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ABSTRACT: Objectives: The relative influences of hypoxia and other environmental stressors on growth at alti-
tude remain unclear. Previous work demonstrated an association between peripheral arterial oxygen saturation (SpO2)
and anthropometry (especially tibia length) among Tibetan and Han children at altitude. We investigated whether
similar associations exist among Andeans, and the patterning of associations between SpO2 and anthropometry.

Methods: Stature, head-trunk height, total upper and lower limb lengths, zeugopod (ulna and tibia) and autopod
(hand and foot) lengths were measured in Peruvian children (0.5–14 years) living at >3000 m altitude. SpO2 was meas-
ured by pulse oximetry. Anthropometry was converted to internal z scores. Correlation and multiple regression were
used to examine associations between anthropometry z scores and SpO2, altitude, or SpO2 adjusted for altitude since
altitude is a major determinant of variation in SpO2.

Results: SpO2 and altitude show weak, significant correlations with zeugopod length z scores and still weaker signifi-
cant correlations with total upper and lower limb length z scores. Correlations with z scores for stature, head-trunk
height, or autopod lengths are not significant. Adjusted for altitude, there is no significant association between
anthropometry and SpO2.

Conclusions: Associations between SpO2 or altitude and total limb and zeugopod length z scores exist among
Andean children. However, the relationships are relatively weak, and while the relationship between anthropometry
and altitude may be partly mediated by SpO2, other factors that covary with altitude (e.g., socioeconomic status, health)
are likely to influence anthropometry. The results support suggestions that zeugopod lengths are particularly sensitive
to environmental stressors. Am. J. Hum. Biol. 25:629–636, 2013. VC 2013 Wiley Periodicals, Inc.

As an environmental stressor that cannot be culturally
mitigated (Baker, 1976), high altitude hypoxia has been
the subject of considerable research to identify the genetic,
physiological, and morphological means by which humans
adapt to these conditions. Whether hypoxia directly affects
human growth has been extensively investigated, and the
negative impact of high altitude pregnancy on birth weight
is well documented (Beall, 1981; Giussani et al., 2001;
Haas et al., 1977; McClung, 1969; Moore et al., 1998; Unger
et al., 1988; Zamudio and Moore, 2000). While a number of
studies report reduced child and adult stature at altitude,
the growing consensus is that socioeconomic differences
account for the greatest part of the deficit, while a reduc-
tion of just 1–2 cm in adult stature is likely attributable to
hypoxia (Greksa, 2006). This is important because growth
deficits due to the direct effects of hypoxia may be difficult
to resolve, while deficits due to other factors can be effec-
tively addressed by interventions to improve growth.

The delivery of oxygen to the tissues is not only critical
for maintaining immediate function, but also for growth.
This is demonstrated by the fact that populations who
have lived at altitude for many generations (e.g.,
Andeans, Tibetans) are partially protected from hypoxia-
related fetal growth reduction by genetic adaptations that
increase oxygen delivery to the fetus (Bennett et al., 2008;
Giussani et al., 2001; Julian et al., 2007, 2009, 2011;
Moore, 2003). The body employs various mechanisms to
counteract ambient hypoxia at high altitude and thus
maintain cellular and tissue oxygen homeostasis
(reviewed in Beall, 2001; Moore et al., 1998; West et al.,

2007). These include erythrocytosis and increased ventila-
tion and heart rates on acute exposure to hypoxia, and in
the case of Tibetan high altitude natives, increased tissue
blood flow (perfusion: Andeans remain untested in this
respect) (Beall et al., 2001; Erzurum et al., 2007).

