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Abstract

BACKGROUND: This paper considers a real-world optimization problem involving the identification of cost-effective equipment
sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem
requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-
consuming fitness evaluations.

RESULTS: An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography
sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over
the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired
intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed
to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for
the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for
when it comes to selecting a sizing strategy to be implemented in a real industrial setting.

CONCLUSION: This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with
a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification
strategies.
c© 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society

of Chemical Industry.
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NOTATION
�x Candidate solution

f Objective function to be optimized
k Total fixed number of chromatography steps in a

manufacturing procress
hi Column bed height at chromatography step i (cm)
di Column diameter at chromatography step i (cm)
nCYC,i Number of cycles each column at chromatography step

i is used for
nCOL,i Number of columns operating in parallel at

chromatography step i
Vi Total volume of resin available at chromatography step

i (L)
T i Processing time of chromatography step i (h)
Mi Mass of product entering chromatography step i (g)
DBCi Dynamic binding capacity of the resin used at

chromatography step i (g/L)
P Annual product output (kg)
D Annual demand (kg)
m Number of Monte Carlo trials

μ Parent population size used by the search algorithms
λ Offspring population size used by the search algorithms
l Number of decision variables to be optimized by the

search algorithms

INTRODUCTION
Monoclonal antibodies (mAbs) represent the fastest growing
category of therapeutic biopharmaceutical drugs due to their
unique binding specificity to targets. Yet, their manufacture is
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Figure 1. Typical flowsheet for an antibody manufacturing process.

costly and time-consuming. The manufacturing process for mAbs
can be divided into two phases (Fig. 1): upstream processing
(USP) and downstream processing (DSP). In USP, mammalian
cells expressing the mAb of interest are cultured in bioreactors.
Following cell culture, the broth moves to DSP, where the mAb is
recovered, purified and cleared from potential viruses using a vari-
ety of operations including a number of chromatography steps,
such as affinity or ion-exchange chromatography. Chromatogra-
phy operations are identified as critical steps in a mAb purification
process and can represent a significant proportion of the
purification material costs (associated, for example, with the use
of expensive affinity resins and large amounts of buffer reagents).
While alternatives to traditional column chromatography plat-
forms are emerging, industry practitioners are still reluctant to
perform major process changes.1,2 At the same time, it is important
to determine how best to use existing production facilities for
mAbs.3,4 This is particularly challenging given the significant
improvements in USP productivities that have been accomplished
over the past decade with higher mAb concentrations (titers)
being achieved in cell culture. These improvements have not
been matched in purification capacities, leading to concerns over
purification bottlenecks and the desire to continuously optimize
the design and operation of existing chromatography steps.
Hence, to efficiently exploit these cell culture improvements,
and account for the growing market for therapeutic mAbs, it has
become critical to identify cost-effective purification processes.1,2,5

An approach to tackle these issues, which is also adopted
here, is to develop simulation models of mAb manufacturing

processes and locate promising chromatography setups using
computational methods. For example, Joseph et al.6 present a
simulation model to identify windows of operation for the column
diameter, bed height and loading flowrate of a chromatography
step using productivity and cost of goods (COG) as performance
criteria. A model to find combinations of protein load and loading
flowrate that meet yield and throughput constraints has been
developed by Chhatre et al.7 The discrete-event simulation frame-
work proposed by Stonier et al.8 allows the selection of optimal
chromatography column diameters over a range of titers. The

methodology used by these authors6–8 consists of selecting and
evaluating specific values within the full range of variation of the
critical parameters. However, such an approach may not be feasible
for larger decision spaces as considered here, where the number
of possible permutations of options means that they can no longer
be examined individually. Recently a set of mathematical program-
ming approaches to address chromatography column sizing and
sequencing problems were presented by Liu et al.9,10 These meth-
ods validated the outcomes of the evolutionary algorithms created
in this paper for small problem instances but were found to reach
limitations when attempting to solve large problem instances
under uncertainty with commercial solvers. This drives the need for
more efficient combinatorial optimization methods in this domain.

