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Abstract

Background: The development of the Drosophila eye imaginal disc requires complex epithelial rearrangements. Cells of the
morphogenetic furrow are apically constricted and this leads to a physical indentation in the epithelium. Posterior to the
furrow, cells start to rearrange into distinct clusters and eventually form a precisely patterned array of ommatidia. These
morphogenetic processes include regulated changes of adhesion between cells.

Methodology/Principal Findings: Here, we show that two transmembrane adhesion proteins, Capricious and Tartan, have
dynamic and complementary expression patterns in the eye imaginal disc. We also describe novel null mutations in
capricious and double null mutations in capricious and tartan. We report that they have redundant functions in regulating
the architecture of the morphogenetic furrow and ommatidial spacing.

Conclusions/Significance: We conclude that Capricious and Tartan contribute to the adhesive properties of the cells in the
morphogenetic furrow and that this regulated adhesion participates in the control of spacing ommatidial clusters.
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Introduction

The development of the Drosophila compound eye is a complex

process involving the interplay of many signalling pathways

(reviewed in [1]). The Drosophila eye is composed of a regular

hexagonal lattice of about 800 individual facets known as

ommatidia. Each ommatidium consists of a unit of eight

photoreceptor neurons (R1–R8) and four cone cells, and is

surrounded by pigment cells. The eye develops from a monolayer

epithelium known as the eye-antennal imaginal disc. At the start of

the third larval instar, the cells in the imaginal disc start to

differentiate. This differentiation starts at the posterior of the disc

and sweeps anteriorly, preceded by a physical indentation known

as the morphogenetic furrow (MF). Developing rows of ommatidia

are left in its wake, and this progressive development implies that

there is a gradient of developmental stages in a single disc, with the

most mature being at the posterior [2].

Most of the cells in the eye disc have a columnar epithelial

morphology, but in the morphogenetic furrow they become apically

constricted, reviewed in [3]. As a result of this constriction, these cells

change from being columnar to bottle-shaped and the consequent

change in epithelial packing produces the indentation of the furrow

itself [4]. Immediately after the passage of the furrow, and therefore

posterior to it, cells begin to rearrange, developing from random

packing into first lines of cells, then arcs, and finally morphologically

distinct clusters within the epithelium. This process depends on

myosin II contractility [4] but presumably also requires precise

changes in the adhesive properties of cells as the clusters separate

from their neighbours. In fact, adhesive changes can be directly

observed–the clusters show increased levels of apical Armadillo/b-

catenin, a key component of the adherens junctions, a phenomenon

dependent on Atonal and the epidermal growth factor receptor

(EGFR) pathway [5]. Beyond this increase in adherens junctions,

little is known about the adhesion processes that participate in the

clustering process.

Capricious (Caps) and Tartan (Trn) are highly similar

transmembrane proteins with multiple extracellular leucine rich

repeats (LRRs) and shorter intracellular domains [6], [7]. They

share 67% protein sequence identity in their extracellular

domains, which consist of 14 LRR repeats, but only 15% overall

identity in their intracellular domains, including a conserved motif

of 31 amino acids adjacent to the membrane. Since they lie within

115 kb of each other in the genome, it is likely that they represent

a relatively recent gene duplication event. Although their exact

molecular function is not well characterised, they can act as

homotypic adhesion proteins in cell culture [8] and at least in some

contexts their intracellular domains are dispensable [9], [10],

supporting the idea that their primary roles are in cell adhesion.

Consistent with this, their functions have mostly been associated

with their adhesion properties. Caps is required for targeting a

subset of embryonic motor neurons to their specific muscles during

embryonic development [7], [10] and in targeting R8 photore-

ceptor axons to the appropriate layers of the optic lobe [8]. Caps

and Trn have also been implicated in the formation of affinity

boundaries between dorsal and ventral compartments in the

developing wing imaginal disc [9], [11], [12], [13]. Very recently
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they have been shown to have overlapping functions in adhesion

of cells in the developing leg imaginal disc [14].

