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Abstract

The main contributions of this dissertation are the design, development

and application of optimisation methodology, models and algorithms for

large-scale problems arising in Operations Management. The first chapter

introduces constraint transformations and valid inequalities that enhance

the performance of column generation and Lagrange relaxation. I establish

theoretical connections with dual-space reduction techniques and develop a

novel algorithm that combines Lagrange relaxation and column generation.

This algorithm is embedded in a branch-and-price scheme, which combines

large neighbourhood and local search to generate upper bounds. Computa-

tional experiments on capacitated lot sizing show significant improvements

over existing methodologies. The second chapter introduces a Horizon-

Decomposition approach that partitions the problem horizon in contiguous

intervals. In this way, subproblems identical to the original problem but

of smaller size are created. The size of the master problem and the sub-

problems are regulated via two scalar parameters, giving rise to a family of

reformulations. I investigate the efficiency of alternative parameter config-

urations empirically. Computational experiments on capacitated lot sizing

demonstrate superior performance against commercial solvers. Finally, ex-

tensions to generic mathematical programs are presented. The final chapter

shows how large-scale optimisation methods can be applied to complex op-

erational problems, and presents a modelling framework for scheduling the

transhipment operations of the Noble Group, a global supply chain manager

of energy products. I focus on coal operations, where coal is transported

from mines to vessels using barges and floating cranes. Noble pay millions of

dollars in penalties for delays, and for additional resources hired to minimize

the impact of delays. A combination of column generation and dedicated

heuristics reduces the cost of penalties and additional resources, and im-

proves the efficiency of the operations. Noble currently use the developed

framework, and report significant savings attributed to it.
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1

Introduction

This thesis consists of three essays that contribute to the methodology, development and

applications of large-scale optimisation theory. The focus is on Dantzig-Wolfe decompo-

sition, a well-established reformulation technique that solves large-scale problems. The

essays improve state of the art solution methodologies, generalise the decomposition

idea so that it is applicable to a wider class of problems, and present computational

implementations in a theoretical and a practical context.

The first essay describes methodologies that accelerate two ubiquitous decomposi-

tion techniques: column generation and Lagrange relaxation. In particular, I show how

(i) the addition of valid inequalities that cut off multiple solutions on the primal space,

and (ii) the dual space reduction achieved by a reformulation of the primal space, lead

to important efficiency gains. Moreover, I develop a new hybrid column generation

and Lagrange relaxation algorithm that combines the advantages of both methods to

derive superior performance. The algorithm’s key benefit is that it does not suffer from

the degeneracy issues that plague simplex-based algorithms. The essay uses capaci-

tated lot sizing as a test-bed to validate the proposed methodology. Finally, the hybrid

lower-bounding scheme is combined with a novel branch-and-price implementation, in

which the primal space search is directed by a large-scale neighbourhood search heuris-

tic, while three local-search heuristics find upper bounds in each node. Computational

experiments show significant improvements over existing methodologies.

The second essay introduces Horizon Decomposition, a novel generic way of applying

Dantzig-Wolfe decomposition. The traditional application of Dantzig-Wolfe decompo-

sition postulates a decomposable structure of a problem: by not considering a set of
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complicating constraints, the problem is decomposed into a series of smaller-size prob-

lems. Horizon Decomposition introduces new constraints and variables in such a way

that the problem achieves a decomposable structure. For problems that span over a

horizon, this technique provides a family of reformulations. Each member of this fam-

ily is characterised by the size of each subproblem and the overlap between pairs of

consecutive subproblems. The essay demonstrates computationally, using capacitated

lot-sizing as a test problem, (i) which configurations of horizon decomposition per-

form well and in which type of problems; (ii) how strong the obtained lower bound is

and (iii) what the performance of a horizon-based branch-and-price algorithm is. The

developed algorithm outperforms all state-of-the-art approaches with which it is bench-

marked, both heuristic and exact. The generalisation of Horizon Decomposition opens

interesting avenues for alternative implementations of Dantzing-Wolfe reformulations,

in ways that have not been applied to date.

The third essay describes a modeling framework for the logistics operations of the

Noble Group. The Noble Group is one of the biggest players in commodity trading

worldwide. The operations include multiple transshipment levels, such as transporta-

tion of coal from mines to jetties, to river barges, and to large ocean vessels. Noble

incurs penalties for late deliveries, that cost millions of dollars. Drawing upon the

methodology developed in the two previous essays, we use Dantzig-Wolfe decomposi-

tion to develop a lower-bounding technique that verifies solution quality, and a fast

dedicated algorithm that finds high quality feasible solutions. The dedicated algorithm

has three main building blocks: (i) a knapsack-based barge allocation model, (ii) a

single-vessel decomposition procedure and scheduling algorithm and (iii) a local search

procedure that iteratively improves the generated schedules. Noble currently use this

framework and report significant savings, resulting from reduced penalty costs and

fewer spot infrastructure hired than before.

Overall, the aim of this dissertation is to contribute to the methodology, develop-

ment and application of large-scale optimisation, within the field of operations man-

agement. The advent of information technology has drastically changed the landscape

of operations management, in a way that problems of larger size need to be tackled. I

hope that this dissertation will add to the growing stream of research that addresses

such applications, and inspires other researchers working on large-scale optimisation

methodology.
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2

Period Decompositions For The

Capacity Constrained Lot Size

Problem With Setup Times

We study the Capacity Constrained Lot Size Problem with Setup Times (CLST). Based

on two strong reformulations of the problem, we present a transformed reformulation

and valid inequalities that speed up column generation and Lagrange relaxation. We

demonstrate computationally how both ideas enhance the performance of our algorithm

and show theoretically how they are related to dual space reduction techniques. We

compare several solution methods, and propose a new efficient hybrid scheme that com-

bines column generation and Lagrange relaxation in a novel way. Computational exper-

iments show that the proposed solution method for finding lower bounds is competitive

with other state-of-the-art approaches found in the literature. Finally, a branch-and-

price based heuristic is designed and computational results are reported. The heuristic

scheme compares favorably or outperforms similar approaches.

2.1 Introduction

The Capacity Constrained Lot Size Problem with Setup Times (CLST) is a well-known

extension of the classical single-item uncapacitated Wagner-Whitin problem. The semi-

nal paper of Trigeiro et al. (1989) was the first to introduce CLST and demonstrate that

it is considerably harder than similar problems without setup times. In their study, they
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2.1 Introduction

proposed a per item Lagrange relaxation and designed a smoothing heuristic (TTM)

that was able to find good feasible solutions quickly. It is worth noticing that many

heuristics approaches have been developed (Jans and Degraeve 2007), but most of them

do not provide a lower bound and therefore the solution quality cannot be assessed di-

rectly. The aim of this chapter is to design a fast heuristic for CLST that provides

good solutions and a strong lower bound used to assess the solution quality. Per pe-

riod Danzig-Wolfe decompositions of two network reformulations of CLST are proposed.

The main advantage of the proposed decompositions is that they provide a lower bound

which is stronger than these of the standard and network formulations. The potential

downside is their computational tractability: when computed with column generation,

the already large number of variables of the network formulations and their inherent

degeneracy could lead to long solution times for the restricted master problem, and only

minor bound improvements per iteration. Although there exists limited computational

experience with decompositions of extended formulations on this problem, the compu-

tational experiments of Jans and Degraeve (2004) suggest that simplex-based solvers

do not exhibit good convergence behavior. In particular, they tend to require a large

number of iterations to converge, while the improvement of the lower bound in the last

iterations is marginal, creating a well-known tailing-off effect (Vanderbeck, 2006). We

propose a novel, considerably faster subgradient-based hybrid scheme that combines

Lagrange relaxation and column generation. This scheme gives valid lower bounds

of excellent quality and outperforms pure simplex-based column generation, Lagrange

relaxation and subgradient-based column generation (in which the restricted master

problems are solved with subgradient optimization). Further, we enhance the perfor-

mance of our algorithm by utilizing two new dual space reduction techniques. First, we

show how a primal space reformulation can lead to improved performance of dual based

algorithms during column generation. Second, we employ a class of valid inequalities

and show how this corresponds to adding dual optimal inequalities in the dual space of

the restricted master problem (Ben Amor et al. 2007). The new subproblems remain

tractable and the performance of the hybrid column generation scheme is improved

further. The new hybrid scheme is embedded in a heuristic branch-and-price frame-

work, designed specifically to obtain good feasible solutions fast. To achieve this, we

recover a primal solution of the restricted master problem using the volume algorithm

of Barahona and Anbil (2000) and branch on the resulting fractional setup variables.
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2.2 Literature Review

Moreover, we integrate in a customized fashion recent MIP-based heuristic approaches,

such as relaxation induced neighborhoods and selective dives (Danna et al. 2005), with

established ones such as the forward/backward smoothing heuristic of Trigeiro et al.

(1989). Extensive computational experiments show that the branch-and-price heuristic

performs very well against other competitive approaches. The remainder of this chapter

is organised as follows. Section 2 provides a brief literature review. Section 3 describes

CLST formulations, and Section 4 their Dantzig-Wolfe decompositions. Section 5 de-

scribes customized procedures for solving the subproblems. Section 6 describes the

hybrid scheme and Section 7 the branch-and-price heuristic. Finally, Section 8 presents

computational results and Section 9 concludes with comments and directions for future

research.

2.2 Literature Review

The literature on capacity constrained lot size problems is vast. A broad categoriza-

tion would distinguish two research streams: theoretical and computational. Theoret-

ical results include mainly complexity proofs, polyhedral studies and approximation

algorithms and are not related directly to the scope of this work. Computational

studies address the development and computational assessment of exact and heuristic

approaches. With respect to the more recent research on exact approaches, Van Vyve

and Wolsey (2006) suggest an extended formulation based on the network reformu-

lation of Eppen and Martin (1987) that uses a single parameter to control the trade

off between the number of variables and the lower bound strength. They show that

selecting small values of that parameter is sufficient to solve hard problems, especially

when a redundant row that facilitates the solver to generate cuts is added in the formu-

lation. Degraeve and Jans (2007) discuss the structural deficiency of the decomposition

proposed by Manne (1958) which only allows the computation of a lower bound for the

problem, show the correct implementation of the Dantzig-Wolfe decomposition princi-

ple for CLST and develop a branch-and-price algorithm. Pimentel et al. (2010) propose

three Dantzig-Wolfe decompositions of the standard formulation of CLST, and com-

pare the performance of the corresponding branch-and-price algorithms. Specifically,

they describe and compare the per-item, per-period and simultaneous per-item and

5



2.2 Literature Review

per-period decompositions. Belvaux and Wolsey (2000) developed BC-PROD, a spe-

cialized branch-and-cut system for generic lot size problems. Some of the cornerstone

work that is less recent are the variable redefinition approach of Eppen and Martin

(1987), the use of valid inequalities (Barany et al. 1984) and the simple plant location

reformulation of Krarup and Bilde (1977). Recently, many authors (Alfieri et al. 2002,

Pochet and Van Vyve 2004, Denizel et al. 2008 and Süral et al. 2009) have used such

alternative formulations for the CLST with stronger linear relaxations. The seminal

paper of Trigeiro et al. (1989) proposed a per-item Lagrange relaxation and designed a

smoothing heuristic (TTM) that was able to find good feasible solutions quickly. Süral

et al. (2009) designed a Lagrange relaxation based heuristic that outperforms TTM for

problems without setup costs. Other recent heuristic approaches include among others,

the cross entropy-Lagrange hybrid algorithm of Caserta and Rico (2009), the adaptive

large neighbourhood search algorithm of Müller et al. (2012), the LP-based heuristic

and curtailed branch-and-bound of Denizel and Süral (2006) and the iterative produc-

tion estimate (IPE) heuristic of Pochet and Van Vyve (2004). Regarding metaheuristic

approaches, a good review can be found in Jans and Degraeve (2007). Relevant to

the current work is also the decomposition approach proposed in Jans and Degraeve

(2004). The authors propose a per-period decomposition of a strong reformulation

proposed in Eppen and Martin (1987). They obtain improved lower bounds, but their

computational experiments show that standard computation schemes may be very time

consuming for hard problems. Specifically, their computational results for the instances

by Trigeiro et al. (1989) show that they need more than 11 minutes to compute the root

node lower bound for G69, while their algorithm fails to converge within 1 hour for the

larger instances G57 and G72. To put these results in perspective, the same authors

compute in less than 4 seconds the root node lower bounds of the same instances, by

using an item decomposition of the regular CLST formulation, which does not pose the

convergence challenges of the period decomposition of network formulations (Degraeve

and Jans, 2007). The main contributions of the present work are (a) the development

and comparison of two period Dantzig-Wolfe network reformulations for CLST; (b)

the development of a methodology that circumvents the computational difficulties of

extended formulations through the design of a stabilization algorithm, and the use of

problem-specific inequalities in the customized algorithm that solves the subproblems;

(c) the development of a state-of-the-art branch-and-price heuristic that integrates and
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2.3 Formulations for the Capacity Constrained Lot Size Problem

customizes several recent advances such as the volume algorithm (Barahona and An-

bil 2000, 2002), relaxation induced neighbourhoods and selected dives (Danna et al.

2005) and finally (d) the presentation of computational results that suggest the com-

petitiveness of the proposed scheme against other approaches. The next section gives

an overview of several formulations that are used throughout the chapter.

2.3 Formulations for the Capacity Constrained Lot Size

Problem

In this section we present different formulations for the capacity constrained lot size

problem: the regular formulation (CL); the shortest path formulation (SP) proposed in

Eppen and Martin (1987); a transformed shortest path formulation (SPt); the facility

location formulation (FL) studied in Krarup and Bilde (1977); and the facility location

formulation with precedence constraints (FLp).

2.3.1 The Regular Formulation (CL)

The regular formulation for the Capacity Constrained Lot Size Problem with Setup

Times is described by the following sets, parameters and decisions variables (Trigeiro

et al. 1987, Degraeve and Jans, 2007).

Sets

I = {1, ..., n}: Set of items, indexed by i.

T = {1, ...,m}: Set of periods, indexed by t.

Parameters

dit: demand of item i in period t, ∀i ∈ I, ∀t ∈ T .

sditk: sum of demand of item i from period t till period k, ∀i ∈ I, ∀t, k ∈ T : t ≤ k.

hcit: cost of holding inventory for item i from period t− 1 to period t, ∀i ∈ I, ∀t ∈ T .

scit: setup cost of item i in period t, ∀i ∈ I, ∀t ∈ T .

vcit: production cost of item i in period t, ∀i ∈ I, ∀t ∈ T .

stit: setup time of item i in period t, ∀i ∈ I, ∀t ∈ T .

vtit: variable production time of item i in period t, ∀i ∈ I, ∀t ∈ T .

Mit: big-M quantity, defined as Mit = min{sditm, capt−stitvtit
}, ∀i ∈ I, ∀t ∈ T .
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2.3 Formulations for the Capacity Constrained Lot Size Problem

capt: time capacity in period t, ∀t ∈ T .

Decision Variables

xit: production quantity of item i in period t, ∀i ∈ I, ∀t ∈ T .

sit: inventory quantity of item i at the beginning of period t, ∀i ∈ I, ∀t ∈ T ∪{m+ 1}.
yit: =1 if setup for item i in period t, =0 otherwise, ∀i ∈ I, ∀t ∈ T .

The mathematical formulation of CLST is then as follows:

min
∑
i∈I

∑
t∈T

scityit +
∑
i∈I

∑
t∈T

vcitxit +
∑
i∈I

∑
t∈T

hcitsit (2.1)

s.t. sit + xit = dit + si,t+1 ∀i ∈ I, ∀t ∈ T (2.2)

xit ≤Mityit ∀i ∈ I, ∀t ∈ T (2.3)∑
i∈I

stityit +
∑
i∈I

vtitxit ≤ capt ∀t ∈ T (2.4)

xit, sit ≥ 0, si,m+1 = 0, yit ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (2.5)

The objective function (2.1) minimizes the setup cost, the variable production cost,

the inventory holding cost and initial inventory cost. Constraints (2.2) are the demand

constraints: inventory carried over from the previous period and production in the

current period can be used to satisfy current demand and build up inventory. As in

Vanderbeck (1998), we deal with possible infeasible problems by allowing for initial

inventory (si0) which is available in the first period at a large cost, fci. There is no

setup required for initial inventory. Constraint (2.3) forces the setup variable to one

if any production takes place in that period. Next, there is a constraint on the avail-

able capacity in each period (2.4). Finally, we have the non-negativity and integrality

constraints (2.5) and the ending inventory is set to zero.

2.3.2 The Shortest Path Formulation (SP)

Next, model (2.1)-(2.5) is reformulated using the variable redefinition approach of Ep-

pen and Martin (1987).

Define the following parameters:

cvitk: total production and holding cost for producing item i in period t to satisfy

demand for the periods t until k, cvitk = vcitsditk +
∑k

s=t+1

∑s+1
u=t hciudis,

8



2.3 Formulations for the Capacity Constrained Lot Size Problem

ciit: total production and holding cost for initial inventory for item i to satisfy demand

from period 1 up to period t, ciit = fcisdi1t +
∑t

s=2

∑s−1
u=1 hciudis.

We also define the following new variables:

zitk: fraction of the production plan for item i where production in period t satisfies

demand from period t to period k, xit =
∑m

k=t sditkzitk,∀i ∈ I, ∀t ∈ T .

pit: fraction of the initial inventory plan for item i where demand is satisfied for the

first t periods, si0 =
∑m

t=1 sdi1tpit,∀i ∈ I.

The shortest path formulation (SP) is then as follows:

min
∑
i∈I

∑
t∈T

(scityit + ciitpit) +
∑
i∈I

∑
t∈T

m∑
k=t

cvitkzitk (2.6)

s.t.
m∑
k=1

(zi1k + pik) = 1 ∀i ∈ I (2.7)

t−1∑
j=1

zijt−1 + pit−1 =

m∑
k=t

zitk ∀i ∈ I, ∀t ∈ T\{1} (2.8)

∑
i∈I

stityit +
∑
i∈I

m∑
k=t

vtitsditkzitk ≤ capt ∀t ∈ T (2.9)

m∑
k=t

zitk ≤ yit ∀i ∈ I, ∀t ∈ T (2.10)

yit ∈ {0, 1}, pit ≥ 0 ∀i ∈ I, ∀t ∈ T (2.11)

zitk ≥ 0 ∀i ∈ I, ∀t, k ∈ T : k ≥ t (2.12)

Formulation (2.6)–(2.12) is based on a graph representation of the CLST. Specif-

ically, an acyclic graph is defined for each item i ∈ I, where each node corresponds

to a period t ∈ {0 . . . |T |}. Nodes (0, i),∀i ∈ I, receive an inflow of 1 unit, which is

then distributed through the entire network of each item i ∈ I. Production arcs that

link nodes (i, t1) and (i, t2) represent the fraction of demand of periods {t1 + 1 . . . t2}
that is covered by production in period t1 + 1. Nodes (0, i) have an additional type of

arcs that model initial inventory. Each initial inventory arc links node (i, 0) with node

(i, t), ∀t ∈ T , and represents the fraction of demand of periods {1 . . . t} that is satisfied

by initial inventory. Figure 2.1 shows a single item, four period example.

The objective function (2.6) minimizes the total costs. Constraints (2.7) and (2.8)

define the flow balance constraints of each node (i, t), which ensure that demand is sat-
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isfied. For each item, a unit flow is sent through the network, imposing that its demand

has to be satisfied without backlogging. The capacity constraints (2.9) limit the sum

of the total setup times and production times to the available capacity in each period.

Constraint (2.10) defines the setup forcing for each item. Finally, setup decisions are

binary (2.11), initial inventory non-negative and the shortest path variables zitk (2.12)

non-negative as well.

2.3.3 Transformed Shortest Path Formulation (SPt)

We transform formulation SP to an equivalent formulation, which leads to a better

convergence of the Lagrange multipliers due to dual space reduction, as explained

below. The idea is to substitute, for each item, the demand balance constraint of

period t with the sum of the demand balance constraints of the first t periods. Doing

so, constraints (2.7) and (2.8) are replaced with:

m∑
k=t

pik +
t∑

j=1

m∑
k=t

zijk = 1 ∀i ∈ I, ∀t ∈ T (2.13)

We denote the resulting transformed formulation SPt. Eppen and Martin (1987)

showed that their network reformulation corresponds to a shortest path problem defined

on an acyclic graph. The demand constraints (2.7) and (2.8) express the flow balance in

each node of this graph. Equation (2.13) imposes, for each item i ∈ I, that the flow of

the cut-set defined by the s−t cut Ct = ({0, ..., t−1}∪{t, ...,m}) is equal to one. Figure

2.1 illustrates a single-item four period example with no initial inventory. Equation (2.8)

for period 3 reads z12 + z22 = z33 + z34, which corresponds to the flow balance of node

2. For the same period, (2.13) sets the total flow through the edges connecting the sets

of nodes {0, 1, 2} and {3, 4} equal to one, i.e., 1 = z13 + z14 + z23 + z24 + z33 + z34.

The idea behind this transformation is that of dual space reduction. Let D be the

feasible dual space associated with constraints (2.7) and (2.8), and D′ the one associated

with constraints (2.13). If vi1 and vit are the dual values of (2.7) and (2.8) and v̄i1 and

v̄it the dual values of (2.13), then

D =

vit ∈ <
∣∣∣∣∣∣∣∣∣∣
vit − vi,k+1 ≤ cvitk ∀i ∈ I, t, k ∈ T : t ≤ k < m

vi1 − vit+1 ≤ ciit ∀i ∈ I, t ∈ T\{m}
vit ≤ cvitm ∀i ∈ I, t ∈ T

vi1 ≤ ciim ∀i ∈ I

 ;
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Figure 2.1: A single-item four period example with no initial inventory -

D′ =

v̄it ∈ <
∣∣∣∣∣∣∣∣
t∑
l=1

v̄il ≤ min{ciit, cvi1t} ∀i ∈ I, t ∈ T
k∑
l=t

v̄il ≤ cvitk ∀i ∈ I, t, k ∈ T : k ≥ t


Theorem 2.1 D′ ⊆ D.

Proof See Appendix. �

Transformed formulations like the SPt imply a denser form of the constraint matrix,

which, in the context of the simplex method, might result in more pivots and therefore

be less efficient. Since our algorithm works in the dual space, it is interesting to

investigate computationally if the dual space reduction of subsystem (2.7) and (2.8)

is beneficial.

2.3.4 Facility Location Formulation (FL)

CL can be reformulated using variables originally employed in Facility Location prob-

lems. Facility Location involves allocating facilities to a discrete set of locations such

that the market demand of all locations is served and the joint facility setup and vari-

able costs are minimized. To the best of our knowledge, the first paper that used facility

location variables to formulate lot size models was the work of Krarup and Bilde (1977).

The resulting model (FL) is described below.

Parameters:

csitk: total production and holding cost for producing item i in period t to satisfy

demand of period k, csitk = (vcit +
∑k−1

u=t hciu)dik
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cuit: initial inventory and holding cost for item i, to satisfy demand in period t, cuit =

(fci +
∑t−1

u=1 hciu)dit.

We also define the following variables:

witk :fraction of demand for item i in period k that is satisfied by production in period

t, xit =
∑m

k=t dikwitk ,∀i ∈ I, ∀t ∈ T ,

spit:fraction of demand for item i in period k that is satisfied by initial inventory,

si0 =
∑m

t=1 spitdit, ∀i ∈ I.

The facility location (FL) reformulation is then as follows:

min
∑
i∈I

∑
t∈T

(scityit + cuitspit) +
∑
i∈I

∑
t∈T

m∑
k=t

csitkwitk (2.14)

s.t. spit +
t∑

k=1

wikt = 1 ∀i ∈ I, ∀t ∈ T (2.15)

∑
i∈I

stityit +
∑
i∈I

m∑
k=t

vtitdikwitk ≤ capt ∀t ∈ T (2.16)

witl ≤ yit ∀i ∈ I, ∀t, k ∈ T : k ≥ t (2.17)

yit ∈ {0, 1}, spit ≥ 0 ∀i ∈ I, ∀t ∈ T (2.18)

witk ≥ 0 ∀i ∈ I, ∀t, k ∈ T : k ≥ t (2.19)

Formulation (2.14) – (2.19) corresponds to a facility location network for each item

i ∈ I. Specifically, for each i ∈ I, each period t ∈ T denotes a location with demand dit,

in which a facility can be built. A facility in location t ∈ T can serve market demand

of locations t′ ≥ t only. Setup variables yit denote for each item, i ∈ I, if a facility

is built at location t ∈ T . Variables witk show the fraction of demand of location k

that is satisfied by production of a facility in location t. The objective function (2.14)

minimizes the total cost, which consists of the setup cost, the aggregated production and

holding costs, and the initial inventory and holding costs. Equations (2.15) correspond

to the flow balance constraints (2.2) and state that period t demand must be covered

by a combination of initial inventory and production in periods {1, ..., t}. The capacity

constraints (2.16) are in exact correspondence with (2.4). The setup constraints (2.17)

do not allow any production in period t unless a setup is done and the non-negativity

conditions (2.18) and (2.19) complete the FL formulation.
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2.3.5 Facility Location Formulation with Precedence Constraints (FLp)

Many extended formulations are often degenerate or have multiple optimal solutions.

This is also the case with the facility location formulation (2.14)-(2.19). The existence

of multiple solutions in the extended formulation may degrade the efficiency of column

generation. Hence, the addition of valid inequalities in the subproblem that cut off some

of the primal space containing alternative optimal solutions, may lead to improved

convergence, as it prevents the subproblem from generating columns that describe

alternative solutions. A class of such valid inequalities is described below.

Observation 2.2 There exists an optimal solution of FL with wit,k−1 ≥ witk for all

i ∈ I, t, k ∈ T : t+ 1 ≤ k ≤ m and spit−1 ≥ spit for all i ∈ I and t ∈ T\{1}.

We will refer to the above valid inequalities as Precedence Constraints. Observation

2.2 is used in Wolsey (1989) in his study of the facility location formulation in the

context of lot size problems with start-up costs and no capacity constraints. A short

proof can be found in the Appendix. FL is not a minimal image of conv(CL), the

convex hull of CL, in the sense that there exists a subset of conv(FL) that is the

image of all extreme points of conv(CL) . This is important because conv(CL) might

have more extreme points when the precedence constraints are not considered. The

precedence constraints wit,k−1 ≥ witk can be used alongside the setup forcing witt ≤ yit
in place of witk ≤ yit for all i ∈ I, t, k ∈ T : t + 1 ≤ k. The FL formulation with the

primal valid inequalities is written as:

min
∑
i∈I

∑
t∈T

(scityit + cuitspit) +
∑
i∈I

∑
t∈T

m∑
k=t

csitkwitk (2.20)

s.t. witt ≤ yit ∀i ∈ I, ∀t ∈ T (2.21)

wit,k−1 ≥ witk ∀i ∈ I, ∀t, k ∈ T : k > t (2.22)

(2.15)− (2.16), (2.18)− (2.19) (2.23)

The idea behind the inclusion of constraints (2.22) is that of primal space reduction.

The idea behind the inclusion of constraints (2.22) is that of primal space reduction.

Although it is usually the case that the inclusion of a set of constraints, such as (2.22),

at the subproblem level improves the problem lower bound, we show that this does

not hold in the context we examine. Rather, (2.22) accelerates the column generation
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convergence because the feasible space of columns generated by the subproblem is

reduced.

2.4 Period Dantzig-Wolfe Decompositions

2.4.1 Formulations

We develop period decompositions for formulations SP, SPt, FL and FLp. In a period

decomposition, demand covering constraints of each item are considered complicated

constraints. Therefore, by not taking into account the demand constraints, the problem

decomposes in a series of problems, each defined over a single period t,∀t ∈ T . We

denote each decomposition formulation by appending /P to the original notation. For

example, SP/P denotes the period decomposition of the shortest path formulation.

The demand balance constraints are the complicating constraints and the capacity

and setup forcing constraints of each period form the period subproblems. We focus

on period decompositions of network formulations because the resulting relaxations

provide improved lower bounds compared to the linear programming (LP) relaxation

of the extended formulations, since the period capacity polytope does not have the

integrality property (Geoffrion, 1974).

The formulation of the per period decomposition of SP, SP/P, is described in de-

tail in Jans and Degraeve (2004). The formulation of the per period decomposition

of SPt, SPt/P is very similar to SP/P and we skip it for brevity. Both formu-

lations SP/P and SPt/P can be found in the Appendix. Instead, we present the

per period decompositions of FL and FLp. To this end, let us define by St the

index set of extreme point production plans of the subproblem for period t, i.e.,

St :=
{
q ∈ extr

(
conv

{
(witk, yit)i∈I,k≥t | (2.16)− (2.19)

})}
, where extr(S) denotes

the set of extreme points of set S. We associate a decision variable with the frac-

tion of the extreme point q of subproblem t that is used in a feasible solution. If we

denote by (w̄itkq, ȳitq) the components of extreme point q, its cost can be written as

cttq =
∑
i∈I

(scitȳitq +
m∑
k=t

csitkw̄itkq). Then the master problem FL/P can be formulated

as follows:

min
∑
t∈T

∑
q∈St

cttqwttq +
∑
i∈I

∑
t∈T

cuitspit (2.24)
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s.t. spit +
t∑
l=1

∑
q∈Sl

w̄iltqwtlq = 1 ∀i ∈ I, ∀t ∈ T [πit] (2.25)

∑
q∈St

wttq = 1 ∀t ∈ T [µt] (2.26)

yit =
∑
q∈St

ȳitqwttq ∀i ∈ I, ∀t ∈ T (2.27)

wttq ≥ 0, yit ∈ {0, 1} ∀i ∈ I, ∀q ∈ St,∀t ∈ T (2.28)

The objective function (2.24) minimizes the total cost of the initial inventory and

the cost of the production plans chosen in each period. Constraints (2.25) model de-

mand and correspond to constraints (2.2) in the standard formulation. The convexity

constraints (2.26) and the nonnegativity constraints (2.28) enforce a convex combina-

tion. The setup variables definition is given in (2.27). The integrality must be imposed

on the original setup variables (2.28). The constraint coefficient parameters (w̄itkq, ȳitq)

are defined by the subproblem extreme points. The subproblem objective function min-

imizes the reduced cost over the extreme points. Specifically, the period t subproblem

(SUB) reads:

min
∑
i∈I

scityit +
∑
i∈I

m∑
k=t

(csitk − πik)witk − µt (2.29)

s.t.
∑
i∈I

stityit +
∑
i∈I

m∑
k=t

vtitdikwitk ≤ capt ∀t ∈ T (2.30)

witk ≤ yit ∀i ∈ I, ∀t, k ∈ T : k ≥ t (2.31)

yit ∈ {0, 1}, witk ≥ 0 ∀i ∈ I, ∀t, k ∈ T : k ≥ t (2.32)

The period decomposition of the formulation FLp has the same master problem.

