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Abstract

Fine particulate matter is, on account of its aerodynamic properties and typical composition (especially diesel
particulate matter and carbonaceous particles) the particulate pollutant potentially most harmful to cultural heritage,
representing an aesthetic issue and an agent of chemical degradation simultaneously. This paper reviews the current
knowledge of the life-cycle of fine particulates, focussing on diesel particulate matter from emission to deposition,
including its aesthetic and chemical consequences, and draws attention to some imbalances in the current state of
research. The currently available measurements are biased towards coarse dust, and information on the
consequences of particle deposition is largely restricted to the outdoor environment. More evidence on the chemical
effects of the most common types of fine particulate matter in typical indoor materials is needed to enable risk
assessment for indoor collections.
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Introduction
Most museums, galleries, libraries and archives, as well as
many historical palaces and houses, are located in urban
centres, surrounded by a complex and changeable urban
atmosphere. While the last twenty years have seen a great
reduction in the emissions of the pollutants that have been
typically considered more harmful for vulnerable heritage
materials, scientific interest is shifting towards other pol-
lutants and particulate matter (PM) has been a subject of
great interest.
However, PM can be an elusive subject of study. Dif-

ferent sizes display different properties, typical sources
and even different behaviours. Studies of PM in indoor
heritage environments have generally focused on dust,
which is one of the characteristic sizes -the largest- of
PM. This bias towards coarse particles is evident if we
look at the minimum diameter of the particles collected in
different monitoring campaigns in the field of heritage sci-
ence. A survey of 25 scientific papers [1-25], most of them
reviewed here, with the keywords “heritage” and “particu-
late matter” reveal that 32% of them analyse only particles
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up to 10 μm and 16% include particles up to 2.5 μm, i.e.
more than half of the studies did not look into submicron
particles. If a study did take into account particles ∼0.5 -
1 μm, it is generally the lowest size mode considered (36%
of cases) and no particles are studied under this value.
Finally, in 92% of the cases, particles are studied in only
two or one size modes (usually 2.5 and 10 μm). However,
two size fractions are not enough to reflect the actual size
distribution, which is only analysed in a minority (8%) of
the studies.
Obtaining size distributions and specifically quantifying

the amount of submicron particles is common practice
in aerosol monitoring outside the heritage field. All these
sizes, and not only large particles, have a certain role in
indoor heritage environments. In fact, coarse particles
exhibit characteristics of great interest to conservators:
they are significant carriers of mass to surfaces, and, being
bigger, are more likely to alter the visual appearance of
objects. But their number concentrations are orders of
magnitude smaller than the concentrations of fine parti-
cles, especially in urban environments. Additionally, the
composition of coarse and ultrafine particles is also differ-
ent, and while small particles might carry less mass, they
may carry components of different reactivity.
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This review deals with fine particles, i.e. all particles
smaller than 1 μm, without excluding particles smaller
than 0.1 μm, commonly referred to as ultrafine (UFP).
This size range is clearly separated from coarse dust, and
it includes pollutants of particular interest to conserva-
tion of cultural heritage. Special attention will be given to
particles derived from combustion present in urban envi-
ronments, particularly Diesel Particulate Matter (DPM).
The review serves a double purpose. First of all, it

attempts to identify if fine and ultrafine particles can be
regarded as a relevant risk to cultural heritage indoors. It
also identifies multiple areas that require further research.
Secondly, it aims to provide a guide to heritage managers
and curators interested in the properties of this particu-
lar pollutant. While aerosols indoors have been studied
in detail, no account exists of the distinct behaviour of
fine particles. Since not many investigations deal directly
with fine and ultrafine particles in heritage environments,
this review will make use of work produced in other
fields -aerosol science, environmental science, computa-
tional modelling- which can be applied to heritage at least
partly.

Sources, trends, and projections
The term PM identifies all the particles that can be
found in the atmosphere, in other words, those that can
be suspended in air and transported by it before they
deposit. This includes particles composed only of several
molecules, with diameters around 0.01 μm, up to coarse
dust with diameters around 100 μm. Samples of atmo-
spheric PM usually display a very characteristic size dis-
tribution, clearly separated in three different size modes
(Figure 1) [26]. These modes are referred to as the nucle-
ation, ultrafine, or Aitken mode (<100 nm), coagulation

or accumulation mode (100 - 1000 nm) and coarse mode
(>1 μm). An alternative and common nomenclature is
using PMx for all the particles smaller than x in μm,
the usual values being 10, 2.5 μm or, less commonly, 5
and 1 μm. Although the use of this notation is widely
spread, it makes an artificial division between the actual
size modes. E.g., PM2.5 is in the middle of the coarse mode
but is generally taken as a good indication of the amount
of anthropogenic particulate pollutants in urban environ-
ments. This nomenclature is useful from the health per-
spective as it approximately denotes the fractions which
can penetrate to different depths of the human respiratory
system. It is not, as we shall see, particularly suited for her-
itage purposes. However, its status of a standard makes its
use unavoidable.
Given such a broad definition, it is natural that there

are a variety of origins, sources and compositions of
PM. Nonetheless, there are a limited number of relevant
sources. The majority are related to energy production,
and natural sources (such as sea-spray) are often negligi-
ble in comparison with the anthropogenic ones. Among
them, the combustion of fossil fuels, especially in road
transportation, has a prominent role.
In the UK, road transport is responsible for more than

half of the particles of the smaller size ranges and around
20% of the larger [27]. This relative contribution is even
greater in urban areas. At Marylebone Road, arguably one
of the most polluted streets in London, traffic-generated
particles make up to 27% of the PM10 mass concentration
and 42% of the PM2.5 [28]. Most road transport particles
are due to diesel vehicles (e.g. 72% of USA road transport
PM) [29]. Even though this picture varies greatly between
regions, similar particle source apportionments have been
reported by different studies carried out elsewhere [30,31].

Figure 1 Typical size distribution. An example of distribution of atmospheric particles showing the relevant and typical properties of DPM. Mass
concentrations adapted from measurements taken in the National Library in Prague [24] and completed with theoretical number concentration of
ultrafine particles according to [26].
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Emissions of all types of PM are predicted to decrease
in the decades to come, including emissions of the small-
est particles [32] due to the implementation of mitigation
strategies such as diesel soot filters and the substitution
of fossil fuels with alternative energy sources. Analysis
of global emission trends under different scenarios reveal
that emissions of traffic-generated PM will reduce in all
the continents except in Africa, where they are predicted
to increase 1.3 - 3.1% per year, depending on the scenario,
due to economic development and ageing car fleet. Global
emissions from vehicles will reduce 1.3 - 2% on average
per year in the following 40 years [33]. China will achieve a
reduction in emissions of black carbon of 9% by 2020 [34].
The PM concentration limit suggested by the World

Health Organisation (WHO) [35] and the European Com-
mission [36] for PM2.5 is 25 μg/m3, and the US Envi-
ronmental Protection Agency has suggested a value of 13
μg/m3. Even though these limits are exceeded in some
regions, it is likely that they will be satisfied in the near
future. However, WHO states as no threshold for PM
has been identified below which no damage to health is
observed, the recommended value should represent an
acceptable and achievable objective to minimize health
effects in the context of local constraints, capabilities and
public health priorities [35]. The same logic may be appli-
cable to heritage materials. It can be concluded that,
even though emissions are gradually decreasing, traffic-
generated pollutants will remain an important part of
urban atmospheres for decades, especially in developing
economies.