As described above, the developing eye imaginal disc undergoes

morphological plasticity as it differentiates, and this involves

precisely ordered remodelling of epithelial cell contacts [4]. Here

we describe the specific and complementary expression patterns of

Caps and Trn in the imaginal eye disc and their redundant roles in

regulating aspects of epithelial organisation in the morphogenetic

furrow and the spacing of developing ommatidia.

Results

Dynamic and complementary expression pattern of
capricious and tartan in the eye

We initially identified an allele of caps in a screen for modifiers of

EGF receptor signalling in the eye. This interaction proved

inconsistent and was not supported by other alleles of caps, so we

have not pursued this further. We noticed, however, that caps and trn

have developmentally regulated expression patterns in the eye. In 3rd

instar eye imaginal discs, caps-lacZ is expressed in all cells in the

morphogenetic furrow (arrow Fig. 1A) and at a lower level in cells

just posterior to the furrow before becoming restricted to single

photoreceptor cells (Fig. 1A’). By simultaneous staining with the R8

photoreceptor marker Senseless [15], we showed that the single cells

eventually expressing caps-lacZ are the R8 cells, the founders of

ommatidial development (Fig. 1A’’). This result is consistent with the

expression pattern reported by Shinza-Kameda et al. (2006),

although they limited their description to the later stages when caps

is restricted to R8. trn is a close sequence relative of caps and in the

wing imaginal disc they are believed to act in partnership as adhesion

proteins that regulate cell affinity at compartment borders [11]. We

therefore examined the expression pattern in the eye of trn-lacZ.

Interestingly, trn-lacZ is also expressed dynamically, initially in all

cells in the furrow, then at a lower level in cells just posterior to the

furrow, before becoming restricted to a non-overlapping subset of

photoreceptor precursors from caps (Fig. 1B). trn-lacZ colocalised with

R1 and R6 markers anti-BarH1 [16] and R7 marker anti-Prospero

[17] thereby identifying the cells as R1, 6 and 7 (Fig. 1B’ and 1B’’). In

summary, both caps and trn are widely expressed in the morphoge-

netic furrow, and each then becomes restricted to non-overlapping

subsets of photoreceptors. These complementary expression patterns

in the eye suggested that the Caps and Trn proteins might have a

previously unrecognised function in eye development.

Localisation of Capricious and Tartan proteins in the
developing eye

We raised specific antibodies against Caps and Trn to examine

their expression pattern in more detail. Unfortunately the Caps

antiserum did not reliably detect the endogenous level of Caps

Figure 1. caps and trn expression in the eye. The arrow in each panel marks the morphogenetic furrow (MF) and anterior is to the left in all
images, unless otherwise stated. (A) caps-lacZ expression in 3rd instar eye disc. Staining with anti-b2gal revealed caps-lacZ expression in the furrow
and in subsets of cells after the furrow. (A’–A’’) Co-staining with anti-Elav (a photoreceptor marker) and anti-Senseless (R8 specific marker) identified
the cells eventually expressing high levels of caps-lacZ as photoreceptor R8. (B) trn-lacZ expression in 3rd instar eye disc. Staining with anti-b2gal
revealed trn-lacZ expression in the furrow and in a different subset of cells from caps-lacZ after the furrow. (B’–B’’) Co-staining with anti-BarH1 (R1
and R6 specific marker) and anti-Prospero (R7 and cone cell marker) identified R1, 6 and 7 as the photoreceptors expressing high levels of trn-lacZ.
doi:10.1371/journal.pone.0001827.g001

Capricious and Tartan
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protein in eye discs. In contrast, the Trn antibody successfully

recognised Trn protein in wild-type discs. Its specificity was

confirmed by the loss of signal in clones of cells mutant for Trn

(Fig. 2A and 2B) but not in clones of cells mutant for Caps (data

not shown). The antibody staining pattern confirmed the caps-lacZ

expression pattern: Trn is expressed broadly in the morphogenetic

furrow and in subsets of ommatidial cells after the furrow (Fig. 2D).

