WT. Type I IFN may therefore have a role in 

mediating the differential production of IL-1β in LPS and heat-killed B.pseudomallei 

stimulated C57BL/6 and BALB/c macrophages. The negative regulation of IL-1β by 

type I IFN in the context of LPS stimulated and M.tuberculosis infected macrophages 

has been reported to be partially dependent on IL-10 (Guarda et al. 2011; Mayer-Barber 

et al. 2011). Thus, the increase in IL-1β production that we observe in C57BL/6 Ifnar1
-/-

 

macrophages is likely to be at least in part due to a decrease in IL-10 production in the 

absence of type I IFN signalling. Further experiments are required to determine if type I 

IFN inhibits IL-1β through IL-10 dependent and/or independent mechanisms in our 
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system. Additionally, a direct comparison between IL-1β production in BALB/c Il10
-/-

 

macrophages and C57BL/6 Ifnar1
-/-

 cells in which IL-10 signalling has been blocked, 

will ultimately determine if IL-10 and type I IFN are solely responsible for differential 

IL-1β production in LPS and heat-killed B.pseudomallei stimulated C57BL/6 and 

BALB/c macrophages.  

 

4.4.4 Differential proinflammatory cytokine production in C57BL/6 and BALB/c 

macrophages in the context of infection and inflammatory diseases 

Our central observation that BALB/c macrophages produce higher levels of IL-12 than 

C57BL/6 macrophages may initially seem at odds with the C57BL/6 Th1 and BALB/c 

Th2 dogma that has been associated with L.major infection (Sacks et al. 2002). In this 

infection model, the non-healing phenotype of BALB/c mice can be ameliorated with 

the administration of IL-12 (Heinzel et al. 1993; Sypek et al. 1993), suggesting that 

BALB/c mice may be defective in their IL-12 production. Importantly, DCs and not 

macrophages, as we have studied here, have been suggested to be the important source 

of IL-12 in this infection model (von Stebut et al. 2000). However, even taking this into 

account, studies have shown that the mechanisms underlying the development of Th1 or 

Th2 responses against this pathogen are complex. For example, Langerhans cell-like 

DCs derived from C57BL/6 and BALB/c mice and incubated with L.major in vitro 

induced a higher level of IL-12p70 production from BALB/c DCs compared to 

C57BL/6 DCs in the presence and absence of IFN-γ (von Stebut et al. 2000). Genetic 

differences affecting the T cell compartment may also contribute to the development of 

Th1 or Th2 responses in susceptible and resistant strains (Hsieh et al. 1995). Our 

findings are therefore not necessarily in disagreement with the C57BL/6 and BALB/c 
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differences associated with L.major infection. In the case of B.pseudomallei infection 

which is more closely linked to our study, no clear Th1/Th2 cytokine profile is seen in 

C57BL/6 and BALB/c mice (Ulett et al. 2000a), and higher proinflammatory cytokine 

production in BALB/c mice has been associated with the enhanced disease of this strain 

(Tan et al. 2008). Our C57BL/6 and BALB/c in vitro macrophage cytokine profiles 

findings may therefore be in keeping with the broader cytokine profiles of 

B.pseudomallei infected C57BL/6 and BALB/c mice (Ulett et al. 2000b; Ulett et al. 

2000a; Tan et al. 2008). Finally, IL-10 deficient BALB/c mice are more susceptible to 

enterocolitis than IL-10 deficient C57BL/6 mice (Berg et al. 1996). As this disease is 

associated with elevated production of IL-1α, TNFα, IL-6 and IFN-γ, which is often 

induced by IL-12 (Berg et al. 1996; Trinchieri 2003), this observation may be in 

keeping with our findings that BALB/c macrophages have a higher capacity to produce 

proinflammatory cytokines than C57BL/6 macrophages in the absence of IL-10. Thus, 

the relative deficiency in IL-12p70 and potentially IL-1β production from C57BL/6 

macrophages compared to BALB/c macrophages that we observe, even in the absence 

of IL-10, may have consequences for downstream immune responses in the setting of 

infectious and inflammatory diseases.  
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Figure 4.1 Kinetics of IL-12p40 and IL-12p70 production in C57BL/6 and BALB/c 

macrophages.  

BMDM were generated from C57BL/6 and BALB/c mice and stimulated for the 

indicated times with LPS (10 ng/ml), Pam3CSK4 (200 ng/ml), or HkBps (10 HkBps: 1 

BMDM). IL-12p40 (A) and IL-12p70 protein (B) were quantified by ELISA (IL-12p40 

detection limit 50 pg/ml; IL-12p70 detection limit 20 pg/ml). Graphs show means ± SD 

of three cultures. *p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test at 

each time point. Representative of at least three independent experiments.   
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Figure 4.2 Il12a mRNA is more highly expressed in BALB/c macrophages than 

C57BL/6 macrophages.  

BMDM were generated from C57BL/6 and BALB/c mice and stimulated for the 

indicated times with LPS (10 ng/ml), Pam3CSK4 (200 ng/ml), or HkBps (10 HkBps: 1 

BMDM). Total RNA was harvested and isolated. Il12a transcript levels were 

determined by qPCR and normalised to Hprt1 mRNA.  Graphs show means ± SD of 

three cultures. *p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test at each 

time point. Representative of three independent experiments.   
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Figure 4.3 Higher IL-12p70 production in BALB/c macrophages is revealed at low 

cell density due to negative autocrine regulation by IL-10 and in the absence of IL-

10, C57BL/6 IL-12p70 production is rescued in Pam3CSK4 stimulated cells. 

BMDM were generated from C57BL/6 and BALB/c mice and plated at the indicated 

cell densities. Cells were stimulated for 24 h with LPS (10 ng/ml), Pam3CSK4 (200 

ng/ml), or HkBps (10 HkBps: 1 BMDM). IL-12p70 production was quantified by 

ELISA (detection limit 20 pg/ml).  Graphs show means ± SD of three cultures. 

**p<0.01, ***p<0.001 as determined by Student’s t-test at each cell density. 

Representative of at least three (LPS, Pam3CSK4) or two (HkBps) independent 

experiments.   
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Figure 4.4 The absence of type I IFN signalling or combined absence of type I IFN 

and IL-10 signalling, does not rescue IL-12p70 production in LPS or HkBps 

stimulated C57BL/6 macrophages.  

BMDM were generated from C57BL/6, BALB/c, C57BL/6 Il10
-/-

, BALB/c Il10
-/-

, and 

C57BL/6 Ifnar1
-/- 

mice. Cells were plated at 0.25x10
6
 cells/ml. Where indicated, cells 

were treated with α-IL-10R (10 µg/ml) or isotype control antibody (10 µg/ml) at the 

time of stimulation. Cells were stimulated with LPS (10 ng/ml) or HkBps (10 HkBps: 1 

BMDM) for 24 h. IL-12p70 protein was quantified by ELISA (detection limit 20 pg/ml). 

Graphs show means ± SD of three cultures. ***p<0.001 as determined by one-way 

ANOVA. Only selected statistical comparisons are shown for clarity. Representative of 

two independent experiments. 
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Figure 4.5 The production of TNF-α and IL-1β is higher in LPS, Pam3CSK4 and 

HkBps stimulated BALB/c macrophages compared to C57BL/6 macrophages.  

C57BL/6 and BALB/c BMDM were stimulated with LPS (10 ng/ml), Pam3CSK4 (200 

ng/ml) or HkBps (10 HkBps: 1 BMDM) for the indicated times. TNF-α (A) and IL-1β 

(B) levels were quantified by ELISA (detection limits 20 pg/ml). Graphs show means of 

three cultures ±SD. *p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test at 

each time point. Representative of at least three independent experiments.   
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Figure 4.6 IL-10 accounts for the differential proinflammatory cytokine 

production in Pam3CSK4 stimulated C57BL/6 and BALB/c cells, but not LPS or 

HkBps stimulated cells.  

BMDM were generated from C57BL/6 Il10
-/-

 and BALB/c Il10
-/-

 mice. Cells were 

stimulated with LPS (10 ng/ml), Pam3CSK4 (200 ng/ml) or HkBps (10 HkBps: 1 

BMDM) for 24 h. Cytokines were quantified by ELISA (detection limits 20 pg/ml). 

Graphs show means ± SD of triplicate cultures. ***p<0.001 as determined by Student’s 

t-test. Representative of at least two independent experiments.   
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Figure 4.7Abrogation of type I IFN signalling enhances IL-1β production in LPS 

and HkBps stimulated C57BL/6 macrophages.  

C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 BMDM were stimulated with LPS (10 ng/ml) 

or HkBps (500 HkBps: 1 BMDM) for the indicated times. IL-1β levels in supernatants 

were quantified by ELISA (detection limit 20 pg/ml). Graphs show means of three 

cultures ±SD. Statistics were determined by one-way ANOVA at each time-point and 

show C57BL/6 vs. C57BL/6 Ifnar1
-/-

 (**p<0.01, ***p<0.001) or BALB/c vs. C57BL/6 

Ifnar1
-/-

 (
+
p<0.05, 

++
p<0.01). Representative of three independent experiments.   
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Chapter 5. Microarray Analysis of the LPS 

induced Transcriptional Response in C57BL/6 

and BALB/c Macrophages 
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5.1 Background 

In this investigation, we have found that IL-10 and IL-12 are reciprocally expressed in 

C57BL/6 and BALB/c macrophages when stimulated with LPS. C57BL/6 macrophages 

produce higher levels of IL-10 than BALB/c macrophages, and this is dependent on 

type I IFN signalling. Conversely, BALB/c macrophages produce higher levels of IL-12. 

This is maintained in the absence of IL-10 and is not affected by endogenous type I IFN. 

LPS stimulated BALB/c macrophages additionally produce higher levels of TNF-α and 

IL-1β compared C57BL/6 macrophages. Differential TNF-α production is 

predominantly mediated by IL-10. In contrast, differential IL-1β production remains 

present in the absence of IL-10, although there may be a role for type I IFN in 

mediating this phenotype. Thus, there are several outstanding questions regarding the 

mechanisms of differential cytokine production in TLR4 stimulated C57BL/6 and 

BALB/c macrophages. For example, what is the molecular mechanism of type I IFN 

mediated IL-10 regulation in C57BL/6 macrophages? Additionally, as we have found 

that LPS stimulated C57BL/6 macrophages produce higher levels of IFN-β than 

BALB/c macrophages, and hence hypothesise that this contributes to differential IL-10 

production, what is the mechanism of differential IFN-β production? Finally, if not 

accounted for by IL-10 or type I IFN, what are the factors governing the higher levels of 

IL-12 production in LPS stimulated BALB/c macrophages?  

 

To begin to answer these questions, we have taken a microarray approach to study the 

differences in global gene expression of LPS stimulated C57BL/6 and BALB/c 

macrophages. Microarray technology can be used as a high throughput method of 

expression profiling to simultaneously quantify the mRNA levels derived from 
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thousands of genes within a given sample (Lockhart et al. 2000). The Illumina 

BeadArray technology which we have used here, relies on the generation of thousands 

oligonucleotide probes which are complementary to specific mRNAs. These probes are 

immobilised onto beads which are placed onto an array chip (Kuhn et al. 2004).  

Purified RNA from the sample of interest is converted to cRNA, fluorescently labelled, 

and hybridised to the chip. The intensity of hybridisation, determined by fluorescence, 

can then be used as a measure of RNA abundance and thus relative gene expression 

(Lockhart et al. 2000; Kuhn et al. 2004). Microarray technology has been used to assess 

global gene expression in a number of different studies. For example, blood 

transcriptional profiling of patients suffering from autoimmune or infectious diseases 

has enabled the identification of gene-signatures associated with health and disease 

(Bennett et al. 2003; Berry et al. 2010; Pascual et al. 2010). On a cellular level, 

microarray technology has been used to understand the dynamic changes in gene 

expression induced by a stimulus (Gilchrist et al. 2006; Nilsson et al. 2006; Elkon et al. 

2007; Ramsey et al. 2008), or the specific gene expression profiles of different cell 

types, for example tissue-specific macrophage subsets (Gautier et al. 2012). 

Additionally, in a concept similar to this study, genome wide transcriptome analyses 

have been used to better understand biological differences between C57BL/6 and 

BALB/c mice in the context of susceptibility to asthma (Kelada et al. 2011) and 

L.major infection (Ehrchen et al. 2010). Microarray expression profiling is therefore a 

powerful tool which can be used to understand global gene expression differences 

between populations or conditions. Further, this data can be used as part of a wider 

analysis to understand the biological networks which may give rise to specific profiles 

of gene expression (Amit et al. 2009; Zak et al. 2009).  
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5.2 Investigating the LPS induced transcriptional response of 

C57BL/6 and BALB/c macrophages: Study aims 

By analysing the transcriptional profiles of LPS stimulated C57BL/6 and BALB/c 

macrophages, we aim to address the following questions: 

 

1. Which genes, other than Il10, Ifnb1 and Il12a, are differentially expressed in 

LPS stimulated C57BL/6 and BALB/c macrophages?  

2. Using this expression data, can we identify biological pathways or regulatory 

networks that may differ in LPS stimulated C57BL/6 and BALB/c 

macrophages? 

3. If found, could these biological pathways or regulatory networks be involved in 

the differential regulation of Il10, Ifnb1 and Il12a in these cells? 

 

Of note, we observe similar C57BL/6 and BALB/c cytokine profiles in LPS and heat-

killed B.pseudomallei stimulated macrophages. Hence, findings made in this analysis 

have the potential to be relevant in the context of heat-killed B.pseudomallei stimulation. 
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5.3 Results 

5.3.1 Experimental design 

We elected to carry out microarray analysis of C57BL/6 and BALB/c LPS stimulated 

macrophages at 0, 0.5, 1, 3, 5 and 8 h post-stimulation. This was to ensure that we 

would be able to assess the regulation of genes which have different kinetics of 

expression. For example, Il10 mRNA has a complex pattern of expression in LPS 

stimulated C57BL/6 macrophages, with one peak at 0.5-1 h and another a 4-6 h post 

stimulation (Figure 5.1 A). Ifnb1 mRNA however only has one sharp peak at 1 h post 

stimulation, whereas Il12a mRNA expression has slower kinetics with gradually 

increasing levels up to 6 h, followed by a decline (Figure 5.1 A). Thus, the selection of 

these time-points, indicated by the red dotted lines in Figure 5.1 A, provided the breadth 

required to capture early, late and dynamic transcriptional changes.  In addition to a 0 h 

condition, we included media treated control cells at each time-point to ensure that the 

transcriptional responses we observed were LPS specific and not due to duration of cell 

culture alone. All experimental groups of C57BL/6 and BALB/c macrophages included 

in the microarray analysis are summarised in Figure 5.1 B. Once the microarray was 

carried out, a quality control analysis was conducted to ensure the robustness of the 

experiment. This is described in more detail in Materials and Methods (see Chapter 2).   

 

5.3.2 LPS induces a dynamic transcriptional response in C57BL/6 and BALB/c 

macrophages 

Prior to analysing differential gene expression in LPS stimulated C57BL/6 and BALB/c 

macrophages, we assessed the overall transcriptional profiles in macrophages from both 
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strains. Gene probes were normalised to the median of each gene across all samples to 

remove non-biological variation, then filtered on flags (an attribute denoting the quality 

of any given gene probe).  Genes were visualised in a heat map (Figure 5.2). Cells that 

had been treated with media for 0.5-8 h did not appear different from unstimulated (0 h) 

macrophages (Figure 5.2). This is confirmed in more detail in the quality control 

analysis (see Chapter 2, Figure 2.1). In LPS stimulated cells, clusters of genes were up- 

and down-regulated in response to LPS and even on this broad scale, kinetic differences 

in LPS induced gene expression were apparent (Figure 5.2). For example, some genes 

were already strongly up-regulated by 0.5-1 h of LPS stimulation (Group 1, Figure 5.2). 