Particles derived from combustion
The laser-cleaning literature abounds with uses of the
word “soot”, referring to dark deposits on indoor and
outdoor materials. However, no standard description
or characterisation of soot exists. The concept of “black

carbon”, extensively used in aerosol and environmental
science, suffers from a similar imprecision, sometimes
used interchangeably with soot [37].
What is clear is that fine particles (PM1) mostly origi-

nate from combustion processes. Morphology and com-
position of these particles varies with the source to some
degree: burning of candles, coal, tobacco or diesel fuel.
These particles also have common features: a high content
of inorganic carbon that will display high light absorbance,
combined or coated with traces of other elements, and an
aggregate-like shape.

Diesel particulates
A typical diesel particulate is shown in its graphic repre-
sentation in Figure 2a and a TEMmicrograph in Figure 2b
[38]. Diesel particulates in the accumulation mode have a
distinct morphology consisting of a self-similar agglomer-
ation of primary particles, which has led some researchers
to use fractality as a characterisation factor [39]. These
primary particles are mainly composed of elemental car-
bon with metallic traces, and are coated with a layer
of organic carbon and sulfate. This composition is sub-
ject to some variability as it depends on the engine type,
the engine load and the fuel used. Total carbon usually
accounts for 75 - 90% of the overall mass [40], and the
metal traces can include, in the order of relative abun-
dance: Ca, Fe, Mg, Zn, Cr, Ni, Ba, Pb [41,42]. Elemental
carbon (EC) is a characteristic component of DPM, which
is typically the source of 90% of the EC in urban envi-
ronments [43]. Organic Carbon (OC) may be emitted
directly into the atmosphere or can be formed in gas-to-
particle atmospheric processes (secondary aerosol). EC,
on the other hand, emerges primarily from the combus-
tion of carbonaceous matter, and its presence is generally
regarded as a good indicator of the fossil fuel combus-
tion origin of PM, especially in urban areas. Recently,

Figure 2 Combustion-derived particles. a) Graphic representation of a typical diesel particle containing all its components: EC substrate, OC
coating, metal traces and nucleation particles, taken from [41]. b) TEM image of a diesel exhaust particle with a magnification of 230000x, taken from
[38]. c) A candle soot particulate displaying a morphology similar to that of DPM [46].
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however, it has been claimed that atmospheric EC can
originate from sources other than diesel exhausts [31,44],
which makes source apportionment difficult. Polycyclic
aromatic hydrocarbons (PAHs) and n-alkanes have also
been suggested as possible tracers for different particulate
pollutants generated by road traffic [45].

Other combustion particulates
Even though this review focuses on particles of outdoor
origin, mention should be made of other specific sources
of fine and ultrafine particles which may be of interest.
Candle-burning soot, for example, is commonly associ-
ated with indoor deposits in temples and churches. It has
been found that the amount and composition of parti-
cles emitted from candles depend on the burning mode.
If the flame is in steady state, it emits a relatively high
number of ultrafine particles dominated by either phos-
phates or alkali nitrates originated from additives. Sooting
burn, in addition, emits larger particles mainly consist-
ing of agglomerated elemental carbon, with a morphol-
ogy which is similar to DPM [47] (Figure 2c). Particles
with the same morphology [46] and similar composi-
tion can be emitted during cooking [48], an activity not
unusual in large heritage sites and museums. A “black
deposit” or “soot deposit”, must, therefore, be assessed
with care in order to identify the most likely origin of the
particles.

Concentration trends indoors
The indoor PM concentration is generally a reflection of
the outdoor concentration. Certain indoor activities rep-
resent exceptions to this rule. It has long been established
that different activities, such as cooking, housework, or
simply any physical activity, result in concentration peaks
over the baseline set by the outdoor concentration [49].

The frequency of these activities in heritage environ-
ments, and the efficiency of air cleaning systems define
the daily PM pattern.
Fine PM such as DPM originate from outdoor sources,

and the events that can cause a drop or a sudden increase
in its concentration are rare. Figure 3 shows the variation
of fine particle (d < 1μm) concentration in a road-
side house. It can be clearly appreciated that the indoor
concentration is a consequence of the outdoor concen-
tration, except when particles are emitted during cooking
activities.
In heritage environments, indoor events that lead to

emission of fine particles are uncommon. Actions such as
cleaning, or physical activity cause variations in the con-
centration of the larger particles, but generally leave the
smaller size modes unaltered. Figure 4 shows the variation
of airborne particle concentration in the Correr Museum,
Italy [17]. It can be appreciated that the peaks of 10, 5,
2, and 1 μm particles, which correspond with the open-
ing hours of the museum, as well as their high variability,
are not reflected in the concentration pattern of the finer
particles, which varies smoothly. Very similar temporal
evolutions have been reported in the Anatomy Theatre
of Padua [7] and in the Chiericati Municipal Museum
of Vicenza, Italy [50]. As a general rule, while physi-
cal movement increases the number of coarse particles,
actions involving heating tend to increase the concen-
tration of the smallest particles. Air heaters, electrical
radiators and stoves have been found to increase concen-
trations of particles between 0.02 - 0.1 μm up to 100,000 -
200,000 particles/cm3, while leaving larger particles
unaltered [51].
The mass and number concentrations seen in Figures 3

and 4 are representative of the typical concentrations in
indoor environments. The average concentration of PM1

Figure 3 Outdoor and indoor variations of PM conentration. Indoor and outdoor variations of fine particle concentration (d <1 μm) in a
roadside house in Birmingham (Taken from [49]).
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Figure 4 PM in the Correr Museum. Variation of particulate matter concentrations in the Correr Museum, Venice, Italy, taken from [17].

inside the Alhambra, Granada, Spain, was 17 μg/m3 in
summer and 8 μg/m3 in winter [2], and its most abun-
dant component was black carbon. Traffic was found to
be the major source of fine particles. Between 10 and 20
μg/m3 of PM2.5 were detected in display rooms in the
Plantin-Moretus museum in Belgium [19], and 40 μg/m3

in the Archaeological Museum of Thessaloniki, Greece
[12]. If total suspended particles are measured, higher val-
ues should be expected, e.g. 60 - 70 μg/m3 inside the
Wawel CastleMuseum in Cracow, Poland [13]. At this site,
particles containing elemental and organic carbon were
found to be the ones that penetrate more easily into the
museum. Even though particle concentrations in heritage
locations are commonlymeasured in this manner, they tell
us little about the fraction of fine particles that penetrate
into these locations. Analysis of the bulk chemical compo-
sition of the collected particles is a common further step,
but it is rare to find more detailed measurements of size
distribution including fine particles. A good example are
the detailed measurements taken in the Czech National
Library in Prague [24], or in some Californian muse-
ums [25] which display a clear bimodal size distribution
(Figure 1).
The indoor/outdoor ratio (I/O ratio) is widely used to

describe the differences between the indoor and the out-
door environments [52-55]. There is a great variability in
the measured PM I/O ratios in particular cases, but in
general, some rules of thumb can be extracted from expe-
rience. Firstly, as shown in Figure 5, the I/O will be higher
for particles of size between 0.1 - 1μm. An explanation for
this phenomenon is given by the aerodynamics of these
particles, and will be further explored in the next sections.
Secondly, I/O ratios for particles containing EC (which in

urban atmospheres can be understood as DPM), the I/O
ratio are typically 0.5 - 0.9 [49,52,56].