As photoreceptor specific markers are almost all nuclear, and Trn

is membrane localised, overlapping staining patterns cannot

readily be used to confirm the identity of the specific ommatidial

cells stained posterior to the furrow. However, the expression

pattern is fully consistent with that of the trn-lacZ line, that is, the

staining is localised in the expected location of R1, 6 and 7 but not

of R8, 2, 5, 3, 4 (Fig. 2E, see inset). Z-sections along the anterior-

posterior axis of the disc revealed that it is expressed mostly in the

apical membrane of photoreceptor cells but is also visible in some

basolateral membranes. Interestingly, Tartan is only expressed in

the anterior half of the furrow (Fig. 2C).

Caps and Trn single mutants have no affect on eye
development

The expression of Caps and Trn suggested that they might

participate in retinal development. When this work was initiated,

there were no caps null mutations reported: the strongest

hypomorph, caps65.2, still retained 10–20% normal expression

level [7], [8]. We therefore made a null mutant of caps by targeted

recombination induced deletion between two piggyBac elements

(see Materials and Methods). This allele, capspB1, was designed to

delete exons 4 and 5 of the caps gene (Fig. 3A); exon 5 contains the

whole coding sequence. The mutation was confirmed by PCR and

sequencing (sequences flanking deletion site are shown in Fig. 3A).

Previously described caps mutations are embryonic lethal [7] and,

as expected, capspB1 was also lethal. Mitotic recombination was

therefore used to generate loss-of-function clones in the developing

eye. These were induced in Minute and non-Minute backgrounds

[18], [19], allowing the production of a full range of clone sizes.

Development within these clones (marked by lack of GFP, green)

appeared normal, and a variety of antibodies against cell-type

specific markers, including Senseless (R8-specific), Prospero (R7)

and Elav (all photoreceptors) [20], were expressed in indistin-

guishable patterns from wild-type discs and from adjacent wild-

type tissue (Figure 4A’–B’). In particular, R8 cells, where Caps is

expressed (Fig. 4A’), appear normal, and are correctly spaced in

null mutants. Since Caps is an adhesion protein and is expressed

strongly in the furrow, prior to axonal outgrowth, we focused

carefully on the morphology of cells in the furrow and the spacing

Figure 2. Localisation of Tartan protein in the eye. (A–A’) The Trn antibody recognised endogenous levels of Trn in the 3rd instar eye disc. The
signal is absent in clones of trn28.4 null cells (marked by loss of GFP, green), confirming antibody specificity. (B–B’) The Trn antibody signal was also
lost in capsDel1trn28.4 double null clones, marked by loss of GFP (green). (C–C’) Z-section along the A-P axis of a wild type disc stained with anti-Trn.
Trn is expressed only in the anterior half of the furrow and mostly in the apical surface of photoreceptors, as well as in some basolateral membranes.
(D–D’) Apical planar views of the corresponding discs in (C–C’). Trn is expressed in the furrow and in subset of photoreceptors after the furrow. The
dashed line indicates the position of the sagittal section in C and C’. (E) Enlarged view of the disc in D. The inset shows an enlarged view of the
marked ommatidium with the positions of each photoreceptor labelled. Trn expression is located in the expected positions of R1, 6, 7.
doi:10.1371/journal.pone.0001827.g002
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of ommatidial clusters immediately posterior; these were also

unperturbed in capspB1 clones (Fig. 4B’’).