However, the subproblem, denoted SUBp, is different because it includes the precedence

constraints (2.21) and (2.22) in place of (2.31).

2.4.2 Lower Bounds

It is interesting to investigate the lower bound quality of the proposed decompositions.

To this end, let v̄FL/P be the optimal objective value of the linear relaxation of the

decomposed model FL/P (2.24)-(2.28). Also, let v̄FLp/P , v̄SP/P and v̄SPt/P be the

corresponding lower bounds obtained by the linear relaxation of FLp/P, SP/P, and
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SPt/P respectively. To obtain a first result, we will need the following definition and

lemma.

Definition 2.3 (Ben Amor et al. 2007). Let D be the dual space polyhedron of a

linear program and D∗ be the set of its optimal solutions. Also, assume a new set of

constraints ETπ ≤ e that cuts off part of the dual space. If D∗ ⊆
{
π : ETπ ≤ e

}
, then

ETπ ≤ e is called a set of dual-optimal inequalities. If ETπ ≤ e cuts off a nonempty

set of dual-optimal solutions but is still satisfied by at least one dual-optimal solution,

it is called a set of deep dual-optimal inequalities.

Lemma 2.4 Using subproblem SUBp is equivalent to using subproblem SUB and im-

posing constraints

(csitk − πik) di,k+1 ≥ (csit,k+1 − πi,k+1) dik ∀i ∈ P, t, k ∈ T : t ≤ k ≤ m− 1 (2.33)

in the dual space of the LP master problem of FL/P. Moreover, these constraints are

deep dual optimal inequalities.

Proof It suffices to show that SUB has the same optimal solution as SUBp whenever

(2.33) holds. Note that vtit can be added to both sides of the inequality, but is omitted

since they cancel each other out. Therefore, (2.33) states that the profit to weight ratio

of witk should be greater than that of wit,k+1. It follows that there exists an optimal

solution of the LP relaxation of SUB when (2.33) holds which is also optimal for the

LP relaxation of SUBp. Also, SUB has the same structure after branching, so if (2.33)

holds, the precedence constraints hold at any node of the branch-and-bound tree, and

therefore at an integer optimal solution. Hence, from construction, (2.33) imply the

precedence constraints, that do not cut-off all optimal solutions. Their equivalence

with the precedence constraints and definition 1 imply that they are deep dual optimal

inequalities. �

Proposition 2.5

v̄SP/P = v̄SPt/P = v̄FLp/P = v̄FL/P

Proof First, note that the corresponding subproblems have the same set of extreme

points, and the linking constraints of SPt/P are linear combinations of those of SP/P.

Second, consider subproblem SUBp. The linear transformation zitt = wtt; zitk =
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witk − wit,k−1, k > t maps every extreme point (yit, witk) of SUBp to a unique ex-

treme point (yit, zitk) of the SP/P subproblem. Using this transformation in FLp/P,

the resulting model is exactly SPt/P. On the other hand, every feasible solution of

the SPt/P subproblem can be mapped to FLp/P with the inverse transformation,

i.e., witt = ztt; witk =
∑k

l=t zitl . Hence, v̄SPt/P = v̄FLp/P . Finally, we show that

v̄FLp/P = v̄FL/P . To this end, notice that v̄FLp/P ≥ v̄FL/P , since adding constraints to

the subproblem can never lead to a worse bound. Denote by v̄′FL/P the optimal value

obtained when solving the dual of FL/P amended with the dual restrictions (lemma

2.4). Then v̄′FL/P = v̄FLp/P from lemma 2.4 and v̄′FL/P ≤ v̄FL/P , since adding cuts to

the dual of a primal minimization problem can never increase its optimal value. The

result follows.�

Interestingly, the above lower bound is stronger than the one obtained by the simul-

taneous per item and per period decomposition of formulation CL studied by Pimentel

et al. (2010). Let us denote the latter lower bound by v̄CL/P/I .

Proposition 2.6

v̄CL/P/I ≤ v̄SP/P

In addition, the above inequality can be strict.

Proof See Appendix. �

2.5 Solving the Subproblems

This section describes two fast customized algorithms used to solve subproblems SUB

and SUBp. Note that since the feasible solutions of FLp are in exact correspondence

with those of SPt, and since the subproblem of SP and SPt is common, solving SUB

and SUBp implies a solution for all four subproblems.

2.5.1 A customized algorithm for SUB

For SUB, the following simple observation plays a key role in the subsequent solution

approach.

Observation 2.7 In an optimal solution of the LP relaxation of SUB there exists some

ki ≥ t such that witki = yit , ∀i ∈ I .
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This implies that the subset of tight inequalities (2.31) can be used to substitute

out the yit variables in (2.30). As a result, the LP relaxation of SUB reduces to a

linear knapsack problem which admits a greedy solution, similar to the one proposed in

Holmberg and Yuan (2000). It follows that an optimal solution of SUB has fractional

continuous variables for at most one item. The following algorithm identifies the subset

of tight inequalities in phase I and solves a regular linear knapsack problem in phase

II.

Algorithm 1 Algorithm for Subproblem SUB

Phase I

Initialize ritk ← csitk−πik
vtitdik

, ∀i ∈ I, ∀t, k ∈ T : t ≥ k
Initialize Ki = ∅, P = {t, ...,m}, Besti = False,∀i ∈ I

1: for i ∈ I do

2: while Besti = False do

3: rit ← mink∈P\Ki {ritk} ; ki ← arg rit \\ Calculate min ratio

4: Ki ← Ki ∪ {ki}
5: rit ←

scit+
∑
k∈Ki

(csitk−πik)

stit+
∑
k∈Ki

vtitdik
\\ Update ratio of merged periods

6: if rit > mink∈P\Ki {ritk} or Ki = P then \\ If ratio is min, exit

7: Besti = True

8: end if

9: end while

10: end for

Phase II

11: csmit := scit +
∑

k∈Ki (csitk − πik)
12: vtmit := stit +

∑
k∈Ki vtitdik

13: Solve a linear Knapsack with weights { vtmit; vtitdik ∀k /∈ Ki, i ∈ I } and costs

{ csmit; csitk∀k /∈ Ki, i ∈ I }. Let {wmit; witk ∀k /∈ Ki, i ∈ I } denote the optimal

solution.

14: yit ← wmit, ∀k ∈ Ki, i ∈ I
15: Return (yit, witk) ∀i ∈ I, ∀k ≥ t

Phase I identifies which of the variable upper bound constraints (2.31) are satisfied

as equalities. Then, the value of the setup variable is set equal to the value of the

production variable with the most attractive cost-to-weight ratio. If the new ratio is

still the most attractive after the substitution, Phase I terminates. If it is not, another
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constraint (2.31) is tight for the same item, and the corresponding substitution is made.

Phase II solves a linear knapsack problem where all witk with k ∈ Ki are equated with

yit and substituted out. Note that adjusting the algorithm to tackle items with zero

setup time or cost is straightforward. Due to observation (2.7), algorithm 1 produces

an optimal solution of the SUB linear relaxation.

After solving the relaxation, a depth-first branch-and-bound algorithm is imple-

mented. Branching is needed only when some wmit, the variable that indicates the

used fraction of the merged periods, was the last variable to enter the knapsack at

fractional level, and therefore yit < 1. Thus, at most one setup variable is fractional.

In addition, branching does not change the problem structure because it either fixes

witk to zero when yit = 0 or reduces the problem capacity by stit and fixes scit in the

objective, when yit = 1. For this reason, algorithm SUB can be called at each node

of the branch-and-bound tree, with different input data. Computational experiments

confirm the superiority of this approach compared to simplex-based branch-and-bound.

2.5.2 A customized algorithm for SUBp

The addition of the precedence constraints changes the structure of subproblem SUB

and the previous algorithm cannot be employed. However, we can take advantage of

the fact that each solution of SUBp corresponds to a solution of the SP/P subproblem,

whose relaxation is a linear multiple choice knapsack problem (Jans and Degraeve

2004). Therefore, we solve the latter subproblem and then map back the solution to

SUBp. A customized depth-first branch-and-bound algorithm is also developed for this

subproblem. The difference with the usual multiple choice knapsack algorithms is that

when some item is branched to 1, the dominated periods change (Pisinger 1995). We

use an efficient variant of the algorithm suggested by Graham (1972) to construct and

update the convex hulls, and then solve the linear relaxations using the algorithm of

Sinha and Zoltners (1979).

2.6 Solving the Master Problem: a new Hybrid Algo-

rithm

In many practical cases the convergence of column generation can be slow as a tailing-

off effect is observed (Vanderbeck and Savelsbergh 2006). This behavior is mainly due
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to high degeneracy of the restricted master problem. Specifically, when the restricted

master linear programs are solved with a simplex algorithm, two problems may arise.

First, the solution time can be large, and second, the optimal dual values that are passed

to the subproblems may be of bad quality. The latter issue stems from the fact that

degeneracy implies multiple dual optimal solutions, and simplex-based solvers typically

return an optimal extreme point of the dual polyhedron. Such corner points may not

provide an accurate representation of the optimal face, whereas a point that lies within

the optimal face may lead to faster convergence (Lübbecke and Desrosiers 2005 and

Mitchell 2005). To tackle this problem, some authors have proposed to solve the linear

programs with an interior point method, or to employ stabilization techniques, such as

those described in du Merle et al. (1999), Ben Amor et al. (2005), Elhallaui et al. (2005)

and Gondzio et al. (2013). Recently, Subramanian and Sherali (2008) gave insights in

the way that poor dual values result in the generation of poor quality columns, and

designed a subgradient-based scheme to solve large set-partitioning problems arising in

aircraft crew scheduling. Columns coming from SUB or SUBp can have some fractional

components. Therefore, the row aggregation technique of Elhallaui et al. (2005) cannot

be used, since it is developed for pure set-partitioning problems.

Huisman et al. (2005) discuss how the relationship between Dantzig-Wolfe decom-

position and Lagrange relaxation can lead to the development of improved algorithms

that combine the strengths of both methods. They explore two different ways to com-

bine column generation and Lagrange relaxation. First, Lagrange relaxation can be

used to solve the master problem, by dualising the linking constraints, and the re-

sulting near-optimal dual values can be used to price out the subproblems. Second,

Lagrange relaxation can be employed within column generation, exploiting the fact

that both methods solve the same subproblem. Specifically, the restricted master prob-

lem are solved with the simplex method, and next the master problem dual prices are

used as a starting point for a number of Lagrange relaxation iterations, during which

several negative reduced cost columns can be found and added to the master problem

at once. We propose a new method, which is a combination of the two previously dis-

cussed methods. Specifically, it uses Lagrange relaxation to solve the master problems,

but also to generate new columns. Figure 2.2 gives a schematic representation of the

algorithm.
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2.6 Solving the Master Problem: a new Hybrid Algorithm

Figure 2.2: The main building blocks of the new hybrid algorithm -

We initialize the column generation process using the heuristic of Trigeiro et al.

(1989). This heuristic returns a feasible solution, a lower bound and a set of Lagrange

dual prices of the capacity constraints. Using the dual of the relaxation of SP or

FL, we can then calculate the starting dual prices πit. Also, the feasible solution

(yit, xit)
F is split into per period columns of the SPt or FLp master problems. To

perform this operation, it is necessary to transform the (yit, xit)
F solution to the space

of the extended formulation variables. This can be done by fixing the setup variables

to their given values and solving the corresponding formulation, which is a shortest

path problem. Next, the Lagrange relaxation subroutine uses the modified subgradient

method of Crowder (1976) to update the dual prices πit. Moreover, for each updated

set of dual prices we check if the subproblem solutions price out, using the last obtained

dual prices of the convexity constraints, µt. The columns that price out are added to

the master problem. Existing columns with a high reduced cost are removed from the

master problem and kept into a separate column pool. Then, the restricted master

problem is solved using subgradient optimization by relaxing the linking constraints

(2.25) in the master problem (Huisman et al. 2005). The scheme iterates until no

column prices out, where we invoke the volume algorithm to obtain an approximate
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2.7 A Branch-and-Price Heuristic

primal solution. In this way, we are able to make better informed branching decisions

in the subsequent branch-and-price phase.

Contrary to existing hybrid algorithms (Barahona and Jensen, 1998, Degraeve and

Peeters 2003, Degraeve and Jans 2007), this scheme relies exclusively on Lagrange

relaxation. It has the benefits that it (a) avoids the degeneracy issues of the simplex

method and therefore exhibits faster convergence and (b) returns good quality dual

prices that help the column generation convergence. Note that the intermediate value

of the master problems, vM , is not necessarily a valid upper bound of the column

generation lower bound, as it is calculated using lagrange relaxation. It is a valid

lower bound (Huisman et al. 2005) when no column prices out, and therefore the

scheme returns the best bound that is obtained by the master problem and by Lagrange

relaxation.

2.7 A Branch-and-Price Heuristic

We have combined the hybrid column generation algorithm with heuristic techniques,

and integrated them in an enumeration scheme. Our implementation uses formulation

FLp to calculate the lower bounds. The goal is to find good feasible solutions fast by

exploiting the structure of the network formulation and its subproblem. It is worth

noting that the development of an exact approach is possible, but the nature of the

lower bounding process would make it inefficient. For an exact approach, branching is

needed even when the approximate primal solution returned by the volume algorithm

has all setup variables integral, because the exact primal solution of the restricted

master problem may still be fractional. Therefore, nodes can be implicitly enumerated

only by dominance and infeasibility pruning, and the resulting trees are large. Since

a heuristic search is performed in each node and the branching decisions dictate the

search space in the tree, the overall scheme can be seen as integration of exploration

and exploitation heuristics. The next section describes the heuristics employed in each

node of the tree.

2.7.1 Node Heuristics

We employ a successive rounding heuristic that uses a smoothing subroutine, which in

turn employs some operations of the heuristic of Trigeiro et al. (1989). The successive
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2.7 A Branch-and-Price Heuristic

rounding heuristic gets as input the primal setup variables produced by the volume

algorithm, determines a threshold level and fixes the setup variables below and above

that threshold to 0 and 1, respectively. The process iterates for increasing threshold

values. Typically, feasible solutions obtained in this way follow a U-shaped fashion

(Degraeve and Jans 2007). Therefore, when the solution quality starts to degrade the

heuristic terminates. Starting from this solution, the smoothing heuristic that searches

for an improved feasible solution is applied. The smoothing part starts from the last

period and tries to push production backwards, such that the Lagrange costs are min-

imized. This is done iteratively until the first period, and if any capacity constraints

are violated it performs a similar forward operation to recover feasibility. Thus, the

rounding/smoothing heuristic scheme searches the feasible space by modifying incre-

mentally the proposed setup schedules and production plans and can be considered an

exploitation heuristic.

2.7.2 Node Lower Bounds

At each node we solve the restricted master problem using subgradient optimization,

without generating any columns. If its objective value is lower than the incumbent

value, we recover an approximate primal solution using the volume algorithm and use

that solution to implement a branching strategy. Else, if the restricted master problem

objective value is higher than the incumbent value, the hybrid algorithm is invoked to

generate columns. During the hybrid algorithm iterations, a valid non-decreasing node

lower bound is recorded. If that lower bound comes to exceed the incumbent value, the

node is pruned and the columns generated at this node are deleted. When the hybrid

algorithm terminates and the lower bound is below the incumbent value, branching is

needed. In this case, the volume algorithm is invoked to recover an approximate primal

solution of the restricted master problem, which is then used for branching. When the

volume algorithm returns all-integer setup variables, we fix these variables and solve

the resulting LP problem using formulation CL, which is a generalized network flow

problem for fixed setups (Degraeve and Jans 2007). To ensure that the approximate

primal solution is of good quality, additional columns are generated when the maximum

violation of the linking constraints is higher than some predefined tolerance (we used

0.05). More details about this procedure can be found on the Appendix of this chapter.
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2.7 A Branch-and-Price Heuristic

2.7.3 Branch and Price Search

The below procedure summarizes the main building blocks the heuristic Branch and

Price algorithm.

Algorithm 2 Summary of the heuristic Branch and Price procedure HBP

Inputs: LowerBound, UpperBound, Incumbent, CGSolution

Outputs: LowerBound, UpperBound, Incumbent, NodesExplored

1: NodesExplored← 0;Pass← 0;NodeLimit← 100; \\ Initializations

2: CallRINS V ariable F ixing(CGSolution,RINSDepth) \\ Fix Variables based

on the CGSolution values. Store how many variables are fixed in variable RINS-

Depth

3: Call Branch And Price \\ Terminates when NodesExplored = NodeLimit or

when LowerBound = UpperBound

4: while Time < TimeLimit or LowerBound < UpperBound do

5: Pass = Pass+ 1

6: NodeLimit = NodeLimit + (Pass − 1) ∗ 50 \\ Expand the explored space

during each pass

7: Call Unfix V ariables(RINSDepth) \\ Free the variables that are fixed at

the first RINSDepth levels of the tree

8: Call Update F ixed V ariables \\ Keep the remaining fixed variables to the

values of the incumbent

9: Call Branch And Price \\ Search again, in a larger neighbourhood

10: end while

The exploration of the search space is done in two ways. First, we employ the con-

cept of relaxation induced neighborhoods search (RINS) (Danna et al. 2005). Although

other MIP-based techniques could be employed, such as local branching (Fischetti and

Lodi 2003), most of them destroy the subproblem structure. After solving the root

node, a variable fixing phase follows. We fix to 1 (0) the setup variables that are 1

(0) in the incumbent and more (less) than 0.8 (0.2) in the approximate primal solution

of the master problem, given by the volume algorithm. Then branching is applied.

Following Van Vyve and Wolsey (2006), we branch on the earliest period and on the

most fractional item. The intuition behind this choice is that branching decisions in

earlier periods are more important than in later periods because they are more likely

to influence the subsequent production flow. During the first pass, we branch to 0 if
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both the incumbent has the branching variable at 0 and its fractional value at the root

note is less than 0.2, else we branch to 1. The bias against 0-branches comes from the

fact that when the capacity constraints are tight, it is more likely to produce more than

needed in earlier periods, and therefore a setup is necessary.

Notice that the subtree invoked from RINS is guaranteed to have a leaf node that is

at least as good as the incumbent, because the incumbent itself is under that subtree. If

a better feasible solution exists, it is likely to be found at the early levels of the subtree

from the rounding/smoothing heuristic. For this reason, we explore the subtree induced

by the RINS heuristic only partially, by imposing a node limit. A potential downside of

exhaustively exploring this subtree, is that if some of the fixing decisions are not part

of the optimal solution, the algorithm could stall or terminate without a significant

improvement. Hence, it is necessary to modify the search space. To do this, we note

that at each node the fixed variables are either fixed by the RINS fixing decisions, or

by branching. To explore a different but promising part of the setup variable space,

we free the variables fixed by RINS and fix the variables that were fixed by branching

to the values of the incumbent solution. The previously free variables remain free.

In a sense, this scheme sets free the variables previously fixed by the RINS heuristic,

while it makes sure that the new search space remains close to the neighborhood of the

incumbent. The same idea is applied iteratively: a number of nodes in each subtree is

explored, the variables fixed early up in the free become free and the variables fixed

from Branch and Price are fixed again to the value of the incumbent.

2.8 Computational Experiments

Computational experiments were performed on a 2.0 GHz / 2 GB machine. The CPU

times listed in all tables refer to the time that the incumbent was found. Detailed

results of all experiments can be found in the Appendix of this chapter.

2.8.1 Solving the root node: heuristics and lower bounds

To demonstrate the strength of the lower bound of the proposed hybrid scheme, we

employ data instances from Trigeiro et al. (1989). These instances are among the

hardest ones and have been tested extensively (Belvaux and Wolsey 2000, Van Vyve

and Wolsey 2006, Degraeve and Jans 2007, Jans and Degraeve 2004 and Pochet and
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Van Vyve 2004). We use 4 different formulations and 3 solution methods. Table 2.1

shows the nomenclature of different combinations of formulations (period decomposi-

tion of the Facility Location formulation - FL/P, period decomposition of the Facility

Location formulation with Precedence constraints - FLp/P, period decomposition of

the Shortest Path formulation - SP/P and period decomposition of the Transformed

Shortest Path formulation - SPt/P) and solution methods (Lagrange Relaxation - LR,

Approximate Column Generation - ACG and the Hybrid Algorithm- HB). In ACG, the

master problem is solved with subgradient optimization. Each subproblem returns one

column per iteration, as in standard column generation. ACG is listed to demonstrate

how the hybrid scheme performs against a Lagrange-based implementation of column

generation.

Table 2.1: Nomenclature of combinations of formulations and solution methods.

Method Used to Calculate the Lower Bound

Formulation LR ACG HB

FL/ P LR ACG HB

FLp/P LRp ACGp HBp

SP/P SPP-LR SPP-ACG SPP-HB

SPt/P SPtP-LR SPtP-ACG SPtP-HB

Table 2.2 compares the CPU time in seconds of combinations of formulations and

solution methods. For the sake of brevity, we do not present full results for formula-

tions SP/P and SPt/P, since their behavior is very similar to that of FL/P and FLp/P

respectively. However, we do show that the hybrid solution method HB is superior to

Lagrange Relaxation LR and that LR applied to the transformed formulation SPt/P

is much faster than when applied to the standard formulation SP/P. We list the max-

imum absolute violation of the linking constraints obtained by the volume algorithm

in Column 2. The small violations suggest that the approximate primal solution re-

covered by the volume algorithm is very close to the exact primal solution. Since the

difference in lower bound values that each method returned are small, we compare the

time needed to calculate that lower bound only, listing the time each method takes

relative to the best implementation, which is the hybrid method applied to the FLp/P

formulation, called HBp. In Column 3, we report the time in seconds that HBp needs

to calculate the lower bound. Columns 4-8 and 11 show the time ratio between each
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algorithm and HBp. Columns 9 and 10 refer to the Shortest Path formulation and

are therefore compared with the best implementation of the shortest path formula-

tion, SPtP-HB. Both SPtP-HB and HBp use the hybrid scheme and solve the same

subproblem. Consequently, the difference in their time performance is small. Finally,

the last column, JD, refers to the CPU times obtained by Jans and Degraeve (2004),

who utilized decomposition SP/P and implemented a standard simplex-based column

generation algorithm. Note that for G57 and G72, we compare to their Lagrange re-

laxation times (2000 iterations), as they were not able to solve these instances with

simplex-based column generation.

Table 2.2: Computational performance of different algorithms for obtaining the lower

bound.

Dataset HBp Max

Violation

Time

HBp (s)

HB/

HBp

LR/

HBp

LRp/

HBp

ACG/

HBp

ACGp/

HBp

SPP-LR/

SPtP-HB

SPtP-LR/

SPtP-HB

JD (SP/P)/

HBp

G30 (6-15) 0.032 0.18 2.0 8.9 3.1 9.6 9.3 4.89 1.52 8.0

G30b (6-15) 0.049 0.2 1.3 11.9 3.8 7.1 6.7 11.67 3.08 8.2

G53 (12-15) 0.016 1.6 0.9 4.6 1.2 3.5 3.5 6.45 2.90 5.7

G57 (24-15) 0.023 7.60 2.2 5.8 2.3 3.8 3.9 4.70 1.39 3.4

G62 (6-30) 0.029 0.55 1.1 7.2 2.6 15.3 12.6 4.76 1.53 681.0

G69 (12-30) 0.025 2.43 2.2 9.6 2.4 12.4 14.5 7.04 1.77 79.9

G72 (24-30) 0.031 15.77 2.3 6.9 1.6 12.0 11.1 2.73 1.40 18.4

Average 0.029 4.0 1.7 7.8 2.4 9.1 8.8 6.0 1.9 114.9

The comparison of the different approaches suggests some conclusions. The addi-

tion of the precedence constraints to the facility location formulation (column 4), and

the transformation of the shortest path formulation (column 9 versus column 10) en-

hance computational performance. We see that on average HB needs 1.7 times the time

of HBp to converge (column 4). Further, in columns 5-8 it is evident that the effect

of the precedence constraints is much stronger when using LR instead of ACG. When

comparing columns 5 and 6, we see that LRp is approximately 3 times faster than LR,

whereas columns 7 and 8 reveal that the performance of ACG and ACGp is approxi-

mately the same. In addition, columns 9 and 10 reveal that the Lagrange relaxation of

the shortest path formulation is approximately 3 times slower, on average, compared to

its transformed version. Algorithms SPP-ACG, SPtP-ACG and SPP-HB showed sim-

ilar behavior as ACG, ACGp and HB respectively and are not reported. The hybrid

scheme outperforms all approaches. On average, HBp is 20 times faster than the other

algorithms (5.2 times faster if JD is excluded). Finally, it is interesting to note JD, an
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implementation of simplex-based column generation. Although the runs are made on

a slower computer (Pentium 750 MHz), the CPU times are disproportionately larger,

due to the poor performance of simplex-based column generation.

On assessing the lower bound quality obtained by SP/P, Jans and Degraeve (2004)

give evidence that for the 7 instances of Table 2.2, the lower bound is stronger than

the one obtained by Trigeiro et al. (1989), Belvaux and Wolsey (2000), Miller et al.

(2000) and Degraeve and Jans (2007), while the bound from Van Vyve and Wolsey

(2006) seems to be stronger for most instances. Note however that there is no ground

to support theoretical arguments for which bounds are stronger, with the exception of

the bound given by Trigeiro et al. (1989) and Jans and Degraeve (2004). Therefore,

the performance of each methodology is data dependent. Intuitively, the period decom-

position should perform well when the capacity constraints are tight, because it takes

advantage of the extreme points of the single-period polytopes, and when the number

of items is small, which is likely to make the subproblems easier.

We compared the performance of our algorithm to the results obtained by Süral

et al. (2009). They design a Lagrange-based heuristic for a reformulation of the ca-

pacity constrained problem with setup times but without setup costs. The demand

constraint is relaxed. They modify the data from Trigeiro et al. (1989) as follows.

First, they set all setup costs to zero. Second, they increase zero demands to 2 units.

Third, they construct new instances by reducing the number of periods of some existing

ones. Finally, they construct instances with unit inventory costs for all items, called

homogeneous (denoted hom). Instances with the original inventory cost are called het-

erogeneous (denoted het). In total, 100 instances are generated. Since their approach

usually terminates in a few seconds, we have chosen to compare it with our hybrid pro-

cedure only. Specifically, we use the hybrid process to obtain a lower bound, recover

an approximate primal solution with the volume algorithm, fix the setup variables to 0

or 1 (as described in the diving heuristic) and call the successive rounding/smoothing

heuristic once. In particular, no branching is performed, and the algorithm is actually

the procedure that is performed at the root node of the branch-and-price tree. Table 2.3

displays the average integrality gaps and the average CPU time for the best heuristic

approach of Süral et al. (SDW) and our extended hybrid heuristic (EHB). SDW was

run on an Intel Pentium 4 machine, and the subproblems were solved with CPLEX 7.0.
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Table 2.3: Comparison of EHB with the Lagrange-based heuristic of Süral et al. (2009)

Category Gap EHB (%) Gap SDW (%) CPU EHB (s) CPU SDW (s)

12 x 10 het 18.43 31.73 0.34 3.06

24 x 10 het 11.14 18.07 1.62 4.79

12 x 15 het 19.25 25.95 1.40 6.07

24 x 15 het 13.44 21.26 6.37 15.33

12 x 30 het 21.92 28.68 3.27 24.01

24 x 30 het 23.44 32.35 19.72 38.93

12 x 10 hom 22.97 42.08 0.53 2.69

24 x 10 hom 14.06 20.88 1.77 4.45

12 x 15 hom 18.44 28.00 1.19 5.64

24 x 15 hom 14.96 20.56 3.46 11.14

12 x 30 hom 21.68 24.33 2.99 19.10

24 x 30 hom 21.35 30.26 7.95 22.91

Average het 17.94 26.34 5.45 15.37

Average hom 18.91 27.69 2.98 10.99

It is interesting to notice the large gaps that result from problems without setup

cost. Clearly, EHB outperforms SDW, both in terms of gap quality and CPU time, for

both homogeneous and heterogeneous problems.

We also run EHB using the F and G instances from Trigeiro. The average gaps

were 2.43% and 2.51% and the average CPU times 0.25 and 2.14 seconds, respectively.

Note that Degraeve and Jans (2007) cite an average gap of 2.87% for the F instances,

after exploring 2000 nodes in their branch-and-price tree.

We also tested EHB against the best implementation of the iterative production

estimate (IPE) heuristic of Pochet and Van Vyve (2004). They run their experiments

on a 350 MHz machine and list results on the six instances from the G dataset of

Trigeiro et al. (1989) described in Table 2.2 (IPE was not tested on G30). The optimal

value is listed to facilitate the comparisons. Table 2.4 presents the results.

Although comparison of CPU times is hard since different machines were used, it is

clear that the quality of feasible solutions is much better for EHB. Note that the above

IPE results are the best that Pochet and Van Vyve cite, based on the BC-PROD cut

generator. Also, despite that EHB seems to find a better feasible solution than IPE,

more space for improvement exists, as shown by the optimal solutions. The branch-
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Table 2.4: Comparison of EHB against the IPE heuristic

Best Incumbent CPU Time (s)

Dataset Optimal IPE EHB IPE EHB

G30b (6-15) 37721 38976 38162 1.31 0.27

G53 (12-15) 74634 78098 75035 3.53 1.4

G57 (24-15) 136509 137153 136884 6.01 7.21

G62 (6-30) 61746 63073 63018 1.7 0.67

G69 (12-30) 130596 131988 131668 6.03 3.38

G72 (24-30) 287929 290006 288313 21.15 15.5

and-price heuristic performs EHB at the root node and tries to approach the optimal

solution. Its computational peformance is described in section 2.8.2.