To address this issue, Simaria et al.11,12 conducted a study
on the application of evolutionary algorithms (EAs) to optimize
mAb purification processes. EAs represent an example of meta-
heuristic combinatorial optimization techniques that function by
iteratively evolving a population of candidate solutions using

Figure 2. Schematic of closed-loop optimization. The genotype of a candidate solution �x is generated on the computer but its phenotype is
experimentally prototyped or alternatively realized by running an expensive computation simulation. The quality or fitness f

(�x ) of a solution may be
obtained experimentally too and thus may be subject to measurement errors (noise).

wileyonlinelibrary.com/jctb c© 2013 The Authors. J Chem Technol Biotechnol 2014; 89: 1481–1490
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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search algorithms based on the principles of natural selection.13

Simaria et al.11,12 found that EAs are efficient optimizers in this
domain but also recognized that their performance could be
improved by further tuning of the EAs. This study conducts a more
thorough investigation on this topic. Beginning with a more formal
definition of the chromatography equipment sizing problem, this
work proposes guidelines on how to tune EAs for this problem
and demonstrates the usefulness of certain EA properties when it
comes to incorporating user preferences and final decision making.

This study investigates the application of EAs for the
identification of chromatographycolumnsizingstrategies – defined
here by the diameter and bed height of a column, the number
of columns used in parallel, and the number of cycles a column
is run for – that are cost-effective in terms of COG per gram
(COG/g) of product manufactured. This task can be formulated as
a combinatorial (single-objective) optimization problem subject to
multiple constraints and interacting decision variables, uncertain
parameters and expensive fitness evaluations (represented by
time-consuming computer simulations).

The type of problem considered here – where solutions are
evaluated by simulation rather than computing some function

available in algebraic form – is commonly referred to as a closed-

loop optimization problem.14–16 The term closed-loop suggests
that the setup in such problems establishes an interactive loop
between an optimizer and the experimental platform, represented
here by the simulator. Figure 2 illustrates the closed-loop setup
commonly used in experimental optimization including in this
work. Over the years, evolutionary algorithms (EAs) have proven
to be efficient, flexible and robust optimizers for a number of
closed-loop problems in areas such as shape design optimization,
quantum control, drug discovery, analytical biochemistry, fer-
mentation media optimization , marine biosurfactant production,
batch distillation design, and biopharmaceutical portfolio man-

agement combined with capacity planning.17–27 For a detailed
introduction into the field of closed-loop optimization including
challenges, applications, and algorithms employed, please refer to
Allmendinger.14

An industrially-relevant case study is used to investigate how
to tune some of the EA configuration parameters: population size,
degree of elitism, number of Monte Carlo trials (needed to cope
with uncertain parameters), and constraint-handling method. The
fitness landscape of different scenarios of the case study is ana-
lyzed also to observe which landscape features pose a particular

Figure 3. Schematic of the closed-loop platform employed comprising an optimization algorithm (EA) linked to a detailed process economics model;
the interaction between the two components is supported by a database. The process economics model (its structure is illustrated using a UML
diagram) performs mass balance and cost calculations and the EA determines the best chromatography equipment sizing strategies. A chromatography
equipment sizing strategy is defined by the column bed height hi , column diameter di , number of cycles nCYC,i and number of columns nCOL,i for each
chromatography step i = 1, . . . , k employed. Different sizing strategies may yield the same overall column volume but nevertheless vary in the objective
COG/g.

J Chem Technol Biotechnol 2014; 89: 1481–1490 c© 2013 The Authors. wileyonlinelibrary.com/jctb
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 4. A candidate solution (sizing strategy) with k = 3 chromatography steps. Each step i = 1, . . . , k is defined by the parameters hi , di , nCYC,i and
nCOL,i .

challenge when optimizing equipment sizing strategies. A compar-
ison between the equipment sizing strategies used by manufactur-
ers (regarded in this paper as the base case) and solutions provided
by the EA is presented and a practical procedure based on visual
tools for selecting the most preferred sizing strategy is illustrated.