We also made clones of a null allele of trn, trn28.4. Mutant clones

(marked by lack of GFP, green) also had no defects (Figs. 4C and

D). Again, photoreceptor markers Elav, Senseless and Prospero

appeared wild type, and no defects in the furrow or in ommatidial

spacing could be detected.

caps and trn double mutant affects apical constriction of
cells in the furrow

Since caps and trn single mutants did not affect eye development,

and since Caps and Trn are highly related proteins, we wondered

whether they might act redundantly in eye development. To

address this, we generated a caps trn double null mutation, capsDel1

trn28.4, by using P-element induced male recombination [21] to

simultaneously delete caps and recombine the new mutation onto

the existing trn28.4 null allele (see Figure 3B and Materials and

Methods for details). This double capsDel1 trn28.4 null retains the

intervening genes CG33262 and CG11281, so represents a ‘clean’

removal of the two related proteins. Mitotic clones of the capsDel1

trn28.4 mutation (marked by lack of GFP, green) showed subtle but

consistent defects. Within the morphogenetic furrow, the mutant

cells showed normal levels of apical constriction, and accumulated

high levels of Armadillo/b-catenin indistinguishably from the wild

type. However, at the clone border between mutant and wild-type

cells, there was a consistent reduction in the apical constriction of

cells and their Armadillo accumulation in adherens junctions

(Fig. 5A’ yellow arrow). This phenotype is fully penetrant but

appears more pronounced when the clone boundary is perpen-

dicular to the morphogenetic furrow.

The apical constriction of morphogenetic furrow cells generates

the indentation of the furrow itself [4]. Sagittal sections in the Z-

axis of capsDel1 trn28.4 clones along the furrow (between the two red

arrows in Fig. 5A’), showed that the cells at the clone boundary

with the enlarged apical profiles were also taller than their

neighbours, that is, their apical surfaces were elevated, thereby

disrupting the furrow itself (arrows, Fig. 5A’’).

These related phenotypes of relaxation of apical constriction and

increase in apical-basal height of the cells were a non-autonomous

effect: they were observed in both mutant and wild-type cells at the

clone boundary. The range of the phenotype was only 2–3 rows of

cells beyond the clone border, and in some cases this non-autonomy

was predominantly in the wild-type, and sometimes predominantly

in the mutant territory. Given the subtle nature of the effects, we re-

examined the borders of clones of single mutants for caps or trn but

confirmed that they were never visibly affected.

Caps and Trn double mutant perturbs ommatidial
spacing

A second phenotype associated with the capsDel1 trn28.4 double null

clones (marked by lack of GFP, green) was a perturbation in

ommatidial spacing in third instar eye discs (Fig. 5B, circled). Again,

this was only apparent at the boundaries between mutant and wild-

type cells. Ommatidia close to these boundaries were often clearly

displaced from their normal positions but there was no obvious

change to their individual morphology, nor was the total number of

ommatidia obviously affected. 25 individual eye discs containing

clones were analysed, and the number of ommatidia adjacent to

clonal boundaries was counted, along with the number of these

ommatidia that were displaced from their normal position. In total,

of 846 ommatidia at boundaries, 187 (i.e. 22%) were displaced. This

phenotype is also non-autonomous, with both mutant and wild type

ommatidia showing mis-positioning. These spacing defects remain

later, at pupal stages of eye development, and they are made more

apparent by the fusion of neighbouring ommatidia that are

abnormally close to each other (Fig. 5C). These fusions are observed

in about 5% of ommatidia adjacent to clone boundaries. We also

observed very occasional defects in the normal number of cone cells

(e.g. arrow in Fig. 5C’’). As with the third instar eye disc, the pupal

phenotypes were not observed in clones mutant for caps or trn alone

(Figs. 5D and 5E).

Since we observed defects only at the boundaries between capsDel1

trn28.4 mutant and wild type tissue, we wondered whether the sudden

step-like changes in Caps and Trn levels were more important than

the overall levels of these adhesion proteins. We therefore made

clones over-expressing Caps and Trn but they did not show any

visible furrow or ommatidial spacing defects at the clone boundaries

(data not shown). This implies that the boundary effects seen in

clones of capsDel1 trn28.4 cells are caused by the juxtaposition of cells

expressing Caps and Trn with cells not expressing them.