Several of these genes encoded regulators of cytokine production e.g. Irf1, Rel, Atf3 or 

cytokines e.g. Il10, Tnf, Il1a and Il1b (Group 1, Figure 5.2). In keeping with this, Gene 

Ontology (GO) analysis associated this group of genes with GO terms that included 

‘regulation of cytokine production’ and ‘regulation of cytokine biosynthetic process’ 

(Group 1, Figure 5.2). Other genes were predominantly up-regulated from 3-8 h post-

stimulation (Group 2, Figure 5.2) and included cytokines such as Il12a and Il6, and type 

I IFN-inducible genes such as Mx1, Ifit2, Oasl2 and Pml (Sadler et al. 2008). In contrast, 

there was a small group of genes that only had a very short window of expression at 1 h, 

and these included transcription factors such as Irf4, Maff, Myc, Egr1, Egr2 and Egr3 

(Group 3, Figure 5.2). Down-regulation of genes occurred mostly from 3 h (Groups 4 

and 5, Figure 5.2). GO analysis identified these genes to be associated with biological 

processes such as ‘cell cycle’, ‘mitosis’, ‘cellular metabolic process’ and ‘response to 

DNA damage’ (Groups 4 and 5, Figure 5.2). We also observed that there was a notable 

level of differential gene expression in unstimulated C57BL/6 and BALB/c 

macrophages, some of which was maintained in stimulated cells (Figure 5.2, strain-
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dependent basal expression). Analysis of these genes, described in more detail in 

Materials and Methods (see Chapter 2 Figure 2.2), showed that several of these genes 

encoded MHC molecules, but other immune related genes e.g. Gpb1 and Il10 were also 

present, highlighting the importance of the inclusion of these genes in later analyses.  

 

5.3.3 Identification of significantly differentially expressed genes in LPS 

stimulated C57BL/6 and BALB/c macrophages  

We next determined which genes were differentially expressed in LPS stimulated 

C57BL/6 and BALB/c macrophages. To identify these genes, the expression data was 

analysed on a per time-point basis, outlined in Figure 5.3 A. The decision was made to 

analyse time-points individually to enable us to determine when genes were 

differentially expressed, as this cannot be done with a combined time-point analysis 

using GeneSpring software. Genes were again normalised to the median of each gene 

and filtered on flags. To narrow the analysis to LPS responsive genes, gene probes were 

filtered to select for those that were at least 2-fold differentially expressed from the 

media control within each strain. A 2-way ANOVA was then conducted specifying that 

genes must pass a cut-off of p<0.01 after a Benjamini-Hochberg multiple testing 

correction (Figure 5.3 A). From the 2-way ANOVA results, we identified three groups 

of genes. Firstly, genes that significantly changed their expression in response to LPS, 

but were not different between the strains (Figure 5.3 B far left graph, Δ). This group 

represented the majority of genes suggesting that the LPS induced transcriptional 

responses of C57BL/6 and BALB/c macrophages are actually quite similar. Secondly, 

we identified genes that did not significantly change in response to LPS, but were 

differentially expressed between the strains (Figure 5.3 B far right graph, Ψ). This group 
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represented the vast minority of genes, ranging from only 42-82 gene probes across 

each time point. Lastly, we identified our genes of interest which fulfilled two criteria, 

i) significantly differentially expressed between C57BL/6 and BALB/c macrophages, 

and ii) significantly modulated by LPS treatment (Figure 5.3 B middle graph, *). This 

final group contained 101, 141, 867, 1251 and 1109 gene probes at 0.5, 1, 3, 5 and 8 h 

of LPS stimulation, respectively. Of note, this analysis successfully identified the 

differential expression of Il10 (significantly higher in C57BL/6 macrophages at all 

time-points), Ifnb1 (significantly higher in C57BL/6 macrophages at 1 h) and Il12a 

(significantly higher in BALB/c macrophages at 3, 5 and 8 h), in keeping with our 

previous data and supporting the validity of this approach.  

 

In order to better understand the nature of differential gene expression in LPS 

stimulated C57BL/6 and BALB/c macrophages, differentially expressed genes of 

interest (Figure 5.3 B middle graph, *) were separated into those which were up-

regulated compared to media control in both strains; down-regulated compared to media 

control in both strains; or bi-directionally regulated according to strain (i.e. up-regulated 

in one strain and down regulated in the other, compared to the media control) (Figure 

5.3 C). We found that in C57BL/6 and BALB/c macrophages, the directionality of gene 

expression compared to media control was the same for the majority of differentially 

regulated genes (Figure 5.3 C). This indicated that primarily quantitative differences in 

gene expression account for the differential transcriptional profiles of LPS stimulated 

C57BL/6 and BALB/c macrophages.  



Chapter 5: Microarray analysis of LPS stimulated C57BL/6 and BALB/c macrophages 

 

 205 

5.3.4 C57BL/6 macrophages may have a stronger LPS induced transcriptional 

response than BALB/c macrophages  

In order to further understand differences in the transcriptional responses of LPS 

stimulated C57BL/6 and BALB/c macrophages, differentially expressed up-, down-, or 

bi-directionally regulated genes at each time-point (see Figure 5.3 C) were further 

segregated into their relative C57BL/6 versus BALB/c expression level (Figure 5.4). 

This analysis clearly showed that of the differentially expressed up-regulated genes, the 

majority were more highly expressed in C57BL/6 macrophages (Figure 5.4, left). This 

trend was observed at every time-point, suggesting that on a global scale, C57BL/6 

macrophages may have an enhanced response to LPS compared to BALB/c 

macrophages. Very few differentially expressed genes were bi-directionally regulated in 

LPS stimulated C57BL/6 and BALB/c macrophages, and their relative expression levels 

were overall evenly distributed between C57BL/6 and BALB/c macrophages (Figure 

5.4, middle). Few differentially expressed down-regulated transcripts were identified at 

0.5 and 1 h (Figure 5.4, right), in keeping with our earlier observation that LPS induced 

gene repression is more prominent from 3 h (see Figure 5.2). Indeed, from 3 h, many 

genes were down-regulated and of these, the majority appeared more down-regulated in 

C57BL/6 macrophages compared to BALB/c macrophages (Figure 5.4, right). 

Collectively, these observations suggest that C57BL/6 macrophages may have an 

overall stronger or more efficient transcriptional response to LPS than BALB/c 

macrophages. 
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5.3.5 k-means clustering of differentially expressed genes identifies the groups of 

genes that most clearly distinguish LPS induced C57BL/6 and BALB/c 

transcriptional profiles   

Across the different time-points of this analysis, we identified hundreds of differentially 

expressed genes in LPS stimulated C57BL/6 and BALB/c macrophages (see Figure 5.3 

B*). We thus aimed to distinguish the genes that had the most profound expression 

differences between C57BL/6 and BALB/c LPS stimulated macrophages. To do this, 

we separated the differentially expressed genes at each time-point into 6 clusters using 

k-means, a method of clustering that groups genes with similar transcriptional profiles 

into a user-defined number of clusters (Do et al. 2008). This analysis generated 30 

clusters in total, each termed C0-C5 for each time-point (Figure 5.5). We observed all 

30 clusters and selected 13 in which the gene expression profiles were considered to be 

substantially different between C57BL/6 and BALB/c macrophages (Figure 5.5, 

clusters outlined in blue). We performed GO analysis on each of these selected clusters 

to identify related functions and also manually searched for any genes of interest. The 

results of these analyses are discussed below.  

 

5.3.5.1 Clusters with higher expression in LPS stimulated C57BL/6 macrophages 

From these 13 selected clusters, 9 had profiles of higher expression in C57BL/6 

macrophages compared to BALB/c macrophages – 0.5 h C3 and C4; 1 h C1 and C5; 3 h 

C1 and C3; 5 h C0 and C3; and 8 h C0 (Figure 5.5, shown separated in Figure 5.6). 

Genes within each of these clusters are listed in Appendix Tables 7.1-7.9. 
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0.5 h C3 and C4: 0.5 h C3 and C4 both contained genes that were basally more highly 

expressed in C57BL/6 macrophages, and were up-regulated in response to LPS but 

more so in C57BL/6 than BALB/c macrophages (Figure 5.6). Neither cluster associated 

with any GO terms. C3 included the IFN-inducible gene Ifi205 (Ludlow et al. 2005), 

the transcription factor Atf4, the p38 responsive gene Cish (Kim et al. 2008) and the 

gene encoding vascular endothelial factor A, Vegfa (Figure 5.6). 0.5 h C4 included the 

IFN-inducible gene Cxcl10 (Thomas et al. 2006), again Ifi205 (often there are several 

probes specific to one gene), and Tnfrsf5, which encodes CD40 (Figure 5.6).  

 

1 h C1 and C5: 1 h C1 contained genes which were more highly expressed at baseline 

in C57BL/6 macrophages and up-regulated in response to LPS more notably in 

C57BL/6 compared to BALB/c macrophages (Figure 5.6). 1 h C1 did not associate with 

any GO terms, but contained the chemokine genes Ccl5 and Cxcl2, the IFN-inducible 

GTPase Gbp2 (guanylate binding protein 2) (Vestal 2005) and Dusp16, a dual 

specificity phosphatase, involved in the negative regulation of MAP kinases (Finch et al. 

2012) (Figure 5.6). 1 h C5 was composed of genes which had less marked differential 

basal expression, but were clearly more highly expressed in C57BL/6 macrophages 

upon LPS stimulation. 1 h C5 did not associate with any GO terms but included Cxcl10 

and Il10 in addition to the TLR signalling adaptor Myd88 (Kawai et al. 2010) (Figure 

5.6). The transcription factor Bcl3 was also present within this cluster.  

 

3 h C1 and C3: The genes within 3 h C1 were more highly expressed at baseline in 

C57BL/6 macrophages and appeared to be up-regulated by LPS in both strains, 

although more strongly in C57BL/6 macrophages (Figure 5.6). 3 h C1 associated with 
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the GO terms ‘MHC protein complex’ and ‘MHC class I protein complex’ due to the 

presence of H2-Ab1, H2-D4 and H2-T10 within the cluster (Figure 5.6). This cluster 

additionally contained the TPL-2/ERK induced transcriptional regulator Egr1 

(Waterfield et al. 2003), the MAP kinase pathway related genes Map3k6 and Dusp16, 

and the NF-κB family member Nfkb2 (encodes p105 (Hayden et al. 2008)) (Figure 5.6). 

Compared to 3 h C1, the basal expression of genes within 3 h C3 was more similar in 

C57BL/6 and BALB/c macrophages. Upon stimulation, these genes were strongly 

induced in C57BL/6 macrophages but only weakly in BALB/c macrophages (Figure 

5.6). 3 h C3 did not associate with any GO terms but included the transcription factors 

Bcl6 (a transcriptional repressor (Dent et al. 2002)), Irf2, Nfil3 and Stat4 (Figure 5.6). 

Nfil3 is a target of IL-10 mediated signalling (Smith et al. 2011) and thus, at this time-

point differential gene expression may be contributed to by autocrine IL-10 signalling. 

Two negative regulators of TLR signalling, Trim30 (a member of the tripartite motif 

containing (TRIM) family of proteins), and Irak3 were also present in 3 h C1 and C3, 

respectively (Kobayashi et al. 2002; Kawai et al. 2011; McNab et al. 2011)(Figure 5.6).  

 

5 h C0 and C3: 5 h C0 contained genes that were clearly more highly expressed in 

C57BL/6 macrophages both at baseline and upon LPS stimulation, and associated with 

the GO terms ‘MHC protein complex’ and ‘MHC class I protein complex’ again due to 

the presence of H2 genes (Figure 5.6). Genes of particular interest in 5 h C0 were 

largely consistent with earlier clusters, with the exception of the IFN-inducible TRIM 

protein Trim56 (Kawai et al. 2011) (Figure 5.6). The genes within 5 h C3 collectively 

varied less in their basal expression in C57BL/6 and BALB/c macrophages. These 

genes were up-regulated by LPS in both strains, but were more highly expressed in LPS 
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stimulated C57BL/6 macrophages (Figure 5.6). 5 h C3 associated with five GO terms – 

‘inflammatory response’, ‘immune response’, ‘defence response’, ‘immune system 

process’ and ‘response to wounding’ (Figure 5.6). Many IFN-inducible genes were 

present in 5 h C3 such as Mx1, Cxcl10, Pml, Ifit3 and Oas3 (Sadler et al. 2008; 

Schoggins et al. 2011) (Figure 5.6). This time-point constitutes the type I IFN 

dependent second peak of Il10 mRNA, and Il10 was also present in this cluster. 

However, although not initially selected for this analysis, we noted that 5 h C4 (see 

Figure 5.5), contained IFN-inducible genes such as Mx2, Ifitm1 and Oasl1 (Sadler et al. 

2008) which were more highly expressed in BALB/c macrophages. Thus, despite 

C57BL/6 macrophages producing higher levels of IFN-β than BALB/c macrophages, 

not all IFN-inducible genes are more highly expressed in C57BL/6 macrophages. The 

C57BL/6
hi

 genes of 5 h C3 also included Map3k8 (TPL-2) which positively regulates 

IL-10 but negatively regulate IL-12 and IFN-β (Agrawal et al. 2003; Kaiser et al. 2009) 

and Zfp36 (TTP), an RNA binding protein which has been shown to target and degrade 

Il10 (Stoecklin et al. 2008) but also negatively regulates IL-12 and other 

proinflammatory cytokines (Gaba et al. 2012)(Figure 5.6). The NF-κB pathway related 

gene Ikbkb (IKK-2/β) and the gene encoding IKK-ε, Ikbke, which is involved in the 

TRIF-dependent signalling pathway (Kawai et al. 2010), were also more highly 

expressed in C57BL/6 macrophages and present within 5 h C3 (Figure 5.6). 

 

8 h C0: Finally, one cluster was selected at the 8 h time-point, C0, which contained 

genes that were generally more highly expressed in C57BL/6 macrophages at baseline, 

and upon LPS stimulation (Figure 5.6). This cluster did not associate with any GO 
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terms, but included Il10, Ifi205, Egr1, Atf4, Trim30, Trim56, Nfkb2 and Dusp16, largely 

consistent with earlier clusters. 

 

5.3.5.2  Clusters with higher expression in LPS stimulated BALB/c macrophages  

The four remaining clusters selected by this approach had higher expression profiles in 

BALB/c macrophages – 1 h C4; 3 h C4; 5 h C2; 8 h C3 (Figure 5.5, shown separated in 

Figure 5.7). Genes within each of these clusters are listed in Appendix Tables 7.10-7.13. 

 

1 h C4: 1 h C4 contained genes which were overall more highly expressed in BALB/c 

macrophages, but not consistently up-regulated by LPS at this time-point. 1 h C4 did 

not associated with any GO terms. Of interest, this cluster contained the IFN-inducible 

GTPase Gpb1 (Vestal 2005) again indicating that not all IFN-inducible genes are more 

highly expressed in C57BL/6 macrophages. The histone lysine demethylase, Jmjd2a, 

which has been associated with transcriptional activation and repression (Marmorstein 

et al. 2009) was also more highly expressed in BALB/c macrophages and within this 

cluster (Figure 5.7).  

 

3 h C4: 3 h C4 contained genes that were up-regulated by LPS in both strains, but were 

more highly expressed BALB/c macrophages under all conditions. 3 h C4 did not 

associated with any GO terms but contained Gbp1 and Jmjd2a, which were also present 

in 1 h C4, and the additional type I IFN-inducible Ifi202b (Figure 5.7). 

 

5 h C2: 5 h C2 had a similar expression profile to 3 h C4, but associated with the GO 

terms ‘Immune response’ and ‘Immune system process’ (Figure 5.7). In addition to the 
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genes mentioned above in 1 h C4 and 3 h C4, the matrix metalloproteinase (MMP) 

Mmp9 was present within 5 h C2. Of note, MMPs are associated with the breakdown of 

extracellular matrix but are also reported to cleave and modulate the activity of 

cytokines (Van Lint et al. 2007). Of particular interest for this study, MMP-9 has been 

reported to cleave and inactivate IFN-β (Nelissen et al. 2003) which may be in keeping 

with its higher expression in BALB/c macrophages. Ltb (lymphotoxin-β) was also 

present within this cluster of BALB/c
hi

 genes (Figure 5.7).   

 

8 h C3: The expression profile of 8 h C3 was similar to the previous BALB/c
hi

 clusters 

and as 5 h C2, associated with the GO terms ‘Immune response’ and ‘Immune system 

process’ (Figure 5.7). Genes of interest within this cluster were consistent with 5 h C3, 

with the additional inclusion of Il12a (Figure 5.7), further corroborating our observation 

that Il12a is more highly expressed in LPS stimulated BALB/c macrophages. At this 

stage we additionally noted that amongst these selected BALB/c clusters (1 h C4; 3 h 

C4; 5 h C2; 8 h C3), there was much overlap of gene content indicating that several of 

these genes (e.g. Gbp1, Jmjd2a) were consistently more highly expressed in BALB/c 

macrophages throughout the response. 