METHODOLOGY
Problem domain: chromatography equipment sizing
The chromatography equipment sizing problem can be
represented as a combinatorial optimization problem with the task
of finding the most cost-effective chromatography sizing setup
for a sequence of chromatography steps used in the purification
process of mAbs. A typical mAb manufacturing process, as shown
in Fig. 1, consists of a number of packed-bed chromatography
steps, with the chromatography sizing strategy selected having a
direct impact on metrics such as manufacturing costs and time, and
annual product output. To locate effective sizing strategies, the
closed-loop setup illustrated in Fig. 3, which links an optimization
algorithm with a process economics model, is employed.

In the following the decision variables, objective function, con-
straints, and uncertain parameters, to which the chromatography
equipment sizing problem considered here is subject to, are
described.

Decision variables
Figure 4 shows the encoding used to represent a solution �x to
the chromatography sizing problem. For each chromatography
step 1 ≤ i ≤ k (k is the total number of steps) four discrete decision
variables were defined related to the sizing and operation of
chromatography columns: bed height hi and diameter di of
columns, number of cycles nCYC,i each column is used, and
the number of columns nCOL,i operating in parallel. That is, the
problem is subject to k × 4 discrete variables in total. This captures
the trade-offs of using large columns with a single cycle versus
smaller columns with multiple cycles as illustrated in Fig. 3. Small
changes in bed height were accommodated to account for typical
ranges seen in industrial applications and it was assumed that
such changes would not affect product quality or recovery. The
use of multiple parallel columns per step was also incorporated so
as to determine whether this offered significant advantages that
might outweigh current preferences to avoid parallel columns due
to validation burdens. For each step i, the variables define the (i)
total volume of resin Vi available for the purification of a product
at that chromatography step, and the (ii) processing time T i that
the chromatography step takes; both parameters are calculated
according to standard mass balance equations as follows:26

Vi = π · d2
i /4· hi· nCYC,i· nCOL,i (1)

Ti = nCYC,i· hi·
(

CVBUFF,i + CVLOAD,i/ nCOL,i
) · ui (2)

where CVBUFF,i and CVLOAD,i are the number of column volumes
of buffer and product load applied per cycle, and ui is the linear
flowrate of the resin used at step i.

Objective function
The objective f is to find a chromatography sizing setup that yields
minimal cost of goods per gram (COG/g) of product manufactured.
The COG includes both direct (resource) costs (e.g. resin, buffer and
labor costs) and indirect costs (e.g. facility dependent overheads,
such as maintenance costs and depreciation), and is divided by
the total annual product output P to yield the metric COG/g.
The COG/g values are obtained by running a detailed process
economics model, which simulates the different purification steps
based on mass balance and cost equations as defined by Farid
et al.28 A more detailed explanation of the COG/g components
is presented in Simaria et al.12 A key feature of this model is the
impact of processing time on COG/g. The annual demand D is an
input of the model and it is used to calculate the bioreactor size
assuming a given number of batches is produced annually in the
facility. However, if a particular equipment sizing strategy leads
to long processing times, it may not be possible to meet the total
number of batches and hence the annual product output would
be below the production target. This penalizes the objective
function through the decrease of the denominator in COG/g (i.e.
the total amount of grams of product produced).

Constraints
The problem is subject to two types of constraints:

1. Each chromatography step i = 1, . . . , k needs to satisfy a resin
requirement constraint to ensure that the resin volume Vi

available for purification at step i is sufficient to process the
mass of product Mi entering that step, given the resin’s dynamic
binding capacity DBCi and the maximum utilization factor κ .
Formally, this constraint can be defined as

Vi ≥ Mi· κ/DBCi (3)

Solutions violating this constraint are considered infeasible
and handled using one of the constraint-handling strategies
introduced later.

2. There is also a demand constraint to ensure that the amount
of product manufactured P is sufficient to satisfy the annual
demand D, or P ≥ D. This constraint may be violated for column
sizing strategies with long chromatography processing times T i .
Using COG/g as the objective function (recall that the product
output P is in the denominator of this metric) was found to be
sufficient to cope with this constraint.