The life-cycle of fine particles indoors
Fine particulates penetrate into buildings not only
through large openings but also through cracks and fil-
ter inlets. At the end of its indoor life, PM deposits on
surfaces or is removed by mechanical or natural ven-
tilation. Some particles, especially the larger ones, may

Figure 5 I/O ratios. Experimental I/O ratios as a function of particle
size. Values taken from [53] (diamond), [54] (square), [55] (triangle),
[52] (cross).
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be re-suspended and re-deposited. This set of inlets and
outlets of PM summarizes all the steps that ultimately
determine the extent of soiling of indoor surfaces. They
have been extensively studied as separate phenomena,
and considerable literature exists describing each process
experimentally, or with empirical or semi-empirical corre-
lations. The work of Nazaroff [57] is the only piece of work
presenting a comprehensive summary of all the possible
particle flows in any given building. There are other pub-
lished balances of PM indoors [58], but generally, as they
focus mainly on practical health issues, deposition is not
studied nor are the minor penetration processes, such as
leakage. Also, while health scientists are concerned with
the free volume, heritage scientists should be concerned
with the room as a whole, and consider both the volume
and the surfaces. Figure 6 summarizes, in an approach
similar to Nazaroffs, the main particulate matter fluxes in
a room.

Penetration
First and foremost, particles enter through main inlets:
windows, doors, and any openings that connect the
indoor and outdoor environments, such as gaps under
doors. The use of windows for ventilation can quickly
increase the particle concentration indoors to match the
outdoor levels [59] for all particle sizes. For example, a
study of PM in Californian museums [60], such as the
Sepulveda house, which lacks an air filtration system,

Figure 6 Summary of particle fluxes indoors. The possible inlets
and outlets of particles. QM is a main inlet, such as an open window,
QL the leakage, QF the filtered inlet, QR an internal filtered
recirculation, E the internal emission, R the re-suspension, Dijk the
deposition to walls, floor, and ceiling, Cn0 and Cn the outdoor and
indoor concentrations of every particle size fraction, and V the room
volume. Both QF and QR are subject to certain efficiency.

showed I/O rates equal to 1. This implied that the risk of
deposition indoors was equal to the one outdoors. Leak-
age, or the penetration of particles through cracks or gaps
in building envelopes, has also been extensively studied
both experimentally and theoretically. It is usually a major
particle source in buildings that rely solely on mechani-
cal ventilation [61]. The fundamental difference between
a crack and a large opening is that a significant fraction of
particles will deposit on the internal surfaces of the crack,
and therefore leakage has a certain penetration efficiency
which depends on particle size. Ultrafine particles led by
Brownian motion will tend to deposit on crack walls, and
coarse particles will also deposit quickly on upward facing
surfaces [57]. Only the accumulation mode (0.1 - 1 μm)
will cross the crack efficiently. Liu andNazaroff [62] devel-
oped a simple mathematical model to estimate the pene-
tration efficiency of particles, and it has been successfully
used in several experimental studies since then [63,64].
Figure 7 shows a solution of the Nazaroff equation. Note
that the particles between 0.1 - 1 μm penetrate with an
almost 100-% efficiency through the crack. Although gen-
erally regarded as a minor source, crack infiltration has
been found to account for 73% of the PM1 indoors in a
poorly ventilated building [65]. Leakage can lead particles
to the interior of showcases. The comparison of parti-
cle size distribution inside and outside a display case in a
museum in Padova, Italy, revealed that the I/O ratio was 1
for all particle sizes, except for particles larger than 1 μm
[66], which is in accordance with the theory.

Indoor emission
Indoor sources of fine particles are found in some specific
heritage environments, such as in-use churches where

Figure 7 Leakage through cracks. Comparison of deposition and
penetration through cracks and leaks obtained with the Nazaroff
equations for deposition and leakage. Note that the particles with
smaller deposition rates also penetrate through cracks more
efficiently. Crack dimensions: width = 0.20mm, length = 4 cm,
pressure difference = 4 Pa, air flow conditions: K = 0.5, cubic room
(3x3x3m). All values taken as representative of realistic cracks by [62].
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incense and candles are burned. An increase for a factor
of 9.1 in the concentration of PM1 has been found after
services that involved incense burning in Ruhr, Germany.
In this case, the concentration inside the church remained
above the outdoor levels for ∼24 h approximately [67].
These findings are consistent with values found during
services in medieval churches in Cyprus, where indoor
PM0.5−1 concentration was found to be up to 10.7 times
larger than the outdoor concentration.
A relatively unknown indoor source is the thermal des-

orption of organic compounds and emission of submicron
particles from household dust [68,69]. At temperatures
above 50 °C, which are often present in indoor environ-
ments, concentrations around 2500 particles/cm3 can be
generated [69]. Investigation of this phenomenon, which
to the best of our knowledge has not been researched
in heritage sites, should be considered when introducing
new heating points in the environment.

Movement
Air transport
The airflow in an indoor space, isolated from the outdoor
climate, is governed predominantly by two factors: tem-
perature gradients andmechanical mixing. In a totally iso-
lated room, only the temperature profile will define the air
velocity pattern. Studies of indoor micro-climates show
that temperature gradients are a consequence of a number
of factors such as presence of heating points, proximity to
windows, temperature of the surrounding spaces, human
presence, lighting or similar. Heat sources induce verti-
cal convective flows that displace contaminants upwards
in an enclosed space. Cool vertical surfaces, such as win-
dows, induce downward flows, which results in a circular
movement of air around the room. A typically observed
air movement pattern is the upward flow from radiators or
air circulation behind furniture or paintings due to the dif-
ference of temperature between the wall and the air [70].
PM is largely transported by the movement of the sur-
rounding air. In other words, the Stokes number, the non-
dimensional parameter which describes the behaviour of
particles in suspension, is generally well below 1 (St <<

1). The Stokes number, St = τU/D, is determined by the
ratio of the relaxation time of the particle (τ ), the char-
acteristic dimension of the obstacle obstructing the fluid
flow (D) and the velocity of the fluid (U).
Particles with St > 1 will have their own velocity field

and enough inertia to detach from air streamlines, and
particles with St < 1 follow the air current closely [71].
However, the velocity field of particles does not coin-
cide completely with the velocity field of air. Particles
have a certain mass, and therefore their velocity has a
vertical component due to gravitational settling. Coarse
particles settle down gravitationally much faster than fine
particles, and this creates a certain stratification of the

concentration. Measurements in indoor domestic envi-
ronments have revealed a higher proportion of PM2.5
on the upper parts of rooms, and higher abundance of
PM10 towards the floor [51]. Measurements of particle
deposition in ceiling, walls and floor reveal that almost
no coarse particles deposit on the ceiling, while all the
deposited mass in the floor is due to coarse particles [25].