Figure 3. Generation of caps null and caps trn double null
mutants. (A) Generating capspB1 null. Two piggyBac element insertion
lines were used for FLP-FRT based recombination to delete the entire
coding sequence of caps, which is contained in exon 5. pBacRBe03402 is
inserted upstream of exon 4 and pBacRBe03153 is inserted downstream
of exon 5. Upon heatshock, recombination occurs between these two
piggyBac elements, deleting the intervening region, regenerating a
complete piggyBac element from half of each of the original piggyBacs.
The deletion sites were confirmed by using genomic primers (marked)
outside the piggyBac elements to amplify across the newly formed
element (about 6 kb). Sequencing outward from either end of the PCR
fragment identified the precise deletion sites. Flanking sequence of the
new deletion is shown. (B) Generating capsDel1trn28.4 double null.
caps16964 has a GS element inserted downstream of the caps gene.
trn28.4 is a null allele of tartan generated by P-element excision. caps16964

was used to induce male recombination with the trn28.4 chromosome.
This allowed the simultaneous deletion of the caps gene and
recombination onto the existing trn28.4 null chromosome. The GS
element remains intact after the recombination allowing its precise new
position, and any deletions, to be verified by inverse PCR and
sequencing. The entire caps gene was deleted, but no other gene
(apart from one tRNA gene) was affected. Flanking sequence of the new
deletion is shown.
doi:10.1371/journal.pone.0001827.g003
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In summary, we conclude that there is a redundant function for

Caps and Trn in controlling aspects of cell morphology and

ommatidial spacing in Drosophila retinal development.

caps and trn double mutant in the wing
One of the main tissues in which Caps and Trn have been studied

is the developing wing imaginal disc. Despite evidence that caps and

trn have an important function in maintaining compartment borders

in the wing, previously studied mutants in these genes have not

affected the dorsal-ventral boundary [11]. We therefore took

advantage of having made a previously unavailable double null

mutation to look at DV border formation in the wing. Clones of

capsDel1trn28.4 double null (marked by lack of GFP, green) did not

perturb or cross the boundary, as marked by staining with an

antibody against Senseless (Fig. 5F, white arrows). This is consistent

with earlier data, where clones of cells simultaneously null for trn and

hypomorphic for caps did not cause defects at the DV boundary [11].

The fact that complete loss of both proteins does not affect DV

boundary formation or maintenance suggests that Caps and Tartan

are not essential for compartmentalising cells in this part of the wing.

Figure 4. caps and trn single null clones. (A–B) capspB1 clones in the 3rd instar eye disc. Mutant tissue is marked by lack of GFP (green). Anti-Senseless
(Sens), is used to identify R8 cells (A’) and anti-Prospero (Prosp) is used to identify R7 and cone cells (A’’). Anti-Elav marks all photoreceptor cells (B’) and
anti-Armadillo (Arm) marks the adherens junctions of cells, thereby outlining all cells (B’’). No defects could be detected in capspB1 mutant tissue. (C–D)
trn28.4 clones in the 3rd instar eye disc. Mutant tissue is marked by lack of GFP (green). As with capspB1 clones, no defects were observed.
doi:10.1371/journal.pone.0001827.g004

