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Abstract

Latent linear models are core to much of machine learning and statistics. Specific examples of this

model class include Bayesian generalised linear models, Gaussian process regression models and unsu-

pervised latent linear models such as factor analysis and principal components analysis. In general, exact

inference in this model class is computationally and analytically intractable. Approximations are thus

required. In this thesis we consider deterministic approximate inference methods based on minimising

the Kullback-Leibler (KL) divergence between a given target density and an approximating ‘variational’

density.

First we consider Gaussian KL (G-KL) approximate inference methods where the approximating

variational density is a multivariate Gaussian. Regarding this procedure we make a number of novel con-

tributions: sufficient conditions for which the G-KL objective is differentiable and convex are described,

constrained parameterisations of Gaussian covariance that make G-KL methods fast and scalable are

presented, the G-KL lower-bound to the target density’s normalisation constant is proven to dominate

those provided by local variational bounding methods. We also discuss complexity and model appli-

cability issues of G-KL and other Gaussian approximate inference methods. To numerically validate

our approach we present results comparing the performance of G-KL and other deterministic Gaussian

approximate inference methods across a range of latent linear model inference problems.

Second we present a new method to perform KL variational inference for a broad class of approxi-

mating variational densities. Specifically, we construct the variational density as an affine transformation

of independently distributed latent random variables. The method we develop extends the known class

of tractable variational approximations for which the KL divergence can be computed and optimised and

enables more accurate approximations of non-Gaussian target densities to be obtained.
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Chapter 1

Introduction

We define the latent linear model class as consisting of those probabilistic models that describe multi-

variate real-valued target densities p(w), on a vector of parameters or latent variables w ∈ RD, that take

the form

p(w) =
1

Z
N (w|µ,Σ)

N∏
n=1

φn(wThn), (1.0.1)

Z =

∫
N (w|µ,Σ)

N∏
n=1

φn(wThn)dw, (1.0.2)

where N (w|µ,Σ) is a multivariate Gaussian density with mean vector µ and covariance matrix Σ,

hn ∈ RD are fixed vectors, and φn : R → R+ are positive, real-valued, scalar, non-Gaussian potential

functions.

The latent linear model class, as defined above, is broad. In the Bayesian setting it includes Bayesian

Generalised Linear Models (GLMs) such as: sparse Bayesian linear models, where the Gaussian term is

the likelihood and {φn}Nn=1 are factors of the sparse prior [Park and Casella, 2008]; Gaussian process

models, where the Gaussian term is a prior over latent function values and {φn}Nn=1 are factors of

the non-Gaussian likelihood [Vanhatalo et al., 2009]; and binary logistic regression models, where the

Gaussian term is a prior on the parameter vector and {φn}Nn=1 are logistic sigmoid likelihood functions

[Jaakkola and Jordan, 1997]. In the context of unsupervised learning, examples include: independent

components analysis, where the Gaussian term is the conditional density of the signals and {φn}Nn=1 are

factors of the density on the latent sources w [Girolami, 2001]; and binary or categorical factor analysis

models where the Gaussian term is the density on the latent variables and {φn}Nn=1 are factors of the

binary or multinomial conditional distributions [Tipping, 1999, Marlin et al., 2011].

In Bayesian supervised learning, Z is the marginal likelihood, otherwise termed the evidence, and

the target density p(w) is the posterior of the parameters conditioned on the data. Evaluating Z is essen-

tial for the purposes of model comparison, hyperparameter estimation, active learning and experimental

design. Indeed, any marginal function of the posterior such as a moment, or a predictive density estimate

also implicitly requires Z.

In unsupervised learning, Z is the model likelihood obtained by marginalising out the hidden vari-

ables w and p(w) is the density of the hidden variables conditioned on the visible variables. p(w) is
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required to optimise model parameters using either expectation maximisation or gradient ascent meth-

ods.

Computing Z, in either the Bayesian or unsupervised learning setting, is typically intractable due

to the size of most problems of practical interest, which is usually much greater than one both in the

dimension D and the number of potential functions N . Methods that can efficiently approximate these

quantities are thus required.

Due to the importance of the latent linear model class to machine learning and statistics, a great deal

of effort has been dedicated to finding accurate approximations to p(w) and Z. Whilst there are many

different possible approximation routes, including sampling, consistency methods such as expectation

propagation and perturbation techniques such as the Laplace method, our focus here is on techniques that

lower-bound Z and make a parametric approximation to the target density p(w). Specifically, we obtain

a parametric approximation to p(w) and a lower-bound on logZ by minimising the Kullback-Leibler

divergence between an approximating density q(w) and the intractable density p(w).

1.1 Contributions
Our first contributions concern Gaussian Kullback-Leibler approximate inference methods. Gaussian

Kullback-Leibler (G-KL) approximate inference methods obtain a Gaussian approximation q(w) to the

target p(w) by minimising the KL divergence KL(q(w)|p(w)) with respect to the moments of q(w).

Gaussian Kullback-Leibler approximate inference techniques have been known about for some time

[Hinton and Van Camp, 1993, Barber and Bishop, 1998b]. However, the study and application of G-KL

procedures has been limited by the perceived computational complexity of the optimisation problem they

pose. We propose using a different parameterisation of the G-KL covariance than other recent treatments

have considered. Doing so we are able to provide a number of novel practical and theoretical results re-

garding the application of G-KL procedures to latent linear models. In particular we make the following

novel contributions: sufficient conditions for which the G-KL objective is differentiable and convex are

described, constrained parameterisations of Gaussian covariance that make G-KL methods fast and scal-

able are provided, the lower-bound to the normalisation constant provided by G-KL methods is proven to

dominate those provided by local variational bounding methods. For the proposed parameterisations of

G-KL covariance, we discuss complexity and model applicability issues of G-KL methods compared to

other Gaussian approximate inference procedures. Numerical results comparing G-KL and other deter-

ministic Gaussian approximate inference methods are presented for: robust Gaussian process regression

models with either Student’s t or Laplace likelihoods, large scale Bayesian binary logistic regression

models, and sequential experimental design procedures in Bayesian sparse linear models. To aide future

research into latent linear models and approximate inference methods we have developed and released

an open source Matlab implementation of the proposed G-KL approximate inference methods.1

The contributions we have made to Gaussian Kullback-Leibler approximate inference methods were

presented orally at the Fourteenth International Conference on Artificial Intelligence and Statistics [Chal-

1The vgai approximate inference package is described in Appendix B.8 and can be downloaded from mloss.org/

software/view/308/.

mloss.org/software/view/308/
mloss.org/software/view/308/
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lis and Barber, 2011], and more recently accepted for publication in the Journal of Machine Learning

Research [Challis and Barber, 2013].

Our second major contribution is a novel method to perform Kullback-Leibler approximate infer-

ence for a broad class of approximating densities q(w). In particular, for latent linear model target

densities we describe approximating densities formed from an affine transformation of independently

distributed latent random variables. We refer to this set of approximating distributions as the affine

independent density class. The methods we present significantly increase the set of approximating dis-

tributions for which KL approximate inference methods can be performed. Since these methods allow

us to optimise the KL objective over a broader class of approximating densities they can provide more

accurate inferences than previous techniques.

Our contributions concerning the affine independent KL approximate inference procedure were

published in the proceedings of the Twenty Fifth Conference on Advances in Neural Information Pro-

cessing Systems [Challis and Barber, 2012].

1.2 Structure of thesis
In Chapter 2 we present an introduction and overview of latent linear models. First, in Section 2.1,

we consider two simple prototypical examples of latent linear models for which exact inference is an-

alytically tractable. We then consider, in Section 2.2, various extensions to these models and the need

for approximate inference methods. In light of this, in Section 2.3 we define the general form of the

inference problem this thesis focusses on solving.