 

In summary, this k-means analysis has highlighted the differential regulation of several 

potentially interesting genes in LPS stimulated C57BL/6 and BALB/c macrophages. 

Although the GO analysis was not highly informative, we noted the differential 

expression of some genes which may influence differential cytokine production in 

C57BL/6 and BALB/c macrophages. These included regulators of TLR signalling (e.g. 

Myd88, Map3k8 (TPL-2), Ikbkb, Ikbke, Irak3, Trim30 – all C57BL/6
hi

), regulators of 
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chromatin modification (Jmjd2a – BALB/c
hi

), and transcription factors (e.g. Egr1, Bcl3, 

Atf4 – C57BL/6
hi

). This analysis further brought attention to the differential expression 

of IFN-inducible genes which depending on the gene, were more highly expressed in 

either C57BL/6 or BALB/c macrophages.  

 

5.3.6 Ingenuity pathway analysis of differentially expressed genes in LPS 

stimulated C57BL/6 and BALB/c macrophages.  

In order to additionally establish links between differentially expressed genes in LPS 

stimulated C57BL/6 and BALB/c macrophages and relevant biological pathways, we 

used Ingenuity Pathway Analysis (IPA) software. IPA is a web-based analysis 

programme in which genes can be analysed for associations with pathways defined 

within a curated database known as the Ingenuity Knowledge Base. Taking each time-

point individually, we analysed the lists of differentially expressed genes of interest (see 

Figure 5.3 B*), for associated pathways. The rational for assessing each time-point 

individually, was that the transcriptional response to LPS is regulated in distinct 

temporal waves (Smale 2012), and thus different signalling pathways may be operating 

at different times (Elkon et al. 2007). Of note, IPA determines if a group of genes is 

associated with a biological pathway based on the number of genes that overlap with the 

pathway, not the relative expression level of those genes. In addition, any given 

pathway may up-regulate certain genes and down-regulate others. Thus, per time-point 

gene lists encompassing both LPS up- and down-regulated genes were analysed as a 

whole. The top 5 pathways significantly associated with differentially expressed genes 

in LPS stimulated C57BL/6 and BALB/c macrophages at each time-point (p<0.01) are 

represented in Figure 5.8. Within each gene list, some genes were more highly 
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expressed in C57BL/6 macrophages and others in BALB/c macrophages. This is 

represented by the red (C57BL/6) or green (BALB/c) shading of the bars. The clear area 

of the bars denotes genes that were present within a defined IPA pathway, but not 

present in the uploaded list of differentially expressed genes (Figure 5.8). Genes within 

our dataset that were associated with each pathway by IPA are listed in Appendix tables 

7.14-7.18.  

 

Pathways identified at several time-points included ‘TREM1 signalling’, 

‘Communication between innate and adaptive cells’, ‘Role of macrophages, fibroblasts 

and endothelial cells in Rheumatoid Arthritis’, ‘DC maturation’ and ‘Type I diabetes 

mellitus signalling’ (Figure 5.8).  At 0.5 and 1 h, ‘TREM1 signalling’ was the top 

associated pathway, however, relatively few genes from our dataset (6 genes at 0.5 h, 8 

genes at 1 h) were associated with this pathway (see Appendix Tables 7.14 and 7.15). 

Further, these ‘TREM1 signalling’ associated genes, which included Il10, Myd88, Ccl2, 

Ccl7, Cxcl3 and Tnf (all C57Bl/6
hi

), represent genes that could be associated with many 

molecular pathways. Of note, the higher expression of Tnf mRNA in C57BL/6 

macrophages was interesting as we had previously observed TNF-α protein production 

to be higher in BALB/c macrophages. This may imply a post-transcriptional mechanism 

preventing high levels of TNF-α protein production in C57BL/6 macrophages. The 

other pathways which appeared at several time-points were quite broad and as such, did 

not provide substantial insight into the mechanisms of differential gene expression in 

LPS stimulated C57BL/6 and BALB/c macrophages.  
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Pathways identified at one time-point included ‘Allograft rejection signalling’ (0.5 h), 

‘Glucocorticoid receptor signalling’ (0.5 h), ‘Granulocyte/Agranulocyte adhesion and 

diapedesis’ (1 h), ‘Role of hypercytokinemia/chemokinemia in the pathogenesis of 

influenza’ (1 h), ‘NF-κB signalling’ (3 h) and ‘Hepatic fibrosis/stellate cell activation’ 

(8 h) (Figure 5.8). Of these, we considered the most relevant to be NF-κB signalling at 

the 3 h time-point. 24 genes from the 3 h dataset were associated with this pathway, and 

the majority were more highly expressed in C57BL/6 macrophages including Tbk1, 

Irak3, Nfkb2, Tank and Ikbkb (see Appendix Table 7.16). Thus, the results of this 

analysis suggested that there may be differential NF-κB signalling at 3 h in LPS 

stimulated C57BL/6 and BALB/c macrophages and that this may play a part in 

differential gene expression between the strains.  

 

5.3.7 Identification of candidate transcription factors that may be responsible for 

differential gene expression in LPS stimulated C57BL/6 and BALB/c 

macrophages  

To further our insight into the differential molecular networks that could be operating in 

C57BL/6 and BALB/c macrophages, we went on to do a complimentary analysis that 

was focussed on identifying transcription factors that may be upstream of the 

differential gene expression in LPS stimulated C57BL/6 and BALB/c macrophages. 

Towards this aim, we took three approaches: i) identification of putative transcriptional 

regulators upstream of differentially expressed genes by IPA (in silico); ii) assessment 

of predicted transcription factor binding motif enrichment in differentially expressed 

genes by PSCAN (in silico) and iii) analysis of differential transcription factor mRNA 

expression in LPS stimulated C57BL/6 and BALB/c macrophages (experimental data). 
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As a data validation technique, we overlapped the results from these three approaches, 

each explained in more detail below, with the hypothesis that if a transcriptional 

regulator is identified by more than one analysis strategy, it has a higher likelihood of 

being involved in mediating differential gene expression in LPS stimulated C57BL/6 

and BALB/c macrophages.  

 

5.3.7.1  Identification of upstream transcriptional regulators associated with differential 

gene expression in LPS stimulated C57BL/6 and BALB/c macrophages by IPA  

IPA software has an ‘upstream regulator’ application in which it can be predicted if 

groups of genes are significantly associated with particular upstream transcription 

factors. Taking each time-point individually as we did for the k-means clustering and 

pathway analysis, we used this tool to analyse the lists of differentially expressed genes 

of interest (see Figure 5.3 B*). Further, using the relative C57BL/6 versus BALB/c 

expression levels of each gene, IPA was able assign an activation z-score (described in 

more detail in Materials and Methods) to predict if a given transcriptional regulator is 

likely to be more active in one strain over the other (Figure 5.9). Selected transcriptional 

regulators identified are discussed below. 

 

NF-κB: NF-κB (complex) was predicted to be more activated in LPS stimulated 

C57BL/6 macrophages at 0.5 h, 1 h, 3 h and 5 h, with the highest activation score in 

C57BL/6 macrophages at 0.5, 1 and 3 h (Figure 5.9). This suggests that differential NF-

κB signalling may be a dominant factor in mediating distinct profiles of gene expression 

in C57BL/6 and BALB/c macrophages at these time-points. This is in keeping with our 
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our IPA pathway analysis (see Section 5.3.6) which also suggested that differentially 

expressed genes at 3 h may be associated with NF-κB signalling.  

 

STATs: STAT1 was predicted to be preferentially activated in C57BL/6 macrophages 

and this was most prominent at 3 and 5 h (Figure 5.9). This could be a consequence of 

differential gene expression due to autocrine type I IFN as based on our previous data, 

this is when we would predict autocrine type I IFN signalling to be at its height. STAT3 

was additionally predicted to be more active in C57BL/6 macrophages at 3 and 8 h 

(Figure 5.9). This may be a consequence of autocrine IL-10 signalling which we predict 

to be enhanced in C57BL/6 compared to BALB/c macrophages. STAT4 had the highest 

C57BL/6 activation score at 8 h (Figure 5.9). This transcription factor is generally 

associated with IL-12 signalling (Bacon et al. 1995b) which we predict would be less 

strong in C57BL/6 macrophages, if they express the IL-12 receptor at all. It is therefore 

possible that other factors may be inducing STAT4 activity in this system.  

 

IRFs: Several IRFs were associated with differentially expressed genes at 1 and 3 h. 

The majority were predicted to be preferentially activated in C57BL/6 macrophages 

including IRF 1, 8, 7, 3 and 5 of which IRF 1, 3 and 7 are associated in the literature 

with the production of type I IFN or responses to type I IFN (Ziegler-Heitbrock et al. 

2003; Platanias 2005; Trinchieri 2010). In contrast, IRF2, which has been reported to 

antagonise type I IFN responsiveness (Hida et al. 2000), was the only IRF predicted to 

be preferentially activated in BALB/c macrophages (Figure 5.9).   
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ERK associated transcriptional regulators: The TPL-2/ERK MAP kinase pathway is 

activated downstream of TLR4 (Gantke et al. 2011). Interestingly, several ERK 

regulated transcription factors such as ELK1, AP1, EGR1 and CREB (Waterfield et al. 

2003; Chastel et al. 2004; Ananieva et al. 2008), were predicted to be more active in 

C57BL/6 macrophages, particularly at 3 h (Figure 5.9). In contrast, at 1 h, the AP-1 

family member FOSL1 (Karin et al. 1997) was predicted to be more active in BALB/c 

macrophages.  

 

Other transcriptional regulators: SP1, which has roles in the regulation of both IL-10 

and IL-12 (Tone et al. 2000; Goriely et al. 2003) was predicted to be preferentially 

activated in C57BL/6 macrophages at 0.5 h, however at 5 h was the top preferentially 

activated transcription factor in BALB/c macrophages (Figure 5.9). The transcriptional 

repressor BCL6 (Dent et al. 2002) was also predicted to be preferentially activated in 

BALB/c macrophages at 1, 5 and 8 h post-LPS stimulation (Figure 5.9). Additionally, 

ETS1 which has been shown to negatively regulate IL-10 in T cells (Lee et al. 2012) 

was predicted to be more active in BALB/c macrophages at 5 h (Figure 5.9).  

 

5.3.7.2  Transcription factor binding motif enrichment analysis of differentially 

expressed genes in LPS stimulated C57BL/6 and BALB/c macrophages 

An alternative approach to identifying transcription factor candidates that regulate 

groups of genes is transcription factor binding site (TFBS) enrichment analysis. This 

approach makes the assumption that co-expressed genes are regulated by common 

factors, which can be revealed by the presence of TFBS sequence motifs within those 

genes. TFBS analysis has been used by several groups to identify transcription factors 
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responsible for the temporal regulation of gene clusters in PRR stimulated macrophages 

(Nilsson et al. 2006; Ramsey et al. 2008). We have used the web based software 

PSCAN (Zambelli et al. 2009) to identify TFBS which may be over-represented 

amongst the genes that are differentially expressed in LPS stimulated C57BL/6 and 

BALB/c macrophages. This programme scans the gene sequences and compares them 

against known TFBS within publically available, or user defined databases (Zambelli et 

al. 2009). We elected to scan the gene sequences between -950 and +50 bp relative to 

the transcriptional start site. This was because within the PSCAN programme, only five 

scanning ranges were possible and this choice allowed us to go a reasonable distance 

upstream while retaining a small area within the gene, where TFBS are often found 

(Zambelli et al. 2009).  We used the open-access JASPAR database as the source of 

TFBS motifs (Sandelin et al. 2004). As before, we analysed the differentially expressed 

genes of interest identified in Figure 5.3 B* on a per-time-point basis.  

 

At 0.5 h, no significant enrichment of TFBS was found within the genes that were 

differentially expressed in LPS stimulated C57BL/6 and BALB/c macrophages, 

although NF-κB was the top result (data not shown). At 1 h, TFBS enrichment for NF-

κB and RELA was found within differentially expressed genes (Figure 5.10). 

Significant enrichment for NF-κB TFBS was also identified at the 3, 5 and 8 h time-

points, along with NFKB1 TFBS enrichment (Figure 5.10). This provides further 

evidence for the involvement of NF-κB signalling in mediating the differential 

transcriptional profiles of LPS stimulated C57BL/6 and BALB/c macrophages.  At 3, 5 

and 8 h, there was substantial overlap between the TFBS enrichment results. The M2 

macrophage associated transcription factor KLF4 (Liao et al. 2011) had the most 
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significant p value for enrichment at these time-points (Figure 5.10). TFBS enrichment 

for the transcription factors SP1, EGR1, IRF1 and the insulator protein CTCF, which 

has been implicated in the organisation of chromatin structure (Phillips et al. 2009), was 

also identified at the 3, 5 and 8 h time-points (Figure 5.10). Additionally, TFBS 

enrichment for HIF-1α/ARNT and ARNT/AHR complexes were identified at 3, 5 and 8 

h. Very few TFBS motifs were enriched at only one time-point but included PAX5, 

USF1 and NHLH1 at the 5 h time-point, and SPIB at the 8 h time-point (Figure 5.10).  

 

5.3.7.3  Differential transcription factor mRNA expression in LPS stimulated C57BL/6 

and BALB/c macrophages. 

As our final approach to identifying transcription factor candidates responsible for 

differential gene expression in LPS stimulated C57BL/6 and BALB/c macrophages, we 

used our microarray expression data to determine which transcription factors were 

differentially expressed at the mRNA level in these cells. Although it is known that 

some transcription factors are regulated at the post-transcriptional level leading to rapid 

expression of primary response genes in LPS stimulated macrophages, other 

transcription factors are transcriptionally induced after stimulation and these may 

modulate the expression of secondary response genes (Medzhitov et al. 2009; Smale 

2012). Thus, the expression of transcription factor mRNA may give some indication of 

differential transcription factor activity, particularly at later time-points. A 

comprehensive list of murine transcription factors was generated using GO annotation 

from Affymetrix (another microarray platform) and Illumina databases (Gabrysova, 

O’Garra unpublished resource), and was used to interrogate the differentially expressed 

genes of interest (Figure 5.3 B*). A total of 88 transcription factors were found to be 
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differentially expressed in C57BL/6 and BALB/c macrophages in response to LPS at at 

least one time-point. These genes were hierarchically clustered according to expression, 

and based on the resulting dendogram, split into 11 clusters, C1-C11 (Figure 5.11).  All 

genes in each cluster are listed in Appendix table 7.19.  

 

C1 contained a mixture of genes that were more highly expressed in either C57BL/6 or 

BALB/c macrophages, and although statistically differentially expressed, their overall 

expression profiles were quite similar (Figure 5.11). Genes in C2 were up-regulated by 

LPS mainly from 1 h, were clearly more highly expressed in LPS stimulated C57BL/6 

macrophages, and contained some genes that were previously noted in the k-means 

clustering such as Irf2, Bcl6 and Bcl3 (Figure 5.11).  Genes in C3 were up-regulated by 

LPS from 0.5 h, were more highly expressed in C57BL/6 macrophages and included 

Nfil3 and Egr1 which had also been previously highlighted in the k-means clustering. 

C4 contained genes that were up-regulated by LPS from 3 h, and the majority, including 

Mycbp, were more highly expressed in BALB/c macrophages. The genes in C5 were 

also up-regulated in response to LPS in both strains, but substantially more highly 

expressed in C57BL/6 macrophages (at baseline and upon stimulation), and included 

genes such as Atf4, Nfkb2, Stat4 and the interferon-inducible Ifi204 (Doyle et al. 2002) 

(Figure 5.11). C6 contained Bach2, Btbd11 and Ddef1 and these genes were more 

highly expressed at baseline in C57BL/6 macrophages, but down-regulated in response 

to LPS in both strains (Figure 5.11). C7 contained genes including Ctnnb1 (encodes β-

catenin) and Tgfb1i4 (encodes EGR5), that were again differentially expressed in 

unstimulated cells, but in this case were subtly up-regulated in response to LPS with 

overall higher expression in BALB/c macrophages (Figure 5.11). C8 and 9 contained 
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transcription factors that were differentially down regulated in response to LPS in both 

C57BL/6 and BALB/c macrophages and included genes such as E2f1 and Tsc22d3 

(Figure 5.11, see Appendix Table 7.19). Genes within C10 were up-regulated 

transiently by LPS, more highly expressed in C57BL/6 macrophages and included the 

AP-1 transcription factors Jun and Fos (Figure 5.11). C11, similarly to C6, contained 

transcription factors that were very clearly differentially expressed at baseline in 

C57BL/6 and BALB/c macrophages, but were down-regulated upon LPS stimulation 

with overall higher expression in BALB/c macrophages and included the ETS family 

transcription factors Etv1, Etv5 and Elk3 (Figure 5.11).  