2.8.2 Comparison of heuristic branch-and-price with other approaches

We compared our approach with the most recent and successful heuristic and exact

approaches found in the literature. In order to do this, we employed the 7 instances

taken from Trigeiro et al. (1989) described in section 2.8.1. A comparison based

on 7 instances is limited. However, these 7 instances are specifically tested in many

other papers and therefore it allows us to compare our results to various other results

reported in the literature. Table 2.5 presents results of the following studies: Müller et

al. (2012) (MS), Degraeve and Jans (2007) (DJ), Belvaux and Wolsey (2000) (BW) and

our approach (HB&P). The optimal solution of each instance is also listed, to facilitate

the comparisons. MS is a randomized heuristic, so it does not provide any lower bounds

and gaps.

Before analyzing the relative performance of each approach, some implementation

details are presented. Müller et al. (2012) use a hybrid adaptive large scale neighbor-

hood search strategy. They run their experiments on a 2.66 GHz / 8GB RAM machine

and use CPLEX 10.2 to create repair neighborhoods. Since their approach is random-

ized, the listed values are based on an average of 100 runs, where each run lasts for

60 seconds. Degraeve and Jans (2007) develop an exact branch-and-price algorithm.

They pose a limit of 2000 nodes and run their experiments on a 750 MHz processor.

Finally, Belvaux and Wolsey (2000) use a relax-and-fix heuristic which they incorpo-

rate within BC-PROD, a customized branch-and-cut system for production planning
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Table 2.5: Comparison of Branch-and-Price upper bounds, CPU times and integraility

gaps with other approaches

Best Incumbent CPU Time (s) Gaps(%)

Dataset Optimal MS DJ BW HB&P DJ BW HB&P DJ BW HB&P

G30 (6-15) 37809 - 37809 - 37809 33 - 5 1.90 - 1.00

G30b (6-15) 37721 37776.4 38162 37221 37721 29 - 2 2.51 1.35 0.90

G53 (12-15) 74634 74720.8 75035 74752 74634 66 189 9 1.61 1.33 0.93

G57 (24-15) 136509 130675 136860 136509 136509 44 55 101 0.36 0.10 0.07

G62 (6-30) 61746 61792.2 62644 61746 61746 359 55 140 2.79 1.24 0.88

G69 (12-30) 130596 130675 131234 130599 130599 215 102 131 0.81 0.32 0.20

G72 (24-30) 287929 287966 288383 287950 288016 306 298 46 0.22 0.07 0.07

problems. They use a 200 MHz machine to perform their computations.

In terms of quality of feasible solutions, it seems that the two most competitive

approaches are BW and HB&P. It is interesting to notice that, although BW is the

oldest approach and runs are made on a slow machine, it seems to provide much better

feasible solutions compared to most other approaches. When compared to HB&P, it

finds solutions of similar quality. CPU times are not directly comparable. HB&P

produces a better gap however, as the lower bound is stronger and the solution quality

similar. HB&P gives a stronger bound because most separation routines of BC-PROD

use flow-based inequalities that incorporate information mainly from the convex hulls

of the single - item uncapacitated polytopes. HB&P however, gives a lower bound

that describes the intersection of the capacity and single-item uncapacitated polytopes

and therefore it tends to be stronger for tightly constrained problems. Finally, DJ is

outperformed both in terms of time and solution quality.

To the best of our knowledge, the best exact approach found in the literature for

the above instances is the approximate extended formulation of Van Vyve and Wolsey

(2006). Unfortunately, the authors do not cite the CPU time at which they obtain

the lower bound at the root node and a comparison with our approach is not possible.

However it is expected that a heuristic implementation of their approach would work

better for problems with short time horizon, whereas our approach is better for long

horizon problems. For example, they solve G62 (6 items, 30 periods) to optimality after

220400 nodes and 1078 seconds on a 1.6GHz machine whereas we need 4212 nodes and

140 seconds to find the optimal value (on a 2GHz machine).
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Next, we compared our approach with the best branch-and-price algorithm of those

suggested by Pimentel et al. (2010) (PAV). They used the Trigeiro et al. (1989) sets

X11117 - X12429. Each X set comprises of 5 instances and there are 30 X sets, giving a

total of 150 instances. They applied a per period, per item and simultaneous per period

and per item decomposition, solved the subproblems with CPLEX 8.1, and performed

their computations on a Pentium 4 machine with 1 GB RAM. Table 2.6 presents results

for the 10 hardest sets, i.e. those for which their algorithm gives the largest gaps. The

bottom line lists average results for all 150 instances. Detailed results can be found in

the Appendix.

Table 2.6: Comparison with Pimentel et al. (2010)

CPU Time PAV (s) CPU Time HB&P (s) Gap PAV (%) Gap B&P (%)

X11419 3600 96.06 10.367 7.069

X11429 3600 106.30 9.599 4.993

X12429 3600 110.15 7.999 3.650

X12419 3600 84.07 5.967 4.250

X11428 3600 68.42 4.777 0.951

X12428 3600 61.83 3.908 1.563

X12229 3600 29.93 3.236 1.924

X11229 3600 66.01 3.045 2.071

X12219 3600 62.96 2.745 2.507

X11129 3600 63.37 2.525 2.874

Average (150 instances) 3600 74.91 5.417 3.185

Note that HB&P outperforms PAV in all of the above sets except one. Moreover,

HB&P terminated within the time limit of 150 seconds in 149 out of 150 instances. Also,

the average gap and CPU times are much better for HB&P. An interesting observation

is that Pimentel et al. (2010) do not get their best gaps from their simultaneous

item/period decomposition, which theoretically gives a stronger bound compared to

both their item and period decompositions, but from the item decomposition. This

is because the master problems of the simultaneous item/period decomposition are

very degenerate and time consuming. Therefore, they may not be able to obtain good

feasible solutions and improve their gap within their time limit.

In a final round of trials, we tested our algorithm on some new hard datasets against

the CPLEX v12.2 solver (CPX), using the regular formulation CL. The purpose of this

comparison is to give evidence on the relative strengths and weaknesses of a decompo-

sition approach against a modern off-the-shelf branch-and-cut software. To this end,
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we constructed new harder instances by modifying the Trigeiro dataset. Specifically,

we replicated the demand patterns to 60 periods, and reduced the capacity to 95%

of its original value. We focused on instances with 6 and 12 items because the inte-

grality gap of the extended formulations improves as the number of items increases,

therefore problems with fewer items are more challenging to solve. Finally, we excluded

instances that were infeasible without initial inventory because their gap was sensitive

to the initial inventory cost.

The process described above led to the creation of 30 new 60-period instances, 21

of which have 6 items and 9 with 12 items. Table 2.7 shows the computational results.

Both algorithms used 100 seconds of CPU time.

Table 2.7: Integrality gaps of Heuristic Branch-and-price and CPLEX v12.2

CPX Gap (%) HB&P Gap (%) Gap Closed (%)

6 - 60 Average 2.29 2.44 17.90

6 - 60 Median 1.86 1.97 9.51

12 - 60 Average 1.79 1.57 12.58

12 - 60 Median 1.71 1.57 9.73

Total Average 2.14 2.18 15.29

Total Median 1.85 1.78 9.57

The computational experiments show that both algorithms achieve good perfor-

mance in terms of integrality gaps. However, no instance was solved to optimality

after 100 seconds. The total median gaps show that heuristic branch-and-price per-

forms better overall, but the average gaps are slightly higher than those of CPLEX.

We observed that the lower bound obtained by the period decomposition was always

better. To demonstrate the efficiency of the lower bound, we calculated all gaps us-

ing the best feasible solution and report the amount of gap that is closed with our

branch-and-price algorithm. The amount of gap closed is the difference between the

CPX Gap and HB&P Gap, divided by the CPX Gap, where all gaps are calculated

using the best feasible solution. The last column indicates the superiority of the lower

bound obtained by the period decomposition, as the average gap improvement is about

15%. The lower bound obtained by CPLEX is weak, even after exploring a large part

of the branch-and-bound tree. Specifically, CPLEX explores more than 28,000 nodes

on average, whereas we explore an average of 644 nodes with our approach. The fact
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that CPLEX explores such a large part of the tree allows it to find better feasible so-

lutions in most instances, so its integrality gaps are competitive to branch-and-price.

In conclusion, the two approaches give similar results in terms of gap quality, but our

approach dominates CPLEX in lower bounds, since it takes advantage of the special

structure of the single period polytopes.

The overall conclusion from the computational experiments is that the proposed

algorithm and solution approach either outperform or compare favorably with other

state-of-the-art approaches, including a commercial implementation of branch-and-cut.

Period decompositions deliver strong lower bounds, because their feasible region lies

in the intersection of the single-period polytopes of extended formulations, and are

therefore stronger than the single-item decompositions of Degraeve and Jans (2007) and

the single-period and combined decompositions of Pimentel et al. (2010). The branch-

and-price heuristic that is based on period decomposition shows good performance,

especially for large instances, namely problems with a large number of periods and

items.

2.9 Conclusions and future research

We have presented period decompositions of the facility location and shortest path

formulations of the capacity constrained lot size problem with setup times. The sub-

problems polytopes do not have the integrality property, and therefore an improved

lower bound is obtained. Customized branch-and-bound algorithms are developed to

solve the single-period subproblems. It is shown that a standard column generation

scheme is computationally inefficient, and a novel, subgradient-based algorithm is de-

veloped, that combines column generation and Lagrange relaxation. This scheme gives

a valid lower bound which is a good approximation of the exact lower bound. Moreover,

an approximate primal solution of the restricted master problem is recovered with the

volume algorithm. The performance of the hybrid scheme is enhanced further with the

proposition of a transformed shortest path formulation and with the addition of a class

of valid inequalities in the subproblem. This class improves the quality of the columns

that price out, and is equivalent to adding dual optimal inequalities in the dual of the

restricted master problem. In addition, the subproblem is still tractable with a fast

customized branch-and-bound algorithm. Finally, a branch-and-price based heuristic
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is designed, that integrates relaxation induced neighborhoods, selective diving and suc-

cessive rounding/smoothing within a novel strategy of node exploration. The latter

explores promising parts of the branch-and-bound tree based on information obtained

by new feasible solutions. Computational results show that the proposed approach out-

performs or compares favorably with the most recent and successful approaches found

in the literature.

There are several directions that need further research. The implementation of

standard stabilization techniques (eg. du Merle et al. 1999) to extended formulations

may make them more tractable computationally. To this end, our transformed shortest

path formulation can be used as a stabilization method to problems that use simi-

lar formulations, such as the multi-commodity network flow problems. In addition,

the precedence constraints we introduced for production planning can be used to fa-

cility location problems and their extensions. On a different line, the integration of

approximate schemes such as the volume algorithm could lead to enhanced MIP-based

heuristics that can tackle very large instances efficiently and give a good dual bound,

used to assess their performance. Finally, the per-period decomposition could lead to

the development of successful approximation algorithms. Recently, Levi et al. (2008)

used the simple plant location formulation with added flow cover inequalities to derive

the first 2-approximation algorithm for a variant of CLST without setup times. It

would be interesting to explore whether a column generation-based relaxation would

lead to similar approximation schemes for CLST.

2.10 Appendix

2.10.1 Proof of Theorem 2.1

Theorem 2.1 states that D′ ⊆ D where

D =

vit ∈ <
∣∣∣∣∣∣∣∣
vit − vi,k+1 ≤ cvitk ∀i ∈ I, t, k ∈ T : t ≤ k < m (A.1)
vi1 − vit+1 ≤ ciit ∀i ∈ I, t ∈ T\{m} (A.2)
vit ≤ cvitm ∀i ∈ I, t ∈ T (A.3)
vi1 ≤ ciim ∀i ∈ I (A.4)

 ;
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D′ =

v̄it ∈ <
∣∣∣∣∣∣∣∣
t∑
l=1

v̄il ≤ min{ciit, cvi1t} ∀i ∈ I, t ∈ T (A.5)

k∑
l=t

v̄il ≤ cvitk ∀i ∈ I, t, k ∈ T : k ≥ t (A.6)


Note that D =

n⋃
i=1

Di and D′ =
n⋃
i=1

D
′
i and

n⋂
i=1

Di =
n⋂
i=1

D
′
i = Ø, therefore we can

omit the item index in the context of this proof. Also, without loss of generality we

can restrict our attention to the positive orthant of both dual spaces because (2.7) can

be written as inequality (≥) and also (2.8) can be written as inequality (≤ ). We will

first show that D′ ⊆ D. For this, consider a point vit ∈ D′. Note that (A.5) and

(A.6) imply (A.3) and (A.4). Supposing that (A.6) holds, we show that (A.1) holds

as well. We write (A.6) as vit +

k∑
l=t+1

vil︸ ︷︷ ︸
U

≤ cvitk ⇔ vit + U ≤ cvitk . Observe that if

vit − vi,k+1 > cvitk , then vit − vi,k+1 > cvitk ≥ vit + U ⇔ U + vik+1 < 0, which cannot

hold because vit ∈ <+ in both spaces. Therefore, (A.6) implies (A.1). Using the same

argument, (A.5) implies (A.2). This means that vit ∈ D′ ⇒ vit ∈ D for an arbitrary

point vit ∈ D′ and thus D′ ⊆ D. We show that the inclusion may be strict via an

example. Consider the following single-item 2-period uncapacitated system with no

initial inventory and its transformed version:

min c11z11 + c12z12 + c22z22 [P] (A.7)

s.t. z11 + z12 ≥ 1 [v1] (A.8)

− z11 + z22 ≥ 0 [v2] (A.9)

z11, z12, z22 ≥ 0 (A.10)

min c11z11 + c12z12 + c22z22 [P’] (A.11)

s.t. z11 + z12 ≥ 1 [v1] (A.12)

z12 + z22 ≥ 1 [v2] (A.13)

z11, z12, z22 ≥ 0 (A.14)

The corresponding dual formulations are:
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max v1 [D] (A.15)

s.t. v1 − v2 ≤ c11 (A.16)

v1 ≤ c12 (A.17)

v2 ≤ c22 (A.18)

v1, v2 ≥ 0

max v1 + v2 [D’] (A.19)

v1 ≤ c11 (A.20)

v1 + v2 ≤ c12 (A.21)

v2 ≤ c22 (A.22)

v1, v2 ≥ 0 (A.23)

Figure 2.3 shows the feasible regions of (D) and (D′) . Clearly (D′) ⊂ (D), and the

proof is complete.

 

Figure 2.3: Dual space reduction in a small example. -
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2.10.2 Master problems SP/P and SPt/P

To describe the period decomposition of the shortest path formulation SP/P, we intro-

duce additional notation. We define St as the set of all the extreme production plans of

the subproblem defined by (2.9)− (2.12) for each t ∈ T . The variable ztq is associated

with production plan q for period t. The master problem of SP/P is then as follows

(Jans and Degraeve, 2004).

min
∑
t∈T

∑
q∈St

cttqzttq +
∑
i∈I

∑
t∈T

ciitpit (A.24)

s.t.
∑
k=1

(pik +
∑
q∈S1

αi1kqzt1q) = 1 ∀i ∈ I (A.25)

pi,t−1 +

t−1∑
k=1

∑
q∈Sk

αitkqztkq =

m∑
k=t

∑
q∈St

αitkqzttq ∀i ∈ I, ∀t ∈ T\{1} (A.26)

∑
q∈St

zttq = 1 ∀t ∈ T (A.27)

yit =
∑
q∈St

ȳitqzttq ∀i ∈ I, ∀t ∈ T (A.28)

zttq ≥ 0, pit ≥ 0, yit ∈ {0, 1} ∀i ∈ I, ∀q ∈ St, ∀t ∈ T (A.29)

The constraint coefficients αitkq, the cost parameters cttq and the setup parameters

ȳitq are defined by the extreme point production plans of subproblem (2.9) − (2.12)

for each t ∈ T . The master problem SPt/P is derived by SP/P, by replacing, for each

t > 2, each constraint (A.26) with the sum of constraints (A.26) for all 1 ≤ l ≤ t.

Using this transformation, constraints (A.25) − (A.26) can be written as
∑m

k=t pik +∑t
j=1

∑m
k=t

∑
q∈St αitkqzttq = 1, for each i ∈ I, t ∈ T .

2.10.3 Complete computational results

Table 2.8 presents the complete results for the 36 Trigeiro instances X11117 - X12429.

For each set, the average CPU time and the average gap is reported. Runs were made

on a 2.0GHz / 2GB RAM machine.

Tables 2.9 and 2.10 present results for the EHB heuristic tested on the homogeneous

and heterogeneous instances constructed in Süral et al (2009) respectively. MGxx are

the Gxx instances with 10 periods and MMG the Gxx instances with 15 periods.
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Table 2.8: Computational results for the Trigeiro et al. (1982) X11117 - X12429 datasets

Set CPU

Time (s)

Gap Set CPU

Time (s)

Gap Set CPU

Time (s)

Gap

X11419 96.06 7.07% X12129 33.98 0.92% X11128 1.15 0.09%

X11429 106.30 4.99% X12418 31.37 0.86% X11217 12.35 0.07%

X12419 84.07 4.25% X12218 38.67 0.59% X11118 0.40 0.04%

X12429 110.15 3.65% X12417 25.62 0.56% X12117 0.21 0.04%

X12119 80.22 3.46% X12128 1.68 0.38% X11227 1.60 0.03%

X11119 55.94 3.13% X12427 23.05 0.27% X12127 0.10 0.03%

X11129 63.37 2.87% X11228 36.55 0.26% X11117 0.01 0.00%

X11219 72.62 2.51% X11427 60.03 0.25% X11127 0.01 0.00%

X12219 62.96 2.51% X11218 37.93 0.24% X11418 105.00 0.98%

X11229 66.01 2.07% X12228 14.21 0.23% X11428 68.42 0.95%

X12229 29.93 1.92% X11417 57.89 0.22% X12217 4.95 0.17%

X12428 61.83 1.56% X12118 0.53 0.18% X12227 3.64 0.11%

2.10.4 Implementation Details

The hybrid optimization scheme is implemented as follows. First, it is initialized with a

vector of dual prices and a lower bound, both coming either from TTM or from the LP

relaxation of the SPL formulation. All subgradient algorithms use the standard step

length formula with smoothing. In Lagrange relaxation, we perform 20 iterations if the

number of hybrid iterations is less than 3 or greater than 20, and 4 iterations otherwise.

The step length is 1.05 and if it is not improved at an iteration, it is multiplied by 0.6.

We use a 90% smoothing weight in each violation. The upper bound in the subgradient

formula is updated as 1.01 times the current restricted master problem value. The

restricted master problem is solved similarly. The step length is 0.6 and is multiplied

by 0.9 if there is no bound improvement for 10 iterations. The smoothing parameter is

50% initially and then it is halved when the bound improvement is less than 1% in the

last 100 iterations.

The volume algorithm is an extension of the classic subgradient method that re-

covers approximate primal solutions. Barahona and Anbil (2000) show that the primal

solution of the lagrange problem, that may violate the constraints that are dualized in

the objective function, can be used to recover an approximate primal solution. They

suggest an exponential smoothing formula, in which the primal solution in iteration
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Table 2.9: The performance of EHB on homogeneous instances

Instance LB UB Gap (%) CPU

Time (s)

Instance LB UB Gap (%) CPU

Time (s)

G51 185.8 218.8 17.74 1.22 MG56 66.6 80 20.14 1.66

G52 129.2 159.9 23.7 0.91 MG57 169.5 182.2 7.49 2.19

G53 123.3 148 19.98 0.83 MG58 194.6 210.5 8.18 1.77

G54 83.7 105 25.39 1.05 MG59 190.3 201.5 5.87 2.53

G55 289.9 312.6 7.84 1.51 MG60 142.9 151.5 6.01 1.89

G56 247.3 266.2 7.66 3.02 MG66 75.5 89.5 18.51 0.38

G57 327.3 356.9 9.03 4.20 MG67 41.7 49 17.42 0.43

G58 416.1 441.4 6.09 3.78 MG68 78.7 93.2 18.42 0.58

G59 463.9 495.5 6.82 4.03 MG69 11.4 18.6 63.16 0.48

G60 369.7 409.0 10.63 3.37 MG70 69.4 79.8 14.92 0.51

G66 353.9 445.4 25.87 3.11 MG71 62.1 71.3 14.85 1.76

G67 377.9 448.0 18.55 2.73 MG72 25.5 36.7 44.20 1.82

G68 738.8 841.9 13.96 3.41 MG73 163.2 176.4 8.07 2.17

G69 234.6 298.4 27.20 2.83 MG74 76.9 86.6 12.56 1.99

G70 398.9 490 22.85 2.88 MG75 145.3 163.8 12.73 1.91

G71 208.5 262 25.65 7.21 MMG66 113.8 134.8 18.46 1.04

G72 112.3 162.3 44.48 7.01 MMG67 157.3 183.3 16.57 0.82

G73 946.2 1017.2 7.51 8.00 MMG68 78.7 93.2 18.42 0.58

G74 398.9 485.6 21.74 6.79 MMG69 62.1 82.7 33.15 1.09

G75 1000.5 1074.1 7.35 10.75 MMG70 157.9 179.7 13.79 0.98

MG51 96.0 105.3 9.71 0.67 MMG71 76.0 89.1 17.27 2.30

MG52 58.8 67.6 14.91 0.37 MMG72 45.6 71.5 56.83 2.94

MG53 58.5 65.9 12.59 0.68 MMG73 363.3 390.6 7.51 3.61

MG54 24.2 36.3 49.94 0.66 MMG74 186.3 221.4 18.83 3.09

MG55 127.1 139.9 10.09 0.53 MMG75 345.3 376.2 8.96 4.27

r, xrp, is updated as xrp = x + α ∗ xr−1
p + (1 − α) ∗ xrl , where xrl is the solution of the

lagrange problem in iteration r, and α is a smoothing constant. The volume algorithm

uses subgradient updating with a step length of 0.02 and is multiplied by 0.9 if there

is no bound improvement for 10 iterations. The target value G is initialized at 95% of

the lower bound and it is updated as follows. Denote the lower bound by lb. Then

whenever lb > 0.95T we set G = 1.005lb. Finally, the volume algorithm is short-cutted

whenever the step length falls bellow a specified tolerance (0.001) or if the maximum
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Table 2.10: The performance of EHB on heterogeneous instances

Instance LB UB Gap (%) CPU

Time (s)

Instance LB UB Gap (%) CPU

Time (s)

G51 354.5 392.8 10.82 1.22 MG56 112.4 118.3 5.23 1.27

G52 154.6 177.7 14.95 0.91 MG57 204.1 216.4 6.05 2.32

G53 194 233.1 20.15 0.83 MG58 281.6 305.7 8.54 1.04

G54 197.3 239 21.12 1.05 MG59 313.9 348.2 10.94 1.38

G55 500.9 583.4 16.48 1.51 MG60 261.7 288.5 10.24 1.96

G56 536.5 591.1 10.18 3.02 MG66 99 109.3 10.4 0.43

G57 427.8 463.6 8.36 4.2 MG67 35.8 48.6 35.86 0.17

G58 707.6 743.7 5.1 3.78 MG68 136 165.8 21.94 0.2

G59 970.2 1100.6 13.44 4.03 MG69 12.4 18.9 52.54 0.25

G60 830 917.6 10.55 3.37 MG70 189.3 202.1 6.77 0.41

G66 562.6 660.6 17.41 3.11 MG71 77.1 81.5 5.71 3.67

G67 753.2 948.2 25.88 2.73 MG72 27.5 37.6 36.73 0.92

G68 1636.9 1889.7 15.45 3.41 MG73 262.3 283.4 8.04 3.23

G69 335 427.4 27.57 2.83 MG74 89.1 99.2 11.34 1.12

G70 1261.4 1554.8 23.26 2.88 MG75 212.9 225.1 5.72 1.59

G71 313.5 403 28.55 7.21 MMG66 153.2 175.9 14.82 0.55

G72 114.3 172.4 50.78 7.01 MMG67 259 318 22.78 0.79

G73 1947.6 2171.7 11.51 8 MMG68 136 165.8 21.94 0.25

G74 507.3 606.3 19.51 6.79 MMG69 71 97.3 37.12 0.57

G75 2072.7 2214.2 6.82 10.75 MMG70 495.1 601.3 21.44 0.9

MG51 141.1 153 8.4 0.67 MMG71 94.5 110.6 16.99 3.44

MG52 69.3 76.3 10.09 0.37 MMG72 53.1 74.8 40.92 2.65

MG53 73.8 87.2 18.14 0.68 MMG73 673.6 752.3 11.69 4.7

MG54 38.6 42.4 9.82 0.66 MMG74 234.9 261.6 11.38 5.22

MG55 185.6 204.8 10.34 0.39 MMG75 601.5 636.1 5.75 4.26

absolute violation is less than 3% (2% for the root node) and the gap between the lower

bound and the primal solution is less than 3%.

The branch-and-price scheme is implemented in the following sequence. After ob-

taining a lower bound at the root node, a diving phase follows. The order of variable

fixing is the following. We start from the last period. For each item, we calculate a cost

to weight ratio, which is the setup cost over the setup time and the demand of some

periods ahead. We sort the items and start fixing from the one that has the smallest

41



2.11 References

ratio and complies with the fixing criteria described in the paper. All setup variables

that comply with the fixing criteria will be fixed, but the fixing order is important. If

the resulting subtree is solved completely, we need to backtrack to one of the nodes that

are fixed and it is important to backtrack to an influential fixing decision. Therefore,

we fix the variables in reverse period order and within each period we choose to fix the

most insignificant items first.

When we examine the second node on the same level, we delete the columns that

were generated on the fist node. We also delete columns when backtracking. At each

node we first try to find a feasible solution and then we perform 60 subgradient iterations

on the restricted master problem. If its objective is higher than the incumbent, we

generate new columns. Then, if the lower bound is higher than the incumbent we

prune the node, and if it not we call the volume algorithm, with 200 iterations. If the

maximum violation is more than 5% and we have not generated columns, we try to

generate columns, check the new lower bound against the incumbent and call the volume

algorithm again, if needed. If the volume algorithm identifies a feasible solution, we fix

the setup variables and solve the resulting extended network problem in the standard

(x, y) space. The algorithm terminates in the following situations: a) the time limit is

reached (we set 100 seconds for all runs) b) the algorithm backtracks to the root node

For the small instances (i.e., 6-15), the algorithm backtracks to the root node, while

for the larger ones the time limit is reached.
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3

A Horizon Decomposition

approach for the Capacity

Constrained Lot Size Problem

with Setup Times

We introduce the Horizon Decomposition in the context of Dantzig-Wolfe Decomposi-

tion, and apply it to the Capacity Constrained Lot Size Problem with Setup Times. We

partition the problem horizon in contiguous overlapping intervals and create subprob-

lems identical to the original problem, but of smaller size. The user has the flexibility to

regulate the size of the master problem and the subproblem via two scalar parameters.

We investigate empirically which parameter configurations are efficient, and assess their

robustness at different problem classes. Our branch-and-price algorithm outperforms

state-of-the-art branch-and-cut solvers when tested to a new dataset of challenging

instances that we generated. We show how our methodology can be generalized to

mathematical programs with generic constraint structure. Finally, we benchmark hori-

zon decomposition with the period decomposition approach described in chapter 2.

3.1 Introduction

Since the seminal work of Dantzig and Wolfe (1960), Dantzig–Wolfe Decomposition

has been applied successfully to solving Linear, Integer and Mixed Integer Linear Pro-
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gramming problems and a variety of applications. Gilmore and Gomory (1963) were

the first to implement a practical algorithm for the cutting stock problem and since

then problems of increasing complexity have been solved (Lübbecke and Desrosiers

2005). The implementation of the Dantzig–Wolfe Decomposition principle involves the

recognition of a part of the constraint matrix that has block diagonal structure, where

each block is associated with a subset of variables. The variables that appear in each

block should not appear in other blocks and if so, the corresponding constraints are

treated as “complicated”. This explains why most research and practical applications

are usually problem-specific. In addition, although for certain large-scale problems

branch-and-price algorithms may have superior performance against branch-and-cut

software, the range of applications is limited by the block diagonal structure that is in

place, and by how exploitable this structure is. The competitive advantage of Dantzig–

Wolfe reformulations stems from exploiting these substructures to obtain an improved

dual bound. This occurs in cases where the subproblem does not have the integrality

property (Geoffrion 1974), which means that its linear relaxation does not have all

integral extreme points. The backbone of the most successful applications is usually a

specialized algorithm that solves the subproblem efficiently.

One of the main contributions of this paper is to show that any generic Mixed

Integer Linear Program (MIP) can be reformulated in such a way that it is amenable

to Dantzig–Wolfe Decomposition. A distinct characteristic of our approach is that we

can regulate the size of the master problem and the subproblem independently, by

introducing two scalar parameters. This flexibility suggests that one can experiment

with alternative decompositions and address the trade-off between subproblem diffi-

culty and dual bound strength directly. We have performed extensive computational

experiments to analyze the efficiency of the horizon decomposition approach, using

capacitated lot sizing problems as a testbed. The results indicate that certain decom-

position configurations can tackle some particularly hard instances far more efficiently

than modern branch-and-cut solvers. We introduce the main idea in the context of the

Capacity Constrained Lot Size Problem with Setup Times (CLST) for several reasons.

First, CLST constitutes one of the simplest but yet most challenging problem struc-

tures. Trigeiro, Thomas and McClain (1989) introduced the problem and constructed a

dataset of 540 instances, the hardest of which remained unsolvable until the last decade.

Although today all instances can be solved within a few seconds, several researchers
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(Araujo et al. 2011, Müller, Spoorendok and Pisinger 2012, Süral et al. 2009) have

constructed instances with long horizons, tight capacity constraints or without setup

costs which remain intractable. Second, the multi-period nature of lot sizing prob-

lems and the complicating structure of the capacity constraints provide an excellent

ground to demonstrate the horizon decomposition principle. Based upon this setting,

the generalization of our approach comes naturally. Finally, CLST is well-studied in

the literature and therefore we can benchmark the efficiency of our approach against

other techniques, such as valid inequalities, extended formulations and alternative de-

composition schemes. In addition, in some special cases it is possible to establish which

approach gives the best bound or draw correspondences across different methodologies.

The principal aim of this work is to illustrate that the application of horizon de-

composition to the CLST has at least two important benefits. First, one can ex-

ploit the technology of modern solvers in solving subproblems of manipulable size and

strength. Since the subproblem size is controlled independently from the size of the

master problem, it is possible to find a balance between dual bound quality and sub-

problem tractability. Second, our computational experiments show that in practice the

method shows excellent behavior in perhaps the most challenging class of problems,

namely, instances with low ratio of items over periods and tight capacity constraints.