In Chapter 3 we provide an overview of the most commonly used deterministic approximate infer-

ence methods for latent linear models. Specifically we consider the MAP approximation, the Laplace

approximation, the mean field bounding method, the Gaussian Kullback-Leibler bounding method, the

local variational bounding method, and the expectation propagation approximation. For each method we

consider its accuracy, speed and scalability and the range of models to which it can be applied.

In Chapter 4 we present our contributions regarding Gaussian Kullback-Leibler approximate infer-

ence routines in latent linear models. In Section 4.2 we consider the G-KL bound optimisation problem

providing conditions for which the G-KL bound is differentiable and concave. In Section 4.3 we then

go on to consider the complexity of the G-KL procedure, presenting efficient constrained parameteri-

sations of covariance that make G-KL procedures fast and scalable. In Section 4.3 we compare G-KL

approximate inference to other deterministic approximate inference methods, showing that the G-KL

lower-bound to Z dominates the local variational lower-bound. We also discuss the complexity and

model applicability issues of G-KL methods versus other Gaussian approximate inference routines.

In Chapter 5 we numerically validate the theoretical results presented in the previous chapter by

comparing G-KL and other deterministic Gaussian approximate inference methods to a selection of

probabilistic models. Specifically we perform experiments in robust Gaussian process regression models

with either Student’s t or Laplace likelihoods, large scale Bayesian binary logistic regression models,

and Bayesian sparse linear models for sequential experimental design. The results confirm that G-KL

methods are highly competitive versus other Gaussian approximate inference methods with regard to
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both accuracy and computational efficiency.

In Chapter 6 we present a novel method to optimise the KL bound for latent linear model target

densities over the class of affine independent variational densities. In Section 6.2 we introduce and

describe the affine independent distribution class. In Section 6.3 we present a numerical method to

efficiently evaluate and optimise the KL bound for AI variational densities. In Section 6.7 we present

results showing the benefits of this procedure.

In Chapter 7 we summarise our core findings and discuss how these contributions fit within the

broader context of the literature.
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Chapter 2

Latent linear models

In this chapter we provide an introduction and overview of the latent linear model class. First, in Section

2.1, we consider two latent linear models for which exact inference is analytically tractable: a supervised

Bayesian linear regression model and an unsupervised latent factor analysis model. These two simple

models serve as archetypes by which we can introduce and discuss the core inferential quantities that this

thesis is concerned with evaluating. We then consider, in Section 2.2, various generalisations of these

models that render exact inference analytically intractable. In light of this, in Section 2.3, we present a

specific functional form for the inference problems that we seek to address, and describe and motivate

the core characteristics and trade offs by which we will measure the performance of an approximate

inference method.

2.1 Latent linear models : exact inference
Latent linear models, as defined in this thesis, typically refer to either a Bayesian supervised learning

model or an unsupervised latent variable model. In this section we introduce one example from each

of these model classes for which exact inference is analytically tractable: a Bayesian linear regression

model and an unsupervised factor analysis model.

2.1.1 Bayesian linear regression

Linear regression is one of the most popular data modelling techniques in machine learning and statistics.

Linear regression assumes a linear functional relation between a vector of covariates, x ∈ RD, and the

mean of a scalar dependent variable y ∈ R. Equivalently, linear regression assumes

y = wTx + ε,

where w ∈ RD is the vector of parameters, and ε is independent additive noise with zero mean and fixed

constant variance. In this section, we make the additional and common assumption that ε is Gaussian

distributed, so that ε ∼ N
(
0, s2

)
.

The linear regression model is linear with respect to the parameters w. The linear model can be used

to represent a non-linear relation between the covariates x and the dependent variable y by transforming

the covariates using non-linear basis functions. Transforming x→ x̃ such that x̃T := [b1(x), ..., bK(x)]T

where each bk : RD → R is a non-linear basis function, the linear model y = w̃Tx̃+ε can then describe a
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yn

xn

w

µ Σ

n = 1, ..., N

Figure 2.1: Graphical model representation of the Bayesian

linear regression model. The shaded node xn denotes the nth

observed covariate vector, and yn the corresponding dependent

variable. The plate denotes the factorisation over the N i.i.d.

points in the dataset. The parameter vector w is an unobserved

Gaussian random variable with prior w ∼ N (µ,Σ) and (de-

terministic) hyperparameters µ,Σ.

non-linear relation between y and x whilst remaining linear in the parameters w̃ ∈ RK . In what follows

we ignore any distinction between x and x̃, assuming that any necessary non-linear transformations have

been applied, and denote the transformed or untransformed covariates simply as x.

Likelihood

Under the assumptions described above, and assuming that the data points, D = {(xn, yn)}Nn=1, are

independent and identically distributed (i.i.d.) given the parameters, the likelihood of the data is defined

by the product

p(y|X,w, s) =

N∏
n=1

N
(
yn|wTxn, s

2
)
,

where y := [y1, ..., yN ]T and X := [x1, ...,xN ]. Note that the likelihood is a density over only the

dependent variables yn. This reflects the assumptions of the linear regression model which seeks to

capture only the conditional relation between x and y.

Maximum likelihood estimation

The Maximum Likelihood (ML) parameter estimate, wML, can be found by solving the optimisation

problem

wML := argmax
w

p(y|X,w, s)

= argmax
w

N∑
n=1

logN
(
yn|wTxn, s

2
)

= argmin
w

N∑
n=1

(
yn −wTxn

)2

. (2.1.1)

The first equality in equation (2.1.1) is due to log x being a monotonically increasing function in x. The

second equality can be obtained by dropping the additive constants and the multiplicative scaling terms

that are invariant to the optimisation problem. Equation (2.1.1) shows, under the additive Gaussian noise

assumption, that the ML estimate coincides with the least squares solution. Differentiating the least

squares objective w.r.t. w and equating the derivative to zero we obtain the standard normal equations(
N∑
n=1

xnxT
n

)
wML =

(
N∑
n=1

ynxn

)
⇔ wML =

(
XXT

)−1

Xy.

Uniqueness for wML requires that XXT is invertible, that is we require that N ≥ D and the data points

span RD. Even when these conditions are satisfied, however, if XXT is poorly conditioned the maximum

likelihood solution can be unstable. We say that a matrix is poorly conditioned if its condition number is
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Figure 2.2: Linear regression in the model y = ax + b + ε, with dependent variables y, covariates x,

regression parameters a, b and additive Gaussian noise ε. The dataset size, N , in the first, second and

third rows is 3, 9 and 27 respectively. The data covariates, x, are sampled from U [−2.5, 2.5] and the

data generating parameters are a = b = 1. The training points y are sampled y ∼ N (a+ bx, 0.6). In

Column 1 we plot the data points (black dots), the Bayesian mean (blue solid line) and the maximum

likelihood (red dotted line) predicted estimates of y. In Column 2 we plot the Bayesian mean with ±1

standard deviation error bars of the predicted values for y. In Column 3 we plot contours of the posterior

density on a, b with the maximum likelihood parameter estimate located at the black + marker. As the

size of the training set, N , increases the location of the posterior’s mode and the maximum likelihood

estimate converge and the posterior’s variance decreases.

high, where the condition number of a matrix is defined as the ratio of its largest and smallest eigenvalues.

When XXT is poorly conditioned the ML solution can be numerically unstable, due to rounding errors,

and statistically unstable, since small perturbations of the data can result in large changes in wML. As

we see below, the Bayesian approach to linear regression can alleviate these stability issues, provide

error bars on predictions and can help perform tasks such as model selection, hyperparameter estimation

and active learning.
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Bayesian linear regression

In a Bayesian approach to the linear regression model we treat the parameters w as random variables

and specify a prior density on them. The prior should encode any knowledge we have about the range

and relative likelihood of the values that w can assume before having seen the data.