Other transport mechanisms
The smallest particles are largely affected by Brownian dif-
fusion (also called “random walk”), which is a result of
collisions between particles and air molecules and occurs
in all directions. In any given room, coarse particles will
be found in areas with the highest air flow, while fine par-
ticles will tend to diffuse around all the available space.
Thermophoresis, the displacement of particles from high
to low temperatures, is a phenomenon also common
indoors. The balance between air transport, diffusion and
thermophoresis has been studied in detail by Camuffo [72]
in the case of the soiling of murals. It was pointed out
that when a vertical fresco is colder than the surround-
ing air, the temperature gradient forces thermophoresis
towards the wall, and at the same time a downward free-
convection flow develops, resulting in an overall increase
of deposition rates. When a fresco is warmer than the air
thermophoresis takes fine particles away from the wall,
but this effect may be counteracted by an upwards con-
vective flow that increases deposition of coarse particles.
The best situation for conservation purposes is, therefore,
a thermal equilibrium between wall and air, whereas cold
walls are the less desirable scenario.

Deposition
The deposition velocity of PM varies with particle diam-
eter. This dependence is well known, and several authors
have suggested mathematical expressions to estimate
deposition velocities under different conditions. Perhaps
the most used is the model derived by Nazaroff et al.
[73,74], which has been successfully applied to museum
environments [75]. Figure 8 has been obtained by solving
this model, and shows the range of values of deposi-
tion velocity that can be expected under different flow
conditions and for different diameters.

Dependence on particle diameter
The highest deposition rates are found for the largest par-
ticles (1 - 10 μm), which are governed mostly by gravity
and tend to deposit on horizontal surfaces, and for the
smallest particles (0.01 - 0.1 μm), which are mostly gov-
erned by Brownian motion and tend to diffuse and collide
against floor, walls or ceiling. The mass of particles is only
relevant in the larger size fraction, in which larger densi-
ties mean larger deposition velocities. Between these two
sizemodes, the accumulationmode (0.1 - 1μm) shows the
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Figure 8 Deposition velocity. Deposition velocities for several
diameters under different flow conditions. Obtained by solving the
Nazaroff deposition equations [74]. S/V is the surface/volume ratio of
the room, SG is the specific gravity (density/density of water) of the
particles, and K is the flow turbulence parameter used in the model.

slower deposition rates, which are up to 2 orders of mag-
nitude smaller than that of the coarse particles [57]. These
lower deposition rates imply that particles in the accumu-
lation mode tend to remain in suspension for longer, and
therefore travel longer distances. In other words, while
the coarse particles will deposit shortly after penetration
indoors, near the source, the accumulation particles will
distribute more evenly around the available space [76].

Dependence on air flow
The flow turbulence parameter, K, a key component of
the Nazaroff deposition model, represents the turbulence
regime of the air. It is an influential parameter and at low
values of K, when turbulence is low and air is, for example,
driven by temperature differences that generate free con-
vection, particles display the lowest deposition rates. The
deposition rates for all diameters increase with higher air
velocities, which can be produced by wind or mechani-
cal ventilation. Deposition rates are also smaller when the
surface to volume ratio of the room is small, i.e. when
the room has a small surface in relation to its volume. As
a general rule, small volumes such as display cases and
boxes will have larger S/V ratios than large galleries, but
one should bear in mind that the number of objects (e.g.
furnishings and exhibits) present in the room will also
increase the S/V ratio, and thus increase deposition. Sim-
ilarly, the roughness of surfaces favours deposition [76].

The applicability of the Nazaroff deposition model has
been extensively proven in experimental investigations of
particle deposition in a range of environments [77,78],
rough surfaces of different materials [79], rooms with fans,
and furnished or unfurnished rooms [80].

Re-suspension
Once deposited, PM is adhered to surfaces by adhesion
forces that can be orders of magnitude higher than grav-
ity [71], and of which Van der Waals adhesion is the most
relevant [81]. Changes in air flow conditions can even-
tually compensate these adhesion forces and re-suspend
the deposited particles. Re-suspension rates are strongly
dependant on particle diameter. Larger particles are re-
suspended more easily. In some museum environments,
particles of >1 μm appear only during museum open-
ing hours due to re-suspension caused by visitors. These
particles redeposit gravitationally as soon as the museum
is closed [17]. This type of behaviour has been studied
for a long time, and common indoor activities such as
walking and vacuum cleaning have been associated with
re-suspension of particles >1 μm [82], and have been
found to increase particle concentrations up to 7 times
the background concentration [83]. Re-suspension due to
inappropriate cleaning habits has been found to account
for the spatial distribution of particles in a monastery
which displayed an otherwise very stable indoor environ-
ment [84].
This mechanism is very dependent on particle size,

and <1 μm particles are rarely affected. Furthermore, re-
suspension affects only those particles that are deposited
on the floor or the objects involved in the human activ-
ity that causes it, such as furniture. The fraction of fine
particles involved in the deposition and re-suspension
cycle could be expected to be negligible, although there
appears to be no relevant experimental research about re-
suspension of the accumulation size mode. Nonetheless,
re-suspension is a phenomenon that has been exten-
sively modelled [85-87], and it is possible to assess the
re-suspension rates of fine particles mathematically.
Figure 9 shows the solution of one of these models, the

empirical correlation recommended by [88], along with
deposition rates calculated with the Nazaroff equation.
A friction velocity of 1 m/s has been used, a relatively
high air velocity for an indoor environment which may
represent an extreme situation, e.g. the opening of a
window with a strong air current. Note that particle
re-suspension decays exponentially with time since the
moment in which the re-suspending event begins. Conse-
quently, even though re-suspension might exceed deposi-
tion when air starts moving, the re-suspension rate rapidly
decreases below the deposition rate. The overall parti-
cle flux is positive towards surfaces. It can be concluded
that as an approximate guideline, re-suspension rates for
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Figure 9 Resuspension velocity. Re-suspension rates obtained with
the empirical correlation recommended in [88]. Friction velocity = 1
m/s, same flow conditions as Figure 7.

submicron particles indoors will be orders of magnitude
smaller than deposition rates, unless air speed is sub-
ject to frequent fluctuations due to wind or mechanical
ventilation.

Coagulation
Some authors attribute the measured particle decay in
experimental conditions exclusively to deposition while
others do to coagulation as well [89]. Naturally, the frac-
tion of particles in a given size fraction that collide or
deposit depends largely on the number of particles and
on the proportions of the room, specifically on the sur-
face/volume ratio. In some cases either the former or the
latter process may be negligible. But in broader terms, it
is clear that the temporal evolution of particle number
concentration cannot be fully understood without taking
both processes into account. In a small chamber with a
high concentration of diesel particles (from 8.11 × 105 to
84.3 × 105 particles/cm3, which compares to the range of
1 × 105 to 7 × 105, concentrations which can be found in
street canyons in Stockholm [90]), with diameters from 15
to 670 nm, particle size increased up to a factor of 2.6 dur-
ing the experiment due to coagulation [91]. An increase
of particle size up to 60% has been also found in the
case of tobacco smoke during the first 30 min after smok-
ing a cigarette [92]. However, it is rare to find such high
concentrations in indoor environments. It has been exper-
imentally demonstrated that coagulation can be neglected
in comparison to deposition when total suspended parti-
cles (TSP) concentration is under 1 × 103 particles/cm3,
and for ultrafine particles (<0.1μm) it is only relevant
above 1 × 104 particles/cm3. While particle deposition

occurs at a constant rate independent of the particle num-
ber, coagulation is a second order process that depends on
the square root of particle number concentration. This is
described by the following equation [93]:

δn
δt

= −Kn (1)

where n is the particle number andK the coagulation con-
stant. The difference in behaviour (linear for deposition
and quadratic for coagulation) allows us to appreciate the
effect of both processes on particle decay. Other authors
have acknowledged the importance of coagulation as a rel-
evant removal process. It has been found to account for
up to 80% of particle loss in a small chamber (1.6 m3)
with steady air, with deposition removing only from 10
to 15% of the paper ash particles used (average particle
diameter of 0.069 μm). This situation changes under stir-
ring, in which case deposition may account for 50% of the
removal in the beginning of the experiment and up to 90%
at the end [89], as coagulation rate gradually reduces as
particle number decays. These results are in agreement
with [94], where it was estimated that coagulation could
remove from 40% to 70% of the environmental particles
in a street canyon with a low wind speed (2 m/s) and
around 20% at higher wind speeds (8 m/s), and with the
experimental results of [95], who found high coagulation
rates in rooms with low air exchange rates. All the men-
tioned studies focus on particles smaller than 1 μm, since
the smallest particles are more likely to coagulate, not
only because of their higher mobility, but because they are
typically present in higher number concentrations [73].
Coagulation is known to be fairly independent of particle
composition and air relative humidity [96]. There is lit-
tle doubt that coagulation is a relevant removal process
in enclosed or semi-enclosed and highly polluted environ-
ments [97], but it is also true that it may be negligible in
most heritage environments.

Filtered removal
PM can be removed using a filtration system. There are
a number of filter configurations. Air inlet and outlet
can be both filtered, or air can be filtered and recircu-
lated into the room in a closed system. The efficiency of
such filters is well known and its calculation as a function
of particle size is standardised throughout the industry.
Commonly, efficiency is expressed using the Minimum
Efficiency Reporting Value (MERV) ranging from 1 - 20,
1 - 4 being common values for domestic filters capable
of retaining only the largest particles (>10 μm) and 17
- 20 are typical values for fine filters used in pharma-
ceutical or electronic applications, capable of retaining
submicron sized particles (<0.3 μm), Figure 10 shows the
efficiency of some American Society of Heating, Refrig-
erating and Air-Conditioning Engineers (ASHRAE) rated
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Figure 10 Examples of filter efficiency curves. Efficiency of four
ASHRAE-rated filters of different average efficiencies operating at 1.3
m/s, adapted from [98].

filters [98]. The ASHRAE recommends museums using
filters with a MERV from 7 - 11 [99]. Particle filtration
is governed by the same physical mechanisms as infiltra-
tion through cracks, thus the expected removal efficiency
for each particle size will be inversely proportional to
the particle penetration factor. As discussed, fine particles
deposit through Brownian diffusion and coarse particles
are easily intercepted by impaction, while the accumu-
lation mode exhibits the lowest removal efficiency. It is
also worth remarking that an increase of air flow rate will
improve the removal of fine particles, but would be less
effective as particle size increases, as larger particles are
less affected by airflow. The accumulation mode of DPM
are the particles, which are removed less efficiently by
ventilation systems.

The consequences of deposition of fine particles
Deposition is a three-fold problem. First, mere deposi-
tion (or “dry” deposition) can cause area coverage and
have a visual effect on the soiled object, a “visual nui-
sance”, as it has been qualified in some of the most
relevant investigations [100,101]. Secondly, frequent or
intense cleaningmight have a negative effect on the under-
lying surface, as well as being a cost-intensive process.
And finally, the deposited particles might interact chem-
ically with the surface, creating a damage layer and pro-
ducing irreversible degradation. Although evidence exists
for all these phenomena, research has prioritized soiling
on outdoor surfaces and particularly layers produced on
stone. The following section attempts to describe these
three processes indoors -visual nuisance, chemical dam-
age and damage by cleaning- based on the understanding
that evidence is scarce, and in some cases conclusions
must be extracted from evidence obtained in outdoor
experiments.

Soiling indoors
Figure 11 may convey a sense of the time-scale of soil-
ing processes. It shows experimental values adapted from
different publications of the percentage of reflectance lost
during environmental exposure. Due to the lack of exper-
imental data on soiling indoors, some sheltered cases
are included. The time needed to achieve a 10% loss of
reflectance, which corresponds approximately to a change
visible by the naked eye [102], is highly variable and ranges
from a month to a year. Note also that all soiling pro-
cesses occur at a varying rate, which tends to be higher
during the first weeks of exposure [4,103-107]. This non-
linear behaviour is what equations (2), (3) and (4) attempt
to reflect.
Soiling is generally assumed to be directly proportional

to the loss of reflectance and lightness (or increase in
haze) of amaterial. Several models for soiling are currently
under discussion. Historically, the first dose-response
functions were developed under the assumption that soil-
ing is proportional to the square root of the concentration
of PM.

�

�0
= k

√
CPMt (2)

Figure 11 Collection of soiling measurements using reflectance.
Experimental values of loss of reflectance. S = sheltered, I = indoors,
U = unsheltered. Data adapted from [103] (Oporto), [4] (roadside,
London), [105] (road tunnel, Hertfordshire), [106] (theatre museum,
London), [104] (British Museum, London) and [107] (unsheltered
roadside, London).



Grau-Bové and Strlič Heritage Science 2013, 1:8 Page 11 of 17
http://www.heritagesciencejournal.com/content/1/1/8

where � is an optical property and �0 its initial value, k
is a “soiling constant”, t is the elapsed time and CPM is the
concentration of PM in the surrounding air. This model
was first proposed by Beloin and Haynie in 1975 [108] and
has been significantly endorsed by several researchers [10,
103,109]. The second model, also widely used, follows an
exponential relation in the form:

�

�0
= exp(kCPMt) (3)

which was firstly suggested by Mansfield and Hamilton in
1989 [110] and has also been extensively used [4,111,112].
For some comparisons and critical assessment of these
models see [103,104]. Lastly, themost recent research sug-
gested the use of the Hill equation for the development of
dose-response functions:

�t = B + K
1 + (M/t)H

(4)

where B, K, M and H are constants that define the vary-
ing response of soiling with time (see [113] for a detailed
explanation). This model has been fitted to experimen-
tal data by Lombardo and Ionescu at different occasions
[114,115] and has been tested with data collected during
the MULTI-ASSESS project [116] in different European
locations. A second discussion relates to which concentra-
tion should be used as CPM. Some authors have suggested
total suspended particles, while others have used PM2.5,
PM10, DPM or particulate elemental carbon (PEC), given
that most of the soiling is due to traffic-generated particu-
lates [110].