The remainder of this paper is organized as follows. Section 2 gives a brief literature

review on column generation methodologies and on CLST-specific research. Section 3

introduces the problem formulation. Section 4 applies the horizon decomposition. A

comparison and correspondences with other lower bounds is demonstrated. Section 5

describes a branch-and-price algorithm that uses the horizon decomposition. Section

6 presents computational experiments and section 7 describes how the approach is

generalized to generic MIPs. Finally, section 8 concludes the paper with suggestions

for future work.

3.2 Literature Review

Column generation was employed by Gilmore and Gomory (1963) to solve the Dantzig-

Wolfe reformulation of the cutting stock problem. Since then, many authors have used

it either as a stand-alone technique to solve large linear programs (Elhallaoui et al.

2005), or as a bounding technique within branch-and-bound algorithms (Degraeve and
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Jans 2007), a scheme also known as branch-and-price. From a computational per-

spective, the most recent advances in branch-and-price algorithms include attempts to

combine column generation with cutting planes. In this line, Desauliers (2010) solves

the split-delivery vehicle routing problem with time windows by using an efficient label-

setting algorithm to solve the resource-constrained shortest path subproblems alongside

a cutting plane routine that strengthens the lower bound of column generation. The

efficiency of his approach is improved by branching on variables that lead to a bal-

anced branch-and-bound tree. On the theoretical side, there are works that examine

the efficient convergence of column generation and the branching rules used in branch-

and-price. Ben Amor et al. (2006) show that reducing the feasible dual space of the

master problem leads to faster convergence. Degraeve and Jans (2007) demonstrate

how the Dantzig-Wolfe decomposition principle is applied to MIPs with an application

to the CLST and Vanderbeck and Savelsbergh (2006) develop a theoretical frame-

work. Vanderbeck (2011) explores the issue of branching in branch-and-price when the

subproblems are identical, while Villeneuve et al. (2005) construct a compact formula-

tion and use the corresponding variables for branching. The reviews of Lübbecke and

Desrosiers (2005) and Barnhart et al. (1998) describe plenty of applications and discuss

in detail technical issues of column generation and branch-and-price respectively.

Lagrange relaxation is a related reformulation that, in theory, gives the same dual

bound as column generation. Fisher (1981) gives an overview of Lagrange relaxation

and describes early applications. The strong dual bound and the relative speed of La-

grange relaxation have led to the development of efficient exact and heuristic methods.

Holmberg and Yuan (2000) develop a Lagrange-based heuristic to solve the capacitated

network design problem. They use an efficient specialized algorithm to solve the sub-

problems and their approach gives competitive gaps in large instances, while they are

able to solve medium instances to optimality. Likewise, Caprara et al. (1999) present

an efficient heuristic for large-scale set covering problems coming from crew scheduling

in railways.

Lagrangian decomposition is a generalization of Lagrange relaxation that yields

stronger lower bounds. Guignard and Kim (1987) were the first to introduce it in the

context of MIPs that have two sets of constraints. The main idea is to introduce “copy”

constraints for the original variables and dualize them in the objective function. Our

implementation can be seen as a case of Lagrange decomposition since we also introduce
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copies of variables and explore the convex hull of the corresponding subproblems. It is

more advantageous however in that it is instance-specific, it avoids unnecessary variable

copying and performs a systematic reformulation that creates a decomposable structure.

The literature in capacity constrained lot size problems is vast. In their seminal

paper, Wagner and Whitin (1958) introduced the single-item uncapacitated version of

the problem and solved it using a dynamic programming recursion. Trigeiro, Thomas

and McClain (1989) were the first to examine a multi-item problem with capacity

constraints and setup times. They showed experimentally that setup times make the

problem harder and developed a Lagrange-based smoothing heuristic whose perfor-

mance remains competitive up to date. An earlier result by Kleindorfer and Newson

(1975) proves that the problem is strongly NP-hard. To obtain an improved lower

bound, Eppen and Martin (1987) reformulated the problem with shortest-path vari-

ables that describe the convex hull of the single-item uncapacitated polyhedron. Sim-

ilarly, Barany, van Roy and Wolsey (1984) describe the same polyhedron using valid

inequalities. In more recent advancements, Degraeve and Jans (2007) develop an ex-

act branch-and-price algorithm using a per-item decomposition and Jans and Degraeve

(2004) describe a decomposition of the shortest path formulation that leads to an im-

proved lower bound. The most recent work that applies Dantzig-Wolfe decomposition

to the CLST is by Pimentel et al. (2009). They develop three alternative decom-

positions and branch-and-price algorithms and compare their performance. Finally,

another stream of research focuses on finding good feasible solutions with heuristics.

Süral et al. (2009) develop a Lagrange-based heuristic for a variant of the CLST with-

out setup costs. They used the subproblem solutions to construct incumbents during

the subgradient optimization process and obtained small integrality gaps over a set

of hard instances. Similarly, Müller, Spoorendok and Pisinger (2012) use large scale

neighborhood search combined with strong formulations and report results on new hard

instances. Finally, Akartunali et al. (2013) use column generation to generate cuts from

a 2-period relaxation of CLST. The authors use several distance functions, by which

they are able to generate valid inequalities that cut-off the linear programming relax-

ation solution, when this solution has a positive distance from a predefined 2-period

lot sizing set.

Our work has contributions in both the Dantzig-Wolfe decomposition and lot sizing

literatures. First, we show how Dantzig-Wolfe decomposition can be applied in a novel
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way, such that MIPs can be decomposed in subproblems identical to the original, but

of smaller size. Second, we demonstrate the applicability of this idea in lot-sizing and

investigate under which conditions it is advantageous against competitive methodolo-

gies. Third, we show experimentally that a class of CLST instances, namely those with

tight capacity constraints and small ratio of items over periods, are time consuming to

solve with modern branch-and-cut software. We develop a branch-and-price approach

based on horizon decomposition and demonstrate its efficiency against competitive ap-

proaches. Finally, we show the extension of our idea to generic MIPs.

3.3 Problem Description and Formulation

3.3.1 Original Formulation

The capacity constrained lot size problem with setup times generalizes the basic single-

item uncapacitated lot size problem studied by Wagner and Whitin (1958). Specifically,

it models a multi-item setting with one capacity constraint per period and item-specific

setup times and production times. It can be used in production planning for determin-

ing the production and setup decisions of an MRP system by taking into consideration

one bottleneck resource (Pochet and Wolsey 2006). We formulate the problem using

the following notation:

Sets

I = {1, ..., n}: Set of items, indexed by i.

T = {1, ...,m}: Set of periods, indexed by t.

Parameters

dit: demand of item i in period t, ∀i ∈ I, ∀t ∈ T .

sditk: sum of demand of item i from period t till period k, ∀i ∈ I, ∀t, k ∈ T : t ≤ k.

hcit: cost of holding inventory for item i from period t− 1 to period t, ∀i ∈ I, ∀t ∈ T .

scit: setup cost of item i in period t, ∀i ∈ I, ∀t ∈ T .

vcit: production cost of item i in period t, ∀i ∈ I, ∀t ∈ T .

stit: setup time of item i in period t, ∀i ∈ I, ∀t ∈ T .

vtit: variable production time of item i in period t, ∀i ∈ I, ∀t ∈ T .

Mit: big-M quantity, defined as Mit = min{sditm, capt−stitvtit
}, ∀i ∈ I, ∀t ∈ T .
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capt: time capacity in period t, ∀t ∈ T .

Decision Variables

xit: production quantity of item i in period t, ∀i ∈ I, ∀t ∈ T .

sit: inventory quantity of item i at the beginning of period t, ∀i ∈ I, ∀t ∈ T ∪{m+ 1}.
yit: =1 if setup for item i in period t, =0 otherwise, ∀i ∈ I, ∀t ∈ T .

The mathematical formulation of CLST is then as follows:

min
∑
i∈I

∑
t∈T

scityit +
∑
i∈I

∑
t∈T

vcitxit +
∑
i∈I

∑
t∈T

hcitsit (A.1)

s.t. sit + xit = dit + si,t+1 ∀i ∈ I, ∀t ∈ T (A.2)

xit ≤Mityit ∀i ∈ I, ∀t ∈ T (A.3)∑
i∈I

stityit +
∑
i∈I

vtitxit ≤ capt ∀t ∈ T (A.4)

xit, sit ≥ 0, si,m+1 = 0, yit ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (A.5)

The objective function (A.1) minimizes the total cost, that consists of the setup cost, the

production cost and the inventory holding cost. To model problems that are infeasible

without initial inventory, we allow for initial inventory (Vanderbeck 1998). Constraints

(A.2) indicate that demand in each period is covered either by initial inventory or by

production, and that the remaining quantity is transferred to the next period. (A.3)

links the setup and production decisions and (A.4) describes the per-period capacity

constraints. Finally, constraints (A.5) pose non-negativity and integrality restrictions

to the problem variables. We use vCLST to denote the optimal objective value of (A.1)–

(A.5) and v̄CLST to denote its optimal LP relaxation objective value. The next para-

graph describes a family of reformulations that allow a generic decomposition scheme

for the CLST.

3.3.2 Horizon Reformulation

The fundamental idea of horizon decomposition is to reformulate the problem by using

a desired horizon cover. A horizon cover P is a set whose elements are horizons H

of the form H = {m0,m0 + 1, . . . ,m1} ⊆ T , with m1 > m0. Therefore, each horizon

u ∈ P consists of a certain number of periods, starting at m0(u) and ending at m1(u),
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and the horizon cover is the union of possibly overlapping horizons. To characterize

the horizon cover set, we introduce the following notation:

U := {1, . . . , p}: Index set of P, with p := |P|. Also, we let Ū := U\{p}.
Hu := {m0(u),m0(u) + 1, . . . ,m1(u)} where m0(u),m1(u) ∈ T for all u ∈ U. We also

define m1(p) = m+ 1, and H0 = Hp+1 = ∅.
H̄u := Hu\{m1(u)}, for all u ∈ U .

Lu := Hu ∩Hu+1 and L̄u := Lu\{m1(u)}, for all u ∈ U .

u
H

1+u
H

u
L

)(
0

um )(1 um )1(
1

+um)1(0 +um

u
H

u
L

Figure 3.1: Notation used in horizon covering. Each horizontal line segment indicates a

discrete time period t ∈ T .

Figure 3.1 demonstrates the notation associated with each horizon. For convenience,

we assume throughout the paper that whenever a set that defines a constraint is empty,

then the constraint is not defined. Using the above notation, the horizon cover is

written as P := {H1, . . . ,Hp}. Note that some periods can be common in two or more

horizons. Finally, we assume that two contiguous horizons Hu and Hu+1 have at least

one common period, which implies that m1(u) ∈ Hu+1, for all u ∈ Ū .

Next, we define production, setup and inventory variables for each horizon :

xuit: production quantity of item i in period t in horizon Hu, ∀i ∈ I, ∀t ∈ H̄u, ∀u ∈ U .

suit: starting inventory quantity of item i in period t in horizon Hu, ∀i ∈ I, ∀t ∈ Hu,∀u ∈
U .

yuit: =1 if setup for item i in period t in horizon Hu, =0 otherwise, ∀i ∈ I, ∀t ∈ H̄u, ∀u ∈
U .

In addition, let αtu = 1, if t ∈ Hu\Lu−1,= 0 otherwise, for all t ∈ Hu, u ∈ U . Using

the above notation, problem (A.1)–(A.5) can be reformulated as follows:
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min
∑
i∈I

∑
u∈U

∑
t∈H̄u

αtu(scity
u
it + vcitx

u
it) +

∑
i∈I

∑
u∈U

∑
t∈Hu

αtuhcits
u
it (A.6)

s.t. suit + xuit = dit + sui,t+1 ∀i ∈ I, ∀t ∈ H̄u,∀u ∈ U (A.7)

xuit ≤Mity
u
it ∀i ∈ I, ∀t ∈ H̄u, ∀u ∈ U (A.8)∑

i∈I
stity

u
it +

∑
i∈I

vtitx
u
it ≤ capt ∀t ∈ H̄u,∀u ∈ U (A.9)

suit = su+1
it ∀i ∈ I, ∀t ∈ Lu, ∀u ∈ Ū (A.10)

xuit = xu+1
it ∀i ∈ I, ∀t ∈ L̄u,∀u ∈ Ū (A.11)

yuit = yu+1
it ∀i ∈ I, ∀t ∈ L̄u, ∀u ∈ Ū (A.12)

xuit ≥ 0, yuit ∈ {0, 1} ∀i ∈ I, ∀t ∈ H̄u,∀u ∈ U (A.13)

suit ≥ 0 ∀i ∈ I, ∀t ∈ Hu,∀u ∈ U (A.14)

Constraints (A.7) − (A.9) and (A.13) − (A.14) define a CLST over horizon H̄u.

This implies that the corresponding inventory variables suit are defined over Hu =

H̄u ∪ {m1(u)}. Therefore, period m1(u) is used to associate the ending inventory

variables of each CLST defined over H̄u, exactly as period m+1 is used to set the ending

inventories to zero in formulation (A.1)–(A.5). Constraints (A.10) − (A.12) impose

that variables indexing the same period in two horizons should attain the same values.

Finally, objective function (A.6) considers the setup, inventory and production costs of

all horizons. Parameter αtu is an indicator used for the appropriate allocation of costs:

if a variable is defined in two horizons, then its cost is allocated to the earliest horizon.

Like in Lagrange decomposition (Guignard and Kim 1987), it is straightforward to see

that the variables indexed within horizon overlaps can be allocated any fraction of the

original cost, without loss of generality.

Note that a benefit of the above reformulation is its flexibility. By selecting the

parameters m0(u) and m1(u) for each u ∈ U , one can regulate the number of subprob-

lems, subproblem length and periods of overlap. Moreover, the formulation remains

valid when no overlap between horizons exists, i.e., when H̄u ∩ H̄u+1 = ∅. In this case

L̄u = ∅, and there are no linking constraints for the production and setup variables.

Finally, the original formulation (A.1) − (A.5) can be considered as a special case of

(A.6)−(A.14) where the horizon cover is a singleton with m0 = 1 and m1 = m+1. The

next section describes how the above structure is used in Dantzig-Wolfe reformulation.
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3.4 Horizon Decomposition

3.4.1 Initial Formulation

Formulation (A.6)–(A.14) decomposes per horizon, with the exclusion of constraints

(A.10–A.12). Let us note with (f̄u) the subset of a block of constraints (f) that refer

to a specific horizon u ∈ U . Also let (x, y, s)u = ((xuit, y
u
it) : i ∈ I, t ∈ H̄u, s

u
it : i ∈

I, t ∈ Hu). We then define the single horizon polyhedron as Wu := {(x, y, s)u|(Ā.7)u −
(Ā.9)u, ( ¯A.13)u − ( ¯A.14)u, s

u
im1(u) ≤ sdim1(u),m∀i ∈ I} and let Eu be the set of extreme

points of conv(Wu), for each u ∈ U . Note that we bound the ending inventory variables,

suim1(u), with the remaining item demand, sdim1(u),m. This way, the subproblem space

is bounded and no extreme rays are needed for its description. Each extreme point

e = (x̄, ȳ, s̄)ue ∈ Eu is associated with the following elements:

cue: total cost of production, setup and inventory of horizon Hu according to pro-

duction plan e, =∑
i∈I
∑

t∈H̄u αtu(scitȳ
u
ite + vcitx̄

u
ite) +

∑
i∈I
∑

t∈Hs αtuhcits̄
u
ite

zue: fraction of production plan e that is used for actual production.

The Dantzig-Wolfe reformulation is then as follows.

[D̃W] min
∑
u∈U

∑
e∈Eu

cuezue (A.15)

s.t.
∑
e∈Eu

s̄uitezue =
∑

e∈Eu+1

s̄u+1
ite zu+1,e∀i ∈ I, ∀t ∈ Lu, ∀u ∈ U\{p} (A.16)

∑
e∈Eu

x̄uitezue =
∑

e∈Eu+1

x̄u+1
ite zu+1,e∀i ∈ I, ∀t ∈ L̄u,∀u ∈ U\{p} (A.17)

∑
e∈Eu

ȳuitezue =
∑

e∈Eu+1

ȳu+1
ite zu+1,e∀i ∈ I, ∀t ∈ L̄u, ∀u ∈ U\{p} (A.18)

∑
e∈Eu

zue = 1 ∀u ∈ U (A.19)

sit =
∑
e∈Eu

s̄uitezue ∀i ∈ I, ∀(t, u) ∈ Hu × U : αtu = 1 (A.20)

xit =
∑
e∈Eu

x̄uitezue ∀i ∈ I, ∀(t, u) ∈ H̄u × U : αtu = 1 (A.21)

yit =
∑
e∈Eu

ȳuitezue ∀i ∈ I, ∀(t, u) ∈ H̄u × U : αtu = 1 (A.22)

zue ≥ 0 ∀e ∈ Eu, ∀u ∈ U (A.23)
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sit ≥ 0 ∀i ∈ I, t ∈ T (A.24)

yit ∈ {0, 1}, xit ≥ 0 ∀i ∈ I, t ∈ T (A.25)

Formulation [D̃W] is equivalent to the original formulation, in the sense that they

both attain the same optimal solution. However, the optimal linear programming

relaxation objective of [D̃W] is always at least as large as that of the original formu-

lation, because the subproblems do not have the integrality property (Geoffrion 1974).

Constraints (A.16)–(A.18) correspond to (A.10)–(A.12) and denote that in any period

common to two horizons, the production, setup and inventory quantities should attain

the same value in both horizons. Constraints (A.19) together with the non-negativity

constraints (A.23) impose that each decision variable is a fraction of an extreme pro-

duction plan. Equations (A.20)–(A.22) define the variables of the original formulation

as convex combinations of extreme production plans. Although the number of variables

and constraints is large, there are certain reductions that can be performed, which are

described in the next section.

3.4.2 Model Reductions

[D̃W] is a valid reformulation of the CLST. Without loss of generality, constraints

(A.17) and (A.20)− (A.21) can be eliminated. The elimination of the later is straight-

forward as they only map the solution to the original variable space. To see that

(A.17) is redundant, note that x̄uite = dit + s̄ui,t+1,e − s̄uite for each e ∈ Eu. This implies

that
∑

e∈Eu x̄
u
itezue = dit +

∑
e∈Eu s̄

u
i,t+1,ezue −

∑
e∈Es s̄

s
itezue = dit +

∑
e∈Eu+1

(s̄s+1
i,t+1,e −

s̄u+1
ite )zu+1,e =

∑
e∈Eu+1

x̄u+1
ite zu+1,e. We have shown the following result.

Corollary Constraints
∑

e∈Eu+1
x̄u+1
ite zu+1,e =

∑
e∈Eu x̄

u
itezue∀i ∈ I, ∀t ∈ L̄u,∀u ∈

U\{p} are redundant.

We denote [DW] the model resulting from (A.15)–(A.25) with the exclusion of

redundant constraints.

Note that one cannot eliminate the setup definition constraints and impose the in-

tegrality restrictions on the extreme production plan variables zse (Degraeve and Jans

2007, Vanderbeck and Savelsbergh 2006). A correct reformulation would define, for each

extreme point, a binary variable that describes the setup configurations and a contin-

uous variable with the associated production decisions. However, the usability of this

56



3.4 Horizon Decomposition

reformulation is restricted, because the resulting branch-and-bound tree is unbalanced

(Vanderbeck 2011). In our implementation we branch on the original setup variables

by fixing them at the subproblems and by removing the generated columns that do not

adhere to the node branching decisions, therefore using (A.22) only implicitly.

3.4.3 Strength of the Lower Bound

In this part we investigate the strength of the lower bound obtained by the horizon

decomposition. Since an explicit description of the convex hull of CLST is not known,

we can compare the lower bound strength with lower bounds obtained by other ap-

proaches. The fact that the subproblems do not have the integrality property implies

that the lower bound given by [DW], v̄DW , is at least as good as that obtained by the

LP relaxation of (A.1)–(A.5), v̄CLST . Hence, v̄CLST ≤ v̄DW . More interesting is the

comparison with the bound obtained when the (l, S) inequalities of Barany, van Roy

and Wolsey (1984) are appended to the original formulation (A.1)–(A.5). If we denote

this bound by v̄lS , we can state the following proposition.

Proposition 3.1 The lower bound v̄DW does not dominate v̄lS or vice versa.

Proof Consider an instance with capt ≥
∑

i∈I(sditm + stit) for each t ∈ T . This

condition makes the capacity constraints redundant and the problem decomposes in

a series of single–item uncapacitated problems. Since the (l, S) inequalities describe

the convex hull of the single–item uncapacitated problems, v̄lS ≥ v̄DW . Moreover,

this inequality can be strict. To see this, consider without loss of generality a horizon

cover with two subproblems, i.e., S = {1, 2} and let L be the index set of overlapping

periods. Given this cover, we can construct an instance for which the inequality sik +∑
t∈{k,...,l}\S xit +

∑
t∈S sditlyit ≥ sdikl is binding for some k ∈ H1\L, l ∈ H2\L, which

implies v̄lS > v̄DW . On the other hand, consider a single–item instance with binding

capacity constraints, and sk = 0 for some period k at an optimal solution. A horizon

decomposition with H1 = {1, . . . , k − 1} and H2 = {k, . . . ,m} will deliver an optimal

solution of the original problem, so v̄DW = vCLST . However, v̄lS ≤ vCLST because the

(l, S) inequalities do not suffice to describe the convex hull of the capacitated problem.

�.
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We can use similar arguments to show that there is no strict dominance between the

horizon decomposition and the decompositions considered by Jans and Degraeve (2004)

and Araujo et al. (2011). Note that the lower bound of the latter is at least as strong at

v̄lS , since they apply decomposition to the network reformulation of Eppen and Martin

(1987), which describes the same convex polyhedron as the (l, S) inequalities. Finally,

v̄DW is at least as strong as the lower bound obtained by the per period decomposition

of Pimentel et al. (2009), since their per period decomposition formulation is a special

case of a horizon decomposition, where each horizon defines a single-period subproblem

for each period.

3.5 A Branch-and-Price Algorithm

Although the relaxation of [DW] can give a strong lower bound in most problems, the

setup variables, defined by (A.22), can be fractional, and therefore a branch-and-price

approach is necessary. We first employ a simple heuristic that constructs good quality

feasible solutions. Then, we do column generation to find a lower bound for the MIP

optimal solution. Finally, we embed column generation in a branch-and-bound scheme,

thereby developing a branch-and-price algorithm. This section describes the most im-

portant components of our algorithm and outlines the most crucial implementation

decisions.

3.5.1 Initialization

The column generation procedure has finite convergence and gives a lower bound pro-

vided that the initial restricted master problem is feasible (Lübbecke and Desrosiers

2005). The most common approach to initialize the master problem is to introduce

columns with high cost that render it feasible. However, this might result in a large

number of iterations, thereby reducing computational efficiency (Vanderbeck 2005). To

tackle this issue, we employ the lot elimination heuristic (LEH) utilized by Degraeve

and Jans (2007) on top of introducing high cost columns. LEH starts by fixing all

setup variables to 1 and progressively eliminates them using some priority rules. LEH

terminates when all setup variables are eliminated. Every time LEH finds an improved

solution, we add its components as columns to the restricted master problem. These

columns, in general, do not correspond to subproblem extreme points, but provide a
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good family of points to warm-start the column generation process. In addition, LEH

outputs an initial upper bound which is used in later stages of column generation.

3.5.2 Hybrid Column Generation and Stabilization

Subproblem Formulation. After initializing the restricted master problem, we start

generating columns. Specifically, from each subproblem we add the column that has

the minimum reduced cost. The problem of finding the minimum reduced cost problem

can be formulated as a CLST defined over each subproblem horizon. We denote by

usitu, uyitu and dcu the dual values of (A.16), (A.18) and (A.19) respectively, and define

the indicator variable

δtu =


1 if t ∈ Lu−1

−1 if t ∈ Lu
0 else

The subproblem is then formulated as follows:

[SPu] min vu =
∑
i∈I

∑
t∈H̄u

(αtuscit + δtuuyitu)yuit+∑
i∈I

∑
t∈H̄u

αtuvcitx
u
it +

∑
i∈I

∑
t∈Hu

(αtuhcit + δtuusitu)suit − dcu (A.26)

s.t. suit + xuit = dit + sui,t+1 ∀i ∈ I, ∀t ∈ H̄u (A.27)

xuit ≤Mity
u
it ∀i ∈ I, ∀t ∈ H̄u (A.28)∑

i∈I
stity

u
it +

∑
i∈I

vtitx
u
it ≤ capt ∀t ∈ H̄u (A.29)

xuit, s
u
it ≥ 0, yuit ∈ {0, 1} ∀i ∈ I, ∀t ∈ H̄u (A.30)

0 ≤ sui,m1(u) ≤ sdim1(u),m ∀i ∈ I (A.31)

Although [SPu] is a CLST itself, it has smaller dimension than the original CLST

(A.1)–(A.5) and it is usually easier to solve efficiently. Despite the fact that a smaller

problem dimension does not necessarily imply increased efficiency in general, there

are two arguments that justify this claim in the present context. First, given that

the problem structure is the same, instances of small dimension will, on average, be

solved to optimality faster than larger ones. Second, an early result by Manne (1958)

implies that when the number of items is large compared to the number of periods, the
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single–item uncapacitated lot sizing convex hull relaxation of CLST gives a lower bound

that approaches the integer optimal solution value. The latter convex hull is described

by the (l, S) inequalities of Barany, van Roy and Wolsey (1984). Since most modern

solvers add the violated (l, S) inequalities as cutting planes (Belvaux and Wolsey 2001),

problems of short periods have tight LP relaxations and can be solved efficiently. These

observations are confirmed by our computational experiments, where subproblems were

solved efficiently by a modern MIP solver.

Column Generation. When the optimal objective function value vu is negative, we

append the corresponding optimal solution vector as a column to the restricted master

problem [DWR]. Next, we resolve [DWR] and use the resulting set of optimal dual

values to resolve subproblems [SPu]. This procedure terminates when no columns price

out, i.e. when
∑

u∈U min(vs, 0) = 0. It is worth noticing that a valid lower bound on

the original problem objective value is at hand throughout column generation. If vrRMP

is the optimal objective value of the restricted master problem at iteration r, then a

valid lower bound is vrLB = vrRMP −
∑

u∈U min(vs, 0).

Stabilization and Algorithmic refinements. It has been observed by many researchers

that the primal solutions of the restricted master problem are usually degenerate (Du

Merle et al. 1999, Lübbecke and Desrosiers 2005, Vanderbeck 2005). This degeneracy

harms the efficiency of column generation: it implies that the dual restricted master

problem has multiple optimal solutions and therefore the dual optimal solution at

hand might not be an accurate representation of the optimal dual space. If a dual

optimal solution of bad quality is used to price out columns in the subproblems, then

the generated columns may not be used in the optimal solution of the subsequent

restricted master problem. In this case, column generation takes a degenerate step.

This phenomenon has severe impact on the algorithmic performance, and it is usually

magnified as the final optimal solution is approached, thereby called the tailing-off

effect (Vanderbeck 2005).

We employ several techniques to stabilize column generation. During early itera-

tions, we use a hybrid column generation–Lagrange relaxation scheme, similar to those

described in Degraeve and Peeters (2003) and Barahona and Jensen (1998) and in

chapter 2. More specifically, after using the dual values of the restricted master prob-

lem to price out new columns, we do not add the new columns to the master problem

immediately but generate a new set of dual values via subgradient optimization (Fisher
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1981). This updating process is deemed to lead to better quality dual prices, and it

has the added benefit that no LP solution is required. It is called whenever column

generation takes a degenerate step, i.e., when the optimal master problem objective

remains the same in two consecutive iterations. We also adopt a two-phase approach,

using both approximate and exact solutions. During phase I we restrict the dual space

of the restricted master problem [DW] by introducing artificial variables on the primal

space, as described in Du Merle et al. (1999). This technique reduces the number of

degenerate iterations via reducing the feasible dual space. In addition, during the early

stages of column generation the aim is to generate columns that describe progressively

more accurate inner representations of the primal space of [DW]. Towards this end,

we solve the subproblems to feasibility, and we also append all feasible solutions that

price out. Throughout phase I, valid lower bounds are calculated using the subproblem

lower bounds: vrLB = vrRMP −
∑

u∈U min(v̄u, 0) at iteration r, where v̄u is a lower bound

of [SPu]. When |vrRMP − vrLB| ≤ ε for some given ε > 0, we switch to phase II, where

we apply standard column generation.

3.5.3 Branch-and-Price Strategies

We branch on the original setup variables using (A.18) implicitly. Specifically, we im-

pose the branching restrictions at the subproblem level, and remove existing columns

that do not adhere to the branching configuration of each node. We branch on the ear-

liest fractional variable, which is an efficient selection rule for most lot-sizing problems

(Van Vyve and Wolsey 2004). Finally, we adopt a best-first approach, i.e., we explore

the node with the weakest lower bound first. This strategy is beneficial when the time

spent at each node is large, because it minimizes the number of nodes explored in

the branch-and-bound tree. In our application, we select horizon decompositions that

deliver very strong lower bounds but the solution time of each node is rather large.

Therefore, the combination of best-first search and tight lower bounds constitutes an

efficient enumeration procedure.

The algorithm consists of three main parts: branching, column generation and

pruning. Whenever a node lower bound is lower than the incumbent upper bound, vUB,

we branch and apply column generation to its children. If during column generation we

calculate a lower bound greater than vUB, we prune the node and delete the generated

columns. This is in contrast with columns that do not adhere to branching decisions:
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we keep the latter in a pool and add them back when solving nodes in which they are

feasible.

3.5.4 Heuristic Solutions

After employing the LEH heuristic that gives a set of progressively better feasible

solutions, we exploit the root node optimal solution to construct heuristic solutions

using the concept of relaxation induced neighborhoods RINS of Danna et al. (2005).