There is evidence that exposure to hypoxia in utero or
post-natally affects body size and proportions, particu-
larly the relative size of the limbs and trunk (Bailey et al.,
2007; Lampl et al., 2003; Stinson 2009), although the
extent to which hypoxia exerts a direct influence and the
mechanisms by which it does so remain unclear. Recently
the specific impact of oxygen delivery on human postnatal
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growth at altitude has been investigated using peripheral
arterial oxygen saturation (SpO2). SpO2 measures the
percentage of hem groups in hemoglobin which are bound
to oxygen (Moore et al., 1998), and influences tissue
oxygen delivery. SpO2 decreases with increasing altitude,
even among populations adapted to high altitude hypoxia
(Beall, 2007). SpO2 represents only one component of
blood oxygen content (the total amount of oxygen the
blood carries) which is also a function of erythrocyte and
hemoglobin concentrations (Beall, 2001, 2007). The
advantage of SpO2 is that it can be measured simply, inex-
pensively and non-invasively by pulse oximetry (Schult
and Canelo-Aybar, 2011), and evidence for a major gene
among Tibetans that increases oxygen saturation (Beall
et al., 1994, 1997) demonstrates that SpO2 is sufficiently
important to have been under natural selection in this
native high altitude population. However, Andeans do not
seem to share this adaptation (Beall et al., 2004).

Bailey and co-workers (Bailey and Hu, 2002; Bailey
et al., 2007) demonstrated that higher SpO2 and better
lung function are associated with greater stature and with
relatively longer tibiae among 8- to 11-year-old Tibetan
and Han children at high altitude. A similar relationship
between anthropometry and SpO2 has not yet been
observed in highland Andeans. The purpose of this study is
to investigate the relationship between SpO2 and measures
of body size, limb, and trunk lengths; specifically stature,
head-trunk (sitting) height, total limb lengths and limb
segment lengths (zeugopod: ulna or tibia; and autopod:
hand or foot) among Peruvian infants and children at high
altitude (>3000 m). While relative total lower limb length,
and sometimes tibia length, have been investigated in
studies of body proportions in relation to environmental
stress, relationships between total upper limb length, ulna
length, or autopod (hand or foot) length and SpO2 have not.
The investigation of total upper and lower limb lengths, as
well as limb segment lengths, may help to elucidate the
mechanisms underlying altered body proportions under
stress conditions (Pomeroy et al., 2012). These mechanisms
remain unclear, but are relevant to understanding
reported associations between early life conditions, body
proportions, and chronic disease risk (reviewed in Bogin
and Varela-Silva, 2010; Samaras, 2007) and how humans
adapt to poor environmental conditions during growth. We
hypothesize that, as among Tibetan and Han children,
SpO2 in Andeans will be more strongly positively associ-
ated with zeugopod lengths than trunk length or stature.
Furthermore, in light of evidence that the effects of envi-
ronmental stress on anthropometry rank as follows: zeugo-
pod> total limb> autopod> trunk (Pomeroy et al., 2012),
we hypothesize that a similar ranking will be seen with
SpO2.

METHODS

The study received ethical approval from the Institu-
tional Ethics Committee at the Universidad Peruana
Cayetano Heredia, Lima, and from the Health Directorate
for Ayacucho Region (Direcci�on R�egional de Salud Ayacu-
cho, DIRESA). Participation was voluntary and the study
was conducted according to international ethical stand-
ards (World Medical Association, 2008). Children aged 6
months to 14 years who were born and raised in highland

communities in Ayacucho Region, Peru (Fig. 1), were
included in the study. First language was predominantly
Quechua, and participants came from small rural
communities living from subsistence agriculture and
herding at altitudes from 3100–4400 m. Written informed
consent was obtained from a parent or legal guardian by
signature or fingerprint (where not literate) once the
study had been explained in full to them and to the partic-
ipant in age-appropriate terms. Participants aged 6 years
or over also gave their assent, either in writing or verbally
where not literate.

Anthropometry was measured by a single trained
observer (EP) using standard methods as previously
described (Pomeroy et al., 2012). Measurements were
converted to age–sex-specific z scores based on a combined
sample of highland and lowland children who participated
in a larger study (Pomeroy et al., 2012), though only high-
land children are considered here. Z scores adjust a mea-
surement for age and sex and express it in standard
deviation units. Therefore their use permits analyses
combining data varying by age and sex so as to maximize
statistical power. Z scores were derived by the LMS
method (Cole, 1990; Cole and Green, 1992) using LMS
Chartmaker Light version 2.43 (Pan and Cole, 2010).
Subsequently, references to any anthropometric measure-
ments are to their z scores.