Uncertainties
Uncertainty related to the product titer can have a significant
impact on the annual product output P. As the equipment sizing
is a function of an expected titer value for bioreactors through to
chromatography columns, titer fluctuations can cause (i) failure
to meet demand (if titer is lower than expected), or (ii) product
waste (if titer is higher than expected and equipment capacity is
insufficient to process the excess). Other sources of uncertainty
(e.g. yield, and processing times) may be present and are realistic
but are not considered in this paper.

wileyonlinelibrary.com/jctb c© 2013 The Authors. J Chem Technol Biotechnol 2014; 89: 1481–1490
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Search algorithms
To gain insight into the behaviour of evolutionary search
algorithms on the chromatography sizing problem, four types of
search algorithms were considered: a simple generational genetic
algorithm (SGA), a genetic algorithm with generation gap (GA-GG),
a genetic algorithm with a (μ+ λ)-ES reproduction scheme (GA-
ES), and a population of stochastic hill-climbers (PHC). Algorithm 1
shows the pseudocode of the search algorithms and the way the
constraint handling strategies (which are introduced below) are
managed.

All four algorithms began the search with the same initial
population containing μ randomly generated solutions. The
algorithms used also the same mutation operator, which selected
a decision variable value at random from the set of possible
values. SGA used uniform crossover and random flip mutation as
the variation operators, and binary tournament selection (with

Algorithm 1.  Pseudocode of the search algorithms with constraint handling strategies

replacement) for parental selection; for environmental selection,
it replaced the entire current population with the offspring pop-
ulation. GA-GG and GA-ES differ from SGA in the environmental
selection step only. With GA-GG, the new population was formed
by selecting the fittest μ solutions from the combined pool of the
offspring population and the two fittest solutions of the current
population. With GA-ES, a greater degree of elitism was employed
and the fittest μ solutions from the combined pool of the current
population and the offspring population were selected. PHC
maintained a population of stochastic hill-climbers, which, at each
generation g, independently underwent mutation and replaced
their parent if it was at least as fit.

Accounting for uncertainty
To account for titer variabilities, m Monte Carlo trials (based on
the titre probability distribution Tr(2.6,3.0,3.4)) were performed for

J Chem Technol Biotechnol 2014; 89: 1481–1490 c© 2013 The Authors. wileyonlinelibrary.com/jctb
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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each candidate solution. The fitness of a solution was then the
average of the COG/g values across the m trials, and this average
was updated if a solution happened to be evaluated multiple times
during an optimization procedure.

Handling of infeasible solutions
Five constraint-handling strategies were analyzed to cope with
infeasible solutions (violating Equation 3). Four of them (RS1,
RS2, RS3 and RS4) repaired infeasible solutions, i.e. modified the
genotype of a solution, while strategy RS5 avoided repairing
in some way in order to prevent drift-like effects in the search
direction (which may occur due to repairing).

The four ‘repairing’ strategies iteratively increased the values of
the decision variables (associated with a particular chromatogra-
phy step i), one variable at a time, until Equation 3 was satisfied or
until the maximum value of a variable was reached, in which case
the value of another variable was increased. The sequence in which
the variables were modified affected the search. To investigate this
effect, different sequences, represented by the strategies RS1 to
RS4, were analyzed. The strategy, RS1, applied repairing according
to the decision variable sequence di → nCYC,i → hi → nCOL,i (where
i is the chromatography step violating Equation 3); this sequence
represents typical rules applied in equipment sizing scale-up
models. The strategy, RS2, employed the inverse sequence of RS1,
i.e. nCOL,i → hi → nCYC,i → di . The strategies, RS3 and RS4, switch
between different repairing sequences during an optimization
procedure. While RS3 chooses at random between the two
sequences employed by RS1 and RS2, the strategy, RS4, chooses
at random among all possible repairing sequences (note, there
are 4! different sequences to choose from) whenever it needs to
be repaired. The approach employed by RS4 would be plausible,
for example, if no prior knowledge about promising repairing
sequences was available. The strategy, RS5, does not apply
repairing but penalizes infeasible solutions by degrading their
fitness by a large fixed penalty value c.