Cases of soiling indoors
Soiling outdoors is popularly associated with black stains
on faades, while soiling indoors is mostly associated
with the deposition of household dust, i.e. coarse parti-
cles. In effect, experimental and observational studies are
markedly biased towards outdoor blackening and indoor
dust, perhaps due to the experimental difficulties of dis-
cerning different particle sizes of indoor deposits, espe-
cially the smallest. However, it is not difficult to find
examples of well visible deposition of fine combustion par-
ticles. Some notable examples are found at induction and
ventilation outlets [117] or on the murals of a palace in
Padova, where inconveniently placed radiators were caus-
ing heavy soiling by dust and soot [118]. The darkening
in the centre of the murals in Michelozzo’s Courtyard,
Florence, Italy, has been attributed to deposition of traffic-
generated particles, since measurements of PM2.5 display
a high proportion of organic and elemental carbon [18].
In some occasions, the damage layers related to the depo-
sition of combustion particles are related to the past
use of the building, and not to modern traffic emissions
e.g. in the Buddhist statues of the Yunguang Grottoes,
China [119].

“Ghosting”: a particular deposition event
A specific indoor discoloration event related to heating
points and the presence of semi volatile organic com-
pounds (SVOCs) has been repeatedly reported in the
literature under various names, which include “ghosting”
[120] , “black magic dust” [121] and “fogging” [122]. Even
though there have been no specific mentions of the phe-
nomenon in a heritage context, it is clearly not exclusively
found in dwellings “ghosting” deposits differ from dry
deposition by the presence of droplet-like particles, and a
layer of condensed SVOCs [123]. The phenomenon is trig-
gered only under certain conditions: emission of SVOCs
(e.g. from refurbished materials), low ventilation rates,
high temperature gradients (e.g. above lamps or radiators),
and, naturally, the presence of PM. The dark appearance of
stains is caused by the presence of elemental and organic
carbon agglomerates, but coarse dust particles rich in Ca
and Fe can be present as well [123]. Even though efforts
have been made to isolate the causes that can initiate this
soiling event, all attempts to reproduce it in experimental
conditions have been unsuccessful [124].

Visual consequences
The small size of fine particles has two implications that
should be stressed in any discussion of their visibility:
their small covering area and their light scattering prop-
erties. In fact, an important fraction of fine PM is smaller
than the wavelength of light visible to humans (∼390 -
750 nm). This, however, does not mean that particles can-
not be seen when they accumulate on a surface. Firstly, if
enough particles are deposited, the deposit will become
visible even if a single particle cannot be seen. For exam-
ple, candle soot deposits are common, even if the size of
particles emitted from a burning candle ranges from 10
- 100 nm [125]. Secondly, fine particles do not deposit
alone, and all analyses of deposits have found a certain
size distribution. Beyond that remark, it can be added that
particles with diameters below the visible range can still
scatter light when in suspension or when deposited on
transparent materials through scattering in the Rayleigh
regime. Several investigations report refractive indices for
particles or soot small in comparison with the wavelength
of light [126,127]. These aspects; however, have not been
researched in the context of heritage science.
While perceivable visually, the effects of soiling are quite

difficult to quantify. Recently, attempts have been made
to identify thresholds between acceptable and unaccept-
able levels of soiling on building faades. However, the
relations between perception and soiling are complex, as
the reaction of the public is not simply proportional to
the amount of matter deposited. Soiling can be perceived
in some cases as patina, and to a certain degree, it can
enhance the appearance of a building [128]. The perceived
degree of soiling is also influenced by the cleanliness of the
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surrounding environment. Despite these issues, Brimble-
combe et al. [100] used on-site questionnaires to identify
soiling levels that are publicly unacceptable. Their results
show that the public perception measured in terms of
perceived lightness is fairly consistent with the perceived
need for cleaning and could be used to define thresh-
old doses in terms of environmental particle concentra-
tion. Another study [129] shows that soiling is perceived
as negative when it interferes with architectural shapes.
However, these studies are focused on the darkening of
building features outdoors, and it can be argued that they
have a limited applicability to indoor deposition.
Some researchers have left aside the complexities of aes-

thetic judgement, and have concentrated on the limits on
the perception of soiling. Bellan et al. [60] have measured
the human eye ability to detect soot deposition on flat,
plain colour surfaces using printed dots (60 - 160 μm) on
white and colouredmatte surfaces. Their results show that
some observers are able to discern a soiled surface from a
clean one when the covered area is just a bit higher than
1% of the total, and that deposition becomes obvious to all
at around 9% coverage. The perceptive ability is improved
if the soiled surface is observed alongside a clean one, in
which case all observers identify soiling when just 3.5% of
the area is covered. Experiments with larger dots (0.5 - 1
mm) have led to a threshold of 0.2% area coverage [102].
These results have been of great use for the establishment
of guidelines and recommendations, e.g. by [130], since
they provide a threshold value in terms of area coverage.
But it must be noted that the diameters used in the exper-
iments correspond with the coarser dust rather than with
“soot” or fine particles, for which no direct account of their
thresholds for visibility has been published.
Recently, Druzik and Cass claimed that some specific

paintings were under special risk of soiling [131]. Par-
ticularly paintings with large colour fields, like those by
Mark Rothko or Franz Kline, were assessed as being more
vulnerable to the aesthetic damage due to soiling.

Degradation of soiled objects
It has long been established that particulate pollution
from road traffic contributes greatly to the degradation of
stone outdoors. The presence of DPM has been related to
the decay of carbonate [132] and silicate stones [133]. Also
outdoors, several corrosion products of copper were iden-
tified on statues where soot was also present [134], but
no formal relation was established. Although the effects
on materials other than stone are less investigated, it can
be expected that the reactive components of DPM will
also interact with materials, which are typically displayed
and used indoors, such as paper, paint and varnishes, or
textiles.
There is an important lack of literature about the effects

of particulate deposition on the surface of paper, leather,

textiles, paintings, varnishes and other materials typi-
cally found indoors, perhaps due to the complexity of
the problem and the great variety of materials involved.
A brief list of potential degradation pathways related to
particle deposition is available in the literature [17]: (i)
S-rich material (such as DPM, which contains oxidised
sulfur compounds [41]) can cause discolouration of paint-
ings; (ii) ammonium sulfate can induce bloom on varnish.
Ammonium sulfate is a “secondary aerosol” (i.e., formed
in the atmosphere), but it often coexists (and even aggre-
gates) with carbonaceous particles [135]; (iii) The pres-
ence of CaSO4 favours the adsorption of soot; (iv) Fe-Rich
particles can catalyse the oxidation of SO2 to H2SO4.
Aged diesel particulate matter is hygroscopic [136], and
therefore can favour the adsorption of water that acceler-
ates hydrolitic and oxidative processes, leading to fading
of pigments, and degradation of paper and textiles [11].
Despite the lack of systematic investigations, the effects of
fine PM deposition have been repeatedly noted by conser-
vators. Damage layers related to black carbon deposition
have been detected on indoor murals and wall paintings
[137], and on polychromy [138]. The word “black crust”
is sometimes used to describe these damage layers found
indoors, but it is a macroscopic assessment that gives very
little information about the origin of degradation.
Conclusions may be extracted from studies carried out

with particles of similar composition. The corrosion of
zinc and steel has been studied in relation to the presence
of deposited particles derived from the combustion of oil
(which may be comparable to diesel fuel) and coal [139].
The authors concluded that in relatively unpolluted atmo-
spheres inert particulates can induce corrosion in zinc and
mild steel due to differential aeration, an effect which is
masked when the overall corrosion rates increase. Oil-ash
particles were also found to be much more corrosive than
coal-ash particles. Although far from the heritage field
in terms of temperature and concentration, some inves-
tigations have demonstrated that DPM leads to severe
degradation of ceramic filters used in engine exhaust
tubes [140].