SpO2 was measured by pulse oximetry, which uses dif-
ferences in the wavelength of light absorbed by oxygen-
ated and deoxygenated blood to estimate arterial oxygen
saturation (SaO2). As deoxyhemoglobin absorbs more red
light (600–750 nm wavelength) than oxyhemoglobin,
which has higher infrared absorption (850–1000 nm), the
ratio of light absorption in the red and infrared spectra
indicates SaO2 (Fouzas et al., 2011). SpO2 is typically
measured using a fingertip clip that passes red and infra-
red light through the finger and measures light transmis-
sion (Fouzas et al., 2011).

A Nonin 8500 pulse oximeter (Nonin Medical, Plym-
outh, MN) was used to measure SpO2. Probes were
selected based on the participant’s weight according to the
manufacturer’s recommendations, and attached to the
index finger of the left hand, or to the big toe of infants
whose fingertip thickness was less than 5 mm. Individu-
als were measured in a calm, resting state (if they were
visibly distressed the measurement was not done). As
movement can reduce measurement accuracy (Fouzas
et al., 2011), the child’s hand or foot was held still during
the measurement where necessary. Insufficient tissue
perfusion can also lead to inaccurate readings (Fouzas
et al., 2011), but results were only recorded when the oxi-
meter’s heart rate indicator showed that there was suffi-
cient blood flow for a reliable measurement. The
manufacturer reports accuracy of 62%, consistent with
that for pulse oximetry in general (Jensen et al., 1998;
Ross and Helms, 1990), and the 8500 model is approved
for use up to 12,000 m altitude and is certified for aero-
medical use by the US Air Force.

The normality of distributions for SpO2 and the anthro-
pometric data were assessed visually using histograms.
Anthropometry z score distributions were normal after
removing a single strong outlier, and similarly for SpO2

after excluding two individuals with unusually low read-
ings. Despite previous studies reporting an association
between SpO2 and age (Schult and Canelo-Aybar, 2011),
no such relationship was found in our data (Pearson’s
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correlation, P 5 0.1). Sex differences in SpO2 were also
absent (t-test, P 5 0.3). Thus age and sex were not
included in the analyses, as the anthropometry z scores
were already age–sex-adjusted.

The altitude at which the children were studied varied,
and SpO2 decreases with increasing altitude. The sample
fell into three natural groups in terms of altitude (Fig. 2),
so the data were analyzed in three altitude groups and

the correlations between altitude and SpO2 assessed using
Spearman’s rank correlation coefficient. Pearson’s correla-
tion was derived between SpO2 and anthropometry. As
other factors varying with altitude, such as socioeconomic
status (SES) and healthcare (see “Introduction” section),
might also impact on body size and proportions, correla-
tions between altitude of measurement and anthropome-
try z scores were also conducted to investigate whether

Fig. 1. Map showing location of study sites in the central Peruvian highlands. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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the relationships were similar to those between anthrop-
ometry and SpO2, and thus whether a direct effect of
SpO2, rather than other factors associated with altitude,
might be inferred. Therefore, Spearman’s correlations
were derived between altitude group and anthropometry
z scores.

Multiple regression analyses of anthropometry z scores
on SpO2 were used to assess their associations including
an adjustment for altitude group. To confirm that the use
of z scores did not bias the results, the analyses were
repeated using raw anthropometry as outcomes, adjusting
for sex, age and age2 (to cater for nonlinear relationships).
Analyses were performed using SPSS 21.0 for Windows,
with statistical significance defined at P< 0.05.

RESULTS

Table 1 summarizes the characteristics of the study
sample. Summary statistics on stature, sitting height,
and weight by age group and sex are given in Supporting
Information Table S1, and further summary anthropome-
try can be found in Pomeroy et al. (2012).

The correlation between altitude of measurement and
SpO2 (Fig. 2) is negative, as expected (r 5 20.55,
P< 0.001). Correlations between anthropometry and SpO2

(Table 2) are significant for ulna, tibia, total upper limb

and total lower limb length z scores, but not for stature,
head-trunk height, foot, or hand length z scores. Overall
the correlations are low (r �0.23), indicating weak rela-
tionships even where significant.