A commonly used and analytically convenient prior for w in the linear regression model considered

above is a multivariate Gaussian. Due to the closure properties of Gaussian densities, for a Gaussian prior

on w, such that p(w) = N (w|µ,Σ), the joint density of the parameters w and dependent variables y

is Gaussian distributed also. In this sense the Gaussian prior is conjugate for the Gaussian likelihood

model. The joint density of the random variables is then defined as

p(w,y|X,µ,Σ, s) = N
(
y|XTw, s2IN

)
N (w|µ,Σ) , (2.1.2)

where IN denotes the N -dimensional identity matrix. From this joint specification of the random vari-

ables in the model we may perform standard Gaussian inference operations, see Appendix A.2, to

compute probabilities of interest: the marginal likelihood of the model p(y|X,µ,Σ, s), obtained from

marginalising out the parameters w; the posterior of the parameters conditioned on the observed data

p(w|y,X,µ,Σ, s), obtained from conditioning on y; and the predictive density p(y∗|x∗,X,y,µ,Σ, s)

given a new covariate vector x∗, obtained from marginalising out the parameters from the product of the

posterior and the likelihood. In the following subsections we consider each of these quantities in turn,

discussing both how they are used and how they are computed.

Marginal likelihood

The marginal likelihood is obtained by marginalising out the parameters w from the joint density defined

in equation (2.1.2). Since the joint density is multivariate Gaussian the marginal likelihood is a Gaussian

evaluated at y

p(y|X,µ,Σ, s) = N
(
y|XTµ,XTΣX + s2IN

)
. (2.1.3)

Taking the logarithm of equation (2.1.3) we obtain the log marginal likelihood which can be written

log p(y|X,µ,Σ, s) = −1

2

[
N log(2π) + log det

(
XTΣX + s2IN

)
+
(
y −XTµ

)T (
XTΣX + s2I

)−1 (
y −XTµ

)]
. (2.1.4)

Directly evaluating the expression above requires us to solve a symmetric N × N linear system and

compute the determinant of anN ×N matrix; both computations scaleO
(
N3
)

which may be infeasible

when N � 1. An alternative, and possibly cheaper to evaluate, form for the marginal likelihood can be

derived by collecting first and second order terms of w in the exponent of equation (2.1.2), completing

the square and integrating – a procedure we describe in Appendix A.2. Carrying this out and taking the

logarithm of the result, we obtain the following alternative form for the log marginal likelihood

log p(y|X,µ,Σ, s) = −1

2

[
log det (2πΣ) +N log(2πs2)

+µTΣ−1µ +
1

s2
yTy −mTS−1m− log det (2πS)

]
, (2.1.5)



2.1. Latent linear models : exact inference 19

where the vector m and the symmetric positive definite matrix S are given by

S =

[
Σ−1 +

1

s2
XXT

]−1

, and m = S

[
1

s2
Xy + Σ−1µ

]
. (2.1.6)

Computing the determinant and the inverse of general unstructured matrices scales cubically with re-

spect to the dimension of the matrix. However, since the matrix determinant and matrix inverse

terms in equation (2.1.5) and equation (2.1.4) have a special structure either form can be computed

in O (NDmin {N,D}) time by making use of the matrix inversion lemma. To see this we focus on just

computing the second form, equation (2.1.5), since the matrix S, as defined in equation (2.1.6), is also

required to define the posterior density on the parameters w.

The computational bottleneck when evaluating the marginal likelihood in equation (2.1.5) is the

evaluation of S and log det (S) with S as defined in equation (2.1.6). Provided the covariance Σ has some

structure that can be exploited so that its inverse can be computed efficiently, for example it is diagonal or

banded, then these terms (and so also the marginal likelihood) can be computed in O (DN min {D,N})

time. For example, if D < N we should first compute S−1 using equation (2.1.6) which will scale

O
(
ND2

)
and then we can compute S and log det (S) which will scale O

(
D3
)
. Alternatively, when

D > N we can apply the matrix inversion lemma to equation (2.1.6) to obtain

S = Σ−ΣX
(
s2IN + XΣXT

)−1

XTΣ,

whose computation scales O
(
DN2

)
. Similarly, the matrix determinant lemma, an identity that can

derived from the matrix inversion lemma, can be used to evaluate log det (S) in O
(
DN2

)
time – see

Appendix A.6.3 for the general form of the matrix inversion and determinant lemmas.

The marginal likelihood is the probability density of the dependent variables y conditioned on our

modelling assumptions and the covariates X. Other names for this quantity include the evidence, the

partition function, or the posterior normalisation constant. The marginal likelihood can be used as a

yardstick by which to asses the validity of our modelling assumptions upon having observed the data

and so can be used as a means to perform model selection. If we assume two models, M1 and M2,

are a priori equally likely, p(M1) = p(M2), and that the models are independent of the covariates,

p(Mi|X) = p(Mi), then the ratio of the model posterior probabilities is equal to the ratio of their

marginal likelihoods: p(M1|y,X)/p(M2|y,X) = p(y|X,M1)/p(y|X,M2). In this manner we can

use the marginal likelihood to make comparative statements about which of a selection of models is more

likely to have generated the data and so perform model selection.

Beyond performing discrete model selection, the marginal likelihood can also be used to select

between a continuum of models defined by a continuous ‘hyperparameter’. A proper Bayesian treat-

ment for any unknown parameters should be one of specifying a prior and performing inference through

marginalisation and conditioning. However, specifying priors on hyperparameters often becomes im-

practical since the integrals that are required to perform inferences are intractable. For example consider

the case where we place a prior on the variance of the additive Gaussian noise such that s ∼ p(s), then

the marginal likelihood of the data would be defined by the integral

p(y|X,Σ,µ) =

∫ ∫
N
(
y|XTw, s2IN

)
N (w|µ,Σ) p(s)dwds,
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Figure 2.3: Bayesian model selection in the polynomial regression model y =
∑P
d=0 wdx

d + ε, with

dependent variables y, covariates x, regression parameters [w0, ..wP ], and additive Gaussian noise ε ∼

N (0, 1). Standard normal factorising Gaussian priors are placed on parameters: wd ∼ N (0, 1). The

data generating function is y = 2x(x− 1)(x+ 1). In figures 1− 7 the data (black dots), data generating

function (solid black line), maximum likelihood prediction (blue dotted line), and Bayesian predicted

mean (red solid line) with ±1 standard deviation error bars (red dashed line) are plotted as we increase

the order P of the polynomial regression. The likelihood increases monotonically as the model order

P increases. The marginal likelihood is maximal for the true underlying model order. Likelihood and

marginal likelihood values are normalised by subtracting the smallest value obtained across the models.

which for general densities on s will be intractable. However, we might expect that since the param-

eter s is shared by all the data points and its dimension is small compared to the data its posterior

p(s|y,X,Σ,µ) density may be reasonably approximated by a delta function centred at the mode of the

likelihood p(y|X,Σ,µ, s).

This procedure, of performing maximum likelihood estimation on hyperparameters, is referred to

as empirical Bayes or Maximum Likelihood II (ML-II). ML-II procedures are typically implemented
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by numerically optimising the marginal likelihood with respect to the hyperparameters [MacKay, 1995,

Berger, 1985]. In the example considered here we could use the empirical Bayes procedure to optimise

the marginal likelihood over the hyperparameters µ,Σ and s which define the model’s likelihood and

prior densities.