 

5.3.7.4  Transcription factor candidates mediating differential gene expression in LPS 

stimulated C57BL/6 and BALB/c macrophages identified by comparison of IPA, 

PSCAN and transcription factor mRNA expression.  

Overlapping the results from the three approaches taken – upstream regulator analysis 

by IPA; TFBS motif enrichment analysis by PSCAN; and differential expression of 

transcription factor genes, generated a list of 16 potential transcription factor candidates 

(Table 5.1). Based on the complied information in Table 5.1, EGR1 and NF-κB are the 

strongest candidates for regulating the C57BL/6 specific transcriptional profile as the 

data gathered on these regulators from the three analysis strategies was largely 

congruent. For example, EGR1 was predicted to be more active in C57BL/6 

macrophages by IPA at 0.5 and 3 h; differentially expressed genes were enriched for the 

EGR1 TFBS at 3, 5 and 8 h; and Egr1 was more highly expressed in C57BL/6 

macrophages. Similar overall findings were made for NF-κB related transcription 

factors (Table 5.1). AP-1 (FOS/JUN), HIF-1α, IRF1, IRF5, STAT3 and STAT4 were all 
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identified by two approaches and the data indicates that these regulators may also be 

more active in C57BL/6 compared to BALB/c macrophages (Table 5.1). Although 

down-regulated in response to LPS, the data also suggested that E2F1 may be more 

active in C57BL/6 macrophages (Table 5.1). MYC was the strongest candidate for 

regulating the BALB/c specific transcriptional profile as it was predicted to be more 

activated in BALB/c macrophages by IPA at 5 h; differentially expressed genes were 

enriched for the MYC TFBS at 5 and 8 h; and Mycbp (MYC-binding protein, also 

known as AMY-1) which has been reported to enhance the transcriptional activity of 

MYC (Taira et al. 1998; Sakamuro et al. 1999), was more highly expressed in BALB/c 

macrophages (Table 5.1). The data also suggested that FOXM1, a transcription factor 

linked to cell cycle progression (Kalin et al. 2011), was more active in BALB/c 

macrophages, although this was down-regulated in response to LPS. SP1 is an 

interesting candidate as at 0.5 h it was predicted to be more activated in C57BL/6 

macrophages, whereas at 5 h, a time-point at which SP1 TFBS enrichment was also 

found, it was predicted to be more active in BALB/c macrophages.  

 

The compiled data gathered on other transcriptional regulators however was less 

congruent. For example, BCL6 was identified by IPA to be more activated in BALB/c 

macrophages, but its expression was higher in C57BL/6 macrophages. Similar 

discrepancies were found with HDAC, IRF2, and TSC22D3. Although this does not 

completely negate the relevance of these transcription factors as many are regulated at 

the post-transcriptional level, it does not suggest consistent evidence for their 

involvement in differential gene expression in LPS stimulated C57BL/6 and BALB/c 

macrophages. 
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5.4 Discussion 

Our lab based studies (Chapter 3 and 4) have revealed higher production of IL-10 but 

lower production of IL-12 in LPS stimulated C57BL/6 macrophages compared to 

BALB/c macrophages. We further found that type I IFN signalling was responsible for 

differential IL-10 production, but that differences in IL-12 production were not fully 

accounted for by differential IL-10 production or type I IFN. In order to better 

understand the transcriptional networks that differ in LPS stimulated C57BL/6 and 

BALB/c macrophages and thus gain further insight into the potential mechanisms 

underlying differential cytokine production in these cells, we conducted genome wide 

expression profiling by microarray over a time-course of LPS stimulation.  

 

5.4.1 The overall transcriptional profiles of LPS stimulated C57BL/6 and 

BALB/c macrophages 

In our initial observations, we noted that in both C57BL/6 and BALB/c macrophages, 

genes were up- and down-regulated in response to LPS with kinetics that differed 

amongst specific sets of genes. These observations are in keeping with other studies 

which also show the temporal regulation of gene expression in LPS stimulated 

macrophages (Gilchrist et al. 2006; Nilsson et al. 2006). Further, our functional 

classification of these genes agreed with previous reports. For example, an early 

increase in expression of transcription factors as we observed, was also seen in the 

study of Gilchrist et al. and these factors may contribute to the expression of secondary 

LPS response genes (Gilchrist et al. 2006; Elkon et al. 2007; Smale 2012). In addition, 

the association of down-regulated genes with cell cycle related processes is in keeping 
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with previous microarray studies of LPS stimulated macrophages, and has been 

proposed to reflect the anti-proliferative activity of LPS (Nilsson et al. 2006; Ramsey et 

al. 2008).  

 

5.4.2 Basal gene expression in C57BL/6 and BALB/c macrophages 

Early in our analysis, we noted clear differences in the gene expression of C57BL/6 and 

BALB/c unstimulated macrophages. Our analysis of these basal differences revealed 

that several immune related genes were differentially expressed prior to stimulation. In 

the current investigation, we have primarily focussed on differentially expressed genes 

in LPS stimulated C57BL/6 and BALB/c macrophages. We did however find that Il10 

was among the differentially expressed basal genes, and was more highly expressed in 

C57BL/6 macrophages. Of note, our k-means clustering analysis placed Il10 in gene 

clusters with only subtle differences in basal expression at 1 and 5 h, suggesting that 

this difference may not be extensive. Nevertheless, in unstimulated macrophages, it has 

been reported that there are DNase hypersensitivity sites within the Il10 locus, 

indicative of chromatin remodelling in the basal state (Saraiva et al. 2005). It has also 

been reported that in resting macrophages, active histone modifications are associated 

with certain ‘rapid’ response genes, to facilitate their immediate expression upon 

stimulation (Ramirez-Carrozzi et al. 2009). Thus, Il10 may be a gene that is ‘poised’ for 

expression and the higher level of basal Il10 expression in C57BL/6 compared to 

BALB/c macrophages may be indicative of a different resting chromatin state. In this 

respect, it may be interesting to analyse active and repressive histone marks or DNase 

hypersensitivity sites at the Il10 locus in unstimulated C57BL/6 and BALB/c 

macrophages. Of note, in contrast to what we observe in LPS stimulated macrophages, a 



Chapter 5: Microarray analysis of LPS stimulated C57BL/6 and BALB/c macrophages 

 

 225 

study analysing the effect of type I IFN on gene expression in unstimulated C57BL/6 

macrophages found that basal Il10 gene expression was not affected in the absence of 

the type I IFN receptor (Fleetwood et al. 2009). Further, we have no evidence in this 

study that Ifnb1 is differentially expressed at baseline in C57BL/6 and BALB/c 

macrophages. This suggests that differential basal Il10 expression, and perhaps other 

basal differences, may not necessarily be dependent on type I IFN. However, these 

basal gene expression differences warrant more in depth investigation as they could 

provide further information on existing differences between C57BL/6 and BALB/c 

macrophages which may affect LPS induced gene expression. 

 

5.4.3 Differential gene expression in LPS stimulated C57BL/6 and BALB/c 

macrophages 

Upon identification of differentially expressed genes in LPS stimulated C57BL/6 and 

BALB/c macrophages, we noted that the majority of LPS responsive genes were 

similarly expressed between the strains. In addition, of the genes that were differentially 

expressed, the vast majority had a similar directionally of regulation in response to LPS.  

This suggested that the LPS induced transcriptional responses of C57BL/6 and BALB/c 

macrophages were quite similar, with quantitative differences accounting for the 

majority of differential gene expression. Il10, Ifnb1 and Il12a were amongst the 

differentially expressed genes in LPS stimulated C57BL/6 and BALB/c macrophages, 

further validating the differential expression of these genes that we had previously 

observed by qPCR. In addition, we observed a stronger overall transcriptional response 

of both up- and down-regulated genes in C57BL/6 macrophages compared to BALB/c 

macrophages. In keeping with this observation, a previous microarray study analysing 
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LPS induced gene expression in C57BL/6, BALB/c, DBA/2J, C3H/ARC and C3H/HeJ 

macrophages, also found that fewer transcripts were more than 2 fold up-regulated by 

LPS in BALB/c macrophages compared to C57BL/6 macrophages (Wells et al. 2003). 

Thus, reduced transcriptional activity in BALB/c macrophages may be a generalised 

phenomenon and could indicate a state of relative repression in BALB/c macrophages, 

or the reduced activation of regulatory pathways.   

 

Our earlier experiments (Chapter 3) had shown that LPS stimulated C57BL/6 

macrophages produce higher levels of IFN-β than BALB/c macrophages. In keeping 

with this, in our analysis of C57BL/6
hi 

and BALB/c
hi

 gene clusters by k-means, we 

observed that the IFN-inducible genes Mx1, Pml, Oas3 and Ifit3 (Sadler et al. 2008) 

were more highly expressed in C57BL/6 macrophages at 5 h of LPS stimulation. 

However, we were surprised to find that other IFN-inducible genes such as Mx2, Ifitm1 

and Oasl1 (Sadler et al. 2008) were more highly expressed in BALB/c macrophages at 

this time-point. We also observed differential expression of the IFN-inducible genes 

Cxcl10 (C57BL/6
hi

) and Gbp1 (BALB/c
hi

) from 0.5 h post LPS stimulation.  Taken 

together, these observations suggest a complex relationship between the level of type I 

IFN produced by the cell, and downstream expression of IFN-inducible genes. It is 

possible that a high level of type I IFN preferentially induces one set of genes (i.e. those 

more highly expressed in C57BL/6 macrophages) whereas a lower level of type I IFN 

preferentially induces another (i.e. those expressed more highly in BALB/c 

macrophages), although to our knowledge this has not yet been reported. Alternatively, 

potential differences in how C57BL/6 and BALB/c macrophages are responding to type 

I IFN could be dictating the relative expression of type I IFN responsive genes. 
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However, the differential expression of these genes may also be a consequence of other 

genetic differences in C57BL/6 and BALB/c macrophages. In order to further 

understand the type I IFN dependence of differential gene expression in LPS stimulated 

C57BL/6 and BALB/c macrophages, it would be informative to conduct a microarray 

analysis of LPS stimulated C57BL/6 Ifnar1
-/-

 macrophages to compare to C57BL/6 and 

BALB/c macrophages over this detailed time-course. This would allow an assessment 

of which genes truly depend on autocrine type I IFN signalling for their expression, and 

may therefore help to identify the genes which are differentially regulated in C57BL/6 

and BALB/c macrophages due to type I IFN or other genetic differences. 

 

Our investigation into differential gene expression by k-means also highlighted the 

higher expression of Bcl3, Irak3 and Trim30 in C57BL/6 macrophages. This is of 

interest as the products of these genes have been shown to regulate TLR-induced 

cytokine production. For example, BCL3 (B-cell CLL/lymphoma 3) has been reported 

to promote IL-10 and inhibit IL-1β in LPS stimulated macrophages (Wessells et al. 

2004), and this fits with the profile of cytokine production that we observe in C57BL/6 

and BALB/c LPS stimulated macrophages. Irak3 encodes IRAK-M which has been 

shown disrupt interactions between IRAK1 and IRAK4 downstream of MyD88, 

inhibiting proinflammatory cytokine production (Kobayashi et al. 2002). Trim30 has 

been associated with negative regulation of the NF-κB pathway downstream of TLR4 

(Kawai et al. 2011; McNab et al. 2011). The higher expression of Irak3 and Trim30 

expression in C57BL/6 macrophages could therefore potentially be involved in the 

differential cytokine production that we observe in LPS stimulated C57BL/6 and 

BALB/c macrophages.  
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5.4.4 Putative transcriptional regulators involved in the differential gene 

expression of LPS stimulated C57BL/6 and BALB/c macrophages 

We focussed the latter part of our analysis on using unbiased approaches to identify 

transcriptional regulators that may be differentially activated in LPS stimulated 

C57BL/6 and BALB/c macrophages. Towards this aim, we used IPA upstream 

regulator analysis, transcription factor binding site (TFBS) motif enrichment analysis 

and compared the expression level of genes encoding transcription factors in C57BL/6 

and BALB/c macrophages. Importantly, each of these methods has different strengths 

and weaknesses. The IPA upstream regulator analysis depended on information derived 

from the Ingenuity Knowledge Base. This information is manually curated and is 

compiled from over 200,000 publications on human, mouse and rat experimental 

systems (Calvano et al. 2005). Thus, although a highly inclusive approach, it may 

identify factors that are not relevant to our biological system. The TFBS enrichment 

analysis is powerful as it focuses on information within the genes themselves however, 

it will only identify transcription factor involvement if those factors directly bind to the 

DNA within the specified search region, in this case -950 to +50 relative to the 

transcriptional start site. Thus, if a transcriptional regulator has an indirect effect or its 

binding site is very distal, it will be missed. Additionally, transcription factors with a 

small number of target genes may not be identified by this method (Elkon et al. 2007). 

Analysis of transcription factor mRNA expression uses the expression data in its purest 

form, without bioinformatic extrapolations. However, the activity of many transcription 

factors is regulated at the post-transcriptional level and it is not completely clear how 

the level of transcription factor expression affects their function (Smale 2012). Thus, 

differential transcription factor mRNA expression, may or may not correlate to 
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differential transcription factor activity. Aware of these limitations, our approach of 

overlapping the results from each method aimed to gather several lines of evidence for 

the involvement of any given transcriptional regulator in regulating the distinct 

transcriptional profiles of LPS stimulated C57BL/6 and BALB/c macrophages. This 

combined analysis resulted in the identification of several potential transcription factor 

candidates, some of which may be involved in the differential regulation of IL-10, IL-

12 and type I IFN.  

 

One of the strongest candidates generated by the above approach was NF-κB as it was 

identified by all three analysis methods at the majority of time-points. In support of this, 

our earlier IPA pathway analysis associated differentially expressed genes with NF-κB 

signalling at 3 h and our k-means analysis highlighted the higher expression of NF-κB 

pathway related genes such as Ikbkb and Nfkb2 in C57BL/6 macrophages. The NF-κB 

pathway is well known to regulate LPS induced transcriptional responses in 

macrophages and DCs (Medzhitov et al. 2009). It is therefore plausible that this 

pathway may be involved in mediating the differential cytokine expression we observe 

in C57BL/6 and BALB/c macrophages. Further, NF-κB transcription factors have been 

strongly implicated in the positive regulation of IL-10 (Saraiva et al. 2005; Zhang et al. 

2006), IL-12 (Murphy et al. 1995; Plevy et al. 1997; Sanjabi et al. 2000; Grumont et al. 

2001) and type I IFN (Honda et al. 2005c). Overall, our analysis has predicted that the 

NF-κB pathway may be more active in C57BL/6 macrophages. Thus, enhanced or 

differential NF-κB signalling could theoretically contribute to elevated IL-10 and/or 

type I IFN production in C57BL/6 compared to BALB/c macrophages.  
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An additional candidate identified by all three analysis methods was EGR1 (early 

growth response-1). EGR1 is a zinc finger transcription factor, previously reported to 

promote the differentiation of macrophages (Nguyen et al. 1993). Downstream of LPS 

stimulation, the expression of Egr1 is induced by the TPL-2/ERK pathway (Waterfield 

et al. 2003). In the context of IL-10 regulation, EGR1 has been shown to induce the 

expression of the microRNA hsa-mir-106a which destabilises Il10 mRNA (Sharma et al. 

2009). Based on our information, EGR1 is currently predicted to be more activated in 

C57BL/6 macrophages which produce more IL-10 and therefore is not in keeping with 

the findings of Sharma et al. (Sharma et al. 2009). However, there may be as of yet 

unidentified roles for EGR1 in the regulation of IL-10, IL-12 or type I IFN and thus the 

role of this transcription factor in mediating differential cytokine production in 

C57BL/6 and BALB/c macrophages warrants further investigation. Of note, ELK-1, 

AP-1 and CREB were also predicted to be more activated in LPS stimulated C57BL/6 

macrophages compared to BALB/c macrophages by IPA (and Fos/Jun expression in the 

case of AP-1). Each of these factors can also be induced by the MAP kinase ERK 

(Karin et al. 1997; Tsai et al. 2000), which itself along with AP-1 and CREB have been 

directly linked to the positive regulation of IL-10 (Agrawal et al. 2003; Dillon et al. 