Capricious and Tartan
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Figure 5. caps trn double null clones. (A) capsDel1 trn28.4 double null clones in the 3rd instar eye disc. Mutant tissue is marked by lack of GFP
(green). Anti-Elav marks all photoreceptors. Anti-Armadillo (Arm) marks the apical surface of cells and is accumulated at a high level in the apically
constricted cells of the furrow. At the border between wild type and capsDel1 trn28.4 tissue, there is a reduction in Arm accumulation in the cells of the
furrow and the apical surface of cells is expanded (yellow arrow A’). (A’’) A Z-section along the furrow (between the two red arrows in A’). At the
clone boundaries, cells are taller in the apical-basal direction, producing ‘bumps’ in the furrow (two yellow arrows). (B) A capsDel1trn28.4 clone (marked
by lack of GFP, green) where ommatidia near the clone boundaries are mis-positioned (circled in white). (C) capsDel1trn28.4 clones in pupal retinae
(marked by lack of GFP, green). Elav is used to mark the photoreceptors and Cut is used to mark cone cells (four per ommatidium) [27]. At mutant-
wild type borders neighbouring ommatidia sometimes fuse with each other (red arrows in C’). Correct cone cell numbers are also sometimes
disrupted (red arrow in C’’). (D) capspB1 clones in pupal retinae (marked by lack of GFP, green). No defects in mutant tissue or clone boundaries can be
seen. (E) trn28.4 clones in pupal retinae (marked by lack of GFP, green). Again, the retinae are phenotypically wild type. (F) capsDel1trn28.4 clones in the
wing (marked by lack of GFP, green) do not visibly affect the DV boundary (between the two red arrows), as marked by anti-Senseless (Sens). Clones
do not cross the DV boundary (white arrows).
doi:10.1371/journal.pone.0001827.g005

Capricious and Tartan
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Discussion

We have shown that the related adhesion proteins Capricious and

Tartan have redundant functions in the remodelling of epithelial cell

contacts that occur during the early stages of Drosophila eye

development. Each is expressed in a two phase pattern, first broadly

in the furrow and then later in non-overlapping subsets of

photoreceptors: Caps in R8 and Trn in R1, 6 and 7. We have

made a null mutation of caps and also a double null, in which both

caps and trn are absent. Analysis of these mutations shows that while

removal of either gene alone has no phenotype, the loss of both leads

to subtle but reproducible defects in retinal development. The

earliest phenotype is a reduction of apical constriction and

accumulation of Armadillo in the morphogenetic furrow. Slightly

later, we see displacement of ommatidia from their normal very

precise array. Finally, this displacement leads to occasional fusion of

neighbouring ommatidia and other minor defects in the pupal

retina. Intriguingly, all the defects we observe are limited to clone

boundaries; cells fully within the mutant clones appear normal.

The capsDel1trn28.4 phenotypes in the eye are relatively minor.

They are nevertheless reproducible and quite penetrant. Essen-

tially all clones that cross the furrow perpendicularly show a

reduction in apical constriction and Armadillo staining at their

clone boundaries, and 22% of ommatidia that lie at the clone

boundary are detectably misplaced; ommatidial fusion defects in

the pupal retina are rarer, at about 5%. We propose that these

phenotypes are all a consequence of the initial furrow defects, and

that these are caused by loss of the furrow expression of Caps and

Trn. This implies that the later, photoreceptor-specific expression

of Caps and Trn does not participate in the phenotypes reported

here. This proposal is based on the following logic. First, the

redundant function of the two proteins is difficult to reconcile with

non-overlapping expression: if they are in different cells, how can

they replace each other’s function? Although it would be possible

to imagine a scenario where this could occur, a more parsimonious

explanation is that the redundant phenotype depends on their

function where they are co-expressed, in the furrow. Second, the

expression of Caps in R8 is already known to have a quite separate

function, in the targeting of the R8 axon growth cones to the

appropriate layer of the optic lobe [8]. The R8 cell bodies are in

the retina, which is why we see caps-lacZ expression there, but the

protein must be transported to the axon terminals. Our discovery

of an equally specific but non-overlapping expression of Trn,

suggests that it too might have an analogous function in axon

targeting, although this prediction has not been tested.

The idea that the later, photoreceptor specific expression of

Caps and Trn is responsible for axonal guidance defects, but not

retinal patterning, appears inconsistent with the protein expression

of Trn that we see at the apical surface of the photoreceptors, i.e.

in the retina, distant from the axon terminals. Unfortunately, we

could not detect the wild-type protein expression of Caps, which

we know to be involved in axonal guidance, so it is possible that

Caps protein is localised very differently from Trn–only in the

axons. Although we must await a better anti-Caps antibody to

resolve this fully, on balance we suspect that the apical expression

of Trn, and possibly Caps, either reflects a function distinct from

the retinal defects we report here and also from axonal guidance;

or that it is a non-functional consequence of the intracellular

trafficking pathways that transport the functional pool to the axon

terminal.

