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Abstract: One of the strategies proposed for the chemoprevention of degenerative diseases and

cancer involves upregulation of antioxidant and free radical detoxification gene products by
increasing the intracellular concentration of the transcription factor nuclear factor erythroid

2-related factor 2 (Nrf2). This can be achieved by disrupting the interaction between Nrf2 and

Kelch-like ECH associated protein 1 (Keap1), a substrate adaptor protein for a Cul3-dependent E3
ubiquitin ligase complex. Here, we describe the development of a high-throughput fluorescence

(or F€orster) resonance energy transfer assay for the identification of inhibitors of the Keap1-Nrf2

protein–protein interaction (PPI). The basis of this assay is the binding of a YFP-conjugated Keap1
Kelch binding domain to a CFP-conjugated Nrf2-derived 16-mer peptide containing a highly con-

served “ETGE” motif. The competition aspect of the assay was validated using unlabeled Nrf2-

derived 7-mer and 16-mer peptides and has potential as a screening tool for small molecule inhibi-
tors of the PPI. We discuss the development of this assay in the context of other methods used to

evaluate this PPI.
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Introduction
The development of therapies for the chemopreven-

tion of cancer and chronic neurodegenerative condi-

tions is an important, but challenging objective.1,2 In

this respect, the regulation of cytoprotective

responses in cells upon exposure to stressors is

receiving growing interest as a therapeutic target.

Fundamental regulators in this process include the

substrate adaptor protein Kelch-like ECH associated

protein 1 (Keap1) and the transcription factor

nuclear factor erythroid related factor 2 (Nrf2).3

Nrf2 is able to upregulate the expression of numer-

ous genes involved in protecting cells against
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carcinogenesis upon exposure to free radicals, elec-

trophiles, or oxidative stress. Under basal condi-

tions, Keap1 represses Nrf2 by targeting the

transcription factor for ubiquitination and degrada-

tion by the proteasome. The Nrf2 Neh2 domain is

responsible for binding to the Keap1 Kelch domain

using both “low-affinity” DLG (residues 24–31) and

“high-affinity” ETGE (78–82) motifs.4–6 These motifs

interact with Keap1 mainly via salt bridges between

Glu and Asp residues in Nrf2 and Arg residues in

the Keap1 Kelch domain.7 Certain natural com-

pounds (e.g., sulforaphane, curcumin) that activate

Nrf2 are able to oxidize or covalently modify cyste-

ine residues in the N-terminal broad complex, tram-

track, and bric-a-brac domain or intervening regions

of Keap1. It is proposed that this causes a conforma-

tional change in the Keap1 dimer–Cul3 complex

that inhibits ubiquitination of Nrf2.8–10

An alternative strategy for upregulating Nrf2

involves disrupting the interaction between Keap1

and Nrf2 by direct competition at the protein–pro-

tein interface. Such an approach has potential

advantages including a reversible inhibition mode

and the possibility of increased target specificity. We

and others have described the development of pep-

tide inhibitors of the protein–protein interaction

(PPI).11,12 More recently, small molecule inhibitors of

the Keap1-Nrf2 interaction have been identified,

although currently these are significantly less potent

than the peptide inhibitors.13,14

In this study, we describe the development of a

homogeneous and high-throughput assay based on

fluorescence or F€orster resonance energy transfer

(FRET) observed upon interaction between the

Keap1 Kelch domain and a 16-mer Nrf2-derived pep-

tide containing a high-affinity ETGE motif. The

FRET technique is widely used and has the advant-

age of conjugating stable fluorophores to interacting

proteins, which makes the assay relatively durable.