2004; Ananieva et al. 2008; Kaiser et al. 2009). Also interesting in this context was that 

Nfkb1, a negative regulator of the TPL-2/ERK pathway (Gantke et al. 2011), was more 

highly expressed in BALB/c macrophages, and Map3k8 which encodes TPL-2, was 

more highly expressed in C57BL/6 macrophages. Collectively, these findings may 

provide evidence for the enhanced activation of ERK in LPS stimulated C57BL/6 

macrophages. However, our previous data comparing ERK phosphorylation in LPS 

stimulated C57BL/6 and BALB/c macrophages did not provide evidence for this (see 
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Chapter 3, Figure 3.8). It could be that that potential strain differences in this pathway 

are not at the level of ERK phosphorylation or, as we assessed ERK phosphorylation 

only within the first hour of LPS stimulation, differences may be at later time-points. 

 

MYC (also known as c-MYC) was the final transcriptional regulator identified by all 

three analysis approaches. MYC is strongly linked to the biology of cancer, most likely 

due to its central role in regulating cell proliferation and apoptosis (Dang 2012). In 

serum stimulated fibroblasts, MYC target genes have broadly been associated with 

RNA processing functions, DNA replication and ribosome biogenesis (Perna et al. 

2012). In macrophages, MYC has been associated with M-CSF induced cell cycle entry 

(Roussel 1997) and c-myc mRNA is induced upon LPS stimulation (Introna et al. 1986). 

MYC was predicted to be more active in BALB/c macrophages. This may be interesting 

in the context that the NF-κB pathway is predicted to be more active in C57BL/6 

macrophages, and MYC has been shown to inhibit LPS induced NF-κB signalling in 

MYC-transformed murine B cell lines, although the effect of MYC on cytokine 

production was not reported (Klapproth et al. 2009). Thus, preferential activation of 

MYC in BALB/c cells could be a reflection of cell-cycle progression, but could 

potentially have additional consequences for cytokine production.  

 

In addition to the three main candidates discussed above, several other transcriptional 

regulators which we know from the literature to be important in the regulation of IL-10, 

IFN-β and IL-12 were highlighted during our combined analyses. For example, IRF1 

and STAT3 were predicted to be more active in C57BL/6 macrophages. These 

transcription factors have been implicated in the enhancement of IL-10 by type I IFN 
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(Ziegler-Heitbrock et al. 2003) and are therefore of extremely high interest as they may 

have a role in the induction of the second peak of Il10 mRNA that we observe in 

C57BL/6 macrophages. IRF5 was also predicted to be more active in C57BL/6 

macrophages. However, IRF5 has been reported to inhibit IL-10 while promoting IL-12 

(Krausgruber et al. 2011), the opposite cytokine profile to what we observe in C57BL/6 

macrophages, so is unlikely to be causal to our findings. SP1 was predicted to be more 

activated in BALB/c macrophages at 5 h, a time-point when SP1 TFBS enrichment was 

also found. This transcription factor is known to be important in the regulation of Il12a 

(IL-12p35) expression (Goriely et al. 2003), in keeping with higher Il12a gene 

expression in BALB/c macrophages, although SP1 has also been shown to positively 

regulate Il10 gene expression (Tone et al. 2000). Bcl6 was more highly expressed in 

C57BL/6 macrophages, however, it was predicted to be more active in BALB/c 

macrophages at 1, 5 and 8 h. This may be interesting in the context that BCL-6 is 

considered a transcriptional repressor (Dent et al. 2002) and as already discussed, we 

observed an overall more muted induction of generalised gene expression in BALB/c 

macrophages compared to C57BL/6 macrophages. Our data also indicate that HIF-1α 

(Hypoxia-inducible factor 1 α), an IFN-inducible gene (Der et al. 1998), may be 

involved in mediating differential gene expression in C57BL/6 and BALB/c 

macrophages. The role of HIF-1α in the regulation of IL-10, IL-12 and type I IFN is not 

clear, although this transcription factor has recently been shown to regulate IL-1β in 

LPS stimulated macrophages (Tannahill et al. 2013). HIF-1α may therefore be an 

interesting novel candidate for follow-up studies on differential cytokine production in 

C57BL/6 and BALB/c macrophages.  
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Finally, although we were most interested in transcription factors identified by more 

than two analysis strategies, KLF4 (Kruppel-like factor 4) and AHR (Aryl hydrocarbon 

receptor) although only identified by TFBS enrichment analysis, may also be of interest 

as they have been associated with IL-10 and IL-12 regulation. For example, KLF4 has 

been linked to the positive regulation of IL-10 in response to TLR ligands in 

RAW264.7 macrophages (Liu et al. 2007). AHR has been shown to inhibit IL-6, TNF-α 

and IL-12p40 but promote IL-10 in LPS stimulated macrophages (Kimura et al. 2009). 

Further, AHR has been implicated in the transactivation of the Il10 gene in Tr1 cells, in 

synergy with c-MAF (Apetoh et al. 2010). The activity of these transcription factors in 

C57BL/6 and BALB/c macrophages may therefore be interesting in the context of our 

study.  

 

In summary, our microarray analysis has revealed complex patterns of differential gene 

expression in LPS stimulated C57BL/6 and BALB/c macrophages which extend far 

beyond Il10, Ifnb1 and Il12a. We observed differential gene expression in resting and 

LPS stimulated C57BL/6 and BALB/c macrophages. This included the differential 

expression of IFN-inducible genes in LPS stimulated cells, some of which were more 

highly expressed in C57BL/6 macrophages, and others in BALB/c macrophages. In 

addition, several lines of evidence suggested that NF-κB signalling may have a role in 

mediating differential gene expression in LPS stimulated C57BL/6 and BALB/c 

macrophages. Our findings also implicated a role for EGR1, and potentially other ERK 

regulated transcription factors in mediating strain dependent gene expression. In 

addition, other valid candidates such as MYC, BCL3, BCL6, STAT3, IRF1, SP1, HIF-

1α, KLF4 and AHR were identified throughout the various approaches taken to mine 
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this microarray data. Thus, this analysis has provided several potential leads for the 

continued investigation into the underlying mechanisms of differential IL-10 and IL-12 

production in C57BL/6 and BALB/c macrophages.  
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Figure 5.1 Experimental design for microarray analysis of differential gene expression in 

LPS stimulated C57BL/6 and BALB/c macrophages.  

C57BL/6 and BALB/c BMDM were stimulated with LPS (10 ng/ml) for the indicated times. 

Total RNA was harvested and isolated. Il10, Ifnb1 and Il12a transcript levels were determined 

by qPCR and normalised to Hprt1 mRNA. Graphs show mean ± SD of three cultures. Red lines 

indicate time-points chosen for microarray analysis and are summarised in (B). All 

experimental groups were done in triplicate.  
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Figure 5.2 LPS induces dynamic transcriptional changes in C57BL/6 and BALB/c 

macrophages.  

Gene probes were normalised to the median of each gene and filtered on flags. Samples were 

ordered according to experimental condition and gene probes hierarchically clustered according 

to expression. Groups of genes outlined were analysed for associated GO terms. Select GO 

terms (p<0.05) and example genes related to those terms (where applicable), are shown in the 

figure. Colour range denotes normalised intensity of expression. 
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Figure 5.3 Identification of significantly differentially expressed genes in LPS stimulated 

C57BL/6 and BALB/c macrophages.  

(A) Analysis strategy of gene expression in media and LPS treated C57BL/6 and BALB/c 

macrophages at each time-point. (B) Numerical representation of results from analysis strategy 

in (A). Δ, * and Ψ symbols correlate between (A) and (B). (C) Break-down of significantly 

differentially expressed genes (*) into up-regulated compared to media in both strains (red), bi-

directionally regulated compared to media according to the strain of mouse (orange), or down-

regulated compared to media in both strains (blue). BH-FDR, Benjamini-Hochberg False 

Detection Rate; med, media.  
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Figure 5.4 C57BL/6 macrophages may have a stronger transcriptional response to LPS 

than BALB/c macrophages.  

Differentially expressed genes in C57BL/6 and BALB/c LPS stimulated macrophages which 

were up-, bi-directionally or down-regulated compared to media control at each time-point, 

were separated according to their relative C57BL/6 vs. BALB/c expression level. For genes up- 

and bi-directionally regulated, this is expressed as C57BL/6
hi
 or BALB/c

hi
. For genes that were 

down-regulated compared to media control, this is expressed as C57BL/6
lo
 or BALB/c

lo
. The 

number of gene probes within each segment is represented in the figure.  
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Figure 5.5 k-means clustering of differentially expressed genes at each time-point identifies 

the groups of genes that most clearly distinguish C57BL/6 and BALB/c transcriptional 

profiles.  

Differentially expressed genes of interest identified at each time-point in the strategy outlined in 

Figure 5.3 B (*), were each separated into 6 clusters (C0-C5) by k-means clustering. Clusters 

considered the most differentially expressed between C57BL/6 and BALB/c LPS stimulated 

macrophages are outlined in blue. Genes in these clusters are further analysed in Figures 5.6-5.7. 

M, media; L, LPS.  
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Figure 5.6 C57BL/6
hi

 k-means clusters of interest.  

Gene clusters of interest identified in Figure 5.5 which had higher expression in LPS stimulated 

C57BL/6 macrophages compared to BALB/c macrophages are shown. Associated GO terms 

(p<0.05) and select genes from each cluster are listed. All genes within each cluster are listed in 

Appendix tables 7.1-9. M, media; L, LPS.  
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Figure 5.7 BALB/c
hi

 k-means clusters of interest.  

Gene clusters of interest identified in Figure 5.5 which had higher expression in LPS stimulated 

BALB/c macrophages compared to C57BL/6 macrophages are shown. Associated GO terms 

(p<0.05) and select genes from each cluster are listed. All genes within each cluster are listed in 

Appendix tables 7.10-13. M, media; L, LPS. 



Chapter 5: Microarray analysis of LPS stimulated C57BL/6 and BALB/c macrophages 

 

 242 

 

Figure 5.8 IPA pathway analyses of differentially expressed genes in LPS stimulated 

C57BL/6 and BALB/c macrophages.  

Differentially expressed genes of interest identified at each time-point in the strategy outlined in 

Figure 5.3 B (*) were analysed by IPA to assess if they were associated with any known 

biological pathways. The top 5 pathways associated with differentially expressed genes at each 

time-point are shown. Top axis represents the percentage overlap between input genes and 

genes in the pathway. Bottom axis denotes Benjamini-Hochberg corrected –log(p), represented 

by the gold line, for pathway association. All pathways shown pass a cut off of p<0.01. Pathway 

associated genes within our dataset are listed in Appendix Tables 7.14-7.18.  
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Figure 5.9 IPA transcriptional regulators associated with the differentially expressed 

genes in LPS stimulated C57BL/6 and BALB/c macrophages.  

Differentially expressed genes of interest identified in the strategy outlined in Figure 5.3 B (*) 

were analysed by IPA in order to identify associated upstream transcriptional regulators. Using 

the relative C57BL/6 vs. BALB/c expression level of each transcript, the programme generated 

an activation z-score which predicted if a transcription factor was likely to be more active in one 

strain over the other (denoted as ‘preferential’ activation). Black bars represent C57BL/6 

preferential activation, open bars represent BALB/c preferential activation. Transcriptional 

regulators shown were selected based on significant association with the gene list (p<0.05) and 

significant activation z-score (z>2). Bolded transcription factors are discussed in the text.  
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Figure 5.10 PSCAN transcription factor binding site (TFBS) enrichment analysis of 

differentially expressed genes in LPS stimulated C57BL/6 and BALB/c macrophages. 

Differentially expressed genes of interest identified at each time-point in the strategy outlined in 

Figure 5.3 B (*) were analysed for enrichment of TFBS motifs using PSCAN software 

(Zambelli et al. 2009). Transcription factors with significantly enriched motifs (Bonferroni 

corrected p<0.05) are shown. No significant enrichment of TFBS was found at 0.5 h post-

stimulation. Bolded transcription factors are discussed in the text. 
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Figure 5.11 Differential expression of transcription factor genes in LPS stimulated 

C57BL/6 and BALB/c macrophages.  

Genes encoding transcription factors were selected from the lists of differentially expressed 

genes of interest identified in the strategy outlined in Figure 5.3 B (*). Heat map shows 

hierarchical clustering of the 88 transcription factor genes identified. Transcription factor genes 

were separated into clusters C1-C11 based on the hierarchical dendogram. Genes present in 

selected clusters are shown, asterisk denotes gene was previously noted in the k-means analysis. 

All transcription factor genes in each cluster are listed in Appendix Table 7.19. Colour range 

denotes normalised intensity of expression. 
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Table 5.1 Candidate transcriptional regulators mediating differential gene expression in 

LPS stimulated C57BL/6 and BALB/c macrophages.  

Transcriptional regulators are listed if they were identified by at least two approaches at a given 

time-point. Note that no strain preference can be identified by the PSCAN analysis. For 

reference, all time-points at which a particular transcriptional regulator was identified by IPA or 

PSCAN are noted.  Relative transcription factor expression in stimulated cells is derived from 

information at all time-points. TF, transcription factor.  

C57BL/6 preferential activation (IPA)/higher expression 

BALB/c preferential activation (IPA)/higher expression 

 

Identified by IPA 

(in silico) 

  

Identified by PSCAN 

(in silico) 

  

Gene expression 

data, C57BL/6 vs. 

BALB/c 

  

Candidate 

Transcription 

factor (or 

complex) 

TF or 

complex 

component 

Time-

point 

TF or 

complex 

component 

Time-

point Gene 

effect 

of LPS 

AP-1 AP-1 3 h     Fos up 

     

Jun up 

BCL-6 BCL6 

1, 5, 8 

h     Bcl6 up 

E2-F1     E2f1 5, 8 h E2f1 down 

EGR1 EGR1 0.5, 3 h EGR1 3, 5, 8 h Egr1 up 

FOXM1 FOXM1 8 h     Foxm1 down 

HDAC HDAC 3 h     Hdac1 up 

HIF-1α     HIF1A::ARNT 3, 5, 8 h Hif1a up  

IRF1 IRF1 1, 3 h IRF1 3, 5, 8 h     

IRF2 IRF2 3 h     Irf2 up 

IRF5 IRF5 3 h     Irf5 up 

MYC MYC  5 h MYC 5, 8 h (Mycbp) up 

NF-κB family NFκB complex 

0.5, 1, 

3, 5 h NF-κB 

1, 3, 5, 8 

h     

  RELA 0.5, 1 h  RELA 1, 3 h     

  NFKB1 3 h NFKB1 3, 5, 8 h Nfkb1 up 

          NfKb2 up 

SP-1 SP1 0.5 h         

  SP1 5 h SP1 3, 5, 8 h      

STAT3 STAT3 3, 8 h     Stat3 up 

STAT4 STAT4 0.5, 8 h     Stat4 up 

TSC22D3 TSC22D3 3 h     Tsc22d3 down 
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6.1 Summary 

Over the course of this investigation, we have analysed differential IL-10 and IL-12 

production in C57BL/6 and BALB/c macrophages. In doing so, we sought to elucidate 

the molecular mechanisms underlying these strain differences, with the aim of better 

understanding the regulation of IL-10 and IL-12 in PRR stimulated macrophages. We 

began by analysing IL-10 production in response to several TLR-dependent and TLR-

independent PRR stimuli in addition to heat-killed bacteria. We subsequently narrowed 

our study to investigate cytokine production in response to LPS (TLR4), Pam3CSK4 

(TLR2) and heat-killed B.pseudomallei (TLR2/4).  

 

In the context of LPS and heat-killed B.pseudomallei stimulation, we found that 

C57BL/6 macrophages produced higher levels of IL-10 than BALB/c macrophages. 