The marginal likelihood naturally encodes a preference for simpler explanations of the data. This is

commonly referred to as the Occam’s razor effect of Bayesian model selection. Occam’s principle being

that given multiple hypotheses that could explain a phenomenon one should prefer that which requires

the fewest assumptions. If two models, a complex one and a simple one, have similar likelihoods when

applied to the same data the marginal likelihood will generally be greater for the simpler model. See

MacKay [1992] for an intuitive explanation of the marginal likelihood criterion and the Occam’s razor

effect for model selection in linear regression models. In Figure 2.3 we show this phenomenon at work

in a toy polynomial regression problem.

Posterior density

From Bayes’ rule the density of the parameters w conditioned on the observed data is given by,

p(w|y,X,µ,Σ, s) =
N (w|µ,Σ)N

(
y|XTw, s2IN

)
p(y|X,µ,Σ, s)

= N (w|m,S) , (2.1.7)

where the moments of the Gaussian posterior, m and S, are defined in equation (2.1.6).

To gain some intuition about the posterior density in equation (2.1.7) we now consider the special

case where the prior has zero mean and isotropic covariance so that Σ = σ2I. For this restricted form

the Gaussian posterior has mean m and covariance S given by

S =

[
1

σ2
ID +

1

s2
XXT

]−1

and m =
1

s2
SXy.

Inspecting these moments, we see that the mean m is similar to the maximum likelihood estimate. When

the prior precision, 1
σ2 , tends to zero (corresponding to an increasingly uninformative or flat prior) the

posterior mean will converge to the maximum likelihood solution. Similarly, as the number of data points

increases the posterior will converge to a delta function centred at the maximum likelihood solution.

However, when there is limited data relative to the dimensionality of the parameter space, the prior acts

as a regulariser biasing parameter estimates towards the prior’s mean. The presence of the identity matrix

term in S ensures that the posterior is stable and well defined even when N � D. See Figure 2.2 for

a comparison of Bayesian and maximum likelihood parameter estimates in a toy two parameter linear

regression model.

The posterior moments m,S represent all the information the model has in the parameters w con-

ditioned on the data. The vector m is the mean, median and mode of the posterior density since these

points coincide for multivariate Gaussians. It encodes a point representation of the posterior density.

The posterior covariance matrix, S, encodes how uncertain the model is about w as we move away

from m. More concretely, ellipsoids in parameter space, defined by (w −m)
T

S−1 (w −m) = c, will

have equiprobable likelihoods. For example if x is a unit eigenvector of the posterior covariance such

that Sx = λx then var(wTx) = λ. Analysing the posterior covariance in this fashion, we can select
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directions in parameter space in which the model is least certain. Thus the posterior covariance can be

used to drive sequential experimental design and active learning procedures – see for example Seo et al.

[2000], Chaloner and Verdinelli [1995]. In Section 5.4 we present results from an experiment where

the (approximate) Gaussian posterior covariance matrix is used to drive sequential experimental design

procedures in sparse latent linear models.

Predictive density estimate

We also require the posterior density to evaluate the predictive density of an unobserved dependent

variable y∗ given a new covariate vector x∗. From the conditional independence structure of the linear

regression model, see Figure 2.1.2, we see that y∗ is conditionally independent of the other data points

X,y given the parameters w. Thus the predictive density estimate is defined as

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,w)p(w|X,y)dw

=

∫
N
(
y∗|wTx∗, s

2
)
N (w|m,S) dw

= N
(
y∗|mTx∗,x

T
∗Sx∗ + s2

)
,

where we have omitted conditional dependencies on the hyperparameters s,µ,Σ for a cleaner notation.

The mean of the prediction for y∗ is mTx∗ and so will converge to the maximum likelihood predicted

estimate of y in the limit of large data. However, unlike in the maximum likelihood treatment, the

Bayesian approach to linear regression models our uncertainty in y∗ as represented by the predictive

variance var(y∗) = xT
∗Sx∗ + s2. Quantifying uncertainty in our predictions is useful if we wish to

minimise some asymmetric predictive loss score – for instance if over-estimation is penalised more

severely than under-estimation.

Bayesian utility estimation

Inferring the posterior in a Bayesian model is typically an intermediate operation required so that we can

make a decision in light of the observed data. Mathematically, for a loss L(a,w) that returns the cost of

taking action a ∈ A when the true unknown parameter is w, the optimal Bayesian action, a∗, is defined

as

a∗ = argmin
a∈A

∫
p(w|D,M)L(a,w)dw, (2.1.8)

where p(w|D,M) is the posterior of the parameter w conditioned on the data D and the model assump-

tionsM. For the Bayesian linear regression model considered here the posterior is as defined in equation

(2.1.7). For example, in the forecasting setting the action a is the prediction ŷ that we wish to make and

the loss function returns the cost associated with over and under prediction of y.

If the action space, A, in equation (2.1.8) is equivalent to parameter space, A =W , and if the loss

function is the squared error, L(a,w) := ‖a − w‖2, then the optimal Bayesian parameter estimate is

the posterior’s mean a∗ = m. For the 0 − 1 loss function, L(a,w) := δ(a − w) where δ(x) is the

Dirac delta function, the optimal Bayes parameter estimate is the posterior’s mode. To render practical

the Bayesian utility approach to making decisions, we require that the integral in equation (2.1.8) is
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tractable. For the Bayesian linear regression model we consider here, the posterior is Gaussian and so

such expectations can often be efficiently computed – in Appendix A.2 we provide analytic expressions

for a range of Gaussian expectations.

Summary

As we have seen above, Gaussian conjugacy in the Bayesian linear regression model results in com-

pact analytic forms for many inferential quantities of interest. The joint density of all random variables

in this model is multivariate Gaussian and so marginals, conditionals and first and second order mo-

ments are all immediately accessible. Specifically, closed form analytic expressions for the marginal

likelihood and posterior density of the parameters conditioned on the data exist and can be computed

in O (NDmin {D,N}) time. Beyond making just point estimates, full estimation of the parameter’s

posterior density allows us to obtain error bars on estimates and can facilitate active learning and experi-

mental design procedures. Finally, we have seen that making predictions and optimal decisions requires

taking expectations with respect to the posterior. Whilst for general multivariate densities such expecta-

tions can be difficult to compute, for multivariate Gaussian posteriors the required integrals can often be

performed analytically.

2.1.2 Factor analysis

Factor Analysis (FA) is an unsupervised, probabilistic, generative model that assumes the observed real-

valued N -dimensional data vectors, v ∈ RN , are Gaussian distributed and can be approximated as

lying on some low dimensional linear subspace. Under these assumptions, the model can capture the

low dimensional correlational structure of high dimensional data vectors. As such it is used widely

throughout machine learning and statistics, both in its own right, for example as a method to detect

anomalous data points [Wu and Zhang, 2006], or as a subcomponent of a more complex probabilistic

model [Ghahramani and Hinton, 1996]. The FA model assumes that an observed data vector, v ∈ RN ,

is generated according to

v = Fw + ε, (2.1.9)

where w ∈ RD is the lower dimensional ‘latent’ or ‘hidden’ representation of the data where we assume

w ∼ N (0, I), F ∈ RN×D is the ‘factor loading’ matrix describing the linear mapping between the

‘latent’ and ‘visible’ spaces, and ε is independent additive Gaussian noise ε ∼ N (0,Ψ) with Ψ =

diag ([ψ1, ..., ψN ]). For the special case of isotropic noise, Ψ = ψ2I, equation (2.1.9) describes the

probabilistic generalisation of the Principal Components Analysis (PCA) model [Tipping and Bishop,

1999].

In this section we consider the FA model under the simplifying assumption that the data has zero

mean. Extending the FA model to the non-zero mean setting is trivial – for derivations including non-zero

mean estimation we point the interested reader to [Barber, 2012, chapter 21].