The closed-loop platform comprising the search algorithms
and process economics model was coded in C# (Microsoft Visual
Studio 2010, Microsoft Corporation, WA, USA) which was linked
to an input/output database in Microsoft Access (Microsoft Office
2010, Microsoft Corporation, WA, USA).

Case study description
An industrially-relevant case study was considered to demonstrate
the ability of the framework to generate cost-efficient and robust
chromatography equipment sizing strategies. The case study
focuses on a single-product mAb manufacturing facility that
employs a process sequence as shown in Fig. 1 (with k = 3
chromatography steps) to satisfy a total product demand of
D = 500 kg/year with an expected titer of 3 g/L. The main details
of the chromatography steps used in the model to perform
mass balance and cost calculations are presented in Table 1.
Titer variabilities were modelled using the triangular probability
distribution, Tr(2.6,3.0,3.4). Three scenarios of this case study with
different ratios of USP:DSP trains were investigated: 1:1, 2:1 and
4:1. The USP train refers to the number of bioreactors operating
(in a staggered mode), and an increase in the USP:DSP ratio
corresponds to a decrease in the DSP window, the time available to
perform chromatography. The range of possible decision variable
values is 15 cm ≤ hi ≤ 25 cm (11 values), 50 cm ≤ di ≤ 200 cm (16
values from a set of commercially available column diameters), 1
≤ nCYC,i ≤ 10 (10 values), 1 ≤ nCOL,i ≤ 4 (4 values), i = 1, 2, 3; i.e. there
are (11 × 16 × 10 × 4)3 ≈ 3.5 × 1011sizing strategies in total. The

Table 1. Key input parameters for the k = 3 packed-bed
chromatography steps in the case study

Input parameters i = 1 i = 2 i = 3

Dynamic binding capacity (g/L) 35 40 100

Linear velocity (cm/h) 350 200 300

Buffer volume (CV) 35 25 10

Resin price ($/L) 13000 630 1100

Note: CV = number of column volumes.

Table 2. Default parameter settings of search algorithms

Parameter Setting

Parent population size μ 80

Offspring population size λ 80

Per-variable mutation probability 1 / l

Crossover probability 0.6

Constraint-handling strategy RS1

Number of generations G 25

Penalty value c 5000

Monte Carlo trials m 25

equipment sizing strategy of the base case is based on empirical
rules used by manufacturers: a single column nCOL,i = 1 with a
fixed bed height of hi = 20 cm is run for a fixed number of cycles
nCYC,i = 5 with the diameter size di being calculated such that the
resulting total resin volume Vi (calculated according to Equation 1)
satisfies the resin requirement constraint (Equation 3). Additionally,
an attempt is made to reduce the number of cycles to nCYC,i = 4
(while keeping the other sizing parameters fixed); this setting is
realized if the resulting resin volume still satisfies Equation 3.

The experimental study investigated different settings of the
parameters involved in the search algorithms. However, if not
otherwise stated, the default settings given in Table 2 were used.
Any results shown are average results across 20 independent
algorithm runs. To allow for a fair comparison of the search
strategies, a different seed was used for the random number
generator for each EA run but the same seeds for all strategies.
This allows for the application of a repeated-measures statistical
test, the Friedman test,29 to investigate performance differences
between algorithmic setups.

RESULTS AND DISCUSSION
Before analyzing the behaviour of the search algorithms on the
chromatography equipment sizing problem, an indication of
the properties of the fitness landscapes spanned by three case
study scenarios is given. For this, the adaptive walks method
was adopted.16,30 Starting from a randomly generated solution,
an adaptive walk calculates the fitness of all neighbours of the
solution that can be generated with a single mutation step, and
selects one of the fitter neighbours at random to move to. If there
is no fitter neighbour, then the walk has reached a local optimum
and terminates. In this study, 1000 adaptive walks (using a fixed
titer of 3 g/L) were performed on the landscape of each scenario,
and the length of each walk was recorded. Figure 5(a) shows the
distribution of the adaptive walk length in the form of boxplots.
From the plot it can be observed that increasing the USP:DSP

wileyonlinelibrary.com/jctb c© 2013 The Authors. J Chem Technol Biotechnol 2014; 89: 1481–1490
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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(a)