The additional benefits of sensitivity and consistency

makes this steady-state FRET assay well suited for

high-throughput screening (HTS). The optimized

FRET assay has been applied to quantify the bind-

ing activity of a range of Nrf2-derived peptides

based on the high-affinity ETGE motif that serve as

lead compounds for the development of potential

inhibitors of the PPI. We discuss the relative merits

of this assay in relation to fluorescence polarization

(FP), surface plasmon resonance (SPR), and isother-

mal titration calorimetry (ITC) methods that have

been applied previously.11,15–17

Results

FRET optimization and validation

The principle of FRET is dependent on the overlap

of the donor fluorescence emission spectrum with

the acceptor excitation spectrum. In this case, the

donor fluorophore is CFP conjugated to an ETGE

motif-containing 16-mer Nrf2-derived peptide (CFP-

Nrf2) and the acceptor is YFP conjugated to the

human Keap1 Kelch domain (YFP-Kelch) [Fig. 1(a)].

When the two fusion proteins associate, the fluoro-

phores are brought into close proximity (<10 nm).

The crystal structure of the human Keap1 Kelch

domain and interacting 16-mer Nrf2 peptide sug-

gested that a fluorophore situated at either the C- or

N-terminus of the Nrf2 peptide would be in

Figure 1. (A) Schematic representation of the domains of the YFP-Kelch and CFP-Nrf2 constructs. (B) Molecular model of the

YFP-Kelch and CFP-Nrf2 FRET pair constructed from the human Keap1 Kelch domain (red) and the 16-mer Nrf2 peptide (pink)

complex (PDB ref: 2FLU) and the fluorophores YFP (yellow; PDB Ref: 1YFP) and CFP (cyan; PDB Ref: 2WSN). The separation

of the CFP and YFP chromophore residues in the complex was estimated using Chimera software20 to be 628 nm, a distance

suitable for FRET (i.e., <10 nm). FRET is observed as a decreased emission at 475 nm and an increased emission at 527 nm.
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relatively close proximity (within 6–8 nm) to either

the C-or N-terminus of the Kelch domain when the

two proteins interact.7 The N-terminus of both pro-

teins was selected for fluorophore conjugation to

minimize potential steric hindrance when the two

proteins associate. When the donor fluorophores are

excited at �435 nm, a proportion of the absorbed

energy is directly transferred to the acceptor. This

results in a decreased emission of the donor at �475

nm as well as an increase in acceptor emission at

�527 nm [Fig. 1(b)].

FRET resulting from the interaction of Nrf2

with Keap1 was demonstrated by a titration experi-

ment in which emission spectra were recorded after

the addition of YFP-Kelch at a range of concentra-

tions to a fixed concentration of CFP-Nrf2 [Fig.

2(b)]. In a separate experiment, CFP-Nrf2 was

titrated with unconjugated YFP to account for non-

specific interactions [Fig. 2(a)]. Also, emission spec-

tra of the acceptor and donor fusion proteins were

recorded separately to control for direct excitation of

the fluorophores. As both fusion protein constructs

have a TEV recognition site between the fluorescent

tag and the protein, the FRET signal was further

validated by the addition of ProTEV protease to a

solution containing CFP-Nrf2 and YFP-Kelch, and

as expected, this resulted in a rapid decrease in

FRET (data not shown). The efficiency of FRET was

quantified by measuring the decrease in donor emis-

sion at 475 nm. An optimum FRET efficiency (FE)

was recorded with 0.11 mM CFP-Nrf2 and 0.28 mM

YFP-Kelch (FE � 0.23). The FRET signal measured

immediately after mixing the reagents and over a

24-h period was found to be stable throughout (data

not shown).

In order to investigate factors modulating the

observed FE, the effect of salt concentration in the

buffer system was examined. X-ray crystallography

studies of the complex formed between the Keap1

Kelch domain and the ETGE-containing Nrf2 pep-

tide show that the interaction has a significant elec-

trostatic component.7 This implies that high salt

concentrations in the buffer may screen charge-

charge interactions between Glu/Asp residues in the

Nrf2 peptide and Arg residues in the Kelch binding

site. Indeed, increasing the salt concentration (up to

an additional 150 mM NaCl) in 20 mM Tris-HCl pH

7.4 buffer had a detrimental effect on the FE (100%

FE (�0.23) at 0 mM NaCl decreased to �80% FE at

50 mM NaCl, �40% FE at 100 mM NaCl, and �0%

FE at 150 mM NaCl). Since DMSO is often used as

a co-solvent for small molecules and peptides, a

range of DMSO concentrations were tested in the

assay system. Concentrations � 1% v/v were found

to have a negative impact on the fluorophore emis-

sion spectra (data not shown). This limited the use

of DMSO to a concentration of 0.1% v/v.