Cleaning
Cleaning of soiled surfaces can induce undesired degra-
dation. It is well known that cementation of coarse dust
increases the difficulty of removal [141]. DPM behaves in
a similar way, due to its ability to penetrate into pores
and its potential chemical interaction with the surface.
The National Trust’s Manual of Housekeeping states that
dry cleaning methods, such as brushing, vacuum clean-
ing, or even the use of erasers, might be insufficient, and
that the deposition of soot can produce “disfiguring, vir-
tually indelible staining” [142]. In cases of extreme soiling,
it has been reported that vacuuming removes only the
loose deposits of smoke particulates, and that wiping may
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further attach particles to porous surfaces [143]. These
difficulties have prompted the use of laser cleaning meth-
ods; however, laser removal of particles from organic
materials have been found to result in yellowing of the
underlying surface [144,145].

Conclusions
There is a certain ambiguity of the terms used to describe
indoor PM in the heritage literature. There has been
some discussion on how the staining of façades should
be described (black crust formation, staining, darkening,
blackening, soiling) [100,146] but this discussion has not
taken place for indoor heritage. As a consequence it is
not clear what the word “soot” refers to in some cases. It
can refer to carbon-based agglomerates in suspension, or
the same particles deposited on a surface, or a black stain
of unknown composition but of “carbonaceous” appear-
ance, which might also be only a surface deposit. There
is a need for the development of a more accurate termi-
nology that makes a clear distinction between suspended
fine particles (DPM, combustion-derived or even soot),
dry deposition of these particles without further effects
and removable with cleaning (which could be called dark-
ening, or soiling), and the degradation layer formed due to
the interaction of the deposit with the underlying surface.
PM monitoring in heritage sites is generally focused

on coarse dust, and the two most frequently measured
particle types are PM10 and PM2.5, which include parti-
cles up to 2.5 and 10 μm. This standard, however, has
limitations. Measurements of PM2.5 sum up some parti-
cles from the coarse mode (>1 μm) and some from the
fine mode (<1 μm) and therefore these values do not
help to identify the fractions of fine and coarse parti-
cles, which would enable appropriate action to be taken.
Complete size-resolved measurements of particle con-
centration would provide more information on the likely
source and typology of particles; however, measurement
of size distributions requires costly equipment. A much
more informative and cost-effective measurement would
be PM10 and PM1, or PM10−1 and PM1. In a heritage
site situated in an urban environment, for example, these
values would provide a useful estimate of particles as a
consequence of traffic emissions that penetrate into the
building.
The formation of black stains in the presence of SVOCs

(“ghosting”), or the emission of fine and ultrafine parti-
cles when indoor dust is in contact with warm surfaces
are phenomena that have been repeatedly observed in
indoor environments. It is unknown what the impact of
these soiling events is, and whether in some cases they are
wrongly attributed to outdoor sources.
Much is known about the aerodynamics of fine PM.

The accumulation mode (0.1 - 1 μm), due to its size, dis-
plays low deposition rates, low re-suspension rates, and

a high penetration efficiency through cracks and filters.
Low deposition rates have different implications. Depo-
sition will be a slow process, but it will occur eventually
if particles are not removed. They will distribute evenly
around the space, depositing far from the source, and will
reach areas in walls and ceiling that are difficult to access.
Low re-suspension rates, in combination with a small size
that favours penetration into porous surfaces, will lead to
difficulties with cleaning and irreversible soiling.
Less is known about what occurs after soiling. There is

a significant disproportion between the detailed knowl-
edge of the aerodynamics of fine particles, and what is
currently known about the chemical effects of the most
common particle types and the potential degradation of
soiled (heritage) surfaces. The scarce evidence available
is just enough to assess that DPM and other particles
derived from combustion can have an active role in the
degradation of materials beyond soiling. Considering the
costs associated with cleaning, it is important to know
if removal of deposited fine particles should be a prior-
ity. Risk assessment cannot be based solely on the spatial
distribution and deposition rates of fine particles. There
is a need for research into chemical interactions between
the most common fine particulates (DPM and other
combustion-derived particles) and different materials that
represent indoor heritage surfaces.
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Grau-Bové and Strlič Heritage Science 2013, 1:8 Page 15 of 17
http://www.heritagesciencejournal.com/content/1/1/8

35. Air quality guidelines for Europe. Tech. rep., World Health Organization
Regional Office for Europe, WHO Regional Publications, Copenhagen
2000.

36. European Comission air quality standards. 2008. [http://ec.europa.eu/
environment/air/quality/standards.htm]

37. Buseck PR, Adachi K, Gelencsér A, Tompa E, Pósfai M: Are black carbon
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Grau-Bové and Strlič Heritage Science 2013, 1:8 Page 16 of 17
http://www.heritagesciencejournal.com/content/1/1/8

74. K Lai AC, Nazaroff WW:Modeling indoor particle deposition from
turbulent flow onto smooth surfaces. J Aerosol Sci 2000, 31(4):463–476.
[http://linkinghub.elsevier.com/retrieve/pii/S0021850299005364]

75. Nazaroff WW, Ligocki MP, M T, Cass GR: Particle deposition in
museums: comparison of modeling andmeasurement results.
Aerosol Sci Technol 1990, 13(3):332–348. [http://www.tandfonline.com/
doi/abs/10.1080/02786829008959449]
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Smoĺık J: Deposition rates on smooth surfaces and coagulation of
aerosol particles inside a test chamber. Atmos Environ 2009,
43(4):905–914. [http://linkinghub.elsevier.com/retrieve/pii/
S1352231008010005]

77. Wallace L: Effect of central fans and in-duct filters on deposition rates
of ultrafine and fine particles in an occupied townhouse. Atmos
Environ 2004, 38(3):405–413. [http://linkinghub.elsevier.com/retrieve/pii/
S1352231003008641]

78. He C, Morawska L, Gilbert D: Particle deposition rates in residential
houses. Atmos Environ 2005, 39(21):3891–3899. [http://linkinghub.
elsevier.com/retrieve/pii/S1352231005002815]

79. Zhao B, Wu J:Modeling particle deposition onto rough walls in
ventilation duct. Atmos Environ 2006, 40(36):6918–6927. [http://www.
sciencedirect.com/science/article/pii/S1352231006006698]

80. Thatcher TL, Lai AC, Moreno-Jackson R, Sextro RG, Nazaroff WW: Effects
of room furnishings and air speed on particle deposition rates
indoors. Atmos Environ 2002, 36(11):1811–1819. [http://linkinghub.
elsevier.com/retrieve/pii/S1352231002001577]

81. Guingo M, Minier JP: A newmodel for the simulation of particle
resuspension by turbulent flows based on a stochastic description of
wall roughness and adhesion forces. J Aerosol Sci 2008, 39(11):957–973.
[http://linkinghub.elsevier.com/retrieve/pii/S0021850208001171]

82. Thatcher TL, Layton DW: Deposition, resuspension, and penetration
of particles within a residence. Atmos Environ 1995, 29(13):1487–1497.