(b)

Figure 5. Boxplots showing the distribution of the (a) length and (b) final
fitness (COG/g) of 1000 adaptive walks for different USP:DSP ratios. The
box represents the 25th and 75th percentile with the median indicated
by the dark horizontal lines. The whiskers represent the observations with
the lowest and highest value still within Q1-1.5×IQR and Q3+1.5×IQR,
respectively; solutions outside this range are indicated as dots. Q1 and Q3
are the 25th and 75th percentile, and the interquartile range is IQR=Q3-Q1.

ratio tends to decrease the average length and variability of an
adaptive walk. That is, the landscape becomes more rugged, or,
equivalently, the number of local optima increases. This pattern
is due to tighter DSP windows, which cause more solutions to
violate the demand constraint and thus makes the problem harder
to solve. This also causes an increase in the COG/g values as
indicated in Fig. 5(b). The next section presents an analysis of how
the search algorithms fared for both the deterministic (using a
fixed titer of 3 g/L) and stochastic scenario.

Deterministic product titer
Figure 6(a) analyzes the performance of the search algorithms as a
function of the population size μ. The aim of this experiment was
to understand whether a large population should be evolved for
few generations, or a small population for many generations.
This understanding is important when optimizing subject to
limited resources, such as limited computational power and time
constraints. The figure illustrates that: (i) a population size of
around 40≤ μ≤80 yielded the best performance for the GA-based
algorithms (SGA, GA-GG and GA-ES); (ii) GA-ES found the most cost-
effective strategies; and (iii) random search outperforms PHC. Small
population sizes, or search algorithms employing no elitism, such

(a)

(b)

Figure 6. (a) Average best COG/g (and its standard error) obtained by
different search algorithms as a function of the population size μ; the
number of fitness evaluations available for optimization was fixed to
#Evals = 2000, i.e. the number of generations is G = 	2000/μ
. (b) Average
best COG/g, as a function of the generation counter g, obtained by GA-ES
using different repairing strategies. Both experiments were conducted on
a chromatography equipment sizing problem featuring a ratio of USP:DSP
trains of 4:1. For each setting shown on the abscissa, a Kruskal–Wallis test
(significance level of 5%) has been carried out. In (a), GA-ES performs best
for μ > 40 while, in (b), RS1 performs best in the range 1 < g < 15.

as SGA, did not perform well due to the high probability of getting
trapped in one of the many local optima of the fitness landscape.
Large population sizes converged slowly due to the low number of
generations available for optimization. PHC was inferior to random
search because the hill-climbers could get trapped in local optima,
in which case further improvements were unlikely, while random
search kept on generating (at random) new and potentially fitter
solutions. (Note, the performance of random search is constant for
different values of μ as it depends only on the total number of
function evaluations available.)

Figure 6(b) investigates the performance impact of the five
constraint-handling strategies, RS1 to RS5, when augmented on
GA-ES (a similar performance impact was present for the other
search algorithms). From the plot it is apparent that the constraint-
handling strategy employed had an effect on the convergence
speed and the final solution quality. Furthermore, it indicated that
a repairing strategy (RS1, RS2, RS3 and RS4) performed better than
a non-repairing strategy (RS5). The superior performance of RS1 is
due to the fact that the variable di is modified (increased) first when
repairing a solution. Unlike to the other variables, an increase in
di is often sufficient to just satisfy the resin requirement constraint
without increasing the processing time. From the performance

J Chem Technol Biotechnol 2014; 89: 1481–1490 c© 2013 The Authors. wileyonlinelibrary.com/jctb
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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(a)

(b)

Figure 7. Average best COG/g (and its standard error) obtained by (a)
GA-ES and (b) SGA in a deterministic and stochastic environment (using
different values for the number of Monte Carlo trials m) as a function
of the generation counter g. For each setting shown on the abscissa, a
Kruskal–Wallis test (significance level of 5%) has been carried out. In (a),
GA-ES with m = 10 performs best for g > 15, while, in (b), SGA, deterministic,
performs best in the range 1 < g < 6.

obtained with RS2, RS3 and RS4 it can be concluded that if di
cannot be changed, then either the variable nCYC,i or hi should be
modified to meet the resin requirement constraint.