Correlations between altitude of measurement and
anthropometry z scores rank similarly to those for SpO2,
with those for zeugopod length highest, and those for auto-
pod lengths and head-trunk height low and insignificant
(Table 3). Furthermore, these correlations with altitude
are generally similar in magnitude to those with SpO2

(Table 2). However, none of the anthropometry z scores are
significantly related to SpO2 when adjusted for altitude
group (Table 4). The results are confirmed by repeating the
analyses using raw anthropometry, which leads to the
same conclusions (Supporting Information Tables S2–S4).

DISCUSSION

Oxygen saturation and anthropometry z scores are
significantly associated in this population of high altitude
Andean children. However, anthropometry z scores corre-
late similarly with altitude and SpO2, and adjusting for
altitude the SpO2—anthropometry associations vanish.
This suggests that the relationship between anthropome-
try and altitude may be partly mediated through SpO2,
which itself is negatively correlated with altitude, but
that other factors covarying with altitude also independ-
ently influence anthropometry. The low correlations
between SpO2 and anthropometry indicate that, even if
the association is causal, factors other than SpO2 substan-
tially influence anthropometry, in line with evidence that
nutritional and other factors, rather than hypoxia, most
likely explain the height deficit in highland populations
(Greksa, 2006).

The results are consistent with previous evidence that
total lower limb length is more sensitive to the effects of
environmental stress than trunk length (Bogin and
Varela-Silva, 2010; Frisancho, 2007; Gunnell et al., 1998;
Whitley et al., 2008), and that zeugopod lengths are more

Fig. 2. Scatter plot of peripheral arterial oxygen saturation (SpO2)
against altitude where measurements were taken, demonstrating the
expected decrease in SpO2 with increasing altitude.

TABLE 1. Summary statistics of the study sample

Variable Statistic Value

Sample size n (males, females) 165 (82, 83)
Altitude of measurement (m) Median 3564

Interquartile range 3306–3823
Range 3150–4415

SpO2 (%) Median 90
Interquartile range 88–92
Range 81–99

Age (years) Mean 5.25
Standard deviation 3.59
Range 0.5–14.4

TABLE 2. Correlations between SpO2 and anthropometry z scores

Outcome z score Pearson r P n

Ulna length 0.23 0.003 163
Tibia length 0.22 0.004 164
Total upper limb length 0.19 0.02 159
Total lower limb length 0.17 0.03 165
Stature 0.15 0.06 165
Head-trunk height 0.08 0.3 165
Foot length 0.07 0.4 164
Hand length 0.05 0.5 156

Bold indicates significant P values.

TABLE 3. Correlations between altitude and anthropometry z scores

Outcome z score Spearman r P n

Tibia length 20.28 <0.001 164
Ulna length 20.26 0.001 163
Total lower limb length 20.3 0.001 165
Total upper limb length 20.18 0.03 159
Stature 20.1 0.07 165
Hand length 20.08 0.3 156
Foot length 20.04 0.6 164
Head-trunk height 0.006 0.9 165

Bold indicates significant P values.

632 E. POMEROY ET AL.

American Journal of Human Biology



sensitive to environmental stress than total limb lengths
(Meadows Jantz and Jantz, 1999; Pomeroy et al., 2012).
With specific reference to hypoxia, the results agree with
those of Bailey and colleagues on Tibetan and Han chil-
dren, which also showed a stronger association between
SpO2 and absolute or relative tibia length than with total
lower limb length or stature (Bailey et al., 2007). They are
also consistent with a study into the effect of prenatal
hypoxia on rats demonstrating reduced total fore- and
hind-limb lengths, and that zeugopod lengths were more
strongly affected than stylopod (humerus or femur)
lengths (Hunter and Clegg, 1973). However that study
also reported significant reductions in paw length under
hypoxic conditions which contrast with our results. Work
examining relative tibia, femur, and total upper limb
lengths in hypoxia-exposed fetuses also suggests that the
tibia was shortened relative to the femur, but total upper
limb length was unaffected (Lampl et al., 2003), again in
contrast with our results.