FRET assay in a multiwell plate format

Following optimization of the FRET system using

the fluorescence spectrometer, the assay was

adapted to a multiwell plate format. In this layout,

an optimum FE was determined by titrating a fixed

concentration of CFP-Nrf2 (CFP-WT) with variable

concentrations of YFP-Kelch. A protein ratio of 0.11

mM CFP-Nrf2 and 0.20 mM YFP-Kelch was found to

achieve �80% of the maximal FE and was used sub-

sequently in competition assays (Fig. 3). In order to

demonstrate the specificity of the PPI, biologically

relevant Nrf2-derived peptides that were known to

exhibit a low binding affinity for the Keap1 Kelch

domain were tested.17 These peptides incorporated

mutations in the DLG (residues 24–31) and ETGE

(residues 78–82) binding motifs that have been

observed in certain human cancers. ITC studies sug-

gested that mutations in the ETGE motif of Nrf2

such as E79Q, T80K, and E82D compromise the

association with the Keap1 Kelch domain in

Figure 2. Fluorescence emission spectra by direct titration of 0.11 mM CFP-Nrf2 with: (A) Unconjugated YFP or (B) YFP-Kelch

at 0.05, 0.07, 0.09, 0.11, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 mM (dotted lines). The solid line represents the donor alone

before titration.
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cancerous tissue and cell lines, resulting in constitu-

tive Nrf2 activation.17 CFP-peptide conjugates con-

taining these three Nrf2 mutations were expressed

and purified (CFP-E79Q, CFP-T80K, and CFP-

E82D). FRET experiments were performed in which a

fixed concentration of the CFP recombinant proteins

was directly titrated with YFP-Kelch at a range of

concentrations. All three mutant proteins showed a

diminished affinity for the Kelch domain compared to

the wild-type CFP-peptide conjugate (CFP-WT). In

contrast, the affinity of the interaction can be

improved by using a CFP-peptide conjugate with a

double mutation E78P/F83L (CFP-E78P/F83L) that

previously we have shown to increase binding affin-

ity.11 Titration experiments with this construct show

an improved interaction compared to the wild-type

sequence (KD 5 0.04 mM vs. 0.08 mM) (Table I).

Next, we applied the assay to identify and char-

acterize compounds that competitively inhibit the

Keap1–Nrf2 interaction. As FRET is a sensitive

measurement of the PPI, FE reduces when an inhib-

itor is added to the system. To verify this reduction

in FE, fluorescence emission spectra were recorded

in the absence and presence of 10 mM of an (unla-

beled) Nrf2-derived peptide inhibitor (Fig. 4). The

dose-dependence of the change in FE was used to

determine IC50 values and rank the inhibitors. The

Z0 value20,21 was 0.63 6 0.07, confirming the suit-

ability of this competition assay for HTS (see Sup-

porting Information).

Unlabeled versions of the Nrf2-derived 16mer

peptide sequences in Table I were used to further

validate the suitability of the FRET assay for quan-

tifying competitive inhibition of the Keap12Nrf2

interaction. The results indicate that, as observed in

the ITC experiments and our FRET studies using

CFP conjugates, the three negative control peptides

(E79Q, T80K, and E82D) were unable to perturb the

association between CFP-Nrf2 and YFP-Kelch (Fig.

5). Moreover, the Nrf2 wild-type (Nrf2-WT) and

E78P/F83L peptides caused a dose-dependent reduc-

tion in FE. The E78P/F83L peptide was a more

potent inhibitor of the PPI than Nrf2-WT (IC50: 0.08

mM vs. 0.11 mM), consistent with the observations in

Table I.