For a Bayesian approach to the FA model, the parameters F and Ψ should be treated as random

variables and priors should be specified on them. See Figure 2.1.2 for the graphical model representation

of the FA model. Full Bayesian inference would then require estimating the posterior density of F,Ψ
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conditioned on a data D = {vm}Mm=1: p(F,Ψ|D). However, computing the posterior, or marginals of

it, is in general analytically intractable in this setting (see Minka [2000] for one approach to perform

deterministic approximate inference in this model). In this section we consider the simpler task of

maximum likelihood estimation of F,Ψ, showing how log p(D|F,Ψ) can be evaluated and optimised.

The presentation can be easily extended to maximum a posteriori estimation by adding the prior densities

to the log-likelihood and optimising log p(D|F,Ψ) + log p(F) + log p(Ψ).

Likelihood

The likelihood of the visible variables v is defined by marginalising out the hidden variables from the

joint specification of the probabilistic model,

p (v|F,Ψ) =

∫ N∏
n=1

N
(
vn|fT

nw, ψn

)
N (w|0, I) dw

=

∫
N (v|Fw,Ψ)N (w|0, I) dw

= N
(
v|0,FFT + Ψ

)
, (2.1.10)

where vn is the nth element of the vector v. The last equality above is obtained from Gaussian marginal-

isation on the joint density of the visible and hidden variables – see Appendix A.2 for the multivariate

Gaussian inference identities required to derive this. Equation (2.1.10) shows us that the FA density is a

multivariate Gaussian with a particular constrained form of covariance: cov(v) = FFT + Ψ.

Typically N � D and so the symmetric positive definite matrix Ψ + FFT requires many fewer

parameters than a full unstructured covariance matrix. Exactly D(N + 1) parameters define Ψ + FFT

whereas an unstructured covariance has 1
2N(N + 1) unique parameters. We might hope then that the

FA model will provide a more robust estimate of the covariance of v than directly estimating its un-

structured covariance matrix. Computing the likelihood in the FA model is typically cheaper than com-

puting a general unstructured Gaussian density on v: evaluating the density N (v|0,Σ) for a general

unstructured covariance Σ ∈ RN×N will scale cubically in N , whereas for the FA model evaluating

N
(
v|0,FFT + Ψ

)
will scale O

(
ND2

)
.

Given a dataset D = {vm}Mm=1, and assuming the data points are independent and identically

distributed given the parameters of the model, the log-likelihood of the dataset is given by

log p(D|F,Ψ) =

M∑
m=1

logN
(
vm|0,FFT + Ψ

)
. (2.1.11)

Inference

In the FA model a typical inferential task is to calculate the probability of a data point v conditioned on

the model. For example in a novelty detection task, given a test point v∗ we may classify it as ‘novel’ if

its probability is below some threshold.

The FA model is also often used for missing data imputation. For example having observed some

subset of the visible variables vI , with I an index set such that I ⊂ {1, ..., N}, we may wish to infer

the density of the remaining variables v\I or some subset of them; that is we want to infer the density
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Figure 2.4: Graphical model representation of the factor anal-

ysis model. The nth element of the mth observed data

point, vmn, is defined by the likelihood p(vmn|fn,wm, ψn) =

N
(
vmn|fT

nwm, ψn
)
. The M latent variables wm ∈ RD are

assumed Gaussian distributed such that wm ∼ N (0, ID). The

N factor loading vectors fn and noise variances ψn are pa-

rameters of the model with factorising prior densities p(F) =∏
n p(fn) and p(Ψ) =

∏
n p(ψn).

p(v\I |vI ,F,Ψ). Due to the bipartite structure of the hidden and latent variables in the FA model, see

Figure 2.5, this density can be evaluated by computing

p(v\I |vI ,F,Ψ) =

∫ ∏
i/∈I

N
(
vi|fT

i w, ψi

)
p(w|vI ,F,Ψ)dw,

where the density p(w|vI ,F,Ψ) is obtained from Bayes’ rule

p(w|vI ,F,Ψ) ∝ N (w|0, I)
∏
i∈I
N
(
vi|fT

i w, ψi

)
, (2.1.12)

since p(w|vI ,F,Ψ) above is defined as the product of two Gaussian densities it is also a Gaussian

density whose moments can be computed using the results presented in Appendix A.2. Similarly, the

density p(v\I |vI ,F,Ψ) is also Gaussian whose moments can be easily evaluated.

Parameter estimation

Two general techniques to perform parameter estimation in latent variable models are the expectation

maximisation algorithm [Dempster et al., 1977] and a gradient ascent procedure using a specific identity

for the derivative of the log-likelihood. Both procedures are explained at greater length in Appendix A.3.

Neither the EM algorithm nor the gradient ascent procedure are the most efficient parameter estimation

techniques for the FA model, for example see Zhao et al. [2008] for a more efficient eigen-based ap-

proach. However, we present the EM and gradient ascent procedures since they can be easily adapted

to the non-Gaussian linear latent variable models we consider later in this chapter. Since there are many

similarities between the EM and gradient ascent procedures we present only the EM method here and

leave a discussion of the gradient ascent procedure to the appendix.

Applying the EM algorithm to the FA model, the E-step requires the evaluation of the conditional

densities q(wm) = p(wm|vm,F,Ψ), for each m = 1, . . . ,M . Since the FA model is jointly Gaussian

on all the random variables, this conditional density is also Gaussian distributed. Applying the Gaussian

inference results presented in Appendix A.2.3, each of these densities is given by

p(wm|vm,F,Ψ) = N (wm|mm,S) ,

where the moments mm ∈ RD and S ∈ RD×D are defined as

S =
(
FTΨ−1F + ID

)−1

, and mm = SFTΨ−1vm.
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Figure 2.5: Bipartite graphical model structure for a general unsupervised factor analysis model.

Since in the FA model we typically assume D � N , computing all these conditionals scales as

O
(
MND2

)
. Optimising the likelihood using the gradient ascent procedure discussed in Appendix

A.3 requires the evaluation of each of these densities for a single evaluation of the derivative of the data

log-likelihood.

The M-step of the EM algorithm corresponds to optimising the energy’s contribution to the bound

on the log-likelihood with respect to the parameters of the model. For the FA model the M-step corre-

sponds to optimising the energy function

E(F,Ψ) :=

M∑
m=1

〈logN (vm|Fwm,Ψ)〉q(wm) ,

with respect to F,Ψ. Closed form updates can be derived to maximise E(F,Ψ), and correspond to

setting

F = AH−1,

Ψ = diag

(
1

M

M∑
m=1

vmvT
m − 2FAT + FHF

)
,

where H := S + 1
M

∑M
m=1 mmmT

m and A := 1
M

∑M
m=1 vmmT

m – see [Barber, 2012, Section 21.2.2]

for a full derivation of this result.

Summary

Factor analysis and probabilistic principal components analysis are simple and widely used models for

capturing low dimensional structure in real-valued data vectors. Inference and parameter estimation in

the model is facilitated by the Gaussian conjugacy of the latent variable density, p(w) = N (w|0, I),

and the conditional likelihood density, p(v|w,F,Ψ) = N (y|Fw,Ψ). The diagonal plus low-rank

structure of the Gaussian likelihood covariance matrix provides computational time and memory sav-

ings over general unstructured multivariate Gaussian densities. Parameter estimation in the FA model

can be implemented by the expectation maximisation algorithm or log-likelihood gradient ascent pro-

cedures, both of which require the repeated evaluation of the latent variable conditional densities

{p(wm|vm,F,Ψ)}Mm=1.