The third reason for suggesting that the functions we have

uncovered are dependent on Caps and Trn in the furrow, and that

the later defects in spacing are secondary consequences of a

primary furrow defect is that this is consistent with the furrow

acting to organise epithelial packing. Detailed inspection of cells in

the furrow and immediately after they emerge from it, shows

profound rearrangement that starts with straight lines of cells,

evolving into arcs and finally into morphologically distinct clusters

[4]. Adhesion defects in the furrow may disrupt this process such

that ommatidial clusters and their spacing become less ordered.

We do not understand why these phenotypes only manifest at

clone boundaries, but we presume it is a consequence of a

discontinuity in adhesive properties. Similarly, the short range

non-autonomy of the phenotype is probably due to local cell

packing problems caused by adhesion anomalies at the boundaries

of wild-type and mutant tissue. Another possible explanation for

the non-autonomous effects is that changes in cell shape and

epithelial morphology in the furrow could affect the range or

efficiency of intercellular signalling molecules, thereby affecting

normal retinal development. Little is known about how epithelial

characteristics can modulate secreted signals and this will be a

fruitful area for future study.

A very recent paper by Sakurai et al. [14] has analysed the

functions of Caps and Trn in the developing leg disc. They also

show a completely redundant function caused by rather subtle

adhesion defects. Leg disc development is, however, very different

from eye development and the developmental consequences are

therefore distinct. In the leg, the sharpening of a progressive border

that develops between tarsus 5 and the pretarsus segment was

compromised in double mutants. By analysing cell movement

within the developing leg disc, Sakurai et al. proposed that Caps

and Trn expression allows cell mobility within the epithelium: their

downregulation coincides with reduced mobility, while their

overexpression leads to cell invasion into inappropriate territories.

In the eye, there is no evidence for significant mixing of cells within

the epithelium and, as described above, our model suggests a

different use of a rather similar function for these adhesion proteins.

In both cases, however, Caps and Trn appear to regulate the ability

of cells within an epithelium to reorganise with respect to their

neighbours.

In summary, we interpret our results to imply that Caps and Trn

expressed in the morphogenetic furrow participate in modulating the

adhesivity of epithelial cells. At this stage in development, they are

beginning to undergo complex and coordinated rearrangements,

with concomitant adhesion changes with their neighbours. Even

quite minor disruption of this process leads to alterations in epithelial

packing that can have consequent effects on the spacing of

ommatidia. The relatively minor retinal phenotype of loss of Caps

and Trn implies that other adhesion proteins contribute to the

overall regulation of this process. For example, Drosophila E-cadherin,

an essential component of adherens junctions, is necessary for

epithelial maintenance [22], and mutant (hypomorph) clones fail to

form adherens junctions and lose their epithelial integrity complete-

ly. We suspect that complex regulation of adhesion may require the

action of several adhesion systems. Our data also leads to the

tentative suggestion that Trn may, like Caps, have a later function in

photoreceptor neuron development, for example in axon targeting.

Finally, and on a separate tack, our construction of a double null

mutation for caps and trn allows us to show unambiguously that

neither are essential for the normal formation of the dorsal-ventral

boundary of the wing imaginal disc, a process that overexpressed

Caps and Trn can disrupt [11].

Materials and Methods

Drosophila strains
caps-lacZ (caps02937) [7] and trn-lacZ (trnSO64117) [23] were

obtained from Bloomington Drosophila Stock Centre.

Capricious and Tartan
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trn28.4, a null allele generated by P element excision [6] was

obtained from Allen Laughon. hsflp; trn28.4FRT2A [14] was

obtained from Shigeo Hayashi.

pBacRBe03402 and pBacRBe03153 were obtained from Harvard

Exelixis Stock Centre, and used for making the null capspB1 allele.

caps16964 was obtained from the Drosophila Gene Search Project,

Tokyo Metropolitan University.