The standardized competition assay conditions

were used to screen a series of previously

described11 Nrf2-derived 7-mer peptides (Fig. 6). The

decrease in peptide length (7mer vs. 16mer) had a

significant effect on the binding affinity for Keap1.

Truncation of the 16mer Nrf2-WT peptide resulted

in peptide 1 with a �30-fold higher IC50 value (3.34

mM vs. 0.11 mM). However, activity was improved

after substitution of the N-terminal acetyl for a ste-

aroyl group in peptide 2 (0.45 mM vs. 3.34 mM). This

favorable effect on affinity warrants further explora-

tion. Peptides 3, 4, and 5 are proline-substituted

versions of peptide 1 and show increased binding

activity. This confirms our previous observations

that the glutamate residue that precedes the ETGE

motif is not essential for binding and that this posi-

tion benefits from conformational restriction. Finally,

peptide 6 is a scrambled version of peptide 2 and

showed decreased binding by �32-fold, which dem-

onstrates the importance of an intact ETGE motif

for interaction with the Keap1 Kelch domain in this

assay. Overall, there is a close match between the

IC50 values from the FRET assay and our previously

described FP assay (Table II).11,21

Discussion

Direct modulation of the Keap1–Nrf2 interaction is

an emerging strategy to stabilize Nrf2 and induce

cytoprotective gene expression. We have developed a

high throughput steady-state homogeneous FRET

assay that complements other assays applied to this

PPI. FRET was observed by conjugating a CFP fluo-

rophore to a 16-mer Nrf2-derived peptide and a YFP

fluorophore to the Keap1 Kelch domain, which forms

Table I. Dissociation Constants and Bmax Values for CFP-Peptide Conjugates

Protein Sequence KD 6 SE (mM) Bmax (mM)

CFP-WT CFP-AFFAQLQLDEETGEFL 0.08 6 0.02 0.28
CFP-E79Q CFP-AFFAQLQLDEQTGEFL >0.1 –
CFP-T80K CFP-AFFAQLQLDEEKGEFL >0.1 –
CFP-E82D CFP-AFFAQLQLDEETGDFL >0.1 –
CFP-E78P/F83L CFP-AFFAQLQLDPETGELL 0.04 6 0.01 0.22

Figure 3. FRET efficiency of 0.11 mM CFP- peptide conju-

gates (• CFP-WT, ! CFP-E79Q, D CFP-T80K, � CFP-

E82D, 8 CFP-E78P/F83L) as a function of YFP-Kelch protein

concentration (mM).
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a specific binding signal that was validated by com-

parison with the unconjugated YFP control fluores-

cence. The CFP and YFP fluorescent proteins form a

FRET pair with good spectral properties; addition-

ally, conjugation to the proteins of interest simplifies

the purification process of the fusion proteins,

improves protein stability and increases to the

robustness of the assay.22–24 The ability to determine

the absolute concentration of fluorophore conjugated

proteins using their UV absorption and molar extinc-

tion coefficient improves the accuracy of dissociation

constant measurements.25 For energy transfer to be

possible, there needs to be a degree of spectral over-

lap between the donor and acceptor fluorophores.

However, this spectral overlap can cause issues

known as crosstalk or bleed-through.26 Excitation

crosstalk occurs when the acceptor is excited with

light at the excitation wavelength of the donor. Simi-

larly, emission crosstalk arises from leakage of donor

emission into the detection channel for acceptor emis-

sion. Determining FRET by quantifying the increase

in YFP emission introduces the risk of including

some emission bleed-through. We chose to use the

decrease in donor emission as a direct measure of FE,

as there is a reduced risk of spectral bleed-through in

the CFP fluorescence emission channel.19

The FRET method is distinct from a number of

other techniques that have been applied to this

interaction. It has a higher sensitivity and through-

put than standard isothermal calorimetry and does

not require the sample immobilization and signifi-

cant method development that is needed for SPR.27–

30 FRET has similarities to FP methods that have

been applied successfully to this PPI by several

groups in that the assay is homogeneous and high

throughput. However, the FRET assay can be

applied using less sophisticated plate readers with

Figure 4. Fluorescence emission spectra of YFP-Kelch and CFP-Nrf2 in the absence (A) and presence (B) of 10 mM of an (unla-

beled) Nrf2-derived peptide inhibitor. Shown are the emission spectra of the FRET pair (solid line), donor alone (dotted line),

acceptor alone (long-dashed line), and the sum of acceptor and donor (short-dashed line).