Further, C57BL/6 macrophages induced two temporally distinct waves of Il10 

transcription, whereas BALB/c macrophages induced only one. Additional studies 

revealed that the second wave of Il10 transcription, observed only in C57BL/6 

macrophages, was dependent on type I IFN signalling and was directly linked to the 

higher level of IL-10 production in these cells. Further, in contrast to a previous report 

(Iyer et al. 2010), the type I IFN mediated up-regulation of IL-10 was not dependent on 

IL-27, which itself had no ability to regulate IL-10 in our system. Our investigation into 

differential proinflammatory cytokine production revealed that in contrast to IL-10 and 

type I IFN, the production of IL-12p70 was higher in BALB/c macrophages in response 

to these stimuli. Differential IL-12p70 production in C57BL/6 and BALB/c 

macrophages was still apparent in the absence of IL-10 and not further affected by the 

abrogation of type I IFN signalling in C57BL/6 macrophages. We also found that TNF-
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α and IL-1β were produced at a higher level in LPS and heat-killed B.pseudomallei 

stimulated BALB/c macrophages. Differential TNF-α production but not IL-1β 

production was dependent on IL-10. However, there may be a role for type I IFN in the 

differential production of IL-1β. Genome wide expression profiling of LPS stimulated 

C57BL/6 and BALB/c macrophages by microarray confirmed the differential 

expression of Il10, Ifnb1 and Il12a and revealed complex differences in gene expression 

between LPS stimulated C57BL/6 and BALB/c macrophages over time. Subsequent 

bioinformatic analyses of this data predicted that there may be roles for the transcription 

factors NF-κB and EGR1 amongst other candidates including MYC, STAT3, IRF1 and 

potentially ERK-regulated transcription factors, in mediating the differential gene 

expression in LPS stimulated C57BL/6 and BALB/c macrophages.  

 

Our investigation of cytokine production in C57BL/6 and BALB/c Pam3CSK4 

stimulated macrophages yielded quite different results. C57BL/6 macrophages still 

produced higher levels of IL-10 than BALB/c macrophages. However, only one wave 

of Il10 transcription was induced in either strain and differential IL-10 production was 

independent of type I IFN. Again, similarly to what we observed in LPS and heat-killed 

B.pseudomallei stimulated macrophages, the production of IL-12p70, TNF-α and IL-1β 

was higher in Pam3CSK4 stimulated BALB/c macrophages. However, differential 

production of all of these cytokines was completely dependent on IL-10. This suggested 

that unlike TLR4 stimulation, TLR2 stimulation has a similar capacity to induce 

proinflammatory cytokines in C57BL/6 and BALB/c macrophages, provided that IL-10 

is absent. This highlights the contrasting mechanisms of cytokine regulation 
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downstream of different TLRs which may be attributed to their differential use of the 

adaptor proteins MyD88 and TRIF (Kawai et al. 2010).  

 

6.2 Future perspectives 

 

6.2.1 Continuing to use C57BL/6 and BALB/c macrophages to study the 

molecular regulation of IL-10 and IL-12 

6.2.1.1 Further investigation into the mechanisms of type I IFN dependent regulation 

of IL-10 

Our data shows that the previously reported type I IFN mediated autocrine regulatory 

loop promoting IL-10 production in TLR4 stimulated C57BL/6 macrophages (Chang et 

al. 2007a), is absent BALB/c macrophages. Other investigators studying how type I 

IFN regulates IL-10 and indeed other cytokines, have made use of C57BL/6 and 

C57BL/6 Ifnar1
-/-

 macrophages (Chang et al. 2007a; Guarda et al. 2011; Mayer-Barber 

et al. 2011; Pattison et al. 2012). However, we postulate that C57BL/6 and C57BL/6 

Ifnar1
-/-

 macrophages present two extremes of a scale – robust type I IFN production 

and responsiveness (C57BL/6) versus a complete inability to detect type I IFN 

(C57BL/6 Ifnar1
-/-

). Thus, BALB/c macrophages may provide a valuable intermediate 

scenario where some type I IFN is made and indeed signals through the type I IFN 

receptor, but Il10 transcription is not induced. For example, our studies and others 

(Guarda et al. 2011) support an important role for STAT1 in the regulation of IL-10 by 

type I IFN. However, we observe notable STAT1 Tyr-701 phosphorylation in BALB/c 

macrophages suggesting that this signalling event alone is not adequate for the 

induction of Il10 transcription by type I IFN. In future studies we will continue to 
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investigate other differences between type I IFN induced signalling in C57BL/6 and 

BALB/c macrophages which may impact on differential IL-10 production. Central 

candidates for this analysis will be the p38, ERK and PI(3)K pathways, as these are 

activated by type I IFN signalling (Platanias 2005) and have been shown to positively 

regulate IL-10 (Agrawal et al. 2003; Dillon et al. 2004; Jarnicki et al. 2008; Kim et al. 

2008; Ohtani et al. 2008; Weichhart et al. 2008; Kaiser et al. 2009). Further, the PI(3)K 

pathway has previously been associated with the regulation of IL-10 by type I IFN in 

DCs (Wang et al. 2010). These experiments, by using the comparison of C57BL/6 and 

BALB/c macrophages, may give us a more detailed insight into the exact signalling 

requirements for type I IFN mediated IL-10 regulation in macrophages.  

 

Additionally, in our system for the first time, we are able to temporally separate the 

early TLR induced Il10 mRNA induction and later type I IFN dependent Il10 mRNA 

induction. It would therefore be interesting as a complimentary approach to use 

pharmacological inhibitors to assess the relative importance of p38 activation, ERK 

activation and PI(3)K signalling for the early and late transcription of Il10 in C57BL/6 

macrophages. Such an analysis may elucidate the common and unique signalling 

pathways required for each phase of Il10 expression in TLR4 stimulated macrophages. 

Other studies have proposed that type I IFN treatment recruits STAT1, STAT3 and 

IRF1 to the Il10 locus (Ziegler-Heitbrock et al. 2003; Iyer et al. 2010). Comparison of 

the recruitment of these molecules and potentially other transcription factors to the Il10 

locus in LPS stimulated C57BL/6, BALB/c and C57BL/6 Ifnar1
-/-

 over a time-course of 

stimulation would build on these findings, and greatly enhance our understanding of 

what factors may be required at different stages to induce the expression of Il10.  
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6.2.1.2  Independent validation of microarray analysis and understanding the 

C57BL/6 and BALB/c genetic differences that are dependent on type I IFN. 

From the results of our microarray analysis, we have identified several potential 

transcriptional regulators that may be responsible for the global differential gene 

expression and potentially differential Il10, Il12a and Ifnb1 expression in LPS 

stimulated C57BL/6 and BALB/c macrophages. However, before moving forward, our 

analysis would be greatly strengthened by independent experimental validation. One 

option is to conduct another microarray analysis, potentially on a different array 

platform such as Affymetrix. However, a more robust way to validate our current data 

would be to analyse the transcriptional profiles of LPS stimulated C57BL/6 and 

BALB/c macrophages by RNA sequencing (RNA-seq). RNA-seq has the benefit over 

microarray of a larger dynamic range of expression level detection and has no reliance 

on predefined oligonucleotide probes (Zak et al. 2009). This latter point may be 

particularly relevant in our study as polymorphisms within mRNA sequences from 

genetically distinct mouse strains have the potential to give rise to artefacts when only 

using oligonucleotide hybridization techniques (Bottomly et al. 2011). Therefore, if 

genes that we have identified as differentially expressed by microarray are also 

differentially expressed by RNA-seq, we can be confident that these findings are robust. 

The subsequent bioinformatic analyses used to identify pathways or transcriptional 

regulators involved in mediating differential gene expression in C57BL/6 and BALB/c 

macrophages would additionally be strengthened by this validation. Once this has been 

carried out, functional analysis of transcription factor candidates by assessment of 

activation, localisation to the nucleus, or recruitment to the Il10, Il12a or Ifnb1 loci 

would be necessary to determine their roles in regulating the differential production of 
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these cytokines in C57BL/6 and BALB/c macrophages. Importantly however, the 

inclusion of C57BL/6 Ifnar1
-/-

 macrophages in this future transcriptional profiling, 

would allow us to more formally assess which gene expression differences in C57BL/6 

and BALB/c macrophages are attributable to type I IFN, or are a consequence of other 

genetic differences. This may provide a better understanding of overall gene expression 

and cytokine regulation in LPS stimulated macrophages. In the context of IL-12, 

transcriptional profiling of IL-10 deficient C57BL/6 and BALB/c macrophages, in 

which differential IL-12 production is greatly exaggerated, may help to further 

understand the mechanisms governing the differential production of this cytokine. 

 

6.2.1.3 Studies towards understanding the genetic variation underlying differential 

IL-10 and IL-12 production in C57BL/6 and BALB/c macrophages.  

Our preliminary data on the production of IL-10 in LPS, Pam3CSK4 and heat-killed 

B.pseudomallei stimulated C57BL/6 x BALB/c F1 and F2 macrophages, indicated that 

several genes may be contributing to the differential production of IL-10 in C57BL/6 

and BALB/c macrophages. We will be continuing this study by quantifying Ifnb1 and 

Il12a expression from F1 and F2 macrophages as this information may provide insight 

into the types of genetic variation that contribute to the differential production of these 

additional cytokines. At this stage, we do not have the capacity to follow through with a 

full genetic intercross study which would lead to the mapping of genetic loci that 

determine the level of IL-10, IL-12 and potentially type I IFN production in C57BL/6 

and BALB/c macrophages, although this may be revisited in the future.  
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A recent study from the group of Dr David Adams at the Sanger Institute has re-

sequenced the genomes of 17 inbred strains of mice, including C57BL/6J and BALB/cJ 

(Keane et al. 2011). This study identified 3,920,925 single nucleotide polymorphisms 

(SNPs), 831,193 indels (deletions or insertions) and 25,702 structural variants (e.g. 

translocations, inversions or copy number variants) which differentiated the BALB/cJ 

and C57BL/6J genomes (Keane et al. 2011). Thus, the full extent of variation in the 

genomes of C57BL/6 and BALB/c mice is complex. We have confirmed that the 

phenotype of higher IL-10 production in C57BL/6 compared to BALB/c macrophages 

is conserved in macrophages derived from C57BL/6J and BALB/cJ mice used in the 

study of Keane et al. (Appendix Figure 7.2). Data on the expression of Ifnb1 and Il12a 

is pending. In future work, we plan to use this available sequence data to compare 

genetic regions of interest in C57BL/6 and BALB/c genomes, such as the Il10, Ifnb1 

and Il12a loci. Although in light of our previous data, we are aware that polymorphisms 

in single genes are unlikely to fully explain the differential cytokine production in 

C57BL/6 and BALB/c macrophages, this will reveal if there is genetic variation in 

important regulatory regions of these genes, which may provide useful information for 

the continuation of this project.  

 

6.2.2 Extending differential cytokine production in C57BL/6 and BALB/c 

macrophages to models of B.pseudomallei infection 

Aside from using C57BL/6 and BALB/c macrophages purely as a tool to investigate the 

molecular mechanisms of IL-10 and IL-12 regulation, the differential cytokine 

production that we observe may have wider relevance as these mice differ in their 

resistance and susceptibility to several pathogens. Thus, differential innate cytokine 
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production may have implications for the capacity of C57BL/6 and BALB/c mice to 

clear certain infections. One of the stimuli that we focussed on in this investigation was 

heat-killed B.pseudomallei. C57BL/6 mice are more resistant to live infection with this 

pathogen than BALB/c mice and this has been proposed to represent the spectrum of 

disease seen in humans (Leakey et al. 1998). However, the underlying mechanisms 

behind this strain difference are not well understood (Titball et al. 2008). In addition, 

while it is clear that IL-12 production is critical for protective immune responses against 

B.pseudomallei infection (Haque et al. 2006), the roles of IL-10 and type I IFN are 

unclear and we postulate that these cytokines may be of importance in regulating over-

exuberant immune responses in this context. Future studies which we have already 

initiated in collaboration with Dr Gregory Bancroft (London School of Hygiene and 

Tropical Medicine), will investigate if similar profiles of cytokine production that we 

observe in heat-killed B.pseudomallei stimulated C57BL/6 and BALB/c macrophages 

also occur upon live B.pseudomallei infection.  Preliminary data from this study has 

been promising, showing that C57BL/6 macrophages produce higher levels of IL-10 

than BALB/c macrophages upon infection with this bacterium and this is indeed 

dependent on type I IFN signalling (N.Patel, G.Bancroft, unpublished data). Additional 

investigation into IL-10, IL-12 and type I IFN production in C57BL/6 and BALB/c ex 

vivo cells such as bone marrow monocytes or tissue resident macrophages may further 

help to determine if the differential cytokine production that we observe in BMDM may 

have an impact upon in vivo infection. Of note, as B.pseudomallei infection often 

presents as pneumonia (Currie et al. 2010), assessment of differential cytokine 

production in heat-killed B.pseudomallei stimulated or live B.pseudomallei infected 

C57BL/6 and BALB/c alveolar macrophages may be of particular relevance. Thus, the 
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results of these initial studies will begin to elucidate if the findings that we have made in 

this investigation are applicable to the more complex setting of live B.pseudomallei 

infection of C57BL/6 and BALB/c macrophages, or indeed mice. 

 

6.3 Concluding remarks 

We have shown that comparing the responses of macrophages derived from different 

inbred strains of mice can be a fruitful approach to furthering our knowledge of 

cytokine regulation. The central findings of this study highlight the importance of 

autocrine type I IFN in the regulation of IL-10 in response to TLR4 dependent stimuli. 

In a broader context, this work is in agreement with an increasingly appreciated role for 

type I IFN in immune responses against bacterial infections including L.monocytogenes 

(Auerbuch et al. 2004; Carrero et al. 2004; O'Connell et al. 2004), M.tuberculosis 

(Manca et al. 2005; Berry et al. 2010; Mayer-Barber et al. 2011) and now potentially 

B.pseudomallei. Importantly however, our data shows that the presence of this type I 

IFN mediated autocrine loop, critical for the maintenance of IL-10 production in TLR4 

stimulated macrophages, is dependent on the genetic background of the host. Thus, this 

regulatory loop is functional in C57BL/6 macrophages but not BALB/c macrophages 

and based on the findings in this investigation, may also be non-functional in 129 

macrophages. In addition, we have revealed that the production of IL-12p70, an 

important cytokine in the induction of Th1 mediated immune responses (Trinchieri 

2003), is severely attenuated in C57BL/6 compared to BALB/c macrophages. In light of 

our findings and given that the majority of immunological studies are carried out using 

C57BL/6 mice, we raise the question: how has this affected scientific conclusions that 

have been made in the literature so far? Finally, this study additionally contributes to 
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the on-going debate: which inbred mouse strain most reflects the human condition? 

Most likely, the answer to this latter question depends on the immunological system 

being studied, and the human population it is being compared to.   
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Figure 7.1 The levels of IL-10 production are variable in CpG1668 and R848 

stimulated C57BL/6 and BALB/c macrophages.  

BMDM were generated from C57BL/6 and BALB/c mice. Cells were stimulated for 24 

hours with (A) CpG1668 and (B) R848 at the indicated doses. IL-10 protein in 

supernatants was quantified by ELISA (detection limit 50 pg/ml). Graphs show means ± 

SD of individual triplicate cultures. Repeat experiments of titrations are shown. 

Additional experiments were conducted using 50 µM CpG1668 and 1 µg/ml R848, also 

with variable results.  
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Table 7.1 0.5 h, k-means C3 (C57BL/6
hi

). Refers to Figure 5.6.  

 

Table 7.1 Genes present within 0.5 h C3 generated by k-means clustering are shown.  

4631422O05Rik 

5430435G22Rik 

Atf4 

BC043118 

Ccng2 

Cd52 

Cish 

E030040J22Rik 

F730045P10Rik 

Fgfr1op2 

Fndc7 

Gdf15 

H2-M2 

Hist1h4a 

Ifi205 

Malt1 

Picalm 

Rassf3 

Rhoe 

Rpl21 

Rps3a 

Stx11 

Vegfa 
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Table 7.2 0.5 h, k-means C4 (C57BL/6
hi

). Refers to Figure 5.6.  

Cxcl10 

Fmo3 

Ifi205 

LOC240921 

Tnfrsf5 

Ybx3 

 

 

Table 7.2 Genes present within 0.5 h C4 generated by k-means clustering are shown.  
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Table 7.3 1 h, k-means C1 (C57BL/6
hi

). Refers to Figure 5.6.  

1190002H23Rik 

2500002E12Rik 

2810408M09Rik 

5730537H01Rik 

9030216K14Rik 

9130604K18Rik 

A530060O05Rik 

AA467197 

C5r1 

Ccl5 

Cxcl2 

Dusp16 

F730031O20Rik 

F730045P10Rik 

Fbxo34 

Gbp2 

Gdf15 

H2-Ab1 

Ifi205 

Ifi205 

Map3k6 

Mefv 

Npn3 

Odc1 

Osbpl3 

Osbpl3 

Pde1b 

Pilra 

Slamf7 

Slc30a7 

Stx11 

Tmem171 

Tnfrsf5 

Tnfrsf6 

Trim36 

Trim36 

 

Table 7.3 Genes present within 1 h C1 generated by k-means clustering are shown. 
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Table 7.4 1 h, k-means C5 (C57BL/6
hi

). Refers to Figure 5.6.  