2.2 Latent linear models : approximate inference
In Section 2.1.1 we considered the latent linear model for supervised conditional density estimation in

the form of the Bayesian linear regression model. In Section 2.1.2 we considered the latent linear model
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2.

for unsupervised density estimation in the form of the factor analysis model. In both cases the Gaussian

density assumptions resulted in analytically tractable inference procedures. Furthermore, the resulting

Gaussian conditional densities on the latent variables/parameters were also seen to make downstream

processing tasks such as forecasting, utility optimisation and parameter optimisation tractable as well.

Whilst computationally advantageous, in both the regression and factor analysis setting, we would

often like to extend these models to fit non-Gaussian data. In this section we introduce extensions to the

latent linear model class in order to more accurately represent non-Gaussian data.

2.2.1 Non-Gaussian Bayesian regression models

The Bayesian linear regression model presented in Section 2.1.1 can be extended by considering non-

Gaussian priors and/or non-Gaussian likelihoods.

Non-Gaussian priors

Conjugacy for the Bayesian linear regression model in Section 2.1.1 was obtained by assuming that

the prior p(w) was Gaussian distributed p(w) = N (w|µ,Σ). In many settings this assumption may

be inaccurate resulting in poor models of the data. For example we may only know, a priori, that the

parameters are bounded such that wd ∈ [ld, ud], in which case a factorising uniform prior would be

more appropriate than the Gaussian. Alternatively, in some settings we may believe that only a small

subset of the parameters are responsible for generating the data; such knowledge can be encoded by a

‘sparse prior’ such as a factorising Laplace density or a ‘spike and slab’ density constructed as a mixture

of a Gaussian and a delta ‘spike’ function at zero. Non-Gaussian, factorising priors and a Gaussian

observation noise model describe a posterior of the form

p(w|y,X, s) =
1

Z
N
(
y|XTw, s2IN

) D∏
d=1

p(wd),
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Figure 2.7: Isocontours for a selection of linear model prior, likelihood and resulting posterior densities.

The top row plots contours of the two dimensional prior (solid line) and the Gaussian likelihood (dotted

line). The second row displays the contours of the posterior induced by the prior and likelihood above

it. Column 1 - a Gaussian prior, Column 2 - a Laplace prior, Column 3 - a Student’s t prior and Column

4 a spike and slab prior constructed as a product over dimensions of univariate two component Gaussian

mixture densities.

where p(wd) are the independent factors of the non-Gaussian prior. The marginal likelihood, Z in

the equation above, and thus also the posterior, typically cannot be computed when D � 1. Figure

(2.7) plots the likelihood, prior and corresponding posterior density contours of a selection of toy two

dimensional Bayesian linear regression models with non-conjugate, sparse priors. In Appendix A.5 we

provide parametric forms for all the Bayesian linear model priors we use in this thesis.

Non-Gaussian likelihoods

We may also wish to model dependent variables y which cannot be accurately represented by conditional

Gaussians. For instance, in many settings the conditional statistics of real-valued dependent variables, y,

may be more accurately described by heavy tailed densities such as the Student’s t or the Laplace – see

Figure 2.6 for a depiction of these density functions. A more significant departure from the model consid-

ered in Section 2.1.1 is where the dependent variable is discrete valued, such as for binary y ∈ {−1,+1},

categorical y ∈ {1, . . . ,K}, ordinal y ∈ {1, . . . ,K} with a fixed ordering, or count dependent variables

y ∈ N. Whilst each of these data categories have likelihoods that can be quite naturally parameterised

by a conditional distribution, conjugate priors do not exist. Thus simple analytic forms for the posterior,

the marginal likelihood, and the predictive density cannot be derived. Below we consider two popular

approaches to extending linear regression models to non-Gaussian dependent variables: the generalised

linear model, and the latent response model.
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Model y ∈ g : g−1(wTx) = µ p(y|µ) Parameters

Linear regression R g(x) = x N
(
y|µ, σ2

)
σ2

Logistic regression {−1,+1} g(x) = log(x)− log(1− x) σ(yµ) ∅

Poisson regression N g(x) = log x µye−µ

y! ∅

Table 2.1: Some common generalised linear model likelihoods and link functions. Above y is the de-

pendent variable, x is the covariate vector, w is the parameter vector and g is the link function defining

the mean predictor such that g−1(wTx) = µ. Additional parameters that are required to specify the

conditional distribution are provided in the last column, where the symbol ∅ denotes the empty set.

Generalised linear models

Generalised Linear Models (GLMs) assume the same conditional dependence structure between the

covariates x and the dependent variables y as the linear regression model but use different conditional

distributions to model p(y|w,x). In a GLM the conditional distribution p(y|w,x) is in the exponential

family and the mean of the dependent variable y is described by the relation 〈y〉 = g−1(wTx), where the

function g is called the link function [McCullagh and Nelder, 1989]. Informally, the link function can be

thought of as a means to warp the linear mean predictor wTx to the domain for which the likelihood’s

mean parameter is defined.

For example, dependent variables that are binary valued, y ∈ {−1,+1}, can be modelled by a GLM

with the conditional density a Bernoulli such that p(y|µ) = µI[y=+1](1 − µ)I[y=−1], with mean µ and

where I [·] denotes the indicator function equal to one when its argument is true and zero otherwise. The

most commonly used link function for this model is the logit transform g(x) = log(x)− log(1− x), the

inverse of which is g−1(x) = ex/(1 + ex). Substituting the inverse link mean function g−1(wTx) into

the Bernoulli we obtain a conditional distribution for p(y|w,x) of the form

p(y|w,x) =

(
ew

Tx

1 + ewTx

)I[y=+1](
1− ew

Tx

1 + ewTx

)I[y=−1]

=
1

1 + e−ywTx
=: σ(ywTx),

where σ(x) is called the logistic sigmoid function. For this likelihood model, with a dataset consisting of

N observation pairs (yn,xn), and a Gaussian prior w ∼ N (µ,Σ), the posterior of the Bayesian GLM

is defined as

p(w|y,X,Σ) =
1

Z
N (w|µ,Σ)

N∏
n=1

σ(ynwTxn),

where again Z denotes the marginal likelihood of the model. Computing Z, and so also the

posterior, is not feasible when N � 1 since no closed form expression for the integral Z =∫
N (w|µ,Σ)

∏
n σ(ynwTxn)dw exists.

Another example of a GLM likelihood can be used for the regression modelling of count data where

y ∈ N. In this setting the Poisson distribution is a convenient conditional distribution for y. A suitable

link function for the Poisson mean parameter is g(x) = log(x) since g−1(x) = ex : R→ R+. Thus for

GLM Poisson regression the likelihood is parameterised as

p(y|w,x) =
1

y!
e− exp(wTx)

(
exp(wTx)

)y
.
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Name y ∈ p(y|ỹ) p(ỹ|w,x) p(y|w,x)

Logistic sigmoid {−1,+1} I [sgn(ỹ) = y] Logistic(ỹ|wTx, 1) σ(ywTx)

Logistic probit {−1,+1} I [sgn(ỹ) = y] N
(
ỹ|wTx, 1

)
Φ(ywTx)

Ordinal {1, . . . ,K} I [ỹ ∈ (lk−1, lk)] N
(
ỹ|wTx, 1

)
Φ(lk −wTx)− Φ(lk−1 −wTx)

Table 2.2: Some common discrete latent response model conditional distributions. Above y is the de-

pendent variable that we wish to model, ỹ is the nuisance latent response variable that is marginalised

out, x is the covariate vector and w is the vector of parameters. The Logistic sigmoid σ(x) and Logistic

probit Φ(x) functions are defined in Appendix A.5.

In Table 2.1 we present a few examples of dependent variable data classes, suitable link functions and

exponential family likelihoods. For each of these models inference is analytically intractable since simple

closed form expressions for the posterior and marginal likelihood do not exist.