RINS is a versatile procedure that can be embedded easily in our scheme, and when the

lower bound is strong, it tends to provide good quality feasible solutions. Specifically,

we formulate the problem on the original space (A.1)–(A.5), select some 0.5 < l < 1

and set yit = 1 if ȳit > l, yit = 0 if ȳit < 1 − l and yit ∈ {0, 1} if 1 − l ≤ ȳit ≤ l,

where (ȳit)i∈I,t∈T are the fractional setup variables obtained by column generation. We

search aggressively for a feasible solution for 100 nodes and if we find one we update the

incumbent. This is an efficient strategy, but it can be time-consuming if it is applied

at every node. To account for this, we use it every 10 nodes, and employ a simple

rounding heuristic at every node. The latter rounds the fractional setup variables

to the closest integer and solves the resulting extended network flow problem in the

continuous variables. It was observed that a strong lower bound at the root node usually

leads to a high quality incumbent solution. This is in line with the theory developed

in (Larsson and Patriksson 2006) that argues that heuristic solutions constructed by

near-optimal Lagrange relaxations are also near-optimal.

3.6 Computational Experiments

The computational section aims to shed light on four aspects. First, it is necessary to

investigate the trade-off between solution quality and CPU time by utilizing various

combinations of subproblem sizes and horizon overlaps. To this end, we perform a full

factorial experiment that delivers empirical insights on which configurations are efficient

for which classes of problems. Second, it is interesting to assess a heuristic implemen-

tation of horizon decomposition against existing heuristic approaches. We find that a

suitable horizon decomposition gives better lower bounds in almost all cases, while in

about half of them also delivers equal or better upper bounds. Third, we benchmark an

implementation of horizon decomposition against the period decomposition developed
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in Chapter 2 and other competitive approaches. Since the Horizon decomposition is an

exact rather than a heuristic implementation, we employ a heuristic variant to com-

pare with the period decomposition, which is of heuristic nature. Finally, we construct

a new hard dataset and benchmark our implementation against the branch and cut

solver CPLEX 12.2. All formulations were coded in C++ and the mixed integer and

linear programs were solved with CPLEX 12.2. We use a common subproblem size and

horizon overlap, i.e., Hu = H and Lu = L for all u ∈ U with only possible exception

the last subproblem, which consists of the remaining periods till the end of the horizon.

Experiments were run on a Quad Core Intel i7 2.70GHz with 8.00 GB RAM.

3.6.1 Subproblem Length and Overlap

The usefulness of a horizon decomposition depends heavily on the subproblem size

and on the horizon overlap. Long horizon subproblems have the potential to lead to

an improved lower bound, but it may be time consuming to solve these to optimality.

Likewise, large horizon overlaps can also lead to improved lower bounds, but render the

master problems degenerate and amplify the tailing-off effect (Vanderbeck 2005). This

section describes the computational experiments we performed to assess which config-

urations of horizon decompositions are efficient in solving challenging CLST problems.

The criterion used to assess efficiency is the integrality gap, while time efficiency is

measured by average CPU time.

Data Instances. We generated new instances to test our approach. Since the main

focus of the paper is problems with few items and long horizons, we generated instances

with 2, 6 and 10 items and 15, 30 and 60 periods respectively. We used the problems

G30 and G30b from Trigeiro, Thomas and McClain (1989) which have 6 items and 15

periods as follows. First, we created instances with 30 and 60 periods by replicating the

demand of each item, and made the capacity constraints harder, so that the average lot

for lot capacity utilization was about 120%. Using this utilization level we generated

new instances with 2 and 10 items and 15, 30 and 60 periods. Two instances were

generated for problems with 15 periods and 4 instances for problems with 30 and

60 periods. This procedure led to the creation of a total of 30 new instances. In

addition, we generated 60 more instances with the same average lot for lot utilization

and uncorrelated item demands sampled from normal distributions with the same mean

and standard deviation. In total, 10 instances for each (item,period) combination were
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utilized. Problems with high capacity utilization are usually challenging to solve in

practice, and therefore constitute a good testbed for our approach.

Subproblem Length and Overlap. The first round of experiments aimed at identifying

the influence of subproblem length and horizon overlap on the integrality gap and on

CPU time. To this end, figures 3.2(a) and 3.2(b) show the average integrality gap,

calculated using the best upper bound found and the root node lower bound in all

trials for each instance, and the average CPU time respectively.
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Figure 3.2: Sensitivity analysis for subproblem size and overlap length. Each point

denotes the average measure obtained from 90 instances.

Some useful preliminary insights can be drawn from these figures. With respect to
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the integrality gaps, large subproblems lead to good quality solutions. However, more

periods of overlap do not necessarily lead to smaller integrality gaps. This happens

because a large number of overlapping periods renders the restricted master problems

very degenerate and degrades the algorithmic convergence, therefore column generation

may fail to terminate before the imposed time limit. In these cases, the obtained

intermediate lower bound can be weaker than that obtained with fewer periods of

overlap. The impact of subproblem size seems higher when no overlap exists, and is

minimal with three periods of overlap. Interestingly, one period of overlap leads to an

important reduction of integrality gaps, whereas a second period of overlap offers no

improvement within the given time limit. Therefore, it seems that one period of overlap

with a medium subproblem size, such as seven periods, constitutes a good configuration.

Considering CPU times, there is an evident interaction between subproblem size and

overlap length, which is revealed in configurations with two or three periods of overlap.

Specifically, larger overlaps and subproblems lead to higher CPU times in general, but

there are cases where small subproblems combined with large overlaps lead to poor

column generation convergence and thereby high CPU times. This is the case for five

period subproblems combined with two or three periods of overlap. On the one hand,

larger subproblems imply fewer linking constraints for a given overlap and therefore

better convergence, but on the other hand it may be time consuming to solve them to

optimality. This evidence, combined with the marginal gap increase from the inclusion

of a third period of overlap, suggests that a third overlapping period may not lead to

an efficient computation scheme.

On a more detailed analysis, it is useful to investigate which horizon configuration

achieves the best performance in which instances. Table 3.1 displays a breakdown of the

configurations that deliver the best performance in each instance category, characterized

by the number of items and the number of periods.

Table 3.1 shows a consistent pattern with respect to gap quality and CPU time

performance. Non-overlapping horizons induce better convergence behavior of column

generation and therefore lead to faster termination. In terms of integrality gaps it is

evident that subproblem horizons of 11 periods achieve the best performance in most

cases. It is worth noticing however, that as figure 3.2 demonstrates, the gain in gap

quality is often marginal. For instances with 10 items and 60 periods, configuration
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Table 3.1: Configurations (|H| , |L|) that give the best average Gap and CPU time for

each problem category.

|I| |T |=15 |T |=30 |T |=60

Gap CPU Time Gap CPU Time Gap CPU Time

2 (9,3) (11,0) (11,1) (3,0) (11,3) (7,0)

6 (11,2) (3,0) (11,3) (3,0) (11,3) (3,0)

10 (11,3) (3,0) (11,1) (3,0) (7,2) (3,0)

(11,3) induces slow convergence behavior and the average gap after 20,000 seconds of

CPU time is not better than that of (7,2).

We use insights from this preliminary experiment to select appropriate horizon

configurations in our subsequent experiments. In particular, when the number of items

is small, it is beneficial to utilize covers with relatively large subproblems and overlaps.

As the number of items increases it is preferable to select smaller subproblems and

overlaps. Finally, the horizon decomposition quality seems to be relatively insensitive

to the horizon length of the original problem. Specifically, it was observed that small

integrality gaps were obtained for problems with long horizons, with a relatively small

increase in CPU time.

3.6.2 A Heuristic Implementation

In some production planning environments it is useful to employ heuristics that find

solutions of guaranteed quality in a short amount of time. To this end, we utilize

our approach to tackle the instances introduced by Süral et al. (2009) and tested by

Müller, Spoorendok and Pisinger (2012). The later authors employ an adaptive large

scale neighborhood search heuristic (ALNS) which also injects feasible solutions to

CPLEX to obtain lower bounds, with a time limit of 300 seconds. They construct

problems without setup cost by concatenating horizons of some instances of Trigeiro,

Thomas and McClain (1989). Their problems have 12 and 24 items, and although

the aim of our approach is to tackle problems with large horizons and few items,

it is interesting to investigate its performance on datasets with many items. In our

implementation, we stop column generation after 300 or 600 seconds and apply the

relaxation induced neighborhood heuristic, which then runs for at most 50 seconds.

When column generation is not complete at the root node, we use the best lower
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bound obtained by Lagrange relaxation. During preliminary experimentation, it was

found that the insights of the previous section carry forward to the instances of Süral

et al. (2009). Configurations with no horizon overlaps converge faster, and tend to give

better lower bounds compared to similar configurations with overlap in the given time

limit. As our objective is to efficiently generate both lower and upper bounds, we do

not use overlapping horizons in our heuristic implementation. For instances with 30

periods, we use two subproblems of size 20 and 10 periods respectively. For all other

instances, we use a subproblem length of 30 periods, with only possible exception the

last subproblem which accommodates the remaining periods. Finally, following Süral

et al. (2009), we can distinguish the instances in those with unit holding cost, called

homogeneous and those with variable holding costs, called heterogeneous. Table 3.2

shows the integrality gaps obtained by ALNS and horizon decomposition after 300

(HD300) and 600 (HD600) seconds respectively.

Table 3.2: Comparison of Horizon Decomposition and ALNS (Müller, Spoorendok and Pisinger

2012).

Average integrality gap (%)

Homogeneous Heterogeneous Total

k |I| |T | ALNS HD300 HD600 ALNS HD300 HD600 ALNS HD300 HD600

5 12 30 10.01 1.91 0.59 24.7 11.01 7.49 17.36 6.46 4.04

4 24 30 6.11 8.10 5.75 6.11 7.07 5.56 6.11 7.59 5.66

5 12 45 10.87 5.32 4.29 23.01 12.18 10.45 16.94 8.75 7.37

4 24 45 7.00 7.87 5.23 7.02 6.20 5.94 7.01 7.04 5.58

5 12 60 20.78 13.79 12.64 23.20 20.15 18.16 21.99 16.97 15.40

5 24 60 22.26 24.35 22.87 26.63 29.60 24.67 24.44 26.97 23.77

5 12 90 22.57 17.27 13.15 25.67 20.96 19.87 24.12 19.12 16.51

5 24 90 25.99 25.56 20.39 29.21 31.81 29.02 27.60 28.69 24.70

Average (%) 16.18 13.29 10.88 21.02 17.94 15.64 18.60 15.61 13.6

p-value (%) 0.247 0.001 .526 0.162 0.01 0.000

k denotes the number of instances of size (|I| , |T |) that were utilised. Four instances

were excluded from the dataset because their lower and upper bounds reported by Müller,

Spoorendok and Pisinger (2012) were inconsistent.

The comparison suggests that HD delivers better integrality gaps, both for ho-

mogeneous and heterogeneous instances. Specifically, the paired t-tests indicate that
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the average gaps difference is significant at the 1% level. The performance of HD300 is

much better for 12 item instances, whereas it remains competitive for 24 item instances.

Gaps for the homogeneous 24-60 instances are sometimes better for ALNS because it is

able to find better feasible solutions. Detailed analysis reveals that HD300 found a bet-

ter lower bound in 32/38 homogeneous and 35/38 heterogeneous instances. On upper

bounds, HD is competitive, since in 18/38 and 20/38 homogeneous and heterogeneous

instances the upper bound is at least as good as that of ALNS. Overall, the integral-

ity gap for HD300 was better in 51/76 instances. It is notable that the HD heuristic

improves its performance when the time limit is extended to 600 seconds. Specifically,

HD600 found a better lower bound in 72/76 instances (37/38 homogeneous) and a

better or equal upper bound in 61/78 instances (24/38 homogeneous).

It is of interest to investigate how the number of items and the horizon length

influence the performance of both heuristics. Figure 3.3 shows the integrality gap of

ALNS and HD300 in various problem configurations. A first observation is that both

algorithms show similar behavior, but HD is much better in 12 item instances, while

it remains competitive in 24 item instances. In addition, it is evident that problems

with longer horizons are much harder, regardless of the number of items. Interestingly,

problems with 24 items have smaller gaps than problems with 12 items with short

horizons, but the opposite is true for long horizons. Also, 12 item problems scale

better with longer horizons, in the sense that their gaps increase linearly, whereas there

is a quadratic increase for 24 item problems. Therefore, a generic conclusion is that

extending the problem horizon has a more profound effect to instances with relatively

large |I| / |T | ratio.
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Figure 3.3: Performance sensitivity of ALNS and HD

3.6.3 Comparison with other approaches

Trigeiro. We consider the 7 instances of Trigeiro, Thomas and McClain (1989) that have

been used by several other authors to assess the relative strength of the lower and upper

bounds of our approach. Table 3.3 compares the lower bound obtained by the horizon

(HD), item (DJ) and period decompositions (HB&P), and the approximate extended

formulation (AEF) approach of Van Vyve and Wolsey (2004), while table 3.4 compares

the upper bound obtained by the HD, DJ, JD and the large-scale neighborhood search

approach (MSP) of Müller, Spoorendok and Pisinger (2012).
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Table 3.3: Lower bound for the horizon (HD), period (HB&P), item

decomposition (DJ) and approximate extended formualtions.

Lower Bounds

Instance (|H| , |L|) HD DJ HB&P AEF

G30 (6-15) (10,1) 37,796 37,103 37,431 –

G30b (6-15) (10,1) 37,705 37,201 37,382 37,469

G53 (12-15) (8,1) 74,433 73,848 73,945 74,230

G57 (24-15) (8,0) 134,184 136,366 136,418 136,417

G62 (6-30) (10,2) 61,708 60,946 61,204 61,294

G69 (12-30) (10,0) 127,190 130,177 130,338 130,335

G72 (24-30) (15,0) 284,554 287,753 287,824 287,828

Time limit for the horizon decomposition: 3,600 seconds.

Table 3.4: Upper bound for the horizon (HD), period (HB&P), item

decomposition (DJ) and Large-scale variable neighborhood search (MSP).

Upper Bounds

Instance (|H| , |L|) HD DJ HB&P MSP

G30 (6-15) (10,1) 37,809 37,809 37,809 –

G30b (6-15) (10,1) 37,721 38,162 37,721 37,776

G53 (12-15) (8,1) 74,644 75,035 74,634 74,720

G57 (24-15) (8,0) 140,897 136,860 136,509 136,675

G62 (6-30) (10,2) 61,746 62,644 61,746 61,792

G69 (12-30) (10,0) 134,717 130,675 130,599 130,675

G72 (24-30) (15,0) 298,656 288,393 287,950 287,966

Time limit for the horizon decomposition: 3,600 seconds.

The comparison of upper and lower bounds confirms the conclusions of our previous

experiments. Specifically, the horizon decomposition gives excellent lower bounds for

problems with a relatively small number of items. In particular, the decompositions

we consider give the strongest known lower bounds for 4 out of 7 instances. For these

instances, a strong upper bound is also obtained, because the RINS heuristic is guided

in the neighborhood of the optimal solution. For instances with weak lower bound

however, the upper bound is equally weak. It is worth noticing that the period decom-

position studied in chapter 2 gives consistently strong lower and upper bounds, but it
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cannot match the lower bound quality of the horizon decomposition for instances with

a small number of items. The next paragraph consider the instances of Süral et al.

(2009).

Süral. Table 3.5 shows the CPU time and integrality gap for the horizon decom-

position (HD) the branch-and-price heuristic developed in chapter 2 (B&P) and the

heuristic of Süral et al. (2009) (SDW). A first conclusion is that although horizon de-

composition requires more CPU time, the integrality gaps it delivers are usually a lot

better than those of SDW and B&P. An exception to this rule seems to be the homo-

geneous set of instances with 24 items and 30 periods. For all other categories horizon

decomposition gives better gaps, and in some extreme cases, such as the 12 items 30

periods heterogeneous instances, the integrality gap is nine times smaller compared to

the best obtained by both SDW and B&P.

Table 3.5: CPU times (s) and integrality gaps (%) for the Horizon

Decomposition (HD), the period decomposition (HB&P) and the

heuristic of Süral et al. (2009) (SDW).

CPU Time (s) Gap (%)

Instance HD B&P SDW HD B&P SDW

12 x 10 het 17.5 0.3 3.1 18 32 2

24 x 10 het 88.3 1.8 4.8 11 18 2

12 x 15 het 83.3 0.8 6.1 20 26 5

24 x 15 het 142.6 6.4 15.3 13 21 8

12 x 30 het 151.8 3.3 24.0 22 29 19

24 x 30 het 153.3 19.7 38.9 23 32 25

12 x 10 hom 72.3 0.5 2.7 23 42 4

24 x 10 hom 144.8 2.0 4.5 14 21 8

12 x 15 hom 141.0 1.0 5.6 20 28 9

24 x 15 hom 150.9 3.5 11.1 15 21 12

12 x 30 hom 151.8 3.0 19.1 22 24 23

24 x 30 hom 151.1 8.0 22.9 21 30 53

Average het 106.1 5.4 15.4 18 26 10

Average hom 135.3 3.0 11.0 19 28 18

Average 120.7 4.2 13.2 19 27 14

Time limit: 150s. HD uses 0 overlap and 5, 10 and 15 length

for 10, 15 and 30 period problems respectively.
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Period decomposition heuristic and branch-and-cut. Table 3.6 compares the per-

formance of the commercial solver CPLEX 12.1 (CPLEX), the Period decomposition

of chapter 2 (B&P) and the Horizon Decomposition. A time limit of 600 seconds was

imposed on all approaches. Columns 2 to 4 show the integrality gap calculated by using

the best upper bound of each instance, while columns 5 to 7 shows the integrality gaps

calculated by using the best lower bound of each instance. Therefore columns 2 to 4

provide a measure of the strength of the lower bound, and columns 5 to 7 a measure

of the strength of the upper bound. It seems that although HD provides a competitive

upper bound in most cases, the specialised hybrid procedure of chapter 2 can deliver

better results. Also notable is that the performance of CPLEX in terms of lower bounds

is competitive with respect to the HD but inferior of the performance of B&P.
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Table 3.6: CPLEX, Period decomposition (B&P) and Horizon Decomposition (HD) lower, upper

bounds and integrality gaps.

Gap LB (%) Gap UB (%) Gap (%)

Instance CPLEX BnP HD 600 CPLEX BnP HD 600 CPLEX BnP HD 600

G7 2.13 1.79 2.94 2.16 3.06 1.79 2.6 3.2 3.0

G11 0.85 0.80 1.61 0.80 0.92 1.02 0.9 0.9 1.9

G16 2.31 2.78 3.04 2.57 3.34 2.31 2.6 4.0 3.1

G17 6.42 4.73 5.45 5.65 6.13 4.73 7.9 6.5 5.8

G21 3.41 3.10 3.55 3.16 3.84 3.10 3.6 4.0 3.7

G22 1.69 1.55 2.78 1.73 1.71 1.55 1.9 1.7 2.9

G24 5.82 5.37 6.67 8.00 8.15 5.37 9.2 8.9 7.2

G26 2.22 1.73 2.58 2.43 3.91 1.73 3.0 4.1 2.7

G27 2.21 2.12 3.17 2.23 3.31 2.12 2.4 3.4 3.3

G28 2.04 1.76 2.05 2.41 3.18 1.76 2.8 3.3 2.1

G30 1.44 1.42 2.73 1.72 1.42 1.79 1.8 1.4 3.2

G33 0.12 0.09 0.88 0.09 0.16 0.09 0.1 0.2 0.9

G34 0.41 0.05 0.90 0.05 0.08 0.46 0.4 0.1 1.3

G36 0.29 0.28 0.78 0.28 0.30 0.53 0.3 0.3 1.0

G37 0.70 0.25 0.12 0.12 0.16 0.12 0.7 0.3 0.1

G40 0.25 0.23 0.81 0.23 0.35 0.28 0.3 0.3 0.9

G51 1.99 1.94 2.81 2.20 1.94 2.41 2.3 2.0 3.4

G52 0.62 0.57 3.13 0.57 0.71 4.73 0.6 0.7 7.7

G54 0.92 0.96 2.49 0.92 1.28 10.71 0.9 1.3 13.8

G55 2.91 2.48 4.14 3.48 2.48 3.61 4.1 2.5 5.5

G61 2.91 2.39 3.25 2.74 3.08 2.39 3.4 3.2 3.4

G62 1.87 1.75 1.90 1.78 1.84 1.75 1.9 1.9 1.9

G63 1.84 1.73 3.20 1.73 1.97 1.86 1.9 2.0 3.4

G64 1.16 0.96 1.59 1.12 2.22 0.96 1.3 2.3 1.6

G65 1.18 0.82 1.67 1.06 1.53 0.82 1.4 1.6 1.7

G66 1.74 1.07 3.76 1.23 1.07 5.02 1.9 1.1 8.2

G67 1.39 1.23 2.95 1.23 1.72 3.76 1.4 1.8 5.7

G68 1.71 1.56 3.65 1.56 1.57 4.45 1.7 1.6 6.9

G69 0.78 0.70 3.64 0.70 1.41 6.96 0.8 1.4 10.8

G70 2.02 1.90 3.16 2.48 1.90 2.24 2.7 1.9 3.6

Average 1.85 1.60 2.71 1.88 2.16 2.68 2.22 2.26 4.02

Subproblem size |H| = 12, horizon overlap |L| = 2 for i = 6, |H| = 10, |L| = 0 for i = 12.
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Pimentel. At a final round of experiments, we show how horizon decomposition

compares to period decomposition and to the simultaneous decomposition approach of

Pimentel et al. (2009). To this end, table 3.7 shows the CPU time and integrality gaps

of the tree approaches. The gaps show that horizon decomposition is quite competitive

in some instances, considering that the imposed time limit was only 120 seconds. In

this case, the period decomposition approach seems to be the winner, as it delivers high

quality gaps in a small amount of CPU time.

A generic conclusion from the comparison of the horizon decomposition with other

approaches is that its performance is superior for instances with a small number of

items. In addition, an exact implementation of a branch-and-price scheme might be

more promising than a heuristic implementation, because column generation requires

a significant amount of time to converge. The next paragraphs shows how a branch-

and-price based horizon decomposition compares against branch-and-cut.

3.6.4 Comparison with branch and cut

At a final round of experiments, we compared the horizon decomposition against

CPLEX v12.2. The purpose of this comparison is to investigate whether a horizon

decomposition approach delivers competitive results against a state-of-the-art commer-

cial solver for certain classes of problems. Since our algorithm uses CPLEX to solve

the subproblems, the interpretation of our results should be that in some classes of

hard problems, it is more efficient to use branch-and-cut technology within a carefully

selected branch-and-price horizon decomposition rather than as a stand-alone solver.

Since the suggested methodology delivers a lower bound, the main focus on our experi-

ments is the strength of the lower bound obtained by each approach. However, we also

assess the final integrality gap by taking into account the best feasible solution that

each method finds.

Data. We focus on problems with small items to periods ratios, since they seem to

be the most challenging ones, (Müller, Spoorendok and Pisinger 2012). Specifically, we

generated sets of 10 problem instances, each with 2, 4, 6, 8 and 10 items and 100 periods.

In total, 50 new problems were constructed. The average capacity utilization was

120%, with some instances that need initial inventory for feasibility. To the best of our

knowledge, this is the first dataset that includes instances that need initial inventory.

While it is well-known that high capacity utilizations characterize hard problems, it
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is usually the case that the resulting dataset is infeasible without initial inventory.

Trigeiro, Thomas and McClain (1989), who constructed the most widely used CLST

dataset write: “Rather than solve the NP complete feasibility test for each problem, we

simply threw out problems for which no feasible solution was found by the heuristic.

(...) This results in an unavoidable and unmeasurable bias in problem generation. It

occurs mostly for tightly constrained problems”. Since then, the assessment of this

class of problems has been neglected. Figure 3.4 graphs the average integrality gap

of CPLEX and the number of nodes explored in 3600 seconds against the number of

items, |I|.

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

 -

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 4 6 8 10
N

o
d
es

 

In
te

g
ra

li
ty

 G
ap

 (
%

)

Number of Items

CPX Nodes CPX Gap Root

Figure 3.4: Average integrality gap and number of nodes explored by CPLEX. Time

limit is 3600 seconds.

Three useful conclusions can be drawn. First, the integrality gaps of the root

node are between 25% and 45%, suggesting that solving these instances to within

an acceptable tolerance may be challenging. To put these numbers in perspective,

for the seven instances from Trigeiro’s G dataset that are supposed to be among the

hardest (Van Vyve and Wolsey 2004), CPLEX 12.2 has an average integrality gap

of 2.54% at the root node, and needs an average 60,000 nodes and 200 seconds to

solve them to optimality. Moreover, for the instances examined in Müller, Spoorendok
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and Pisinger (2012) and Süral et al. (2009) the average gaps vary between 14% and

20%. A second observation is that the average gaps become smaller as the number of

items increases. This is in line with earlier empirical (Trigeiro, Thomas and McClain

1989) and theoretical (Manne 1958) evidence. Finally, the average number of nodes

explored generally decreases as the number of items increases, since the linear programs

at each node become larger. With these conclusions at hand, it is useful to explore the

performance of a horizon decomposition approach.

Horizon Decomposition and Branch and Cut. Table 3.8 shows the relative perfor-

mance of CPLEX and Horizon Decomposition at the aforementioned problems.

The conclusion of the above result is that horizon decomposition constitutes a

promising approach, particularly for problems with only few items. It is worth noticing

that although CPLEX explores many more nodes and therefore it is more likely to find

good heuristic solutions, the final average gaps are in favor of horizon decomposition.

This is explained by the large amount of gap that is closed by our algorithm. Finally,

the maximum benefit of horizon decomposition is unfolded in instances with two items.

Specifically, we were able to solve to optimality 7 out of 10 instances, 3 of which at

the root node, with an average of 660 seconds of CPU time. For the same instances,

CPLEX obtained an average gap of 6.6% after one hour of CPU time.

3.7 Generalizations

In this section we demonstrate potential generalizations of the horizon decomposition

approach. First, we present an extension that stems naturally from our work in the

CLST that fits well to problems with sparse constraint matrices. Then, we consider

an alternative approach that is deemed more appropriate for problems with dense con-

straint matrices. Both methods are applicable to generic mixed integer linear programs,

which we consider in the form below.

[P] min cTx (A.32)

s.t. Ax = b (A.33)

x ∈ X (A.34)

The set X describes trivial restrictions such as integralities and range bounds on single

variables. We let I := {1, . . . , c} be the variable index set and R := {1, . . . , r} be the
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row index set. For notational simplicity, we interpret indexing of a vector or matrix

over a set as a reference to the quantities defined over this set. We show that each of

the following generalizations takes advantage of different structural characteristics in

order to decompose the problem efficiently.

3.7.1 Extension of the Horizon Decomposition Principle: Row Parti-

tioning

The essence of horizon decomposition is about creating copies of variables that are

in multiple constraints in such a way that the problem matrix is decomposed. We

partition the row index set R into two mutually exclusive and exhaustive sets R1 and

R2, i.e. R = R1 ∪ R2 and R1 ∩ R2 = ∅. The extension to more sets, and also the case

with R1 ∩ R2 6= ∅ are straightforward and are omitted to ease the exposition. It is of

interest to identify which variable indexes are common in sets R1 and R2. We define

V̄s = {i ∈ I : ∃j ∈ Rs with aij 6= 0} for s = 1, 2, V = V̄1 ∩ V̄2 and Vs = V̄s\V for

s = 1, 2. Using this notation and selecting a λ ∈ (0, 1), we can recast problem [P] as

follows:

[P1] min cTV1xV1 + cTV2xV2 + λcTV x
1
V + (1− λ)cTV x

2
V (A.35)

s.t. AR1V1xV1 +AR1V x
1
V = bR1 (A.36)

AR2V2xV2 +AR2V x
2
V = bR2 (A.37)

x1
V − x2

V = 0V (A.38)

xV 1 ∈ XV 1 xV 2 ∈ XV 2 x1
V , x

2
V ∈ XV (A.39)

[P] has structure that is amenable to Dantzig-Wolfe decomposition, and it consti-

tutes a generalization of the lot-sizing formulation (A.6 − A.14) presented in section

3.2. Specifically, in our application sets R1 and R2 capture rows indexed over pe-

riods {1, . . . , k} and {l, . . . ,m} respectively for some k, l ∈ T with l ≤ k + 1. Set

V1 captures the indexes of variables found exclusively in the first subproblem, i.e.,

(xi1, yi1, si1, . . . , xil−1, yil−1, sil−1) for each item i ∈ I, and similarly set V2 those found

only in the second subproblem. Set V models the indexes of variables defined over the

overlap (xil, yil, sil, . . . , xik, yik, sik, sik+1) for each item i ∈ I.

In classes of problems where the constraint matrix has an obvious block diagonal

substructure, implementing a row partition is relatively straightforward: one has to
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regulate the subproblem size and horizon overlap based on empirical data. For prob-

lems with sparse matrices but no obvious structure, an issue that arises naturally in

formulating [P1] is that of row partition selection. There is a stream of literature that

considers the problem of rearranging the constraint matrix in such a way that it exhibits

a block-triangular substructure. To the best of our knowledge, Martin (1999) was the

first to formulate the problem of rearranging a matrix to decomposable format as a

MIP. Specifically, he introduced the matrix decomposition problem as that of decom-

posing a matrix in bordered diagonal form, given the number of blocks and the size of

each block. The recent work of Bergner et al. (2011) formulates the same problem as a

hypergraph partitioning problem. Moreover, they use the resulting solution within an

automatic Dantzig-Wolfe reformulation approach and show experimentally that their

approach delivers high quality dual bounds for some challenging MIPLIB 2003 and

MIPLIB 2010 instances. A key difference with our approach is that the algorithm they

devise tries to identify hidden structures and come up with one decomposition, whereas

the horizon decomposition utilizes a family or reformulations, from which the user can

select the most suitable one for any particular instance. Although our formulation of

[P1] does not require any structure, one can use the two aforementioned approaches to

construct decomposable index sets and decide on the size of the overlaps accordingly.

3.7.2 An Alternative Generalization: Column Partitioning

The partitioning approach developed in the previous section is well-suited to problems

with sparse constraint matrices. This is because the number of linking constraints is

small and the column generation process exhibits better numerical properties (Bergner

et al. 2011). This section aims to present an alternative formulation that is well-suited

to problems with dense constraint matrices, such as set-partitioning problems. Again,

we let I be the variable index set, and consider variable index sets H1, H2 and L such

that H1∪H2 = I and H1∩H2 = L. The extension to more partitions is straightforward.