Figure 5. Competitive inhibition of FRET efficiency by (unla-

beled) 16-mer peptides (• Nrf2-WT, 8 E78P/F83L, ! E79Q,

DT80K, � E82D) as a function of competitor peptide

concentration.

Figure 6. Competitive inhibition of FRET efficiency by (unla-

beled) 7-mer peptides (• Ac-DEETGEF-OH, 8 St-DEETGEF-

OH, ! Ac-DPETGEF-OH, D Ph-DPETGEL-OH, � St-

DPETGEL-OH, w St-DEGEETF-OH) as a function of competi-

tor peptide concentration.
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simpler optics.31,32 Both methods can be confounded

by fluorescence interference from inhibitors, so sec-

ondary confirmation of hits is required in the con-

text of HTS. A particular benefit of the FRET

methodology in this case is the improvement in the

stability of the Keap1 Kelch domain that results from

conjugation to YFP. The time stability of this assay

over FP approaches may be advantageous for HTS.16

Some cell-based methods for identifying Nrf2 activat-

ing agents can be carried out in a relatively high-

throughput manner (e.g., luciferase reporter33 and

enzyme induction assays)34. However, they do not

provide direct information on the mechanism by

which Nrf2 transcriptional activity is induced.

Recently, FRET techniques have been applied to the

Keap12Nrf2 interaction in single live cells using a

multiphoton fluorescence lifetime imaging microscopy

technique.35 This variation to the FRET methodology

offers valuable insights into the protein interaction

mechanisms in a cellular context; however, it is not

yet amenable to a compound screening approach.

In summary, the FRET assay described here is a

sensitive way to quantify protein–protein binding,

with good signal stability and durability. Competition

of (unlabeled) Nrf2-derived peptide inhibitors was suc-

cessfully studied by determining the restored CFP flu-

orescence emission. These results provide an insight

into peptide structure–activity relationships and com-

plement previous FP studies by our group. Our on-

going work is focused on the application of this assay

to the identification of small molecule inhibitors of the

Keap12Nrf2 interaction. The developed FRET assay

proves to be a valuable method for studying the

Keap12Nrf2 interaction and can aid in the identifica-

tion and design of effective chemopreventive agents.

Materials and Methods

Materials

Primers were purchased from Eurofins, ProTev protease

was supplied by Promega, and the 16-mer Nrf2-derived

peptides were obtained from Peptide Synthetics.

Methods

cDNA cloning, protein expression, and purifica-

tion. The cDNA encoding the human Keap1 Kelch

domain (residues 321 – 609) was amplified by PCR

with the following primers: 50-AAAAGGATCCGCGC

CCAAGGTGGGCCG-30 (forward) and 50AAAAGCG

GCCGCTTAGGTGACAGCCACGCCCAC-30 (reverse).