Latent response models

Conditional distributions for non-Gaussian y can also be constructed by considering nuisance, latent

response variables ỹ which are marginalised out when evaluating likelihoods. This construction is often

called a latent utility model [Manski, 1977]. For example, a latent response model for binary y ∈

{−1,+1} could be constructed by defining p(y|ỹ) = I [sgn(ỹ) = y] and p(ỹ|w,x) = N
(
ỹ|wTx, 1

)
,

where sgn(·) is the signum function which returns ±1 matching the sign of its argument: sgn(x) =

x/ |x|. On integrating out the nuisance latent variables ỹ the conditional distribution on the observed

dependent variables y is given by p(y|w,x) = Φ(ywTx) where Φ(x) :=
∫ x
−∞N (t|0, 1) dt is the

cumulative standard normal distribution. The latent response model construction can be used to describe

many other conditional densities – some of these are presented in Table 2.2 [Albert and Chib, 1993].

2.2.2 Non-Gaussian linear latent variable models

Similarly to the regression models considered above, the FA model can also be extended to model non-

Gaussian distributed variables. In many contexts real-valued data is observed to have statistical proper-

ties that are markedly different from Gaussian random variables. For example the statistics of natural

images and sound are frequently observed to have strongly super-Gaussian, sparse or leptokurtic densi-

ties [Olshausen and Field, 1996, Bell and Sejnowski, 1996]. Furthermore, on a different track we may

wish to model the correlational structure between real, binary, and categorical valued variables [Khan

et al., 2010, Tipping, 1999]. The FA model can be extended to model such data by using non-Gaussian

conditional likelihoods p(vn|fn,w) and/or non-Gaussian latent variable densities p(w).

Non-Gaussian latent variables

Various models have been proposed in the statistics and machine learning communities that can be in-

terpreted as extending the standard factor analysis model by using non-Gaussian latent variables. For in-

stance, a probabilistic formulation of the independent components analysis (ICA) model can be obtained

by assuming that the latent variables w are drawn from some non-Gaussian (frequently sparse) fac-

torising density p(w) =
∏
d pd(wd). Assuming non-Gaussian latent variables often results in markedly
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different learnt factor loading mappings F than in the Gaussian case and can facilitate tasks such as blind

source separation, signal deconvolution and image deblurring – see for example Girolami [2001], Fergus

et al. [2006], Lee et al. [1999].

In ICA models the dimensionality of the latent space is often equal to or greater than the observed

space, D ≥ N , the fundamental form of the inference problem remains unchanged however. For exam-

ple, assuming additive Gaussian noise ε ∼ N (0,Ψ), the likelihood of the ICA model is defined by the

integral

p(v|F,Ψ,θ) =

∫
N (y|Fw,Ψ)

D∏
d=1

p(wd|θd)dw, (2.2.1)

where the parameters θT = [θ1, . . . , θD] define the non-Gaussian factorising prior. Since conjugacy

between the latent density and the Gaussian conditional likelihood is lost, closed form parametric ex-

pressions for the likelihood p(v|F,Ψ,θ) typically cannot be derived. Furthermore, the density of the

latent variables conditioned on the visible variables,

p(w|v,F,Ψ,θ) =
1

Z
N (v|Fw,Ψ)

D∏
d=1

p(wd|θd), (2.2.2)

which is required to optimise parameters using either the expectation maximisation algorithm or log-

likelihood gradient ascent procedures, is intractable sinceZ, equal to the likelihood expressed in equation

(2.2.1), cannot be efficiently computed. Even if the normalisation constant Z in equation (2.2.2) were

known, efficient parameter optimisation procedures may not be easy to derive since the expectations

defined in the energy’s contribution to the EM log-likelihood bound may not admit compact analytic

forms amenable to optimisation with respect to the parameters F,Ψ,θ.

Non-Gaussian conditional likelihoods

A further extension to the FA model considered above is to model discrete and/or continuous valued

data. So called mixed data factor analysis extends the FA model to capture (low dimensional) cor-

relational structure for data vectors v whose elements can be either real or discrete random variables

[Tipping, 1999, Khan et al., 2010]. Conditional distributions on discrete variables, such as binary or

ordinal variables, can be modelled using either the GLM or the latent response model likelihood con-

structions considered in Section 2.2.1. In either case, assuming a factorising Gaussian density on the

latent variables w ∼ N (0, ID), the likelihood of a mixed data visible variable v will be defined by the

integral

p(v|F,θ) =

∫
N (w|0, ID)

N∏
n=1

p(vn|fT
nw, θn)dw, (2.2.3)

where p(vn|fT
nw, θ) is a conditional density suitable to model vn’s data type and θT = [θ1, . . . , θN ].

Since again conjugacy has been lost, equation (2.2.3) above is intractable, as is the conditional

p(w|v,F,θ), since its normalisation constant Z is equal to the likelihood defined in equation (2.2.3).

Approximate expectation maximisation

In this subsection we briefly consider the task of performing parameter estimation in a general unsu-

pervised latent linear model where, either or possibly both, the latent and conditional distributions are
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non-Gaussian. We denote the distribution on the latent or hidden variables as p(w|θh) =
∏
d p(wd|θhd )

and the conditional likelihood p(v|F,w,θv) =
∏
n p(vn|wTfn, θ

v
n) and define θT := [θvT,θhT]. Adapt-

ing the presentation made in Appendix A.3, a lower-bound on the log-likelihood, log p(D|F,θ), can be

obtained by considering the KL divergence between a variational density q(wm) and the model’s condi-

tional density p(wm|vm,F,θ) for each data point vm in the dataset D = {vm}Mm=1. This lower bound

on the log-likelihood of the data can be written

log p(D|F,θ) ≥
M∑
m=1

{
H[q(wm)] +

〈
log p(wm|θh)

〉
q(wm)

+

N∑
n=1

〈
log p(vmn|wTfn, θ

v
n)
〉
q(wm)

}
. (2.2.4)

The E-step of the exact EM algorithm corresponds to updating the set of variational densities so

that q(wm) = p(wm|vm,F,θ) for each m = 1, . . . ,M . To extend the EM algorithm to a model where

the densities {p(wm|vm,F,θ)}Mm=1 cannot be inferred exactly in the E-step, one approach is simply to

use the best approximation q(wm) we can find. We refer to this procedure, where the E-step is inex-

act, as the approximate EM algorithm. If each approximation q(wm) is found from optimising the KL

bound on the log-likelihood, equation (2.2.4) for the generalised FA model, the approximate EM algo-

rithm is guaranteed to increase the lower-bound on the log-likelihood but is not guaranteed to increase

the log-likelihood itself. However, this procedure is frequently observed to obtain good solutions. If

each approximation q(wm) is found using some other (non lower-bounding) approximation method, for

example the Laplace or the expectation propagation approximations (methods that we discuss in the fol-

lowing chapter), the approximate EM algorithm is not guaranteed to increase the likelihood or a bound

on it.

For the approximate EM procedure to be feasible we require that the variational approximate densi-

ties, {q(wm)}, can be efficiently computed, and the expectations in the energy’s contribution to the KL

bound,
∑
m 〈log p(vm,wm|θ)〉q(wm), can be efficiently optimised.