Stochastic product titer
The performance of the algorithms was then investigated in the
presence of uncertain product titers for different values of Monte
Carlo trials m. Figure 7 indicates that uncertainty impacts nega-
tively the convergence speed and under certain circumstances
also the final solution quality. This impact tends to be less severe
as the degree of elitism employed by an algorithm increases (i.e.
the performance of GA-ES is less affected than that of SGA). Elitism
can help circumventing this issue as it causes a population to
converge (quickly) to a (local) optimal region and then exploit this
region. However, on the other hand, too much elitism (Fig. 7(a))
may disturb and prevent the generation of innovative solutions;
here, optimization in a stochastic environment using relatively
small values of m can yield better performance than optimization
in a deterministic environment due to the greater randomness in
the search. When the optimizer does not employ elitism (Fig. 7(b)),
however, any additional randomness in the search may be a
burden (because it can cause a population to oscillate between
different regions of the search space, preventing or slowing down
convergence towards promising regions).

In the following, the discussion will be limited to results obtained
with GA-ES, as it was the best performing optimizer. The Monte
Carlo trial setting m = 25 will be used to account for the trade-off
between converging reliably to high quality solutions and being
able to escape from suboptimal search regions. Figure 8 shows
the sizing strategies for the most expensive chromatography step
(i = 1) found by GA-ES for the USP:DSP ratios 1:1 (Fig. 8(a)), 2:1
(Fig. 8(b)) and 4:1 (Fig. 8(c)) at the end of the search across
20 independent algorithmic runs. The filled bubble in each plot
indicates the best solution found by the EA, and the filled diamond
the base case setup, which will be discussed in more detail in the
next section. From the plots it is apparent that, when moving from
1USP:1DSP to 4USP:1DSP, the number of cycles tends to decrease
as the time available for purification shortens. The EA finds more
similar solutions for the scenario 4USP:1DSP than for 1USP:1DSP
because the problem is harder to solve, as already indicated in the
landscape analysis conducted previously.

Comparison with the base case
Figure 9 compares key performance metrics between the best
equipment strategy found by GA-EA and the base case setup for
chromatography step i = 1 (as this was the most expensive step) for
the different ratios of USP:DSP trains in a stochastic optimization
environment. The bar chart demonstrates that the EA discovered
chromatography column sizing strategies that improved the value
of the objective function COG/g relative to the empirical approach
to column sizing often adopted by industry (i.e. base case, as
described earlier) with savings in COG/g of up to 20% being
achieved. The characteristics of the optimal solutions found by
the EA depend on the type of scenario being addressed. For
1USP:1DSP, where the DSP window is unconstrained at 14 days,
the optimized column sizing strategy employs a smaller column
running for more cycles than in the base case. This reduces the
amount of resin purchased and thus also the COG/g. In the scenario
4USP:1DSP, where the DSP window is constrained to 4 days, the
column sizing strategies are optimized to run faster (i.e. fewer
cycles and larger diameters), increasing the output kg produced
and thus minimizing COG/g.

The use of stochastic EAs permitted the identification of more
robust solutions, better equipped to handle titer fluctuations, as
shown by the lower standard deviation values of COG/g and
reduced product waste (Fig. 9). In the base case approach, the
columns are sized according to the expected average titer without
specifically accounting for titer fluctuations. Hence, in situations
where titers are higher than expected, the columns may not
have sufficient excess capacity to cope with higher product loads,
leading to product waste. The sizing strategies found by the EA
exhibit higher resin volumes and thus overcome this issue to a
certain extent.