83. Ferro AR, Kopperud RJ, Hildemann LM: Source strengths for indoor
human activities that resuspend particulate matter. Environ Sci
Technol 2004, 38(6):1759–1764. [http://www.ncbi.nlm.nih.gov/pubmed/
15074686]

84. Kontozova-Deutsch V, Cardell C, Urosevic M, Ruiz-Agudo E, Deutsch F,
Van Grieken R: Characterization of indoor and outdoor atmospheric
pollutants impacting architectural monuments: the case of San
JerónimoMonastery (Granada, Spain). Environ Earth Sci 2011,
63:1433–1445. [http://dx.doi.org/10.1007/s12665-010-0657-5]

85. Lazaridis M, Drossinos Y:Multilayer resuspension of small identical
particles by turbulent flow. Aerosol Sci Technol 1998, 28(June
2012):37–41. [http://www.tandfonline.com/doi/abs/10.1080/
02786829808965545]

86. Lazaridis M, Drossinos Y, Georgopoulos P: Turbulent resuspension of
small nondeformable particles. J Colloid Interface Sci 1998, 204:24–32.
[http://www.ncbi.nlm.nih.gov/pubmed/9665763]

87. Biasi L, Reyes ADL, Reeks MW, Santi GFD: Use of a simple model for the
interpretation of experimental data on particle resuspension in
turbulent flows. J Aerosol Sci 2001, 32(10):1175–1200.

88. Loosmore GA: Evaluation and development of models for
resuspension of aerosols at short times after deposition. Atmos
Environ 2003, 37(1352):639–647.

89. Schnell M, Cheung C, Leung C: Investigation on the coagulation and
deposition of combustion particles in an enclosed chamber with
and without stirring. J Aerosol Sci 2006, 37(11):1581–1595. [http://
linkinghub.elsevier.com/retrieve/pii/S0021850206000942]

90. Gidhagen L, Johansson C, Langner J, Foltescu V: Urban scale modeling
of particle number concentration in Stockholm. Atmos Environ 2005,
39:1711–1725. [http://linkinghub.elsevier.com/retrieve/pii/
S1352231004011033]

91. Schnell M, Cheung C, Leung C: Coagulation of diesel particles in an
enclosed chamber. J Aerosol Sci 2004, 35(10):1289–1293. [http://
linkinghub.elsevier.com/retrieve/pii/S0021850204000874]

92. Morawska L, Jamriska M, Bofinger ND: Size characteristics and ageing of
the environmental tobacco smoke. Sci Total Environ 1997, 196:43–55.
[http://linkinghub.elsevier.com/retrieve/pii/S0048969796053880]

93. Eastwood P: Particulate Emissions from Vehicles. Wiley-professional
engineering publishing series, New York: John Wiley & Sons; 2008. [http://
books.google.co.uk/books?id=ihLfwQJ0HPEC]

94. Gidhagen L, Johansson C, Langner J, Olivares G: Simulation of NOx and
ultrafine particles in a street canyon in Stockholm, Sweden. Atmos
Environ 2004, 38(14):2029–2044. [http://linkinghub.elsevier.com/retrieve/
pii/S1352231004001372]

95. Jamriska M, Morawska L: Quantitative assessment of the effect of
surface deposition andcoagulation on the dynamics of
submicrometer particles indoors. Aerosol Sci Technol 2003,
37(5):425–436. [http://www.tandfonline.com/doi/abs/10.1080/
02786820300975]

96. Gidhagen L, Johansson C, Strom J, Kristensson A, Swietlicki E, Pirjola L,
Hansson HC:Model simulation of ultrafine particles inside a road
tunnel. Atmos Environ 2003, 37(15):2023–2036. [http://www.
sciencedirect.com/science/article/pii/S1352231003001249]

97. Ketzel M, Berkowicz R:Modelling the fate of ultrafine particles from
exhaust pipe to rural background: an analysis of time scales for
dilution, coagulation and deposition. Atmos Environ 2004,
38(17):2639–2652. [http://www.sciencedirect.com/science/article/pii/
S1352231004001724]

98. Hanley JT, Ensor DS, Smith DD, Sparks LE: Fractional aerosol filtration
efficiency of in-duct ventilation air cleaners. Indoor Air 1994,
4:169–178.

99. ASHRAE:Museums, libraries and archives. In Heating, Ventilating and
Air-Conditioning: Applications. ASHRAE Handbook. Atlanta: ASHRAE; 2003.

100. Brimblecombe P, Grossi CM: Aesthetic thresholds and blackening of
stone buildings. Sci Total Environ 2005, 349(1-3):175–189. [http://www.
ncbi.nlm.nih.gov/pubmed/16198679]

101. Hamilton R, Mansfield T: The soiling of materials in the ambient
atmosphere. Atmos Environ 1992, 26(18):3291–3296. [http://www.
sciencedirect.com/science/article/pii/096016869290345L]

102. Bellan LM, Salmon LG, Cass GR: A Study on the human ability to
detect soot deposition onto works of art. Environ Sci Technol 2000,
34(10):1946–1952. [http://pubs.acs.org/doi/abs/10.1021/es990769f]

103. Pio CA, Ramos MM, Duarte AC: Atmospheric aerosol and soiling of
external surfaces in an urban environment. Atmos Environ 1998,
32(11):1979–1989. [http://linkinghub.elsevier.com/retrieve/pii/
S1352231097005074]

104. Adams S: A particle accumulation study during the reconstruction
of The Great Court, British Museum. J Cult Heritage 2002, 3(4):
283–287. [http://linkinghub.elsevier.com/retrieve/pii/
S1296207402012372]

105. Mansfield T, Hamilton R, Ellis B, Newby P: Diesel particulate emissions
and the implications for the soiling of buildings. Environmentalist
1991, 11(4):243–254. [http://www.springerlink.com/index/10.1007/
BF01266558]

106. Ford D: Deposition rates of particulate matter in the internal
environment of two Londonmuseums. Atmos Environ 1999,
33(29):4901–4907. [http://linkinghub.elsevier.com/retrieve/pii/
S1352231099002897]

107. Schwar MJR: Nuisance dust deposition and soiling rate
measurements. Environ Technol 1998, 19(2):223–229. [http://www.
tandfonline.com/doi/abs/10.1080/09593331908616674]

108. Beloin NJ, Haynie FH: Soiling of building materials. J Air Pollut Control
Assoc 1975, 25(4):399–403. [http://www.tandfonline.com/doi/abs/10.
1080/00022470.1975.10470099]

109. Grossi C: Soiling of building stones in urban environments. Build
Environ 2003, 38:147–159. [http://linkinghub.elsevier.com/retrieve/pii/
S0360132302000173]

110. Watt J, Tidblad J, Kucera V, Hamilton R: The Effects of Air Pollution on
Cultural Heritage. New York: Springer; 2009. [http://books.google.co.uk/
books?id=AgHp6udMwOIC]

111. Brimblecombe P, Grossi CM:Millennium-long damage to building
materials in London. Sci Total Environ 2009, 407(4):1354–1361. [http://
www.ncbi.nlm.nih.gov/pubmed/19036411]

112. Pesava P, Aksu R, Toprak S, Horvath H, Seidl S: Dry deposition of
particles to building surfaces and soiling. Sci Total Environ 1999,
235(1-3):25–35. [http://linkinghub.elsevier.com/retrieve/pii/
S0048969799001874]
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