1700047I17Rik 

Axud1 

Bcl3 

C430002D13Rik 

Ccl12 

Cited2 

Coq10b 

Cxcl10 

Cxcl16 

Etv3 

H2-M2 

Idb2 

Il10 

Il15 

Myd88 

Nab1 

Npn3 

Peli1 

Plat 

Rhoe 

Sh3bgrl2 

U2af1-rs2 

Ybx3 

 

Table 7.4 Genes present within 1 h C5 generated by k-means clustering are shown.  
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Table 7.5 3 h, k-means C1 (C57BL/6
hi

). Refers to Figure 5.6.  

1200015F23Rik Dusp16 Sgk3 

2310015N21Rik E030040L08Rik Siat4a 

2810021O14Rik E130207H16Rik Slc13a3 

4933432P15Rik EG433016 Snx2 

9030216K14Rik EG630499 Snx2 

9030625A04Rik Egr1 Tens1 

9630007E23Rik Egr3 Tens1 

A130065C13Rik F730045P10Rik Tjp2 

A130072J07 Glrx1 Trim30 

A630085K21 Gus-s Trim34 

A830089I03Rik H2-Ab1 Trim34 

Aoah H2-D4 Zfp213 

Aytl1 H2-T10  

Bat5 H2-T10  

BC003314 Ifi204  

BC050811 LOC226690  

Bcdo2 LOC240921  

Brdt LOC382190  

C5r1 Map3k6  

Casp9 Map3k6  

Ccng2 Nedd4l  

Chd9 Nfkb2  

Clcn7 Parp3  

Cpne8 Parp8  

Ctsc Pop4  

Ctsc Psmb9  

Ctsc Rsad1  

 

Table 7.5 Genes present within 3 h C1 generated by k-means clustering are shown.  
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Table 7.6 3 h, k-means C3 (C57BL/6
hi

). Refers to Figure 5.6.  

1100001A21Rik B230334I05Rik Ifi205 Six1 

1200007D18Rik BC049354 Ikbkb Slamf8 

1810044J04Rik Bcl6 Irak3 Snx2 

1810054D07Rik Bzw2 Irf2 Stat4 

2010004N17Rik C130023K05Rik Klhl5 Stk2 

2010005O13Rik Cd164 Leng9 Tapbp 

2010012C16Rik Cd244 LOC244882 Tbc1d13 

2310046K10Rik Cd86 LOC381329 Tcf4 

2410025L10Rik Cd86 March1 Tm9sf4 

2410039M03Rik Cd86 Mina Tmem171 

3110050N22Rik Centd2 Morc3 Tnfrsf6 

4921513D23Rik Chd9 Mrpl3 Ybx3 

4930563C06Rik Chd9 Msi2h Zfp212 

5730508B09Rik Cpeb4 Nfil3  

8030462N17Rik Dusp16 Nup98  

8430438D04Rik EG622976 Ocil  

9130604K18Rik Ep400 Ogfrl1  

9830148G24Rik F7 Ogfrl1  

9930022N03Rik Fcrl3 Pilra  

A030007L17Rik Frag1 Pilra  

A130072J07 Gadd45g Pilrb  

A530023O14Rik Gvin1 Plat  

A530083B17Rik H2-Ab1 Plekhf2  

A930008A22Rik H2-T17 Plod2  

Adora3 H2-T22 Pnp  

Aggf1 H60 Pxn  

AI929863 Homer1 scl000868.1_2  

Alas1 I830077J02Rik Seh1l  

Apobec3 Ifi205 Sema4a  

Arf6 Ifi205 Sh3kbp1  

Asrij Ifi205 Sipa1l2  

 

Table 7.6 Genes present within 3 h C3 generated by k-means clustering are shown.  
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Table 7.7 5 h, k-means C0 (C57BL/6
hi

). Refers to Figure 5.6.  

AI838661 Bahd1 H2-K1 Psmd8 

1110001A05Rik Bat5 H2-Q7 Rapgef5 

1200015F23Rik BC002236 H2-T10 Rnf34 

1700123O20Rik BC003314 H2-T10 Rnf34 

2010300G19Rik BC035954 H2-T22 Rnps1 

2200001I15Rik Bcdo2 Hpcal1 Rsad1 

2310015N21Rik C430002D13Rik Iqgap2 Sc4mol 

2410039M03Rik C5r1 LOC226690 Scoc 

2500002E12Rik Ccng2 LOC240921 Sfrs2 

2610029J22Rik Cd52 LOC382190 Sgk3 

2810021O14Rik Chi3l3 LOC383308 Slc12a9 

4631422C13Rik Clcn7 LOC386270 Slc13a3 

4732429D16Rik Cpne8 LOC545056 Slc13a3 

4933439C20Rik Ctsc Ly78 Snx2 

6430527G18Rik Ctsc Manbal Snx2 

9030216K14Rik Ctsc Mina Srpr 

9030625A04Rik Dppa3 Mpeg1 Stat4 

9430077D24Rik Dusp16 Ndufb10 Tmem171 

9830148G24Rik E130207H16Rik Nfkb2 Tnfrsf6 

9930027N05Rik EG630499 Odc1 Tomm22 

A130072J07 Egr1 Osbp Trim30 

A130072J07 Eme2 Parp3 Trim34 

AI316802 Epb4.1l2 Parp8 Trim56 

Aoah F730045P10Rik Pde1b Tspan32 

Apobec3 Fgfbp3 Pde1b Ush2a 

Aps Fmo3 Pgls Zfp367 

Atf4 Gadd45g Pnp  

Atp2c1 Glrx1 Pop4  

Atp2c1 H2-Aa Psmb5  

Atp6v1d H2-Ab1 Psmb9  

Aytl1 H2afj Psmc4  

 

Table 7.7 Genes present within 5 h C0 generated by k-means clustering are shown.  
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Table 7.8 5 h, k-means C3 (C57BL/6
hi

). Refers to Figure 5.6.  

1190003J15Rik Aftph Cited2 Hdac1 LOC215088 

1300002F13Rik AI429613 Cndp2 Hdc LOC215405 

1300017K07Rik AI451557 Cpeb4 I830077J02Rik LOC381329 

1700047I17Rik Aif1 Cxcl10 Ier3 LOC384475 

1700048E23Rik Aif1 Cxcl10 Ifi204 Loh11cr2a 

1810044J04Rik Aim1 Cxcl2 Ifi205 Lox 

2010005H15Rik Alas1 Cxcl9 Ifi205 Lrrc25 

2210019E14Rik Armc8 Cyfip1 Ifi205 Ly96 

2210037E17Rik Armc8 D3Ucla1 Ifi205 Malt1 

2310046K10Rik Asrij Daam1 Ifi205 Map2k4 

2410025L10Rik Axud1 Dab2 Ifi205 Map2k4 

2610027C15Rik Bambi-ps1 Dgkh Ifit3 Map3k8 

2700024D06Rik BC019206 Dock11 Ifit3 Map4k3 

2810021O14Rik BC023823 Dscr1 Ifngr2 Mapkbp1 

2810405I11Rik BC049354 Dusp1 Ifngr2 March1 

2810407C02Rik BC049975 Dusp16 Ifngr2 Marco 

2810423A18Rik BC050811 Dusp16 Ift172 Mefv 

3110050N22Rik Bcl3 Dusp2 Igsf9 Mrpl3 

4921513D23Rik Bcl6 Dync1i2 Ii Mx1 

4931440N07Rik Bfar Ep400 Ikbkb Myadm 

4933426M11Rik Bzw2 Etv3 Ikbke Myo1g 

4933432P15Rik C030027K23Rik Fcgr1 Il10 Nfil3 

5031414D18Rik C130032J12Rik Fcgr2b Il13ra1 Nsmaf 

5730537H01Rik Card4 Fcgr2b Il15 Nupr1 

5730596K20Rik Carhsp1 Fndc7 Il15 Oas3 

6030446I19Rik Casp8 Frag1 Il15 Ogfrl1 

6230400I06Rik Ccl12 Frag1 Il19 Ogfrl1 

9030611K07Rik Ccl5 Furin Iqsec2 Osbpl3 

9630037P07Rik Ccl8 Fzd7 Irak3 Osbpl3 

9930022N03Rik Ccnd2 G430091H17Rik Irf2 Pdk3 

A030007L17Rik Ccrn4l Gadd45g Irg1 Peli1 

A530023O14Rik Cd164 Gbp2 Irg1 Pik3ap1 

A530023O14Rik Cd180 Gbp2 Itpkb Pik3cd 

A530023O14Rik Cd244 Gcnt2 Itpr1 Pilra 

A530026H04Rik Cd44 Gda Junb Pilra 

A530060O05Rik Cd52 Ggta1 Kcnn4 Pilra 

A630077B13Rik Cd86 Gna-rs1 Kctd12 Pilrb 

AA467197 Cd86 Gpr73 Khdrbs1 Pira11 

Adora2b Cd86 Gpr84 Khdrbs1 Pirb 

Adora3 Cebpb Gvin1 Klhl5 Pkn2 

Adprh Centd2 H2-M2 Lcn2 Plat 

Aff1 Chst11 H2-T17 Leng9 Plekhf2 
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Table 7.8 continued 

 

Table 7.8 Genes present within 5 h C3 generated by k-means clustering are shown.  

Plekhg2 Sgcb Tapbp Zyx  

Pml Sgk3 Tbc1d13   

Pml Sh3bgrl2 Tes   

Pnp Sh3kbp1 Tle3   

Poldip3 Siat4a Tlk2   

Ppfibp1 Sipa1l1 Tlr7   

Ppp4r1 Slamf7 Tnfrsf1a   

Prm1 Slamf8 Tnfrsf1a   

Psat1 Slamf9 Tnfrsf1a   

Psd4 Slc28a2 Tnfrsf5   

Ptk2b Slc30a7 Tnip1   

Pycard Slc44a1 Tor3a   

Rab5a Slc7a11 Trim21   

Rac3 Slco3a1 Trim36   

Rad9 Slco3a1 Trim36   

Rap2c Slfn1 Tspyl3   

Reps1 Smad2 Ubc   

Rin2 Snx2 Ubtd1   

Riok3 Spata13 Upp1   

Rnf34 Spata5l1 Usp18   

Rps6ka3 Stard5 Ybx3   

scl0002617.1_582 Stard5 Zc3h12a   

scl000868.1_2 Stx11 Zc3h7a   

Sema4a Stx11 Zfp281   

Sema4d Stx6 Zfp36   

Sertad1 Tagln2 Zmynd15   
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Table 7.9 8 h k-means C0 (C57BL/6
hi

). Refers to Figure 5.6. 

AI838661 Arg1 H2-K1 Pik3ap1 Tomm22 

0610009K11Rik Asrij H2-Q7 Pilrb Trim30 

1110067L22Rik Atf4 H2-T10 Pirb Trim56 

1190003J15Rik Axud1 H2-T10 Plekhf2 Tspan32 

1200015F23Rik Bahd1 H2-T22 Pnp Ubc 

1700093E07Rik Bat5 H60 Procr Ubg 

1700123O20Rik BC026370 Hpcal1 Psmb5 Ush2a 

1700123O20Rik BC063749 I830077J02Rik Psmb9 Ybx3 

1810044J04Rik Bzrap1 Ifi204 Psmd8  

1810054D07Rik C430002D13Rik Ifi205 Pycard  

2010005H15Rik C5r1 Ifi205 Reps1  

2010300G19Rik C79267 Ifi205 Rnf144  

2310010B21Rik Ccrn4l Il10 Rnf34  

2310015N21Rik Cd52 Il6st Rnf41  

2410039M03Rik Chst11 Iqgap2 Rnps1  

2500002E12Rik Csf2rb1 Klhl5 Rsad1  

2610029J22Rik Ctsc Leng9 Sc4mol  

2810021O14Rik Ctsc LOC209372 scl000868.1_2  

4930583H14Rik Ctsc LOC226690 Sdc4  

4933432P15Rik Cyp4f18 LOC240921 Sfrs2  

4933439C20Rik D130067I07Rik LOC381329 Sgk3  

9030216K14Rik D4Ertd432e LOC545056 Siat4a  

9030625A04Rik Dusp16 Lrp4 Sipa1l1  

9830148G24Rik EG433016 Ly78 Slc13a3  

A030007L17Rik EG630499 Manbal Slc13a3  

A130072J07 Egr1 Map3k6 Slc16a6  

A230021I18Rik F730045P10Rik March1 Snx2  

A530023O14Rik Flot1 Mina Srpr  

A530023O14Rik Flot1 Mrps10 Ssbp4  

A630086H07Rik Frag1 Nfkb2 Stard5  

Abi3 Ggta1 Olfm1 Tagln2  

Adora3 Glrx1 Parp3 Tgfbi  

AI316802 H2-Ab1 Parp8 Tgfbi  

Alas1 H2-Ab1 Pde1b Tmem171  

Aoah H2-DMb1 Pde1b Tnfrsf1a  

Apobec3 H2-DMb2 Pgpep1 Tnfrsf6  

 

Table 7.9 Genes present within 8 h C0 generated by k-means clustering are shown.  
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Table 7.10 1 h k-means C4 (BALB/c
hi

). Refers to Figure 5.7.  

1110068E08Rik 

1700060H10Rik 

2810012L14Rik 

6030458C11Rik 

6030470M02Rik 

Cxcr4 

D630046D15Rik 

Eno2 

Gbp1 

Gstt2 

H2-Q5 

Jmjd2a 

Plau 

Raet1c 

Rhov 

Zfp30 

 

Table 7.10 Genes present within 1 h C4 generated by k-means clustering are shown.  
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Table 7.11 3 h k-means C4 (BALB/c
hi

). Refers to Figure 5.7.  

0610037M15Rik Dnm1l LOC380781 Stfa1 

1600021P15Rik Dtx4 Mcm10 Stk38l 

1700052K11Rik Dtx4 Mid1 Stx3 

2410127E16Rik Dvl1 Mid1 Stx3 

2810457M08Rik E130012A19Rik Mki67 Syncrip 

6330444G18Rik Emilin2 Nat5 Tal1 

9930022F21Rik Eno2 Pi4k2b Tgfb1i4 

A330066M24Rik Eps15-rs Pign Timd4 

Adam17 F2rl2 Ppfibp1 Tlr6 

Aim2 Fabp3 Ppic Ube2e2 

Arl6ip5 Gbp1 Prnp  

Atp10d Gpc1 Psip1  

B430201G11Rik Gpr23 Psip1  

B930075F07 Gpr31c Ptafr  

Bat2 Grap Ptafr  

BC002216 H2-Ea Pvrl3  

BC018462 H2-Q5 Raet1b  

C530043G21Rik H2-Q5 Raet1b  

C78339 H2-Q6 Raet1c  

Card15 H2-Q7 Rai14  

Ccdc93 H2-Q8 Rog  

Ccl24 Htr1f Rras2  

Ciapin1 Ifi202b scl0002855.1_1056  

Ciapin1 Ifi202b Sepw1  

Cldn23 IGHV14S3 Serpina3h  

Cnot7 Igsf3 Slc11a2  

Cpne8 Il1rap Slc25a25  

Crnkl1 Inppl1 Slc7a5  

Ctsl Inppl1 Slc7a8  

D5Ertd593e Inppl1 Smpdl3b  

D6Mm5e Jmjd2a Srrm2  

Daf1 Klrk1 Stau2  

Dgat2 LOC270152 Stfa1  

 

Table 7.11 Genes present within 3 h C4 generated by k-means clustering are shown.  
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Table 7.12 5 h k-means C2 (BALB/c
hi

). Refers to Figure 5.7.  