For ease of notation, let xi, ci, Ai and Xi denote the components of each entity that refer

to indexes in set Hi, and xl, cl, Al the components of each entity that refer to indexes

in set L. Then [P] can be reformulated such that it is amenable to Dantzig-Wolfe

decomposition as follows.

[P2] min cT1 x1 + c̄T2 x2 (A.40)
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s.t. A1x1 − λAlx1
l + s1 = b/2 (A.41)

A2x2 − (1− λ)Alx
2
l − s2 = b/2 (A.42)

x1
l = x2

l (A.43)

s1 = s2 (A.44)

x1 ∈ X1, x2 ∈ X2, x
1
l , x

2
l ∈ Xl, s1, s2 ∈ Rr (A.45)

The variables s1 and s2 are continuous and their dimension equals the number of

rows of matrix A. Also, λ is a fixed scalar and c̄2i = 0 if i ∈ L, and c̄2i = c2i otherwise.

By dualizing constraints (A.43) and (A.44) [P2] decomposes in two subproblems, de-

fined over the index sets H1 and H2 respectively. This decomposition can be beneficial

for problems with large number of variables and relatively few constraints, or problems

that exhibit structure over index sets of variables. The issue of selecting a suitable

partition is relevant in this formulation as well. One needs to partition the variables

in such a way that those with similar row coefficients belong to the same index set H.

To the best of our knowledge, this problem has not been tackled in the literature, but

variants of the methods of Martin (1999) and Bergner et al. (2011) can also be applied

for column partitioning. The effectiveness of such methods remains to be explored and

benchmarked against alternative approaches.

3.8 Conclusions and Future Research

We present a horizon decomposition approach and its implementation to the capacity

constrained lot size problem with setup times. The problem is decomposed in contigu-

ous horizons of smaller size, and the subproblems are of the same type as the original,

but have smaller dimension. The developed methodology suggests a family of refor-

mulations, which offer flexibility to regulate the master problem and subproblem size

almost independently. A computational study gives empirical evidence on which con-

figurations lead to the selection of the most efficient reformulation, in the context of

capacitated lot sizing problems. Computational results show that the approach delivers

strong lower bounds, while it outperforms the best heuristic described in the literature.

Further experiments on generated datasets show its competitive performance against

the branch and cut solver CPLEX v12.2. Finally, we show how horizon decomposi-
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tion can be generalized, and how it can be used to take advantage of certain problem

structures.
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Table 3.7: Integrality gaps (%) and CPU times (s) for the simultaneous de-

composition of Pimentel et al. (2009), the period decomposition of chapter 2

(HB&P) and Horizon decomposition (HD).

CPU Time (sec) Gap (%)

PAV HB&P HD GAP PAV GAP HB&P GAP HD

X11419 3,600 96 128 10.37 7.07 6.66

X11429 3,600 106 132 9.60 4.99 7.36

X12429 3,600 110 123 8.00 3.65 13.76

X12419 3,600 84 128 5.97 4.25 8.72

X11428 3,600 68 128 4.78 0.95 71.05

X12428 3,600 62 128 3.91 1.56 5.88

X12229 3,600 30 121 3.24 1.92 3.54

X11229 3,600 66 124 3.05 2.07 3.36

X12219 3,600 63 122 2.75 2.51 4.27

X11129 3,600 63 122 2.53 2.87 3.34

X11219 3,600 73 123 2.38 2.51 2.81

X11418 3,600 105 132 2.25 0.98 5.85

X12418 3,600 31 125 1.82 0.86 3.54

X12119 3,600 80 123 1.73 3.46 3.34

X11119 3,600 56 123 1.54 3.13 3.15

X12129 3,600 34 111 1.14 0.92 0.72

X12417 2,380 26 124 1.09 0.56 2.97

X11427 2,312 60 133 0.98 0.25 4.46

X12218 2,309 39 119 0.63 0.59 0.71

X12427 1,660 23 123 0.59 0.27 3.81

X11417 2,885 58 129 0.47 0.22 3.86

X12228 1,559 14 110 0.46 0.23 0.59

X11218 3,600 38 120 0.41 0.24 0.13

X11228 3,600 37 105 0.33 0.26 0.27

X12128 11 2 26 0.29 0.38 0.11

X12118 342 1 40 0.20 0.18 0

X12217 27 5 62 0.17 0.17 0.04

X12227 13 4 53 0.15 0.11 0.26

X11128 82 1 21 0.10 0.09 0

X11227 42 2 71 0.09 0.03 0.15

X11217 86 12 66 0.08 0.07 0.11

X12117 0 0 17 0.05 0.04 0

X11118 0 0 6 0.03 0.04 0

X12127 0 0 19 0.02 0.03 0

The horizon decomposition used |L| = 1, |H| = 11 and a time limit of

120 seconds.
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Table 3.8: Comparison of Horizon Decomposition and CPLEX.

CPLEX Horizon Decomposition

|I| Gap (%) Nodes (|H| , |L|) Final Gap (%) Gap Closed (%) Nodes

2 6.73 19,662,721 (12,2) 0.52 93.59 56.7

4 7.77 4,137,254 (12,2) 3.85 58.97 6.2

6 12.60 1,538,035 (10,0) 9.87 22.15 2

8 13.01 644,462 (10,0) 12.33 11.55 0.6

10 9.25 1,903,519 (5,1) 8.47 13.95 0

Time Limit: 3600 seconds.
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4

Optimizing Maritime

Transshipment Operations for

the Noble Group

The Noble Group is a global supply chain manager of agricultural and energy products

and metals, minerals and ores. It is headquartered in Hong Kong, and operates in

over 140 locations. This paper describes a modeling framework developed for Noble’s

coal transshipment operations, which include the transportation of coal from several

mines to jetties, where it is loaded onto river barges, which then transport the coal

to ports where it is transferred onto ocean vessels using floating cranes. Noble incur

penalties for delays and late deliveries, costing millions of dollars each month. Addi-

tional infrastructure can be hired on a spot basis to minimize the impact of delays,

but it comes at a high cost. Our model is designed to minimize the cost of these

transshipment operations, including penalities and cost of spot-market resources. The

complexity and scale of the model, however, puts it beyond the capabilities of state-

of-the-art solvers. Therefore, we develop a column generation procedure that provides

strong lower bounds, and a fast local search algorithm that delivers high quality so-

lutions. The modeling framework has been fully implemented in 2013, and the latest

results show a significant decrease in Noble’s overall shipping costs.
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4.1 Introduction

Maritime transport is the driving force behind international trade and a key driver

of globalization. According to UNCTAD (2012), more than 80% of global trade by

volume is carried by sea. The design of maritime supply chains that operate efficiently

under such high volume of demand is the determining factor of success in the maritime

logistics businesses. A vital part of any maritime supply chain is the transshipment

of goods to downstream suppliers, a complex process that involves multiple suppliers,

heterogeneous vessels, external resources with limited capacity and time availability,

and multiple delivery locations. From an economic perspective, there are penalties

associated with vessel delays and late deliveries, high transportation costs, and exter-

nal resources provided under contracts with complex cost structures. Moreover, the

maritime environment is vulnerable to uncertainties that carry high impact: weather

conditions, infrastructure damage, bureaucracy and fluctuating fuel prices are opera-

tional risks that can jeopardize supply chain performance.

Despite the inherent complexity of the maritime environment and the vital role

of logistics, most companies still resort to manual planning and human judgment to

support their decision making processes. The use of optimization methods is limited,

despite the tremendous potential of savings they could bring. In this paper we report

on the development, evolution, implementation and realized benefits of a hybrid column

generation and local search methodology designed for the Noble Group, a global supply

chain manager of commodities. The group’s operating platform emphasizes seaborne

trade with origination in low-cost countries and delivery to high-growth markets. With

major activities in energy, agriculture, metals, minerals and ores, and more than 90

billion USD revenue in 2012. Noble’s energy segment accounts for 70% of total gen-

erated revenue, with coal being the most important traded commodity. Therefore, in

this paper we focus on the coal logistics operations.

The coal logistics operations involve the scheduling of a heterogeneous fleet of river

boats, whose mission is to carry the cargo from river jetties to large ocean vessels. The

economic complexity of the problem is deeply operational, as the managers have to

decide on whether they are going to use company-owned resources, or hire spot resources

in order to expedite the vessel service and avoid potential latency penalties. The trade-

off between the utilization of spot capacity versus the occurrence of penalties from
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reduced service quality is a fundamental one in the operations management literature

Levin et al. (2012). In a maritime transshipment setting, this trade-off is further

complicated by an underlying scheduling and allocation component: the timing of the

transshipment operations influences the optimal capacity allocation in a non-trivial

way. To the best of our knowledge, this is the first paper that addresses the trade-

off between spot capacity utilization and penalties for late deliveries in a maritime

environment. Our methodology tackles the underlying scheduling problem using real-

time data, taking into account the time availability of scarce resources. Initially, Noble’s

managers approached the authors seeking advice on when spot capacity should be

preferred over the risk of penalties from late deliveries. However, we quickly realized

that an operationally viable solution should also take the scheduling part explicitly into

account. The output of this project was a modeling framework and decision support

system that are currently used on a daily basis in two major ports in Indonesia, and

are planned to be rolled out globally in the near future.

This paper focuses on the methodological approach adopted by the authors and its

meaningful generalizations. It further reports on the implementation challenges, the

realized benefits, and the lessons learned from this project. Last, we discuss poten-

tial implementations of the developed framework in logistics environments of similar

nature. The academic contributions of the current work are (i) the development of

a mathematical model and of a Dantzig-Wolfe Decomposition reformulation that de-

scribe the operational complexities of the integrated supply chain (ii) the development

of a solution methodology that combines column generation with a local search al-

gorithm (iii) computational experiments that demonstrate the fundamental trade-offs

and the efficiency of the developed method and (iv) discussion on extensions to similar

problems. Practical contributions include (i) the development of a practical decision

making framework based on real-time data for a complex supply chain that has not

been studied before and (ii) improved efficiency of operations, resulting in cost savings

exceeding $1 million per month.

4.2 Literature Review

Recent years have seen a surge of research related to maritime transportation. Chris-

tiansen et al. (2007) give a comprehensive review of advancements in maritime trans-
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portation modeling. There are many studies that have addressed problems similar to

the one addressed in this paper, but to the best of our knowledge, all studies have

significant differences. Perhaps the oldest relevant paper is that of O’Brien and Crane

(1959), who investigate the scheduling of a barge line on the Ohio and Mississippi

rivers. The authors use a simulation model to allocate tug boats to barges and ap-

proximate the optimal number of barges loads on an annual basis. Our study involves

allocation, scheduling and spot capacity utilization decisions, and therefore can be con-

sidered as an extension of their study, ultimately providing insight into the optimal

fleet size. Schwartz (1968) describes a transshipment scheduling model that minimizes

barge fleet transportation costs. In order to simplify his formulations, he assumes in-

finite fleet capacity, identical cost for leased and owned resources and homogeneous

resources. Interestingly, Schwartz cannot implement his model and notes “The size of

the program generated by the foregoing model for reasonable size problems exceeds the

capacity of present solution algorithms. Consequently, the model does not currently

appear to be a practical means of solving daily operating problems of bargelines”. Our

modeling framework can be seen as a natural extension of his work, where we capture

penalties for time deliveries, incorporate limited availability of resources and address

the allocation of spot capacity. The interesting article by Jaikumar and Solomon (1987)

links the tug boat minimization problem to vehicle routing and provides a one-pass al-

gorithm that solves the problem in O(n) time, where n is the barge fleet size to which

tug boats must be allocated. Furthermore, they discuss how their model generalizes to

incorporate stochastic demand patterns.

From a practical perspective, the simulation studies of Richetta and Larson (1997)

and Taylor et al. (2005) report successful implementations at New York City’s refuse

marine transport system and at the operations of the American Commercial Barge

Line on the Mississippi river. In addition, a recent work by Wagner and Radovilsky

(2012) addresses a barge allocation problem at the US Coastal Guard. Our work can

be considered a dynamic extension of their approach, as we incorporate real-time data

such as actual vessel arrivals and supplier and resource availabilities.

Maritime inventory routing is another related class of maritime problems, which

has received a lot of attention the recent years (Al-Khayyal and Hwang 2007, Furman

et al. 2011, Persson and Gothe-Lundgren 2005). Most articles apply column generation
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and branch-and-price (Engineer et al. 2012) or valid inequalities and extended formu-

lations (Agra et al. 2013) and achieve good performance in terms of integrality gaps

on practical size instances. Our model poses an extra level of complexity that comes

from the need to explicitly sequence the transshipment operations, and from limited

infrastructure resource availability, which makes our problem similar to those found in

process scheduling, (Floudas and Lin 2005).

To the best of our knowledge, the modeling framework introduced in this paper is

the first after Schwartz (1968) that captures the timing of transshipment operations

and, in addition, considers multiple contracting options for resource capacity. Moreover,

the dynamic nature of the model makes it versatile enough to cope with unexpected

events, such as adverse weather conditions. From a technical viewpoint, the model

combines column generation with a local search of feasible solutions, an approach that

delivers good quality integrality gaps in reasonable times. Finally, the implemented

planning system is intuitive for the schedulers to use on a daily basis.

4.3 Description of Transshipment Operations

Noble’s coal supply chain involves the transportation of coal from the mines to river

jetties and then to ocean vessels, that ship the coal to downstream customers. Noble’s

logistics division is responsible for the transportation of coal from the time it reaches

the river jetties until it is discharged onto the customers’ vessels. First, the coal is

loaded onto barges which then, after some essential paperwork, sail to the destination

port, where they discharge their cargo onto large ocean vessels. As soon as a barge

discharges its cargo, it returns to a hub, and then sails again to a jetty to serve either

the same or another vessel. Figure 4.1 shows the various operations during a barge

voyage. The sailing times between jetties, vessels and the hub can vary between half a

day and 4 days.

Loading of Barges. A barge can load at a jetty whenever (i) the jetty is available and

(ii) there is sufficient cargo. If either condition is not met, loading is deferred. Typically,

suppliers notify Noble in advance about their cargo and jetty availability, and logistics

managers send a barge to a jetty only if loading feasibility has been confirmed. Each

supplier owns a single jetty, and the duration of loading depends on the quality of the

loading infrastructure and on the size of each barge. The jetties are scattered across
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JettySailing

Loading Documents

Port
Waiting Discharging

Hub
Idling

Sailing

Returning

Figure 4.1: Transshipment operations and in-voyage barge states.

different locations, at different distances from the hub. As a result, managers need

to take into account the sailing time when they decide when the barges should start

sailing to the suppliers. It is important to note that the loading time at the jetties is

usually higher than the time it takes to discharge the cargo onto a vessel. Therefore

if two barges load cargo from the same supplier in consecutive time slots, they are not

able to discharge it back-to-back onto the vessel, as by the time the first barge has

discharged, the second barge is still sailing to the port. This can create costly delays,

as explained later.

Loading of Ocean Vessels. Each vessel has an estimated time of arrival (ETA),

which is agreed between Noble and the customer at least 2 weeks in advance of the

actual vessel arrival. Also agreed is a laytime, a time window starting with the actual

arrival of the vessel during which each vessel must be fully loaded. After the end of

laytime, demurrage, a daily penalty, must be paid to the customer. If vessel loading is

completed before the end of the laytime, a bonus based on the unused time is awarded,

called despatch. However, large amounts of despatch are not achievable because the

daily despatch rate is low, and the agreed laytime is typically quite close to the minimum

required loading time of each vessel. Demurrage, however, can be very substantial, as

high as $45,000 per day per vessel. Total delays of up to 5 days are not uncommon,

resulting in demurrage exceeding $225,000 for just one vessel, and in annual multi-

million dollar penalties for Noble’s Indonesian operations.

The vessel loading operation depends on the vessel type. Certain vessels have

geared grabs installed, which grab the cargo from the barge surface and discharge

it into the storage hatch. The geared grabs can load cargo from either side of the

vessel and therefore can discharge two barges simultaneously. For vessels that do not

have geared grabs, their loading requires floating cranes. The loading speed of floating

cranes is much higher compared to those of geared grabs, but only one floating crane
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can be used per vessel, and it can discharge only one barge at a time. The allocation

of floating cranes to vessels is made by a separate devision, out of direct control of

Noble’s supply chain management division. This is because the floating cranes are not

only a supporting service, but a stand-alone business unit of the group. Figure 4.2

illustrates the terminology introduced so far, using an example with 3 barge voyages.

In this example, demurrage is incurred because the third barge started its voyage too

late, due to it being committed to another vessel beforehand.

Laytime

Loading
Documents

Documents
Discharging

Discharging
Discharging

Loading

LoadingDocuments

Sailing
Sailing

Sailing

Demurrage
Returning

Returning
Returning

ETA
Loading completion

Time

Vessel
Barge 1
Barge 2

Barge 3

WaitingSailing

Sailing
Sailing

Waiting

Figure 4.2: Barge Operations and Vessel Loading.

Barge Attributes. Barges can be fully characterized by their size and their owner-

ship. Noble own a fleet of barges of various sizes, and additional barges are hired on an

annual basis under a leasing contract. Noble can use the leased barges on demand, up

to a maximum number per vessel, specified in a contract. The number of leased barges

depends on the annual demand forecast and is decided at the beginning of each year

on a rolling basis. There also exists a spot market for barges, consisting of companies

that offer their barges on a one-off basis. The spot barges are expensive to hire, and

are used only when an economic benefit is anticipated, i.e., when excessive penalties

can be avoided.

Operational Costs and Trade-Offs. Every barge voyage has an associated trans-

portation cost. For barges owned by Noble, the predominant cost component is the

fuel cost, which depends on the size of the barge and on the distance it covers to reach

the supplier jetty. The cost of voyages by leased and spot barges is a flat amount

per carried tonne, which also depends on the supplier location and on the barge size.

For any given size and location, Noble-owned barges are cheaper compared to leased

barges, and spot barges are the most expensive. In addition, for leased and spot barges

Noble pay detention, a daily fee for every extra day that the voyage duration exceeds

an agreed number of days.

91



4.3 Description of Transshipment Operations

The need to utilize extra barges comes from the requirement to promptly load the

customer vessels: late completion of loading carries heavy demurrage and undermines

the group’s reputation as a reliable commodities trader. The fundamental trade-off

that the barge rotation model resolves is the joint minimization of demurrage and

transportation costs: demurrage can be avoided if extra barges are utilized, but the

utilization of extra barges carries a high cost. Therefore, the objective is to determine

the appropriate number of barges such that the total cost from vessel delays and barge

transportation is minimized. Section 4.3.1 follows with the formulation of the Barge

Rotation model.

4.3.1 Model Formulation

Building blocks

The proposed model indicates for each Noble-owned, or regular, barge the sequence of

voyages that this barge is going to make. Decision variables are noted with capital

letters. We prepend I for binary variables, and append S for binary variables that

express sequencing decisions. For example, X is a continuous variable, IX a binary

variable, and IXSab = 1 if a precedes b and 0 otherwise. Parameters are denoted with

small letters and sets with large calligraphic letters. Finally, we use ε and M to denote

an arbitrarily small and large quantity, respectively.

The Barge Rotation Model uses the following notation:

Sets
Vessels: v ∈ V

Suppliers: s ∈ S

Regular (Owned) Barges: b ∈ B

Barge Types: τ ∈ BT

Time Horizon: t ∈ T

Subsets and Indexed Sets
Suppliers that serve Vessel v: Sv ⊆ S, ∀v ∈ V

Vessels served by Supplier s: Vs ⊆ V, ∀s ∈ S

Barge Types Allowed at Supplier s: BTs ⊆ BT, ∀s ∈ S

Regular Barge Types: R ⊆ BT,
Regular Barge Types Allowed at Supplier s: Rs ⊆ BTs, ∀s ∈ S

Barge Types are defined as the cross product of barge sizes with contract types.
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Parameters
Processing Documents Duration: tdocs ∈ R+

Return to Hub Duration: tret ∈ R+

Barge Type of Barge b: τb ∈ R ∀b ∈ B

Sailing Duration: tsails ∈ R+, ∀s ∈ S

Loading Duration: tloadτs ∈ R+, ∀τ ∈ BTs, s ∈ S

Discharging Duration: tdischτv ∈ R+, τ ∈ BT,∀v ∈ V

Tonnage Cost: toncτs ∈ R+, ∀τ ∈ BTs, s ∈ S

Detention Cost: detcτs ∈ R+, ∀τ ∈ BTs, s ∈ S

Detention Time Window: tdetτs ∈ R+, ∀τ ∈ BTs, s ∈ S

Estimated Time of Arrival: etav ∈ R+, ∀v ∈ V

Laytime: ltv ∈ R+, ∀v ∈ V

Demurrage Rate: rdemv ∈ R+, ∀v ∈ V

Despatch Rate: rdesv ∈ R+, ∀v ∈ V

Floating crane for vessel v is blocked at time t: fbvt ∈ {0, 1}, ∀v ∈ V, t ∈ T

Jetty of supplier s is blocked at time t: jbst ∈ {0, 1}, ∀s ∈ S, t ∈ T

Vessel has Floating Crane: fv ∈ {0, 1}, ∀v ∈ V

Max Number of Barges: nbτv ∈ Z+, ∀τ ∈ BT, v ∈ V

Quantity Loaded: qsv ∈ R+, ∀s ∈ Sv, v ∈ V

Barge Type Capacity: capτ ∈ R+, ∀τ ∈ BT

We define the set of voyages associated with each supplier s ∈ Sv and vessel v ∈ V:

Wsv :=

{
1, . . . , d qsv

minτ capτ
e
}
,∀s ∈ Sv, v ∈ V,

where d qsv
minτ capτ

e indicates the maximum number of barges needed to carry qsv

tonnes to vessel v. Note that the actual number of voyages depends on the size of

the allocated barges, and can be less than the maximum. In particular, if barges

larger than the minimum size are allocated, fewer voyages can be needed. We call each

chosen voyage active, and assign a binary indicator showing when a voyage is active,

as explained below.
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Decision Variables
Amount of vessel demurrage: Dmv, ∀v ∈ V

Indicator of demurrage: IDmv, ∀v ∈ V

Amount of vessel despatch: Dpv, ∀v ∈ V

Completion time of the vessel loading operation: Comv, ∀v ∈ V

Barges of type τ allocated to supplier s for vessel v: Bτsv, ∀τ ∈ BTs, s ∈ Sv, v ∈ V

Indicator activated when voyage w serves supplier s using
a type τ barge for vessel v: IVwsτv,

∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V

Indicator activated when voyage w to supplier s of vessel
v is allocated to regular barge b: IBwsbv,

∀w ∈Wsv, s ∈ Sv, v ∈ V, b ∈ B

Amount of detention in days for voyage w: Dewsv, ∀w ∈Wsv, s ∈ Sv, v ∈ V

Start of loading for each voyage: Lwsv, ∀w ∈Wsv, s ∈ Sv, v ∈ V

Loading indicator activated when loading starts on t: ILwstv, ∀w ∈Wsv, s ∈ Sv, t ∈ T, v ∈ V

Loading sequence indicator between w1 and w2: ILSw1v1
w2v2s, ∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2, s ∈ S

Start of Discharge for each voyage: Diwsv, ∀w ∈Wsv, s ∈ Sv, v ∈ V

Discharge indicator activated when discharge starts on t: IDiwstv, ∀w ∈Wsv, s ∈ Sv, t ∈ T, v ∈ V

Discharge sequence indicator between w1 and w2: IDiSw1s1
w2s2v, ∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, v ∈ V

Indicator activated when w1 precedes w2: IV Sw1s1v1
w2s2v2 , ∀wi ∈Wsivi , si ∈ Si, vi ∈ V, i = 1, 2

The Barge Rotation Model

The barge rotation model can be formulated as follows.

min
∑
v∈V

(Dmv −Dpv) + +
∑
v∈V

∑
s∈Sv

∑
τ∈BTs

∑
w∈Wsv

detcτsDewsτv (A.1)

s.t. Dmv ≤M ∗ IDmv, ∀v ∈ V (A.2)

Dmv ≤ (Comv − etav − ltv)rdemv +M(1− IDmv), ∀v ∈ V (A.3)

Dmv ≥ (Comv − etav − ltv)rdemv −M(1− IDmv), ∀v ∈ V (A.4)

Dpv ≤M(1− IDmv), ∀v ∈ V (A.5)

Dpv ≤ (etav + ltv − Comv)rdesv +M ∗ IDmv, ∀v ∈ V (A.6)

Dpv ≥ (etav + ltv − Comv)rdesv −M ∗ IDmv, ∀v ∈ V (A.7)

Comv − etav − ltv ≤M ∗ IDmv, ∀v ∈ V (A.8)

Comv − etav − ltv ≥M(IDmv − 1), ∀v ∈ V (A.9)∑
s∈Sv :τ∈BTs

Bτsv ≤ nbτv, ∀τ ∈ BT, v ∈ V (A.10)

∑
τ∈BTs

capτBτsv ≥ qsv, ∀s ∈ Sv, v ∈ V (A.11)
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w∈Wsv

IVwsτv = Bτsv, ∀τ ∈ BTs, s ∈ Sv, v ∈ V (A.12)

∑
τ∈BTs

IVwsτv ≤ 1, ∀w ∈Wsv, s ∈ Sv, v ∈ V (A.13)

∑
b:τb=τ

IBwsbv = IVwsτv, ∀w ∈Wsv, τ ∈ Rs, s ∈ Sv, v ∈ V (A.14)

∑
w∈Wsv

∑
t∈T

ILwstv =
∑
τ∈BT

Bτsv, ∀s ∈ Sv, v ∈ V (A.15)

tILwstv ≤ Lwsv ≤ (t+ 1− ε)ILwstv +M(1− ILwstv),

∀t ∈ T, w ∈Wsv, s ∈ Sv, v ∈ V (A.16)

ILwst−uv ≤ 2− jbst − IVwsτv,

∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V, t ∈ T,

u ∈ {0, . . . ,min(t− 1, dtloadτse − 1)} (A.17)

Lwsv ≤ t− tloadτsILwst−dtloadτsev +M ∗ (2− ILwst−dtloadτsev − IVwsτv),

∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V, t ∈ T : jbst = 1 (A.18)

Lw1sv1 +
∑
τ∈BTs

tloadτsIVw1sτv1 ≤ Lw2sv2 +M(1− ILSw1v1
w2v2s),

∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2 : v1 6= v2, s ∈ S (A.19)

Lw1sv +
∑
τ∈BTs

tloadτsIVw1sτv ≤ Lw2sv +M(1− ILSw1v
w2vs),

∀w1 6= w2 ∈Wsv, s ∈ Sv, v ∈ V (A.20)

ILSw1v1
w2v2s + ILSw2v2

w1v1s = 1, ∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2 : v1 6= v2, s ∈ S (A.21)

ILSw1v
w2vs + ILSw2v

w1vs = 1, ∀w1, w2 ∈Wsv : w1 6= w2, s ∈ Sv, v ∈ V (A.22)

1− (ILSw1v1wvs + ILSwvw1v1s + ILSw2v2wvs + ILSwvw2v2s) ≤

ILSw1v1w2v2s + ILSw2v2w1v1s, ∀w,wi ∈Wsivi , s, si ∈ Svi , v, vi ∈ V, i = 1, 2
(A.23)∑

w∈Wsv

∑
t∈T

IDiwstv =
∑
τ∈BTs

Bτsv, ∀s ∈ Sv, v ∈ V (A.24)

tIDiwstv ≤ Diwsv ≤ (t+ 1− ε)IDiwstv +M(1− IDiwstv),

∀t ∈ T, w ∈Wsv, s ∈ Sv, v ∈ V (A.25)

Diw1s1v +
∑

τ∈BTs1

tdischs1vIVw1s1τv ≤ Diw2s2v +M(1− IDiSw1s1
w2s2v),

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2 : s1 6= s2, v ∈ V (A.26)
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Diw1sv +
∑
τ∈BTs

tdischsvIVw1sτv ≤ Diw2sv +M(1− IDiSw1s
w2sv),

∀wi ∈Wsv, s ∈ Sv, v ∈ V (A.27)

IDiSw1s1w2s2v + IDiSw2s2
w1s1v ≤ 1,≥ fv,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2 : s1 6= s2, v ∈ V (A.28)

IDiSw1sw2sv + IDiSw2s
w1sv ≤ 1,≥ fv, ∀w1 6= w2 ∈Wsv, s ∈ Sv, v ∈ V (A.29)

1 ≤
3∑
j=1

3∑
k=1

IDiS
wjsj
wkskv,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, 3 : s1 < s2 < s3, v ∈ V (A.30)

1 ≤
3∑
j=1

3∑
k=1

IDiS
wjsj
wkskv,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, 3 : w1 6= w2, s1 = s2 < s3, v ∈ V (A.31)

1 ≤
3∑
j=1

3∑
k=1

IDiS
wjsj
wkskv,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, 3 : w1 6= w3, s1 = s3 < s2, v ∈ V (A.32)

1 ≤
3∑
j=1

3∑
k=1

IDiS
wjsj
wkskv,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, 3 : w2 6= w3, s1 < s2 = s3, v ∈ V (A.33)

1 ≤
3∑
j=1

3∑
k=1

IDiS
wjs
wksv, ∀w1 6= w2 6= w3 ∈Wsiv, s ∈ Sv, v ∈ V (A.34)

Diwsv +
∑
τ∈BTs

tdischτvIVwsτv ≤ Comv, ∀w ∈Wsv, s ∈ Sv, v ∈ V (A.35)

Diwsv ≥ Lwsv +
∑
τ∈BTs

tloadτsIVwsτv + tdocs+ tsails,

∀w ∈Wsv, s ∈ Sv, v ∈ V (A.36)

etav ∗
∑
τ∈BTs

IVwsτv ≤ Diwsv, ∀w ∈Wsv, s ∈ Sv, v ∈ V (A.37)

IDiwst−uv ≤ 2− IVwsτv − fbvt, ∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V,

t ∈ T, u ∈ {0, . . . ,min(t− 1, dtdischτve − 1}) (A.38)

Diwsv ≤ t− tdischτvIDiwst−dtdischτvev +M(2− IDiwst−dtdischτvev − IVwsτv),

∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V, t ∈ T : fbvt = 1 (A.39)

Diwsv + (tdischτv − tdetτs)IVwsτv − Lwsv −M(1− IVwsτv)
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≤ Dewsv ≤M
∑
τ∈BTs

IVwsτv, ∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V (A.40)

Diw1s1v1 +
∑

τ∈BTs1

tdischτv1IVw1s1τv1 + tret−M(1− IV Sw1s1v1
w2s2v2 ) ≤ Lw2s2v2 − tsails2 ,

∀wi ∈Wsivi , si ∈ Svi , vi ∈ V, i = 1, 2 : v1 6= v2 (A.41)

Diw1s1v +
∑

τ∈BTs1

tdischτvIVw1s1τv + tret−M(1− IV Sw1s1v
w2s2v ) ≤ Lw2s2v − tsails2 ,

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2 : s1 6= s2, v ∈ V (A.42)

Diw1sv +
∑
τ∈BTs

tdischτvIVw1sτv + tret−M(1− IV Sw1sv
w2sv ) ≤ Lw2sv − tsails2 ,

∀w1 6= w2 6= w3,∈Wsv, s ∈ Sv, v ∈ V (A.43)

IV Sw1s1v1
w2s2v2 + IV Sw2s2v2

w1s1v1 ≤ 1,≥ IBw1s1bv1 + IBw2s2bv2 − 1,

∀wi ∈Wsivi , si ∈ Svi , vi ∈ V, i = 1, 2 : v1 < v2, b ∈ B (A.44)

IV Sw1s1v
w2s2v + IV Sw2s2v

w1s1v ≤ 1,≥ IBw1s1bv + IBw2s2bv − 1,

∀wi ∈Wsiv, si ∈ Svi = 1, 2 : s1 < s2, v ∈ V, b ∈ B (A.45)

IV Sw1sv
w2sv + IV Sw2sv

w1sv ≤ 1,≥ IBw1sbv + IBw2sbv − 1,

∀w1 < w2 ∈Wsv, s ∈ Sv, v ∈ V, b ∈ B (A.46)

Dmv ≥ 0, IDmv ∈ {0, 1}, Dpv ≥ 0, Comv ≥ 0, ∀v ∈ V (A.47)

Bτsv ∈ N, ∀τ ∈ BTs, s ∈ Sv, v ∈ V (A.48)

IVwsτv ∈ {0, 1}, ∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V (A.49)

IBwsbv ∈ {0, 1}, ∀w ∈Wsv, s ∈ Sv, v ∈ V, b ∈ B (A.50)

Lwsv ≥ 0, Diwsv ≥ 0, Dewsv ≥ 0, ∀w ∈Wsv, s ∈ Sv, v ∈ V (A.51)

Lwsvt ∈ {0, 1}, Diwsvt ∈ {0, 1}, ∀w ∈Wsv, s ∈ Sv, v ∈ V, t ∈ T (A.52)

ILSw1v1
w2v2s ∈ {0, 1}, ∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2, s ∈ S (A.53)

IDiSw1s1
w2s2v ∈ {0, 1}, ∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, v ∈ V (A.54)

IV Sw1s1v1
w2s2v2 ∈ {0, 1}, ∀wi ∈Wsivi , si ∈ Svi , v∈V, i = 1, 2 (A.55)

The objective function takes into consideration three cost components, namely the

joint demurrage cost or despatch bonus for all vessels, the total transportation cost,

which depends on the barge type, i.e., its size and its contract structure, and the penalty

detention that occurs if the voyage transshipment operations exceed a predefined time

window. Constraints (A.2)–(A.9) model the penalties incurred when the completion of
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loading exceeds the ETA by more than the laytime, as well as the bonuses received for

early completions.