The results suggest that factors other than SpO2 that
covary with altitude may explain much of the altitude-
related anthropometric variation. As already outlined,
SpO2 is only one aspect of tissue oxygen delivery, and vari-
ation in altitude may have additional hypoxia-related
effects on growth that are not captured by SpO2. SpO2 also
varies diurnally in individuals, for example tending to be
lower during sleep (Fouzas et al., 2011) and exercise
(Brutsaert et al., 2000), so the single measurement of
SpO2 recorded in this study may not have captured
between-individual variation in SpO2 that may have had
significant impacts on growth. Furthermore, environmen-
tal characteristics like SES, temperature and healthcare
access decrease with increasing altitude (Leonard et al.,
1990; Niermeyer et al., 2009; Rivera-Ch et al., 2008; West
et al., 2007) while respiratory infection rates increase
(Niermeyer et al., 2009; Subhi et al., 2009), and these may
also impact on growth, body size, and body proportions.

Distinguishing between the influences of these different
environmental stressors is challenging, since factors such
as SES, ambient temperature, and tissue oxygenation
(the end product of various mechanisms of oxygen deliv-
ery at altitude) are hard to characterize. In this study,
participants came from small rural communities where
SES is very low and varies little, while diet and access to
healthcare are similarly poor. Bailey et al. (2007) reported
little variation in SES in their sample of Tibetan and Han
children, so argued this could not have accounted for their
results, but it remains untested whether even such
limited variation could still influence morphology at
altitude. Variation in other factors known to influence

growth and body size, including maternal phenotype,
health and nutrition, and intergenerational effects on
maternal and offspring phenotype (Wells, 2010) are
important considerations for future research. Tempera-
ture is unlikely to explain the results, which are inconsis-
tent with the mechanisms thought to link limb growth
and temperature (Pomeroy et al., 2012). Given the diffi-
culty of separating different influences on morphology at
altitude where exposure to multiple stressors is corre-
lated, experimental animal models where other factors
can be controlled are likely key to understanding the
effects of hypoxia on body size and proportions.

In terms of underlying mechanisms, our results are
inconsistent with a proximo-distal decrease in available
resources along the limb, as suggested in Lampl’s distal
blood flow model (Lampl et al., 2003). This hypothesis
states that fetuses exposed to hypoxia due to maternal
diabetes or smoking show reduced tibia length, but not
reduced total upper limb or femur lengths, due to the
nature of the fetal circulation and the diminution of blood
oxygen availability with distance from the placenta,
reaching its lowest levels in the distal lower limb (tibia).
The model implies that hands and feet are most affected
by hypoxia, though this was not investigated by Lampl
et al. (2003). However, this was not the pattern observed
here.

The results are more consistent with the thrifty pheno-
type hypothesis as applied to limb lengths (Pomeroy et al.,
2012). The thrifty phenotype hypothesis (Hales and
Barker, 1992) states that when resources are limited,
growth is prioritized in organs or parts of the body where
function would be most compromised by inadequate
growth. In comparing children from the Peruvian high-
lands (including the sample from this study) with those
from the Peruvian lowlands who experience markedly
lower levels of environmental stress in terms of socioeco-
nomic factors, healthcare access, hypoxia and cold
exposure, we documented a similar pattern (Pomeroy
et al., 2012). Zeugopod lengths showed the greatest differ-
ences between populations, followed by total limb lengths,
while differences were smaller in hand and foot lengths
and smallest in head-trunk height. The trunk may be
relatively protected as it houses the major organs, while
autopod lengths may also be protected due to their critical
roles in manipulation and substrate interaction during
locomotion. While this suggestion has not been demon-
strated empirically, it has been proposed that greater
canalization of autopod size compared with the stylopod
and zeugopod may be explained in this way (Rolian, 2008,
2009; Young and Hallgr�ımsson 2005). Our analyses

TABLE 4. Results of multiple regression models of anthropometry z scores on SpO2 and altitude