The amplified product was digested with BamH1

and Not1 (NEB) and ligated into a pET28c-eYFP-

TEV plasmid.18 The Nrf2 and Nrf2 mutant sequen-

ces (E78P/F83L, E79Q, T80K, and E82D) were cre-

ated by annealing a forward and reverse primer

(details on primers in Supporting Information). The

annealed products were digested with BamH1 and

Not1 and ligated into a pET28c-eCFP-TEV plas-

mid18 to generate the CFP-Nrf2 expression plas-

mids. All plasmid constructs were expressed in

Escherichia coli Rosetta 2 (DE3) (MerckMillipore). A

1-L bacterial culture grown at 37�C was induced

with 1 mM IPTG and incubated for 16 h at 21�C

when the cells reached the exponential growth

phase (OD600 nm 5 0.4–0.6). The His-tagged

recombinant proteins were purified by immobilized

metal affinity chromatography on a 5-mL His-Trap

column (GE Healthcare Life Sciences) (purification

details in Supporting Information). All YFP-Kelch

and CFP-Nrf2 or CFP-Nrf2 mutant protein concen-

trations were determined by UV/visible spectroscopy,

using wavelengths of 514 and 435 nm for eYFP and

eCFP, respectively, and the extinction coefficients

83,400 M21cm21 (eYFP) and 28,750 M21cm21

(eCFP). In the text, the terms eCFP and eYFP are

used synonymously with CFP and YFP for

simplicity.

Fluorescence spectra. All fluorescence spectra

were acquired using a single sample unit Perki-

nElmer LS 55 luminescence spectrometer (5-nm slit

width, 1-nm interval, 1-s integration) and an excita-

tion wavelength of 435 nm. Fluorescence emission

spectra were recorded from 400 to 600 nm. Samples

were measured in cuvettes (3.5 mL volume, 10-mm

path length, Sarstedt).

FRET titration. Titration experiments were per-

formed using either a PerkinElmer LS55 lumines-

cence spectrometer or a Pherastar BMG Labtech

microplate reader (excitation filter: 430 nm, dual

emission filters: 480 and 530 nm). YFP-Kelch or

unconjugated YFP and CFP-Nrf2 or CFP-Nrf2

mutant proteins were diluted as appropriate in 20

Table II. IC50 Values for Nrf2-Derived 7-mer Peptides for the Interaction Between CFP-Nrf2 and YFP-Kelch

Peptide Sequence FRET IC50 6 SE (mM) FP IC50 6 SE (mM)14

1 Ac-DEETGEF-OH 3.34 6 0.44 5.39 6 0.58
2 St-DEETGEF-OH 0.45 6 0.05 0.18 6 0.04
3 Ac-DPETGEF-OH 0.33 6 0.03 0.25 6 0.04
4 Ph-DPETGEL-OH 0.26 6 0.03 0.16 6 0.02
5 St-DPETGEL-OH 0.12 6 0.01 0.02 6 0.003
6 St-DEGEETF-OH 14.5 6 1.60 11.8 6 2.67
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mM Tris-HCl pH 7.4 buffer containing, 0.5 mM

DTT, 0.1 mM EDTA, and 5% v/v glycerol. Final con-

centrations of 0.05–0.80 mM or 0.01–0.50 mM YFP-

Kelch or unconjugated YFP were added to a final

concentration of 0.11 mM CFP-Nrf2 or CFP-Nrf2

mutant proteins. Fluorescence emission spectra of

YFP-Kelch or unconjugated YFP and CFP-Nrf2 or

CFP-Nrf2 mutant protein samples were recorded

separately. Binding curves were fitted by nonlinear

regression using SigmaPlot software (ligand binding,

one site saturation) and Kd and Bmax values were

determined.

FRET competition assay. Competition assays

were performed using a Pherastar BMG Labtech

microplate reader. In this format, a concentration of

0.11 mM CFP-Nrf2 and 0.20 mM YFP-Kelch were

used. Assays were performed with increasing con-

centrations of peptide inhibitor (0.001–100 mM) at a

final volume of 100 mL and a final DMSO concentra-

tion of 0.1% v/v in untreated black 96-well microtiter

plates (Corning). All measurements were carried out

in triplicate. Plates were read directly after mixing

the components. FEs were calculated using:

FE512
Fda1inhibitor

Fd1vehicle

where da is the donor emission in the presence of

the acceptor and d is the donor emission in the

absence of the acceptor19 and vehicle is 0.1% DMSO.

Percentage inhibition was determined using the cal-

culated FEs. Inhibition curves were fitted to a

standard four-parameter logistic function using Sig-

maPlot and IC50 values were determined.
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