Constraints (A.10)–(A.14) model the allocation of barge types to vessels and voy-

ages. Specifically, (A.10) pose an upper limit on the maximum number of barges for

each barge type and vessel. For owned barges, this upper limit is simply the number of

owned barges of each size. For other barges, it is specified by the corresponding con-

tract. Constraints (A.11) pose that the barges allocated to each supplier should carry

the agreed quantity for each vessel, and (A.12) indicate the total number of voyages

taken from each barge type to the suppliers of each vessel. Further, (A.13) express that

at most one barge type should be used for any active voyage. Also, (A.14) poses that

if a voyage is served by a regular barge type, then there must be exactly one regular

barge of that type that serves it. Note that since these (A.14) are restricted to regular

barges, different barge types denote a difference in size only.

Constraints (A.15)–(A.22) describe the in-voyage barge loading operations. Con-

straints (A.15) interface the loading and allocation parts, expressing that all allocated

barges should have a loading operation. Constraints (A.16) link the continuous timing

of loading with the time-indexed indicator. Note that the binary indicator variable of

loading would not have been necessary if all suppliers were fully available. In practice,

key suppliers may not have available cargo on time, therefore we have to incorporate

their availability explicitly. To this end, (A.17) and (A.18) model supplier availability:

(A.17) prevents the start of loading at days where there is not enough time left for it to

be completed, and (A.18) indicates the maximum time that loading can start within a

day, such that the total loading operation remains within the permitted range. Finally,

(A.19)–(A.22) impose that the loading operations of two voyages cannot overlap. Note

that this set of constraints involves voyages of different vessels, as long as they are

allocated to the same supplier. (A.19) impose the sequencing restrictions to voyages of

different vessels, and (A.20) to voyages of the same vessel. Finally, (A.21) and (A.22)

impose a sequence to all pairs of voyages.

Constraints (A.24)–(A.27) describe restrictions similar to those of the loading oper-

ations and, for the sake of brevity, their description is omitted. The case of vessels with

geared grabs has an interesting peculiarity, as two barges can discharge simultaneously.

(A.28) and (A.29) allow pairs of barges to discharge simultaneously for vessels with

floating cranes, and (A.30)–(A.34) impose that if a discharge operation is allowed to
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overlap with two others, then those two others are not allowed to overlap each other.

(A.35)–(A.37) link the timing of discharge with the vessel loading time, the loading

time and the ETA respectively. Finally, (A.40) define the amount of voyage detention

in days for each active voyage.

The last part of the model, (A.41)–(A.46), imposes sequencing restrictions across

pairs of voyages that use the same owned barge. The restriction is that any owned

barge can be allocated to non-overlapping voyages only. Further, safety time can be

added if necessary between the end of a voyage and the beginning of the next one. Fi-

nally (A.47)–(A.55) denote the non-negativity and integrality restrictions of the model’s

decisions.

4.3.2 Problem Complexity

Theorem 4.1 The barge rotation model is strongly NP-Hard (Atallah and Blanton

2010), even in the special case of a single vessel with no voyage costs and two suppliers.

Proof We define a reduction from the Hybrid Flow Shop problem (HFS). A recent

review on HFS is given by Ruiz and Vazquez-Rodriguez (2010), and a proof of its

complexity can be found in Garey and Johnson (1990). In HFS we are given a set

of n jobs that are to be processed in a series of m stages. Each stage k has Mk ≥ 1

identical machines in parallel, which can be used to process the job. There must be

at least one stage with at least two machines, therefore maxkMk > 1. The processing

time of job j in stage k is given as pjk. The objective is to create a feasible schedule

that minimizes the maximum completion time of jobs across all machines. The decision

variables indicate in which machine each job is processed for each stage and how the

jobs are sequenced in each stage. Specifically, Yjkl = 1, if job j on stage k is scheduled

in machine l, 0 otherwise; Xjrk = 1, if job j precedes job r 6= j on stage k, 0 otherwise.

Given an instance of the HFS problem, we create the following instance of a single-

vessel barge rotation problem. The vessel is assumed to be served by a floating crane.

Jobs of the HFS problem correspond to barge types of the barge rotation problem.

Further, stages correspond to the loading and discharging operations and machines in

each stage correspond to the suppliers and to the floating crane, respectively. Let us

consider a family of HFS instances with input IF := {n ∈ N,m = 2,M1 = 2,M2 =

1, pjk > 0}. We show that any feasible solution of an instance of this family is mapped
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to a feasible solution of a properly constructed instance of our problem. For notational

brevity, we drop the indexes of single cardinality sets from the variables. Given I ∈ IF ,

a barge rotation instance can be constructed with I∗ = {|S| = 2,B = ∅; |BT| = n,R =

∅, tloadτj ,1 = pj1, tloadτj ,2 = pj1, tdischτj = pj2, rdem = 1, nbτj = 1, lt = 0, qj =

bn/2c(capτj )}. We also assume zero sailing time, zero documents processing time, zero

transportation costs, and complete time availability of suppliers and of the floating

crane. Other data, such as the vessel ETA and the length of the detention time window,

can take any value without affecting the feasibility and optimality of this instance.

We consider any feasible solution (Y F
jkl, X

F
jrk) of I. A feasible solution for the barge

rotation instance I∗ can be constructed as follows. First, we observe that the set

of voyages to suppliers 1 and 2 can be expressed as W1 = {1, . . . ,
∑

j Y
F
j11};W2 =

{1, . . . ,
∑

j Y
F
j12}. Also, each job assignment to a machine determines the type of barge

that is allocated to each voyage. This is because jobs have different processing times

in each stage, and barge types have different sizes, and thereby different durations for

loading and for discharging. Thus, the above assignment maps the allocation of jobs

to machines on stage 1 to an allocation of barge types to suppliers:Y F
jkl = 1 −→ the

j-th voyage receives the l-th barge type. Hence, this mapping indicates the values

of IVwsτ . Under the same reasoning, Xjrk indicate the sequence between voyages

wj and wr, for the loading and discharging stage. As a result, the exact sequences

of loading and discharging can be recovered, and the exact timing of operations is

then straightforward: each barge type starts an operation as soon as all the preceding

barge types have completed that operation. Lws and Diws are constructed under this

argument. From Lws and Diws the completion time can be derived, which equals the

completion time objective of (Y F
jkl, X

F
jrk), because we assumed unit cost of demurrage.

The same argument can be extended to optimal solutions.�

4.4 Dantzig-Wolfe Decomposition

4.4.1 Motivation

Preliminary experiments with commercial branch-and-cut solvers showed that problems

of realistic size are intractable. In smaller instances that could be solved to optimality, it

was observed that the root node lower bound is very weak. For a case with 2 vessels and

3 barge voyages per vessel, the root node gap is 98.5% after the application of solver cuts
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and heuristics, and 55% when the optimal solution was found. Such a weak lower bound

makes the problem notoriously hard to solve when it comes to instances of larger size.

In addition, a strong lower bound is useful from a practical viewpoint, as it provides

an indication of the quality of the proposed solution. Given that much of the problem

complexity lies at the in-vessel operations, a vessel decomposition approach could give

promising results. This is because the polytopes associated with each vessel do not

have the integrality property, and therefore an improved lower bound can be obtained

(Barnhart et al. 1998, Fisher 2004). This section presents in detail the application of

Dantzig-Wolfe decomposition on the original model.

Dantzig and Wolfe (1960) were the first to observe that systems which exhibit a rich

structure in several separate modules are amenable to decomposition. In our context,

the cross-vessel constraints (A.19), (A.21), (A.41) and (A.44) are used to coordinate the

in-vessel restrictions, which generate feasible service plans for each vessel. Specifically,

given a vessel v ∈ V, we define Ev as the convex hull of the set of extreme points of

the constraints associated with v only. Note that this set is bounded, as upper bounds

for all continuous variables can be inferred from the size of the time horizon. Each

extreme point p of Ev is associated with a vessel service plan and is defined by the

values that the decision variables have at this particular plan. We introduce zpv as the

fraction of service plan p of vessel v that is used in an optimal solution. The variables

of each subproblem appear in the formulation of the master as column coefficients of

each service plan. To differentiate them from the master problem variables, we add a

bar to them, and append a superscript p that indicates to which service plan they refer

to. Further, we denote the cost of service plan p of vessel v as cpv. The master problem

reformulation is then as follows.

min
∑
v∈V

∑
p∈Ev

cpvzpv (A.56)

s.t.
∑
p∈Ev1

L̄pw1sv1zpv1 +
∑
τ∈BTs

∑
p∈Ev1

tloadτs ¯IV
p
w1sτv1zpv1 ≤

∑
p∈Ev2

L̄pw2sv2zpv2 +M(1− ILSw1v1
w2v2s),

∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2 : v1 6= v2, s ∈ S (A.57)

ILSw2s2v2
w1s1v1 + ILSw1s1v1

w2s2v2 = 1, ∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2 : v1 < v2, s ∈ S

(A.58)

101



4.4 Dantzig-Wolfe Decomposition∑
p∈Ev1

D̄i
p
w1s1v1zpv1 +

∑
τ∈BTs1

∑
p∈Ev1

tdischτv1
¯IV
p
w1s1τv1zpv1 + tret−M(1− IV Sw2s2v2

w1s1v1 )

≤
∑
p∈Ev2

L̄pw2s2v2zpv2 ,∀wi ∈Wsivi , si ∈ Svi , vi ∈ Vsi , i = 1, 2 : v1 6= v2 (A.59)

IV Sw2s2v2
w1s1v1 + IV Sw1s1v1

w2s2v2 ≤ 1,

∀wi ∈Wsivi , si ∈ Svi , vi ∈ Vsi , i = 1, 2 : v1 ≤ v2 (A.60)

IV Sw2s2v2
w1s1v1 + IV Sw1s1v1

w2s2v2 ≥
∑
p∈Ev1

IBp
w1s1bv1

zpv1 +
∑
p∈Ev2

IBp
w2s2bv2

zpv2 − 1, (A.61)

∀wi ∈Wsivi , si ∈ Svi , vi ∈ Vsi , i = 1, 2 : v1 6= v2, b ∈ B (A.62)∑
p∈Ev

zpv = 1, ∀v ∈ V (A.63)

IDmv =
∑
p∈Ev

¯IDm
p
vzpv ∈ {0, 1}, ∀v ∈ V (A.64)

IVwsτv =
∑
p∈Ev

¯IV
p
wsτvzpv ∈ {0, 1}, ∀w ∈Wsv, τ ∈ BTs, s ∈ Sv, v ∈ V (A.65)

ILwstv =
∑
p∈Ev

ĪL
p
wstvzpv ∈ {0, 1}, ∀w ∈Wsv, s ∈ Sv, v ∈ V, t ∈ T (A.66)

IDwstv =
∑
p∈Ev

¯ID
p
wstvzpv ∈ {0, 1}, ∀w ∈Wsv, s ∈ Sv, v ∈ V, t ∈ T (A.67)

IDiSw1s1
w2s2v =

∑
p∈Ev

¯IDiS
w1s1,p
w2s2v zpv ∈ {0, 1},

∀wi ∈Wsiv, si ∈ Sv, i = 1, 2, v ∈ V (A.68)

ILSw2v2s
w1v1 ∈ {0, 1}, ∀wi ∈Wsvi , vi ∈ Vs, i = 1, 2, s ∈ S (A.69)

IV Sw2s2v2
w1s1v1 ∈ {0, 1}, ∀wi ∈Wsivi , si ∈ Svi , vi ∈ V, i = 1, 2, s ∈ S (A.70)

zpv ≥ 0, ∀v ∈ V (A.71)

The objective function (A.56) minimizes the convex combination of the costs of the

selected service plans. Constraints (A.57) and (A.58) make sure that the service plans

that are used do not result in overlapping loading operations. It should be noted that

the time availability restrictions of each supplier need not be taken into account, as the

generated columns satisfy the supplier availability constraints. In fact, convex combi-

nations of service plans could violate the time availability restrictions. For example,

if loading at day [t, t + 1) is not allowed, and a feasible plan p1 starts loading at time

t − 1, and another feasible plan p2 starts loading at time t + 1 then the convex plan

zp1v1 = zp2v2 = 0.5 violates the supplier availability. However, the integrality condi-
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tions that we pose later allow combinations of plans that start loading at the same day

only, thereby recovering feasibility. The next set of constraints, (A.59)–(A.62), makes

sure that a company-owned barge is not allocated to overlapping voyages. Constraints

(A.63) enforce a convex combination of service plans, and (A.64)–(A.68) impose inte-

grality restrictions on the in-vessel binary variables. Notice that imposing integrality

restrictions on the service plan variables zpv may not lead to an optimal solution (De-

graeve and Jans 2007, Vanderbeck and Savelsbergh 2006). However, the integrality of

the voyage indicators IVwsτv implies the integrality of the number of barges Bτsv via

(A.14), and therefore the integrality restrictions on the latter are omitted.

Solving the mixed integer program (A.56)–(A.71) involves the solution of its linear

programming relaxation (LP), and then the implicit enumeration of the alternative

configurations of the binary variables. An advantage of the LP relaxation is the small

number of constraints: only the fact that loading operations, as well as voyages of the

same barge, should not overlap needs to be considered. However the formulation is

based on a combinatorial number of variables, which make it impractical in its current

form. Formulations with such structure are solved with column generation: a few

service plans are generated initially, and new service plans are generated as needed.

Lübbecke and Desrosiers (2004) give an excellent up-to-date review of the method.

Intuitively, column generation takes advantage of the fact that an optimal solution

is formed by only a small subset of the service plans of each vessel. The method

can be initialized with a set of variables that render the master problem feasible at a

high cost, and then in each iteration the service plan that has the minimum reduced

cost can be added. On termination no more service plans need to be added, and the

linear programming relaxation of (A.56)–(A.71) is solved. The problem of finding the

minimum reduced cost column is an integer problem itself, formulated in section 4.4.2.

4.4.2 Subproblem Formulation

We introduce the following notation:

γw1v1
w2v2s ≤ 0: dual price of constraints (A.57),

ζw1s1v1
w2s2v2 ≤ 0: dual price of constraints (A.59),

θw1s1v1
w2s2v2b

≥ 0: dual price of constraints (A.62), and
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λv ≥ 0: dual price of the convexity constraints (A.63). Each dual price is defined

over the domain of the corresponding constraint. To facilitate exposition, we express

each objective function component in isolation.

rcv1 =Dmv −Dpv +
∑
s∈Sv

∑
τ∈BTs

toncτsBτsv +
∑
s∈Sv

∑
τ∈BTs

∑
w∈Wsv

detcτsDewsτv

rcv2 =
∑
s∈Sv

∑
τ∈BTs

∑
w∈Wsv

IVwsτv
∑
v1 6=v

tloadτs ∑
w1∈Wsv1

γwvw1v1s + tdischτv1
∑
s∈Sv1

∑
w1∈Ws1v1

ζwsvw1s1v1


rcv3 =

∑
s∈Sv

∑
w∈Wsv

Lwsv
∑
v1 6=v

 ∑
w1∈Wsv1

(γwvw1v1s − γ
w1v1
wvs )−

∑
s1∈Sv1

∑
w1∈Ws1v1

ζw1s1v1
wsv


rcv4 =

∑
s∈Sv

∑
w∈Wsv

Diwsv
∑
v1 6=v

∑
s1∈Sv1

∑
w1∈Ws1v1

ζwsvw1s1v1

rcv5 =
∑
s∈Sv

∑
w∈Wsv

∑
b∈B

IBwsvb

∑
v1>v

∑
s1∈Sv1

∑
w1∈Ws1v1

θwsvw1s1v1b +
∑
v1<v

∑
s1∈Sv1

∑
w1∈Ws1v1

θw1s1v1
wsvb


rcv =rcv1 − (rcv2 + rcv3 + rcv4 + rcv5 + λv) (A.72)

The subproblem constraints are all in-vessel constraints of the original problem, i.e.,

all single-vessel constraints except from (A.19), (A.21),(A.41), (A.44) and (A.46). A

new column is added whenever rcv < 0, and the algorithm terminates when
∑

v min{rcv, 0} =

0. It should be noted that through the course of the algorithm a valid lower bound is at

hand, calculated as lb =
∑

v∈V
∑

p∈Ev cpvzpv−
∑

v min{rcv, 0} (Lübbecke and Desrosiers

2004). Therefore, if the subproblems cannot be solved to optimality, we can use feasible

solutions to approximate the lower bound. This was necessary in our implementation

because some subproblems could not be solved to optimality for medium and large

vessels within the given time limit. Nevertheless, the approximate lower bound was

still superior to the LP bound, as demonstrated by the computational experiments of

section 4.7.

The downside of column generation algorithms is that there is no guarantee that

a feasible solution will be recovered. Imposing the integrality restrictions when the

column generation terminates could lead to an infeasible problem (Barnhart et al. 1998).

In some applications recovery of a feasible solution from the lower bound solution is

possible. In our application, a recovery strategy would require shifting the voyages in
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such a way that there are no loading clashes and no overlaps of regular barges. These

operations can be quite involved, but more importantly the quality of the feasible

solution will depend on the quality of the lower bound solution, which may be far from

optimality, especially when the algorithm terminates with an approximate lower bound

only. Therefore, instead of relying on a lower bound to recover a feasible solution, we

decided to design a local search procedure to deliver high quality solutions. The main

building blocks of the local search procedure are described in section 4.5.

4.5 A Local Search Procedure

4.5.1 Initial Barge Allocation using Branch-and-Bound

Our approach decomposes the problem into a voyage allocation and a voyage scheduling

part. The allocation part decomposes in a series of single vessel problems and focuses

on minimizing the transportation cost per vessel, namely the fuel cost of regular barges

and the fixed cost of leased and spot barges: acv =
∑

s∈Sv
∑

τ∈BTs
toncτsBτsv. The

corresponding demurrage and despatch are disregarded in this phase and considered

later during the scheduling phase. For each vessel, the decision variables, Bτsv , indicate

the number of voyages from each barge type allocated to each supplier. Each voyage

of a non-regular barge type will be allocated a non-regular barge. For regular barge

types, decision variables do not reveal which particular barge will be allocated, but

rather how many barges of each size will be allocated. We impose that the number

of allocated voyages from each barge type across all suppliers should not exceed the

maximum number of barges of that barge type, and that the cargo quantity to be

loaded from each supplier is covered: minBτsv{acv |
∑

s∈Sv :τ∈BTs
Bτsv ≤ nbτv, τ ∈

BT;
∑

τ∈BTs
capτBτsv ≥ qsv, s ∈ Sv}. Note that this is a multi-dimensional knapsack

problem (Kellerer et al. 2004), with knapsack constraints for each supplier s, and upper

bounds imposed on the disjoint sets of items BTs. We are able to solve these problems

to optimality fast by branch-and-bound.

4.5.2 Schedule Generation using Greedy Sequencing

When the scheduling process is invoked, the barge-to-voyage allocations are fixed.

Therefore, the transportation costs are fixed, and the aim is to minimize the total

cost of demurrage and the detention of non-regular barges. We create a priority list of
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vessels based on ascending ETA order and use a scoring criterion to break ties. The

criterion utilized is the demurrage rate over the laytime slack, the later defined as the

difference between the end of laytime and the minimum possible loading time. This

score gives priority to vessels with higher demurrage costs per unit of safety time and

was found to perform well in practice.

Scheduling of Current Barge Voyages. The scheduling module is designed so that

it takes into consideration the current barge operations. For each vessel, voyages that

are already in progress are scheduled first. We start by scheduling the voyages that

are discharging onto the vessel. This way it becomes apparent when the vessel loading

resources, i.e., floating cranes or geared grabs, are not available. Second we schedule

voyages with barges waiting to discharge and third voyages with barges that sail to the

port or process documents. Then voyages with barges that are loading are scheduled

next, and the availability of each supplier’s jetty is updated accordingly. Last we

schedule voyages with barges sailing towards a supplier’s jetty and with barges that

return to the hub. After scheduling we record the time that each regular barge is

released, as it poses a lower bound to the start of subsequent voyages.

Scheduling of Future Barge Voyages. The scheduling of future voyages is more

involved than that of current voyages, because it takes into account the time availability

of regular barges. If a voyage has to be allocated a regular barge, we allocate the

regular barge that is first released from previous voyages. Voyage scheduling starts

by determining the earliest feasible start of discharge for this barge, by taking into

account the availability of the discharging equipment. Based on the derived discharging

interval, we schedule the sailing and loading operations back-to-back with discharging,

and check if the resulting loading interval at the supplier’s jetty is feasible. Loading

can be infeasible either because (i) the barge is not released promptly from previous

voyages and cannot make it to the jetty on time or because (ii) the jetty is blocked

at the proposed time of loading. If (ii) is true, we shift the loading backwards to the

first feasible loading interval. This operation can fail, if either the jetty is occupied

all the previous days, or if (i) is true, i.e., the barge is serving another voyage during

that loading interval. In case backward shifting fails, we apply forward shifting. That

is, we select the first feasible loading interval going forwards, taking also the jetty

blockages and the barge availability. In case we resort to forward scheduling of loading,

we forward schedule the discharging operation as well, by finding the earliest feasible
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discharge time, given the end of loading. In case of vessels with geared grabs, we

schedule the start of discharge as soon as a grab is released. If the earliest discharge

interval implied by end of loading interval is infeasible, we shift discharging forward to

the first feasible interval. Note that it is not possible to shift discharging backwards

because this will result in infeasibility of loading. Also, for non-regular barges we

perform both backward and forward shifting, and if both are feasible we compare the

potential barge detention to the demurrage implied by the time lost due to forward

shifting, and select the least expensive action. Finally, we record when each voyage is

completed and update the corresponding barge availability of the regular barges.

Barge Swapping and elimination of non-regular barges. As soon as the current

and future voyages have been scheduled, we apply a swapping procedure that poses

a first-load first-discharge sequence across voyages. Given the scheduling procedure

as described so far, two barges originating from the same supplier will not discharge

their cargo in the sequence they load it. This is because the first barge will occupy

the first available discharging and loading intervals, and the second barge will need

to load before, if feasible, and discharge after the first barge. To avoid this situation,

we swap the loading times of voyages A and B that originate from the same supplier

whenever A loads before and discharges after B. In addition, we swap barges alongside

the voyages, in order to guarantee that the voyage that loads first is allocated a barge

that is not occupied then by another voyage. This procedure is implemented across all

pairs of voyages that load at the same supplier.

At a final phase, we check for each voyage taken by a non-regular barge if there

exists a regular barge that is idle during that voyage. In case such a regular barge

exists, we replace the non-regular barge with that regular barge. This situation may

occur when a non-regular barge is allocated to a voyage of the latest arriving vessel of

a schedule. If that vessel has high demurrage it may be profitable to allocate a non-

regular barge, but if later we allocate non-regular barges to voyages of previous vessels,

then some regular barges may become available promptly for the voyages of the last

vessel and therefore render non-regular barges redundant.

4.5.3 Improving the Initial Schedule by Local Search

The initial allocation takes into account the transportation cost only and, given that

the regular barges are cheaper, it results in their maximum utilization. Therefore, the
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schedule that is generated based on the initial allocation is likely to have high demurrage

when the regular barges fail to start each of their allocated voyages on time. The local

search algorithm checks, in a greedy manner, if replacing regular barges with leased

or spot barges improves the joint demurrage and transportation costs. The intuition

behind our strategy was derived by observing actual barge operations. In particular,

most delays can be attributed to supply blockages, or late vessel arrivals. In both cases,

barges are tied up and subsequently released in batches. Our local search procedure

checks the improvement from replacing incrementally bigger batches of over utilized

barge types.

First, we find the vessel with highest realized demurrage, and the type, τb, of the

last-discharging regular barge, b, on this vessel. Then, we reoptimize the initial allo-

cation problem amended by
∑

s∈Sv :τb∈Rs Bτbsv ≤ nbτbv − 1. The goal of this modified

allocation problem is to minimize the transportation cost as before, but also to re-

place the last barge of type τb with a barge of the next least expensive type. This

way the transportation cost increases, but the vessel demurrage may decrease when

the replacing barge can be readily available. In the context of our application, the

modified allocation problem could be solved easily by enumeration because only three

barge sizes are used. If the barge to be replaced is of the largest size, we replace it with

a same-sized barge of the next cheapest available type. If it is of medium size, we select

the least expensive of a large regular or a medium leased, if available, or a medium spot

barge. Small size barges are used only for voyages that medium or large barges cannot

take because of the low water level of the rivers in certain supplier locations, therefore

they can be replaced only with small leased or small spot barges. A new schedule is

generated using the modified barge allocation. If the schedule has an improved cost,

the algorithm iterates by reselecting the vessel with highest realized demurrage and the

type of the last discharging regular barge.

If the new schedule fails to improve the cost, we attempt to replace the types

of the two last-discharging regular barges by modifying the initial allocation problem

accordingly. We iterate by increasing the number we attempt to replace whenever

a failure occurs, till we attempt to replace all regular barges. Every time a batch

replacement fails to return an improved cost, we keep increasing the number of replaced

barges till we reach the maximum number of regular barges allocated to that vessel.

If still no improvement is made, we consider the vessel with the next highest realized
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demurrage. The vessel in which we apply the replacement checks is the one with

the highest realized demurrage that has not been fully checked till this point. This

strategy qualifies as a greedy local search procedure because (i) there is an incremental

movement at the solution space in each iteration and (ii) it progressively improves the

current best schedule. The procedure terminates when all regular barge allocations

across all vessels have been explored.

Algorithm 3 describes the main components of the local search procedure.

Algorithm 3: Local Search

Step 0. Solve the InitialAllocation problem for each vessel.

Step 1. Generate initial schedule: S← GenerateSchedule(); S∗ ← S.

Step 2. Initializations: chkV ← arg maxv{Dmv}; CheckedV essels← ∅; r ← 1.

Step 3. Find the last discharging r regular barges of chkV : {b1, b2, . . . , br}.
Step 4. For each regular type τ ∈ R find how many of {b1, b2, . . . , br} are of that

type τ : λτ .

Step 5. Solve ModifiedAllocation(chkV, λτ ) with constraints
∑

s∈Sv Bτsv ≤
nbτ − λτ .

Step 6. Reschedule: S← GenerateSchedule().

Step 7. If all regular barges of chkV are checked put chkV in CheckedV essels.

Step 8. If chkV has still the highest demurrage across non-checked vessels then

If new schedule did not improve cost then increment checked barges:

r ← r + 1.

ElseIf all vessels are checked then save best schedule: S∗ ← Best(S∗, S).

Terminate.

else Find next vessel with highest demurrage:

chkV ← arg maxv 6∈CheckedV essels{Dmv}.
Reset checked barges: r ← 1.

End If

Step 9. Save best schedule: S∗ ← Best(S∗, S). Go to Step 3.

4.6 Implementation and Impact

The barge rotation model was first implemented and used to optimize Noble’s shipping

operations in Indonesia, first in the South Kalimantan region and then the East Kali-

mantan region. In the near future, the model will be rolled out to Sumatra, with the
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rest of the world following later. Below we report on the impact the model has already

had on Noble’s Indonesian operations since its first implementation in August 2012.