Incorporation of user preferences for selection of strategies
For all scenarios, the solutions in the final population found by
GA-ES have COG/g values that do not differ by more than 3%
of each other, and thus can be considered as valid alternatives
available to the decision maker. This allows for the consideration
of further criteria and preferences when selecting the strategy to
be implemented in the real world, as illustrated in Fig. 10. For
example, if space limitations and ease of operation considerations
restrict the diameter of columns that can be used to di ≤ 1.6 m,
then solutions that do not meet the requirements can be excluded
(black bubbles in Fig. 10). Also, due to validation issues there
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(a) (b)

(c)

Figure 8. Column sizing strategies for the most expensive chromatography step (i = 1) found by GA-ES at the end of the search across 20 independent
algorithm runs (within an uncertain optimization environment) (bubbles) for the scenarios (a) 1USP:1DSP, (b) 2USP:1USP and (c) 4USP:1DSP. The size of
a bubble is proportional to the variable d1; all solutions feature the setup nCOL,1 = 1. The COG/g values of all solutions found by the EA for a particular
scenario are within 3% of each other. For each scenario, the filled bubble represents the optimal setup found by the EA. The base case setup is indicated
with a filled diamond and was not part of the solution set found by the EA for the scenarios 1USP:1DSP and 4USP:1DSP.

Figure 9. Percentage change in key performance criteria of the best
solution found by the stochastic EA relative to the base case for different
ratios of USP:DSP trains (COG = average COG/g, sd = standard deviation of
COG/g, time = DSP time, kg = average product output, waste = average
amount of product wasted due to titer fluctuations). The stochastic values
for the base case sizing strategies were obtained by running the same
number of Monte Carlo simulations on batch titer as performed for the
best solution found by GA-ES.

might be the need to narrow the range of variation of the column
bed height. The grey bubbles in Fig. 10 represent strategies
that would not be feasible if the bed height was required to
be in the range 18 ≤ hi ≤ 22 cm. Therefore the white bubbles
are the strategies that meet all criteria. The plot illustrates that
even with these user preferences, the user still has a set of
alternative solutions with similar COG/g values to choose from,

Figure 10. Column sizing strategies for the most expensive
chromatography step (i = 1) found by GA-ES at the end of the search
across 20 independent algorithm runs for the scenario 1USP:1DSP. The size
of a bubble is proportional to the column diameter d1; all solutions feature
the setup of 1 column per step, nCOL,1 = 1. Black bubbles: d1 > 1.6m. Grey
bubbles: bed height h1 > 22 or h1 < 18 cm, white bubbles: meet both
constraints.

thus providing greater flexibility to meet pressures for continuous
process improvement.

CONCLUSIONS
This paper has considered a real-world problem concerned with
the identification of cost-effective equipment sizing strategies for
purification processes (with focus on chromatography steps) which
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are core to all bioprocesses. The industrial case study was applied
to monoclonal antibodies which represent the fastest growing seg-
ment of the pharmaceutical industry where a significant focus is on
the need for more cost-effective and robust purification processes
for different facility configurations. The application was formulated
as a combinatorial closed-loop optimization problem subject
to (i) expensive fitness evaluations (relying on time-consuming
computer simulations), (ii) multiple dependent decision variables
(related to properties of a chromatography column), (iii) constraints
(related to resin requirements and product demand targets), and
(iv) uncertain parameters (related to variations in product titers,
which were accounted for using Monte Carlo simulations).

The investigation highlighted that EAs can identify a diverse set
of equipment sizing strategies that are more cost-effective than the
strategies used in industry. In particular, the analysis demonstrated
that an EA performs best when elitism is employed in combination
with a small number of Monte Carlo trials, infeasible solutions
are handled using a non-trivial repairing strategy, and (when
resources are limited) a medium-sized population (a size between
30≤μ ≤80) is evolved for a relatively large number of generations.
Furthermore, the study illustrated that having available a diverse
set of cost-effective sizing strategies (rather than a single one)
is beneficial when it comes to account for user preferences and
selecting a strategy to be employed in the real world.

Future research will look at extending the equipment sizing
problem considered here with relevant decision variables related,
for example, to the sequence of a purification process employed
and each step’s operating conditions. The ultimate goal is to
formulate an optimization problem that covers as many relevant
aspects arising along the lifecycle of a biopharmaceutical product
as possible. The benefit of solving this problem is that decisions
regarding the development of a product can be made at an early
stage, resulting in potentially significant financial savings.
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