Mutagenesis/Mutant production
capspB1. This new null allele of caps was made by exploiting

the FLP-FRT based deletion strategy established by Exelixis [24],

[25]. piggyBac elements pBacRBe03402 and pBacRBe03153 were used to

delete exon 4 and the entire caps coding sequence in exon 5

(Fig. 3A). Upon heatshock, recombination occurs between these

two piggyBac elements, deleting the region in between and

replacing it with a reformed piggyBac element. The precise

deletion sites were confirmed molecularly by using genomic

primers (marked on Fig. 3A) outside the original piggyBac elements

to PCR across the newly formed piggyBac element to obtain a

diagnostic 6kb fragment (which would be about 20 kb in wild

type). Sequencing the ends of the 6kb fragment identified the exact

junction between genomic DNA and piggyBac DNA, and

confirmed the exact deletion sites (genomic sequences shown in

Fig. 3A). During the preparation of this manuscript, Sakurai et al.

reported the isolation of an EMS induced null allele of caps [14].
capsDel1trn28.4. This new caps trn double null allele was made

by P element-induced male recombination between the trn28.4 null

chromosome and a P element (caps16964) inserted 39 of caps gene

(Fig. 3B). The P-element induced recombination resulted in the

deletion of the entire caps gene without disrupting any other gene

apart from one tRNA gene that was also deleted. Double mutants

were confirmed by non-complementation with caps and trn alleles

and the exact deletion sites induced by the P-element were

checked by inverse PCR and sequencing. The flanking genomic

sequences are shown in Fig. 3B.

Antibody production
Rabbit and guinea pig antibodies were raised against the

intracellular domains of Caps and Trn, respectively. Caps

antibody did not give a specific signal. Final bleed Trn antiserum

was used at 1:100 dilution to give a strong specific signal.

Mosaic analysis
Mitotic clones in the eye and wing discs were induced by the

FLP/FRT technique [19]. Recombination was induced 48–

72 hours after egg laying by a 60 min heat shock at 37uC or by

eyeless induced FLP activity. Mutant clones were marked as

appropriate by the absence of GFP or b-galactosidase (b-gal)

antibody staining.

The following genotypes of larvae were used for generating

clones:

hsflp/+; capspB1 FRT80B/M(3)i55 ubi-GFP FRT80B

eyflp/+; capspB1 FRT80B/arm-lacZ FRT80B

hsflp/+; trn28.4 FRT2A/ubi-GFP FRT2A

hsflp/+; capsDel1 trn28.4 FRT80B/M(3)i55 ubi-GFP FRT80B

eyflp/+; capsDel1 trn28.4 FRT80B/arm-lacZ FRT80B

Immunostaining
Staining of third-instar larval imaginal discs and pupal retinae

was performed by standard procedures [26]. The following

antibodies were used: rabbit anti-Arm (1:100; gift from M. de la

Roche); guinea pig anti-Senseless (1:1000; gift from H. Bellen);

anti-BarH1 (1:50; gift from T. Kojima); mouse anti-Prospero

(1:50), mouse anti-Cut (1:100) and rat anti-Elav (1:200) (all from

the Developmental Studies Hybridoma Bank at the University of

Iowa); mouse anti-b-galactosidase (1:100; Promega); rabbit anti-b-

galactosidase (1:1000; Cappel); mouse and rabbit anti-GFP (1:200;

Sigma). Guinea pig anti-Trn was used at 1:100. Fluorescently

tagged secondary antibodies came from Molecular Probes and

Jackson Immunoresearch.

Confocal Imaging and Three-Dimensional Reconstruction
For three-dimensional reconstruction, eye imaginal discs were

mounted between two strips of double-sided adhesive tape, by

using Fluoromount-G (Southern Biotech). Discs were analysed

with a BioRad Radiance 2100 laser scanning confocal microscope.

Z-series were projected for three dimensional reconstruction by

using Volocity 2.5.1 software.
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