3700–4000 m altitudea 4200–4500 m altitude SpO2

Outcome z score B SE P B SE P B SE P

Tibia length 20.32 0.11 0.004 20.67 0.19 0.001 0.007 0.018 0.7
Total lower limb length 20.37 0.12 0.004 20.71 0.22 0.002 20.002 0.021 0.9
Ulna length 20.24 0.10 0.02 20.43 0.18 0.02 0.018 0.017 0.3
Total upper limb length 20.22 0.11 0.05 20.12 0.19 0.5 0.027 0.018 0.1
Stature 20.13 0.12 0.3 20.42 0.22 0.06 0.009 0.021 0.6
Foot length 20.00 0.13 0.9 20.20 0.22 0.4 0.004 0.021 0.8
Hand length 20.02 0.13 0.9 20.04 0.22 0.8 0.009 0.021 0.7
Head-trunk height 0.13 0.13 0.3 0.04 0.23 0.8 0.021 0.022 0.3

Bold indicates significant P values.
aTwo dummy variables for altitude group with lowest altitude group (3150–3400 m) as the reference group.
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suggest that SpO2 represents one altitude-associated sig-
nal of supply, to which the limb components respond in a
hierarchical manner.

In terms of proximate mechanisms, trunk size may be
maintained at the expense of limb lengths through
peripheral vasoconstriction which may reduce nutrient
delivery to the limbs, a response observed in humans and
animal models exposed to hypoxia or nutritional stress
(Burrage et al., 2009; Celander, 1960; Edelstone and
Rudolph, 1979; Gardner et al., 2002; Giussani et al., 1994,
2005; Hawkins et al., 2000; Kidd et al., 1966; Krampl
et al., 2001; Llanos et al., 2007; Morrison, 2008; Mulder
et al., 1998; Powers and Swyer, 1977; Rudolph, 1984; Wil-
liams et al., 2005). Existing studies of regional blood flow
generally measure only lower limb blood supply, and data
on upper limb circulation are lacking, as are direct studies
of blood flow in relation to limb segment lengths in ani-
mals or humans. Studies of limb segment blood flow dem-
onstrate proportionally greater flow (corrected for
element size) to the stylopod than the zeugopod, although
there is evidence for variation with age (proximo-distal
gradients decrease with age) and among species (Morris
and Kelly, 1980; Nakano et al., 1986; Tothill et al., 1985;
Tothill and MacPherson, 1986). In addition, it is well
accepted that blood supply affects limb growth (Brashear,
1963; Brodin, 1955; Serrat, 2007; Tomita et al., 1986).

A strength of this study is the predominance of infants
and young children in the sample, since plasticity is
thought to be greatest at younger ages (Lucas, 1991; Mei
et al., 2004; Smith et al., 1976) and thus patterns of body
size and proportion in relation to SpO2 are potentially
strongest in such individuals. While fetal growth may be
the most plastic of all, prenatal environmental influences
are mediated through maternal phenotype (Wells, 2003).
Limitations of this study include its short timescale, so it
was not possible to test whether the patterns maintain
into adulthood, or to investigate the interaction between
hypoxia and nutritional status on growth suggested by
Bailey et al. (2007). It also remains to be demonstrated
how other aspects of oxygen delivery relate to body pro-
portions and growth at altitude. Nonetheless the study
has important implications for public health policy. As
correlations between SpO2 and anthropometry were low,
even where significant, this implies that other factors
exert much greater influences on growth and variation in
body size and proportions, likely nutrition and healthcare
as others have argued previously (e.g., Greksa, 2006).
Therefore, interventions that serve to improve nutrition
and health in highland communities are likely to be effec-
tive in improving growth.

In conclusion, this study demonstrates significant corre-
lations between SpO2 or altitude and limb and limb seg-
ment length z scores among Andean children. The results
indicate that associations are strongest with zeugopod
length and then total limb length z scores, but weaker and
insignificant with head-trunk height and autopod length z
scores. Part of the association between altitude and limb
measurement z scores seems to be mediated by SpO2,
although correlations are relatively weak, and other factors
that covary with altitude are likely to play a major role in
influencing body size and proportions. Future work should
aim to explore further the effects of hypoxia on growth and
body proportions to elucidate the details of the underlying
mechanisms, and to distinguish the effects of hypoxia and
other environmental stress exposures at altitude.
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