0610037M15Rik Gbp1 Pdgfrl  

1700029F09Rik Grap Pip5k1a  

1810018P12Rik H28 Ppfibp1  

2010305C02Rik H2afz Ppic  

2410003B16Rik H2-Ea Ppm1l  

2810022L02Rik H2-Q5 Raet1c  

9530076I17Rik H2-Q5 Rnase6  

Akap2 H2-Q6 Ryk  

Arl6ip5 H2-Q7 scavenger receptor  

Arl6ip5 H2-Q8 scl0002855.1_1056  

Asb1 Hak Serpina3h  

BC022593 Hal Shf  

BC027373 Htr1f Slco4a1  

C530043G21Rik Ick Slpi  

Ccdc93 Ick Stau2  

Ccl17 Ifi202b Stau2  

Ciapin1 Ifi202b Stfa1  

Ciapin1 IGHV14S3 Stfa3  

Cnot7 IGHV1S52 Tbc1d9  

Cox6a2 Igsf3 Timd4  

Csprs Jmjd2a Tnfrsf14  

Ctse Klrk1 Wdfy1  

Cxcl13 LOC381105 Wdfy1  

D330023A14Rik LOC384528   

D330037A14Rik LOC384607   

Dcn LOC385019   

Dtx4 Ltb   

Dusp4 Mid1   

Dusp4 Mid1   

Eef1e1 Mmp9   

Eno2 Nsdhl   

Epb4.9 Nsdhl   

F2rl2 Palld   

 

Table 7.12 Genes present within 5 h C2 generated by k-means clustering are shown.  
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Table 7.13 8 h k-means C3 (BALB/c
hi

). Refers to Figure 5.7.  

0610010E21Rik Eno2 Psip1  

0610037M15Rik F2r Psip1  

1810018P12Rik F2rl2 Rab38  

2310014H19Rik Fads2 Rims3  

2410003B16Rik Gbp1 Rin3  

2410003B16Rik Grap Rog  

2600001B17Rik Gypc Rras2  

2810022L02Rik H28 Scd1  

2810022L02Rik H2-Ea Sephs2  

4732458O05Rik H2-K1 Serpina3h  

A2bp1 H2-Q5 Slc1a2  

A630072M18Rik H2-Q5 Stau2  

Adamts4 H2-Q6 Stim2  

AI591476 H2-Q7 Stk38l  

Aim2 H2-Q8 Tbc1d9  

Arhgap22 Htr1f Tgfb1i4  

Arl6ip5 Ick Timd4  

Arl6ip5 Ick Txndc7  

Aven Ifi202b Ube1x  

B430201G11Rik Ifi202b Wdfy1  

BC022593 IGHV14S3   

C530043G21Rik IGHV1S52   

Chst10 Il12a   

Csf1 Jmjd2a   

Csprs Klrk1   

Cx3cl1 Lmyc1   

Cxcl13 LOC386068   

D430030K24Rik Ltb   

Dcn Mid1   

Dtx4 Mid1   

Dtx4 Mmp9   

Dusp4 Nrbf1   

E130012A19Rik Pi4k2b   

Eef1e1 Ppap2b   

 

Table 7.13 Genes present within 8 h C3 generated by k-means clustering are shown.  
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Table 7.14 0.5 h differentially expressed genes associated with IPA pathways. 

Refers to Figure 5.8. 

 

 

Table 7.14 Differentially expressed genes of interest in LPS stimulated C57BL/6 and 

BALB/c macrophages identified at 0.5 h in the strategy outlined in Figure 5.3 B (*) 

were analysed by IPA to assess association with known biological pathways. The top 5 

significant pathways are shown. Genes from the input list that are associated with those 

pathways and their relative C57BL/6 versus BALB/c expression are shown. 

 

 

Pathway Associated genes 

C57BL/6
hi

 

Associated genes 

BALB/c
hi

 

TREM1 Signalling Tlr2, Cxcl3, Ccl7, Cd40, Il10, 

Tnf 

 

Communication between Innate 

and Adaptive Immune Cells 

Cxcl10, Tlr2, Cd40, Il10, Tnf  

Allograft Rejection Signalling Cd40, H2-M2, Il10, Tnf  

Role of Macrophages, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

Vegfa, Tlr2, Il10, Atf4, Cebpb, 

Tnf, Traf1 

Ctnnb1 

Glucocorticoid Receptor 

Signalling 

Cxcl3, Il10, Cdkn1a, Cebpb, 

Tnf, Tsc22d3 

Adrb2 
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Table 7.15 1 h differentially expressed genes associated with IPA pathways. Refers 

to Figure 5.8. 

 

 

 

Table 7.15 Differentially expressed genes of interest in LPS stimulated C57BL/6 and 

BALB/c macrophages identified at 1 h in the strategy outlined in Figure 5.3 B (*) were 

analysed by IPA to assess association with known biological pathways. The top 5 

significant pathways are shown. Genes from the input list that are associated with those 

pathways and their relative C57BL/6 versus BALB/c expression are shown. 

 

 

 

Pathway Associated genes 

C57BL/6
hi

 

Associated genes 

BALB/c
hi

 

TREM1 Signaling Cxcl3, Ccl2, Ccl7, Cd40, Il10, 

Myd88, Tnf 

Nod2 

Granulocyte Adhesion and 

Diapedesis 

Cxcl10, Cxcl3, Cxcl16, C5ar1, 

Ccl2, Ccl7, Ccl5, Tnf 

Cxcr4, Ccl24, Cxcl2 

Agranulocyte Adhesion and 

Diapedesis 

Cxcl10, Cxcl3, Cxcl16, C5ar1, 

Ccl2, Ccl7, Ccl5, Tnf 

Cxcr4, Ccl24, Cxcl2 

Role of 

Hypercytokinemia/hyperchemo

kinemia in the Pathogenesis of 

Influenza 

Cxcl10, Ccl2, Il15, Ifnb1, Ccl5, 

Tnf 

 

Communication between Innate 

and Adaptive Immune Cells 

Cxcl10, Cd40, Il10, Il15, Ifnb1, 

Ccl5, Tnf 

  



Chapter 7: Appendix 

 

 276 

 

Table 7.16 3 h differentially expressed genes associated with IPA pathways. Refers 

to Figure 5.8. 

 

 

Table 7.16 Differentially expressed genes of interest in LPS stimulated C57BL/6 and 

BALB/c macrophages identified at 3 h in the strategy outlined in Figure 5.3 B (*) were 

analysed by IPA to assess association with known biological pathways. The top 5 

significant pathways are shown. Genes from the input list that are associated with those 

pathways and their relative C57BL/6 versus BALB/c expression are shown. 

Pathway Associated genes 

C57BL/6
hi

 

Associated genes 

BALB/c
hi

 

Dendritic Cell Maturation Map2k4, Plcb2, Tnfrsf1a, 

Myd88, Il10, Il15, Ikbke, Nfkb2, 

HLA-DQB1, Fcgr2b, Stat4, 

Tlr2, Ikbkb, Cd40, Il1rn, 

Pik3cg, Cd86, Tnfrsf1b, Fcgr3a 

Il12a, HLA-DRA, HLA-B, Tab1 

Communication between Innate 

and Adaptive Immune Cells 

Il10, Il15, Ccl5, Cxcl10, Tlr2, 

Ccl4, Cc40, Tlr5, Il1rn, Cd86 

Il12a, Cd8b, HLA-DRA, Tlr6, 

HLA-B 

Role of Macrophages, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

Map2k4, Il6st, Tcf4, Plcb2, 

Mmp13, Ccl5, Vegfa, Ikbkb, 

C5ar1, Ccl2, Pik3cg, Tnfrsf1b, 

Fcgr3a, Tnfrsf1a, Il10, Myd88, 

Il15, Ikbke, Irak3, Tlr2, Fos, 

Ripkl, Tlr5, Il1rn, Fzd7 

Mras, Ctnnb1, Il1rap, Src, 

Dvl1, Pdgfb, Rras2, Tlr6 

NF-κB Signalling Azi2, Tnfrsf1a, Myd88, Tbk1, 

Irak3, Nfkb2, Malt1, Tank, Tlr2, 

Ikbkb, Ripk1, Tlr5, Cd40, Il1rn, 

Pik3cg, Map3k8, Eif2ak2, 

Casp8, Tnfrsf1b 

Rras2, Tlr6, Mras, Tab1 

Type I Diabetes Mellitus 

Signalling 

Map2k4, Tnfrsf1a, Myd88, 

Ikbke, Nfkb2, HLA-DQB1, Fas, 

Ikbkb, Casp9, Ripk1, Cd86, 

Casp8, Tnfrsf1b 

Il12a, Ica1, HLA-DRA, HLA-B, 

Il1rap 
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Table 7.17 5 h differentially expressed genes associated with IPA pathways. Refers 

to Figure 5.8. 

 

Table 7.17 Differentially expressed genes of interest in LPS stimulated C57BL/6 and 

BALB/c macrophages identified at 5 h in the strategy outlined in Figure 5.3 B (*) were 

analysed by IPA to assess association with known biological pathways. The top 5 

significant pathways are shown. Genes from the input list that are associated with those 

pathways and their relative C57BL/6 versus BALB/c expression are shown. 

Pathway Associated genes 

C57BL/6
hi

 

Associated genes 

BALB/c
hi

 

Altered T Cell and B Cell 

Signalling in Rheumatoid 

Arthritis 

Il10, Il15, HLA-DQA1, Nfkb2, 

HLA-DQB1, Fas, Tlr4, Cd40, 

Tlr7, Cd86 

Il1a, Il12a, Ltb, Cd28, Cxcl13, 

HLA-DRA, Tlr6, Tlr13, Il1b, 

Tnfsf13b 

Communication between Innate 

and Adaptive Immune Cells 

Il10, Il15, Cxcl10, Tlr4, Cd40, 

Tlr7, Cd86 

Il1a, Il12a, Ccl5, Cd8b, Cd28, 

Tlr6, HLA-DRA, HLA-B, Tlr13, 

Il1b, Tnfsf13b 

Role of Macrophages, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

Map2k4, Plcb2, Fcgr1a, Ccnd1, 

Ikbkb, Traf3ip2, Jun, C5ar1, 

Ccl2, Pik3cg, Tlr7, Atf4, 

Tnfrsf1a, Il10, Daam1, Il15, 

Ikbke, Cebpb, Irak3, Tlr4, Fos, 

Pik3cd, Fzd7 

Il1a, Ltb, Ccl5, Vegfb, Mras, 

Pik3r2, Ctnnb1, Tnfsf13b, 

Adamts4, Src, Vcam1, Pdgfb, 

Tlr6, Tlr13, Il1b, Ryk, Camk2g 

Type I Diabetes Mellitus 

Signalling 

Map2k4, Tnfrsf1a, Ifngr2, HLA-

DQA1, Apaf1, Ikbke, Ifngr1, 

Nfkb2, HLA-DQB1, Fas, Ikbkb, 

Casp9, Cd86, Casp8 

Il12a, Ica1, Cd28, HLA-DRA, 

HLA-B, Il1b, Socs5 

Dendritic Cell Maturation Map2k4, Plcb2, HLA-DQA1, 

HLA-DQB1, Fcgr2b, Fcgr1a, 

Ikbkb, Pik3cg, Atf4, Il10, 

Tnfrsf1a, Il15, Ikbke, Nfkb2, 

Stat4, Tlr4, Cd40, Cd86, Pik3cd 

Il1a, Il12a, Ltb, HLA-DRA, 

HLA-B, Pik3r2, Il1b 
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Table 7.18 8 h differentially expressed genes associated with IPA pathways. Refers 

to Figure 5.8. 

 

Table 7.18 Differentially expressed genes of interest in LPS stimulated C57BL/6 and 

BALB/c macrophages identified at 8 h in the strategy outlined in Figure 5.3 B (*) were 

analysed by IPA to assess association with known biological pathways. The top 5 

significant pathways are shown. Genes from the input list that are associated with those 

pathways and their relative C57BL/6 versus BALB/c expression are shown. 

Pathway Associated genes 

C57BL/6
hi

 

Associated genes 

BALB/c
hi

 

Altered T Cell and B Cell 

Signalling in Rheumatoid 

Arthritis 

Map3k14, Il10, HLA-DMB, 

Nfkb2, HLA-DQB1, Fas, Tlr4, 

Il1rn, Cd86, Tlr13 

Il1a, Il12a, Il15, Ltb, Nfkb1, 

Tlr2, Tlr5, Cxcl13, Cd40, Csf1, 

HLA-DRA, Tlr6 

Role of Macrophages, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

Map2k4, Il6st, Plcb2, Pdgfa, 

Mmp13, Ccl5, Fcgr1a, Ccnd1, 

C5ar1, Ccl2, Atf4, Tnfrsf1b, 

Fcgr3a, Map3k14, Tnfrsf1a, 

Il10, Ikbke, Cebpb, Stat3, Irak3, 

Pdgfb, Il16, Tlr4, Fos, Il1rn, 

Tlr13, Pik3cd 

Il1a, Ltb, Nfkb1, Prkd3, Il1rap, 

Traf1, Adamts4, Src, Vcam1, 

Il15, Tlr2, Rras2, Tlr5, Csf1, 

Tlr6 

Hepatic Fibrosis / Hepatic 

Stellate Cell Activation 

Ccr5, Pdgfa, Mmp13, Ccl5, 

Fas, Cxcl3, Ccl2, Timp1, 

Tnfrsf1b, Smad2, Il10, Tnfrsf1a, 

Ifngr2, Ifngr1, Nfkb2, Ifnar2, 

Pdgfb, Tlr4 

Igfbp4, Il1a, Nfkb1, Il1rap, 

Timp2, Vcam1, Cd40, Csf1, 

Mmp9 

Dendritic Cell Maturation Map2k4, Plcb2, HLA-DMB, 

HLA-DQB1, Fcgr2b, Fcgr1a, 

Atf4, Tnfrsf1b, Fcgr3a, 

Map3k14, Il10, Tnfrsf1a, Ikbke, 

Nfkb2, Tlr4, Il1rn, Cd86, 

Pik3cd 

Il1a, Il12a, Ltb, Nfkb1, HLA-

DRA, HLA-B, Il15, Tlr2, Cd40 

TREM1 Signalling Il10, Stat3, Nfkb2, Fcgr2b, 

Cxcl3, Tlr4, Ccl2, Ccl7, Cd86, 

Tlr13 

Nfkb1, Tlr2, Nod2, Cd40, Tlr5, 

Tlr6 
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Table 7.19 Transcription factors differentially expressed in LPS stimulated 

C57BL/6 and BALB/c macrophages. Refers to Figure 5.11. 

 

Table 7.19 Transcription factors that are differentially expressed in LPS stimulated 

C57BL/6 and BALB/c macrophages at at least one time-point (divided into 11 clusters) 

are shown. Pink denotes overall higher expression in C57BL/6 macrophages. Blue 

denotes overall higher expression in BALB/c macrophages.   

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Surb7 Aff1 Cited2 Pou3f1 Ifi204 Bach2 

Lmyc1 Irf2 Fem1c Mycbp Nfkb2 Btbd11 

Sertad2 Tle4 Axud1 Psip1 Centd2 Ddef1 

Jundm2 AW538212 Zfp263 Asb1 Mina 

 Klf7 Zfp281 Nfil3 Cdkn2d Smad2 

 Nfkb1 Stat3 Egr1 

 

Pycard 

 Nfkbiz Hdac1 

  

Atf4 

 Junb Hif1a 

  

Zfp367 

 Skil Bcl6 

  

Stat4 

 Cebpb Mtf1   Zfp213  

 Bcl3     

 Irf5 

  

 

 

 

Etv3 

    

 

Six1 

    

 

Tcf4 

    

      Cluster 7 Cluster 8 Cluster 9 Cluster 10  Cluster 11 

 Ctnnb1 Pou6f1 Pparg Per1 Etv1 

 Tgfb1i4 Zfhx2 Hlx1 Jun Lbx2h 

 Tal1 Tcf19 Bach1 Fos Sox4 

 Rai4 Mrpl28 Smarca2 Trerf1 Satb1 

 

 

Gcdh E2f2 

 

Etv5 

 

 

Foxm1 Gtf3a 

 

Elk3 

 

 

E2f6 Ing4 

   

 

Gtf2i Rxrb 

   

 

E2f1 Gtf3c1 

   

 

Tsc22d3 Ppp1r12c 

   

 

Irf2bp1 

    

 

Pbx2 

    

 

Hes6 

    

 

Tdrd3 

    

 

OTTMUSG000

00000421 
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Figure 7.2 Differential IL-10 production is consistent in C57BL/6 and BALB/c 

macrophages derived from mice bred at NIMR or Jackson Laboratories.   

BMDM were generated from C57BL/6 and BALB/c mice bred either at NIMR or 

Jackson Laboratories (JX). BMDM were stimulated over a time-course with LPS (10 

ng/ml), or HkBps (10 HkBps: 1 BMDM). IL-10 protein in supernatants was quantified 

by ELISA (detection limit 50 pg/ml). Graphs show means ± SD of individual triplicate 

cultures. Representative of one experiment.  
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