4.6.1 Decision Making prior to System Implementation

Prior to the implementation of the barge rotation model, logistics decisions were relying

heavily on the experience and intuition of the logistics planners. Decision making was

decentralized, in the sense that the product supply division were suggesting loading

slots based on each supplier’s availability, and the marketing division were negotiating

the vessel arrival dates without considering the impact on logistics costs. The logistics

division had to incorporate this information in order to construct economically sound

rotation plans. As this information was updated at least twice per day, the workload

of the schedulers was daunting.

To cope with this complexity, schedulers were using a basic spreadsheet that cap-

tured the short-term evolution of the operations. Updating of this spreadsheet was a

tedious process which involved extracting information from multiple sources, such as

supplier and floating crane availability and would require about two hours to update.

Moreover, changes had to be made often as soon as new information would become

available. For example, if a supplier was not able to deliver an agreed cargo at a cer-

tain date, then all loading intervals of this supplier had to be updated accordingly.

This would lead to a tedious and error-prone redesign process. From a functional per-

spective, the planning spreadsheet had some important limitations. First, no costs

were displayed or calculated, let alone minimized. Second, only the loading intervals

were displayed in each voyage: the sailing times to and from the jetties, the documents

processing time and the discharging intervals were not displayed, but rather estimated

implicitly. Finally, it was not obvious that the barge allocations to subsequent vessels

were feasible, as the time that each barge was released from each voyage was unknown.

The primary concern of the planning spreadsheet was to allocate barges to supplier

jetties, in order to make sure that the total required quantities from each supplier would

be transferred from the jetties to each vessel. However, there was no way of checking

whether each barge would make it to its allocated jetty on time. As a result, delays on

current operations were propagating to subsequent operations, generating significant

demurrage. On an annual basis, penalties due to delays typically amounted to several
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million dollars, and senior management believed that much of this could be avoided by

using a more intelligent, optimized approach to barging operations.

4.6.2 Challenges and Adoption during Implementation

The logistics managers and schedulers were open to adopting a different approach, as

they well understood the shortcomings of their manual process. Nevertheless, there

were several challenges during adoption and implementation. First, the model requires

a complete description of the current operations of the supply chain. Acquiring this data

was not straightforward, and involved requesting information from other departments.

For example, fuel prices and spot barge cost are kept by finance, whereas supplier

availability and vessel arrival dates required input from marketing. These divisions

were never asked to share their data before, and at first they were reluctant to do so.

Second, the data entry itself is an error-prone process. It requires on a daily basis

(i) vessel information, such as ETA, loading rates, cargo quantities from each supplier,

demurrage rates, number of leased barges that can be used, (ii) barge information, such

as size and contract type, current operation and estimated end of current operation and

(iii) time availability of suppliers. The complexity of the data required the addition of

many error-trapping tools into the model.

4.6.3 Implementation

Senior management requested that the model be built with a user interface in Excel.

The original model and column generation algorithm were implemented in AIMMS us-

ing CPLEX v12.5 and interfaced with Excel. Experiments with Gurobi and alternative

settings did not change the quality of the produced results. The local search procedure

uses Excel for the initial allocation, while all other subroutines are coded in VBA. Fig-

ure 4.3 shows an example output as displayed by the barge rotation model. Laytime

bars appear in green. Red bars denote demurrage and blue bars despatch. Each line

that starts with a yellow bar corresponds to a barge voyage. Light blue bars indicate

the slack time between consecutive voyages of the same regular barge. Barge loading

and discharging operations are denoted with deep blue and gray respectively.
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Figure 4.3: The Barge Rotation Model output.

4.6.4 Impact

Results collected so far indicate that the system has resulted in significant cost savings of

more than $1 million per month. In particular, we look at the average unit cost, namely

the total demurrage, despatch, spot, lease and fuel cost, per tonne carried. Figure 4.4

shows the evolution of the monthly average cost before and after the implementation of

the barge rotation model in the two ports. The dotted lines show the monthly average

cost per tonne during the entire observation period, whereas the bold lines show a six-

month moving average, starting from the month that the model was rolled out in each

port. The arrows indicate the implementation dates for each port.

Figure 4.4 reveals that the average cost per tonne is reduced from $3.8/tonne to

$2.0/tonne in South Kalimantan, and from $3.7/tonne to $2.2/tonne in East Kaliman-

tan, a reduction of $1.8/tonne and $ 1.5/tonne respectively. Given the actual number

of carried tonnes during the observation period, the amount of savings for both ports

combined is $1.3m per month, an estimated $15 million per year. A t-test indicates,

for both ports, that the average cost per tonne before and after implementation are
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Figure 4.4: Evolution of cost per tonne and average cost per tonne at the two ports.

significantly different at a 5% level. We note, however, that the implementation of

the barge rotation model may not be the only factor that explains costs variations. In

particular, supplier availability, the amount of vessel traffic intensity, the availability

of floating cranes and the oil price can have a direct impact on the cost per tonne.

For example, the increase of cost per tonne in both ports between November 2012 and

February 2013 might be attributed to a 17% increase of the oil price, which occurred

during that period. In an attempt to isolate the effect of the model implementation, we

carried out a regression analysis. We used an aggregate measure of supplier availability

to control for cargo supply disruptions, and we used the carried tonnage per month as a

proxy for vessel traffic intensity. As delays can propagate on following months, we also

tested a version of carried tonnage lagged by one month. Further, we combined sup-

plier availability with carried tonnage and lagged carried tonnage to test if heavy vessel

traffic has an impact only when it is combined with bad supplier performance. Finally,

we controlled for the cost of oil and for floating crane availability. We ran 4 variable

selection methods, namely backward, forward, stepwise and best subsets regression,
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in order to see which combination of explanatory variables yielded the best outcome,

as measured by the adjusted R2 of each model. The analysis was carried out for the

South Kalimantan dataset, for which there is a balanced number of observations with

and without the model implementation. Table 4.1 reports the results of the regression

models.

Table 4.1: Regression analysis results for the South Kalimantan port.

Explanatory variable
Best subset

selection

Forward

selection

Supplier performance 2.34

(1.34)

–

System implementation -2.47

(0.60)∗∗
-2.04

(0.45)∗∗

Tonnes carried – –

Tonnes carried lagged -4.61

(2.45)

-1.78

(1.63)

(Tonnes carried)*(supplier performance) 2.95

(2.60)

–

(Tonnes carried lagged)*(supplier performance) 4.72

(3.36)

–

Oil price 0.06

(0.02)∗
0.05

(0.02)

Adjusted R2 0.62 0.61

Notes. Standard errors of regression coefficients appear in parenthesis. Stepwise regression and

backward regression selected the same model as best subset regression. ∗p < 0.05; ∗∗p < 0.01.

The best subset regression selects the subset of predictors that maximize the ad-

justed R2 value. However, the resulting model suffers from multicollinearity, as Supplier

performance and (Tonnes carried lagged)*(Supplier performance) have large variance

inflation factors. This may be attributed to the limited number of observations, that

can create coincidental correlations across explanatory variables. On the contrary, the

forward selection model does not suffer from multicollinearity, autocorrelation, or over-

fitting, and has a high explanatory power. Using this model, the model implementation

has a coefficient value of −2.04, significant at 1% level, suggesting that its impact is
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actually more profound than that depicted by the difference of the average cost per

tonne, namely $1.80, resulting in estimated savings of $9 million per year for South

Kalimantan only. It is worth reporting that analysis of the East Kalimantan dataset

also shows a consistent improvement after the model implementation, and Figure 4.4

shows a clear decline in average costs too; however the limited number of observations

does not allow for any robust conclusions at this point in time.

4.7 Computational Demonstrations

The purpose of this section is twofold. First, we benchmark the performance of the

barge rotation model against an off-the-shelf implementation. Second, we analyze the

fundamental issue underlying the barge rotation problem, namely the trade-off between

hiring extra infrastructure, i.e., spot barges, versus delaying the service of vessels. More

specifically, we investigate how congestion caused by short vessel interarrival times and

the price of spot barges impact the economic viability of hiring spot barges.

4.7.1 Efficiency Analysis

We demonstrate the efficiency of our approach using six artificially generated instances

and one instance with real data. Table 4.2 describes the characteristics of the dataset.

Table 4.2: Characteristics of the test instances.

Instance Vessels Suppliers Voyages
Barge

Sizes

Contract

Types
Regular Barges

Small A 2 1 3 1 1 3

Small B 2 2 19 2 1 7

Medium A 4 1 3 1 1 3

Medium B 4 2 19 2 1 7

Large A 6 1 3 1 1 3

Large B 6 2 19 1 1 7

Real 8 9 26 3 2 14

Instances vary from small, medium to large, based on the number of vessels. More-

over, instances labeled A are of the simplest possible structure, namely those with 1

supplier, a fixed number of 3 voyages per vessel, barges of one size, with regular and
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spot categories, and with a fleet of 3 regular barges. Instances labeled B have a richer

structure, as they include vessels with 2 suppliers, barges of 2 sizes, and therefore a

varying number of voyages to each supplier, and with a fleet size of 7 regular barges.

The real instance is based on the situation in South Kalimantan on 3 August 2013.

In table 4.3, we compare the performance of the barge rotation model against CPLEX

v12.5 with default settings.

Table 4.3: Numerical results for the comparison of CPLEX and the barge rotation model

(BRM).

Lower Bound Upper Bound

Instance CPLEX BRM CPLEX BRM
BRM UB

Time (s)

SmallA 22,500 13,500 22,500 25,100 2

SmallB 8,660 158,900 339,000 257,266 6

MediumA 19,953 34,139 92,750 92,750 6

MediumB -249,199 323,700 N/A 324,243 20

LargeA 19,712 64,245 1,525,000 136,250 10

LargeB -183,348 543,000 N/A 799,900 18

Real 539,169 581,576 N/A 713,902 120

Notes. Time limit is 3 hours for all instances.

Table 4.3 clearly shows that obtaining good lower and upper bounds is hard from

a computational perspective. CPLEX with default settings failed to find a feasible

solution for 3 of our 7 instances, when using formulation (A.1) − (A.55). In addition,

the lower bound that CPLEX finds is, in the majority of cases, very weak. Note that

negative values are possible, because despatch is awarded when a vessel is fully loaded

within its laytime. The lower bound generated by the Barge Rotation Model was always

superior to that found by CPLEX, with SmallA being the only exception. Note that

in theory the column generation lower bound dominates the root node lower bound

of the original model, but in practice CPLEX may improve the lower bound of the

linear programming relaxation by generating cuts. Perhaps surprisingly, the column

generation lower bound quality improves as the problem structure becomes richer. The

bigger the in-vessel complexity, the better the column generation lower bound quality,

because it captures that complexity explicitly in the subproblems. This makes our
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approach especially useful for problems of realistic size, and the last instance indeed

shows good performance of column generation. On a practical note, both lower bounds

are sensitive to the magnitude of the utilized big-M values (Codato and Fischetti 2006).

Column generation however obviates this issue because it includes the vessel-specific

big-M constraints to the subproblem level, which is more tractable. Therefore only

the big-M constraints of the master may affect the lower bound quality. In terms of

computation time, our barge rotation model requires only a limited amount of time,

and when the model was tested on real data with as many as 16 vessels, computation

times increased almost linearly, never taking more than 10 minutes, thereby ensuring

a time-robust performance.

4.7.2 Economic Analysis

In this section, we use a stylized case to derive insights on the impact that spot barge

cost and vessel interarrival times have on the structure of the optimal solution. Specif-

ically, we investigate how the cost of spot barges, vessel demurrage and interarrival

times influence the optimal number of spot barges, via an example case. Table 4.4 and

figure 4.5 present the example data.

Table 4.4: Stylized example data

Attribute Value

Vessels 2

Suppliers 1

Barge Sizes 1

Spot Contracts 1

Regular Barges 4

Voyages per vessel 3
Demurrage rate
Despatch rate 5

All vessel characteristics are identical except for their time of arrival. Both vessels

use a floating crane each, and source coal from the same supplier. Since there are 4

regular barges and 6 voyages in total, there will be at most 2 spot barges used. Figure

4.6 shows the number of total barges utilized in the optimal solution, when we vary the

vessel interarrival times and the cost of spot barges.
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Sailing Loading Documents Sailing Discharging Returning

1.5 1 1 1.5 0.4 1

Laytime

1.5

Figure 4.5: Process durations for the stylized example

Figure 4.6: Number of barges used at optimality for different configurations of interarrival

time and spot barge cost.

Each pair of spot barge cost and interarrival times corresponds to a fully charac-

terized data instance. We created 1,722 such pairs that were solved to optimality. We

observe that both the spot barge cost and the interarrival time influence how many spot

barges should be hired. When the interarrival time is very large, it is possible to utilize

only 3 regular barges and serve both vessels without any delay. As the interarrival

times become smaller, the optimal solution utilizes all 4 regular barges. When vessels

arrive even closer to each other, it is optimal to hire 0, 1 or 2 spot barges, depending

on their relative cost versus the demurrage that can be avoided by hiring them. To

further investigate this behavior, figure 4.7 shows the total cost when 0, 1 and 2 spot

barges are hired, for small and large values of spot barge cost respectively.

In both graphs of figure 4.7, the bold lines show the optimal barge hiring policy,

which is the lower envelope of the total cost for the 0, 1 and 2 spot barge policies.

In region I of both graphs vessels arrive far from each other, and not hiring spot

barges is optimal. As the interarrival times become smaller in region II, the no-spot

hiring policy remains optimal, but the despatch obtained from the late-arriving vessel
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Figure 4.7: Optimal cost and the structure of optimal policies

decreases, and in region III, despatch turns into demurrage, resulting in a faster increase

of total cost. When spot barges have a low cost, as in case 1 of figure 4.7, then there

is a threshold after which hiring 1 spot barge yields a lower cost than no hiring spot

barges, shown in regions IV, V and VI. Interestingly, when spot barges are expensive

relative to demurrage, as in case 2, it ultimately becomes optimal to hire 2 spot barges

immediately, as in region IV of case 2.

In the context of our application, spot barges have high cost when compared to

vessel demurrage. Therefore, the managerial insight we derive is that in periods where

vessel congestion is high, the optimal replacement policy has an all-or-nothing structure.

A similar result was given recently by Chen et al. (2013) for an inventory management

problem, where the authors show that when procuring from a regular supplier becomes

expensive, the buyer will source solely from the spot market. We also exploit this insight

in our algorithm, namely in the local search procedure described in section 4.5, where

we simultaneously replace sets of regular barges by spot barges, taking into account

that the optimal region switches from hiring no spot barges to hiring the maximum

possible.

4.8 Discussion and Learnings

Maritime transportation is an area with relatively few applications of mathematical pro-

gramming models. At present, many problems arising in transshipment operations are
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beyond the capabilities of modern solvers, both because of their structure and of their

large size. To the best of our knowledge, this is the first practical work that describes

the development of a decision support system that allows (i) multiple contracting op-

tions in a (ii) complex maritime scheduling setting, that is (iii) fed by real-time data

and (iv) with high impact on the efficiency of the transshipment operations.

The application we report on this paper is interesting from two different perspec-

tives. First, its mathematical formulation is beyond the capabilities of modern integer

programming software, and as such it offers fruitful ground for theoretical studies.

The formulation can be conceptualized as a series of generalized hybrid jobshop flow

scheduling problems appended by linking constraints, that prohibit the overlap of load-

ing operations and of voyages taken by the same barge. Second, the model constitutes

a good testbed for improving generic heuristic techniques. As mathematical program-

ming technology develops at a fast pace, we envisage that the usage of optimization

models in maritime environments will increase in the future, leading ultimately to more

efficient operations and greater integration of maritime practitioners with the opera-

tions research community.
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5

Technical Appendix

This technical appendix that explains the most important methods that are utilized

throughout the thesis. Specifically, the basic concepts underlying Dantzig-Wolfe de-

composition, column generation, Lagrange relaxation, subgradient optimisation and

branch-and-price are described. The goal of this chapter is to serve as a quick reference

to the methods that are used throughout the thesis and facilitate their exposition to the

reader. For this reason, it draws material from the two most comprehensive references

in this area, namely Barnhart et al. (1996) and Lübbecke and Desrosiers (2004).

5.1 Dantzig-Wolfe Decomposition

Before we explain the concept of Dantzig-Wolfe Decomposition we give some useful

definitions.

Definition 5.1 (Convex Set) A set S is called convex iff for each s1, s2 in S and λ

in [0, 1] the point s = λs1 + (1− λ)s2 is in S.

Definition 5.2 (Convex Hull) We define the convex hull of a set S as conv(S) =

{s |∃s1, s2 ∈ S, λ ∈ [0, 1] : s = λs1 + (1− λ)s2}.

Collorary 5.3 If S is convex then conv(S) ≡ S. If S is not convex then S ⊆ conv(S).

Definition 5.4 (Relaxation of a set S) We relaxation of a set S any set R with S ⊆ R.

From the definition of relaxation it holds that conv(S) is a relaxation of S. More-

over, conv(S) is the minimal convex relaxation of S in the sense that it is a subset of

any other convex set that is also a relaxation of S.
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5.1 Dantzig-Wolfe Decomposition

Definition 5.5 (Extreme point) A point p of a convex set S is an extreme point of S

when for each p1, p2 in S and λ in [0, 1] p = λp1 + (1− λ)p2 ⇐⇒ p = p1 = p2.

Definition 5.6 (Extreme ray) A ray r of a convex set S is a point such that for each

λ in <+, λr is in S. A ray is extreme if for any two rays r1, r2 and λ in <+ it holds

that r = λr1 + (1− λ)r2 ⇐⇒ r
‖r‖ = r1

‖r1‖ = r2
‖r2‖

We consider a mathematical program P of the generic form

P min cTx (A.1)

s.t. Ax ≥ b (A.2)

x ∈ X (A.3)

x integer (A.4)

Dantzig-Wolfe Decomposition uses the fact that the set X∗ = {x ∈ X : x integer}
can be represented by a finite set of vectors, to derive an alternative definition of the

variables of P . Specifically, when X is bounded then X∗ is a finite set of points and

when X is not bounded it can be represented as a convex combination of a finite set

of extreme points and a linear combination of a finite set of extreme rays (Schrijver

1986). Therefore, if P = {p1, . . . , pn} are the extreme points and R = {r1, . . . , rm} the

extreme rays of X∗, any x ∈ X∗ can be written as

x =
∑
pi∈P

λipi +
∑
rj∈R

κjrj ∈ integer

for some λi ≥ 0, i = 1, . . . , n with
n∑
i=1

λi = 1 and κj ∈ <+, j = 1, . . . ,m. Substituting

this expression in P yields the Dantzig-Wolfe form of P , DWP :

DWP min cT
∑
pi∈P

λipi + cT
∑
rj∈R

κjrj (A.5)

s.t. A
∑
pi∈P

λipi +A
∑
rj∈R

κjrj ≥ b (A.6)

∑
pi∈P

λipi +
∑
rj∈R

κjrj ∈ integer (A.7)
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5.2 Column Generation

n∑
i=1

λi = 1 (A.8)

λi ≥ 0, i = 1, . . . , n (A.9)

κj ∈ <+, j = 1, . . . ,m (A.10)

For the remainder of the chapter we make the assumption that the set X∗ is finite

and bounded, and therefore it can be represented by extreme points only. This is

the most common case in practice, and the only relevant case for the decompositions

developed in this thesis. Problem DWP is a reformulation of P and as such, it attains

the same optimal objective value. Moreover, every solution of P can be mapped to a

solution of DWP and vice versa. The potential advantage of DWP compared to P is

that, whenever the convex hull of X∗ does not have integer extreme points, its linear

programming relaxation can yield a better lower bound than the linear programming

relaxation of P (Geoffrion 1974). To see this, we note that the feasible set of solutions

of the linear programming relaxation of P is PLP = {x|Ax ≥ b} ∩ {x ∈ X}, while the

corresponding feasible set for DWP is DWPLP = {x|Ax ≥ b} ∩ {x|x ∈ conv(X∗)},
and DWPLP ⊆ PLP because conv(X∗) ⊆ X, since conv(X∗) is the minimal convex

relaxation of X∗ and X is an arbitrary convex relaxation of X∗. This is important

because a weak lower bound leads to a larger enumeration tree in a branch-and-bound

algorithm that aims to find an optimal solution. The potential disadvantage of DWP

is that it may have a large number of variables. Column generation is an algorithmic

procedure that finds an optimal solution of the linear programming relaxation of DWP

without explicitly considering all of its variables. The next section describes column

generation in detail.

5.2 Column Generation

Each extreme point of X∗ is associated with a variable in DWP . In the majority

of applications, X∗ has too many extreme points, and considering them explicitly is

usually not an efficient option. However, most of these points and their corresponding

variables will be zero at an optimal solution of DWP , and therefore it is not neces-

sary to consider them explicitly. The concept of column generation is to identify the

subset of variables that are non-zero at an optimal solution. The process starts with

a restricted set of variables and iteratively identifies the most promising variable that
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5.3 Lagrange Relaxation

is not considered so far and adds it to DWP . The next steps describes in more detail

the column generation process. The term column is used to describe the vector of

coefficients of a variable in DWP.

Step 1. Generate an initial set of columns. An initial set of columns can be

generated in several ways. The most trivial way is to generate artificial columns, one

for each constraint of (A.2), and penalize them by a high cost at the objective function

(Chvátal 1983). A strategy that is usually more efficient is to identify a set of feasible

solutions of P and use them as initial columns. This is also easy from a practical

viewpoint, as feasible solutions can be generated readily by MIP solvers or heuristics.

Step 2. Find the variable that maximally improves the current objective value.

This task can be recast as a linear program in which the reduced cost of each variable

is used as a proxy for maximal improvement. The reduced cost of a variable that is not

used in the current solution, is the amount by which the objective function will change

if this variable is set at unit level. For variable xi, it is defined as rci = ci − πTAi,
where π is the dual values of (A.2) in the current optimal solution, ci is the objective

coefficient of variable xi and Ai the column of A that corresponds to the coefficients of

xi.

Step 3. Solve the linear programming relaxation of DWP or terminate. From

step 2, we have calculated which variable maximally improves the current objective

value of DWP by solving the pricing problem min{rc = (cT −πTA)x | x ∈ conv(X∗)}.
If rc > 0 then no column can further improve the objective function and the algorithm

terminates. If rc < 0, the column that returned the minimum reduced cost is entered

into the relaxation of DWP and the procedure iterates: a new dual solution π is

obtained, and the algorithm returns to step 2.

5.3 Lagrange Relaxation

An alterative approach to solving P is Lagrange relaxation (Fisher 2004). The basic

idea is to relax constraints Ax ≥ b and penalize their violation v = Ax − b in the

objective function, using a set of weights u ≥ 0. The problem can then be formulated

as follows:

L(u) := min
x∈X∗

cTx− uT (Ax− b)
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5.3 Lagrange Relaxation

The above problem is known as Lagrange subproblem, and weights u are the La-

grange multipliers. It is easy to see that any solution is a valid lower bound of P for

each u ≥ 0. The problem of selecting the w that maximizes the Lagrange subproblem

is known as the Lagrange dual, and is formulated as:

LRP :L := maxu≥0L(u) = maxu≥0{min
x∈X∗

cTx− uT (Ax− b)}

The Lagrange function L(u), u ≥ 0 is the lower envelope of a family of functions

linear in u and as such it can be shown to be concave (Lübbecke and Desrosiers 2004).

Then it follows that it is differentiable everywhere on its domain other than in its

breakpoints, namely the points u ≥ 0 in which the minimum value L(u) is attained by

two or more members of the family fx = cTx− uT (Ax− b), x ∈ X∗. A nice result by

Geoffrion (1974) shows that the lower bound L is the same as the optimal objective

value of DWP . The proof uses duality arguments, and it shows that the dual of DWP

can be recast as a Lagrange dual.

The fact that LRP is concave means that it has a unique maximizer and therefore

convex optimisation methods can be utilised. However, LRP is only subdifferentiable

in its breakpoints, in which a gradient function is not defined. In each breakpoint u,

the optimisation problem minx∈X c
Tx−uT (Ax−b) has multiple solutions, and for each

solution x there exists a gradient direction dx = Ax− b. A subgradient at a point ub is

a direction dx = Ax−b for which it holds that L(u)−L(ub) ≥ dx(u−ub) for any u ≥ 0.

Subgradient optimization is a method that solves LRP approximately, but updating

the set of multipliers u ≥ 0 iteratively till a convergence criterion is met. Specifically,

given an initial point u0 ≥ 0 subgradient optimisation is a procedure that produces a

sequence of estimates u1, . . . , um of u by applying the formula

uk+1 = max{0, uk − vk(b−Axk)}

where uk is the estimate of u in step k, vk is a scalar parameter called step size

and xk the solution of minx∈X∗{cTx− ukT (Ax− b)}. The stepsize vk is an important

parameters that can influence the convergence of subgradient optimisation. A popular

formula used in practice is

vk =
λk(L(uk)− ZF )

‖Axk − b‖2
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5.4 Branch-and-Price and Branch-and-Cut

where ZF is the best known feasible solution and λk is a number between 0 and 2

which is adjusted dynamically depending on the convergence of uk. Specifically, λk = 2

is considered a good starting value, that leads to large steps in promising directions

of improvement. As the sequence {u0, . . . , uk} approaches the vicinity of the optimal

solution λk is reduced to almost zero, in order to allow for a more refined search strategy.

When the subgradient algorithm terminates, a lower bound of P is at hand. This

procedure can be used as a bounding subroutine in a branch-and-bound algorithm,

which is an enumeration scheme that eliminates options that cannot be optimal. How-

ever, finding a good branching direction can be a challenge, as the optimal solution

returned by the Lagrange subproblem is integral but typically violates the constraints

Ax ≥ b. It is desirable to obtain a solution that does not violate Ax ≥ b but violates

the integrality restrictions x ∈ Integer, because then standard branching schemes can

be adopted. Unfortunately, there is no generic way to obtain such a structure with

subgradient optimisation, so most methods resort to column generation. Specifically,

the solution x ∈ X∗ that lead to the optimal u ≥ 0 can be used a column of DWP and

then column generation will generate the other alternative optima x ∈ X∗, and their

convex combination ensures that Ax ≥ 0 is not violated.

Decomposable structures. In the vast majority of applications the set X has a

decomposable structure, namely it can be written as X =
⋃k
i=1Xi with Xi ∩Xj = ∅,

for all i, j ∈ {1, . . . , k} with i 6= j. This implies that the subproblem decomposes in

a series of independent suproblems of smaller size. This makes the solution process

more efficient computationally, as subproblems can be solved fast and in parallel. This

statements holds not only for Lagrange relaxation, but also for column generation.

5.4 Branch-and-Price and Branch-and-Cut

After a lower bound of of the objective value function of P is at hand, an enumeration

scheme can be employed. In particular, the bounding process is applied iteratively to

variants of P in which some integer variables are fixed into some integer values. The

operation of fixing variables in certain values is called branching, because it creates

problems of the form of P . A lower bound is calculated for each problem that is created,

and whenever it is higher than the best known objective value of P , the corresponding

problem is rejected. Specifically, this is a proof that fixing the integer variables in this

128



5.5 References

particular fashion will lead to an objective value of P that is no better than the existing

one, and therefore this fixing configuration can be rejected. The search stops when all

possible combinations of integer variables have been considered, either explicitly, or

implicitly.

This technique has been given many names in the literature, such as branch-and-

bound, implicit enumeration and divide and conquer. When the lower bound is ob-

tained using column generation, it is usually called branch-and-price. When inequalities

that cutoff non-feasible solutions of P are added in its linear programming relaxation,

branch-and-bound is called branch-and-cut. Branch-and-cut is the approach adopted

by state-of-the-art software that solves mathematical programs, such as CPLEX and

Gurobi. The implementation of branch-and-price requires structural information about

each problem, and this hinders its adoption as a standard method in commercial soft-

ware.
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6

Conclusions

With an ever-growing amount of data readily available in many areas of operations

management, optimisation methodologies face new opportunities and challenges. Ef-

ficient solution procedures for large-scale models, such as this presented in the third

essay, have yet to be developed. This thesis contributes to the advancement of large-

scale solution methodologies in three different aspects. First, it shows how algorithmic

techniques, such as Lagrange relaxation and column generation can be made more ef-

ficient by amending a formulation such that its dual space is reduced. This leads to

important efficiency gains, and ultimately paves the way to considering applications of

larger-scale than what can be considered to date. Second, the development of a horizon

decomposition approach demonstrates how problems that expand over a large horizon

can be decomposed and solved efficiently. Lastly, it demonstrates how Dantzig-Wolfe

decomposition can be used as a lower bounding technique in a complex practical prob-

lem, and presents a dedicated algorithm that generates high-quality feasible solutions.

There are many avenues for further research related to the current thesis. An emerg-

ing stream of literature investigates stabilisation techniques in column generation and

Lagrange relaxation. The quest for efficient solution approaches that arise in areas such

as transportation, advertising and revenue management has boomed in recent years,

and problems considered intractable have been tackled by insightful applications of

column generation and Lagrange relaxation. Problems that span over a multitude of

periods pose important computational challenges, and the horizon-decomposition ap-

proach developed in this thesis constitutes a well-suited approach to multi-period prob-

lems. Future research is needed to demonstrate in which classes of problems horizon
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decomposition approach is mostly efficient. Finally, the practical application presented

in the third essay is beyond the capabilities of modern solvers, even those that encap-

sulate the latest advancements in integer programming theory. Theoretical studies are

needed to investigate the structures of the underlying polytopes and suggest families of

inequalities that improve the formulation’s lower bound. In addition, it provides fruit-

ful ground for research on heuristics based on mixed integer programming, as solvers

failed to find any feasible solutions for medium and large scale instances.

It is the author’s belief that theoretical advancements on mathematical program-

ming theory and on heuristics can ultimately have a large impact on practical op-

erations, and thereby increase the visibility of the academic operations management

community. As globalised operations environments become increasingly more complex,

and as data availability is better than before, large-scale optimisation has the oppor-

tunity to become a ubiquitous research area of increased importance. The current

thesis, in addition to offering methodological advancements, constitutes a step towards

demonstrating the practical applicability of large-scale optimisation methods to the

ever-changing landscape of operations management.
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