2.2.3 Summary

As we have seen above both the Bayesian linear regression model and the unsupervised factor analysis

model can be easily extended to model non-Gaussian distributed data. The models can be extended by

considering both non-Gaussian latent variable densities or priors, p(w), and non-Gaussian conditional

likelihoods p(y|w,x) or p(v|f ,w). Since the conditional dependence structure of these extensions is un-

changed compared to the fully Gaussian case, the definitions of the core inferential quantities of interest

remain the same. However, since conjugacy between the latent/prior densities and the conditional vis-

ible/likelihood densities is lost, analytic closed-form expressions for marginals and conditionals cannot

be derived. Since extending the linear model to handle such non-Gaussian data is of significant practical

utility we require efficient and accurate methods to approximate these quantities. In the next section we

define the general form of the inference problem that this class of models poses.
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2.3 Approximate inference problem
For a vector of parameters w ∈ RD, a multivariate Gaussian potential N (w|µ,Σ) with mean µ ∈ RD

and symmetric positive definite covariance Σ ∈ RD×D, we want to approximate the density defined as

p(w) =
1

Z
N (w|µ,Σ)

N∏
n=1

φ(wThn), (2.3.1)

and its normalisation constant Z defined as

Z =

∫
N (w|µ,Σ)

N∏
n=1

φn(wThn)dw, (2.3.2)

where φn : R→ R+ are non-Gaussian, real-valued, positive potential functions and hn ∈ RD are fixed

real-valued vectors. We refer to the individual factors φn(wThn) as site-projection potentials. We call

these factors potentials and not densities since they do not necessarily normalise to 1.

As we saw in Section 2.2 estimating equation (2.3.1) and equation (2.3.2) are the core inferential

tasks in both Bayesian supervised linear models and unsupervised latent linear models. Typically nei-

ther of these quantities can be efficiently computed in problems of even moderate dimensionality – for

example D,N > 10. Approximations are thus required. In what follows we refer to p(w) as the target

density and Z as the normalisation constant.

We note here that the inference problem posed above is that of estimating a joint density p(w)

not just its marginals p(wd) for which other special purpose methods can be derived [Rue et al., 2009,

Cseke and Heskes, 2010, 2011]. A further point of note is that we consider inference for general vectors

{hn}Nn=1 for which the graph describing the dependence relations on w is densely connected. That is,

we do not consider special cases where p(w) can be expressed in some other structured factorised form

which can be used to simplify the inference problem.

Considerations

In approximating the target p(w) and its normalisation constant Z as defined above we would like any

approximate inference algorithm to possess the following properties:

• To be accurate. We want that the approximation to Z and p(w) is as good as possible.

• To be efficient. We want the approximate inference method to be fast and scalable. How the com-

plexity of inference scales both with the number of potential functions N and the dimensionality

of the parameter space D is important.

• To be generally applicable. We want the method to place few restrictions on the functional form

of the site-projection potentials {φn(x)}Nn=1 to which the method can successfully be applied.

The above three desiderata are the core axes by which we will measure approximate inference methods.

Clearly, trade offs between these criteria will have to be made. In the next chapter we provide an intro-

duction and overview of the deterministic approximate inference methods commonly applied to latent

linear models of the form introduced above and consider how they perform against these criteria.
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Chapter 3

Deterministic approximate inference

In this chapter we introduce and review some of the most commonly used deterministic approximate

inference methods that are applied to the latent linear model class. First we consider the Kullback-Leibler

divergence measure which is used to drive and evaluate many of these methods. Then we consider each

of the deterministic approximate inference methods in turn assessing the approximation algorithms in

terms of their accuracy, their efficiency and the range of models to which they can be applied. Specifically

we consider: the MAP approximation, mean field bounding methods, the Laplace approximation, the

Gaussian expectation propagation approximation, Gaussian Kullback-Leibler bounding methods and

local variational bounding methods. Finally, in Section 3.10 we go on to discuss some extensions to

these methods that have been proposed to increase the accuracy of their approximations.

3.1 Approximate inference
As we saw in Section 2.1, probabilistic inference, at its core, is a numerical integration problem. When

the dimensionality of the integral is too large and the integral does not have a simple analytic form

approximations are required. The approximation methods commonly applied to this integration problem

fall into two, broadly distinct, categories: sampling based methods such as Monte Carlo Markov chain

and deterministic variational methods. The focus of this thesis is the latter approach.

Sampling methods for approximate Bayesian inference are the subject of a broad and deep literature

in machine learning and statistics and so evaluating these techniques is beyond the scope of this thesis.

For an introduction to these methods from the perspective of machine learning applications we point

the interested reader to Andrieu et al. [2003] and references therein for details. However, we briefly

note that sampling methods are generally applicable and, given enough computational resource, one of

the most accurate approaches to approximating posterior densities. Whilst sampling based methods can

be extremely accurate they are also typically slow to converge to accurate solutions, with convergence

itself a property that is difficult to diagnose [Cowles and Carlin, 1996]. What is more, whilst there are

many techniques to generate samples from the posterior target density, approximating the normalisation

constant, Z in equation (2.3.2), is typically a much harder task using sampling methods. Thus sam-

pling techniques are not well suited to empirical Bayesian model selection techniques such as the ML-II

procedure discussed in Section 2.1.1.
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Figure 3.1: A two component Gaussian mixture target density p(w) (solid black line) and the closest

univariate Gaussian approximation q(w) found from minimising either KL(q(w)|p(w)) (red dash-dotted

line) or KL(p(w)|q(w)) (blue dashed line). (a) Gaussian mixture target p(w) = 0.6N (w| − 3, 0.8) +

0.4N (w|2, 0.7). (b) Gaussian mixture target p(w) := 0.6N (w| − 2.2, 0.8) + 0.4N (w|1.2, 0.7).

Deterministic approximate inference methods seek to approximate the target by a density from some

fixed family of simpler distributions. The ‘best’ or ‘closest’ approximation to the target is typically found

by optimising some measure of the goodness of the approximation. Therefore, deterministic approximate

inference methods translate a numerical integration problem into a numerical optimisation problem.

Deterministic approximate inference methods typically require that the target density satisfies some

constrained functional form and so generally are less widely applicable than sampling techniques. Fur-

thermore, since deterministic methods approximate the target by some simpler constrained density, their

accuracy is limited. However, when these methods are applicable, they can provide fast and easy to

implement routines to approximate both the posterior and its normalisation constant. Ease of implemen-

tation, an estimate of Z, and speed, are the core advantages of the deterministic variational approach to

approximate inference.

When latent linear models describe a unimodal target density, we can often reasonably expect them

to be well approximated by a density from some simple constrained class and so we may not require

the representational flexibility that sampling methods provide. Indeed, a significant body of literature

in machine learning and statistics justifies the use of deterministic variational approximate inference

methods in this model class (for example see [Wainwright and Jordan, 2008, Barber, 2012, Seeger, 2008]

and references therein). In this chapter we introduce some of the most commonly used deterministic

approximate inference methods applied to latent linear models and assess the general characteristics of

these procedures against the desiderata laid out in Section 2.3.

3.2 Divergence measures
Many deterministic approximate inference methods obtain an approximation to the target p(w) by min-

imising some measure of the discrepancy between p(w) and a simpler approximating ‘variational’ den-
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sity q(w). Equipped with a divergence or distance metric between our approximation q(w) and our

target p(w), denoted D(q(w)|p(w)), the problem of approximate inference reduces to the optimisation

problem

q∗(w) = argmin
q∈Q

D(p(w)|q(w)), (3.2.1)

where Q denotes the set approximating variational densities that we perform the optimisation over. The

larger the set Q is that we can evaluate and optimise equation (3.2.1) over the better the approximation

q∗(w) to p(w) has the potential to be. If p(w) ∈ Q then q∗(w) = p(w).

Thus before considering specific deterministic inference methods, in this section we first discuss

the divergence measures that are commonly used to drive deterministic approximate inference meth-

ods. Many approximate inference methods used in machine learning and statistics can be viewed as

α-divergence optimisation methods [Minka, 2005]. The α-divergence is defined as

Dα(p(w)|q(w)) :=
1

α (1− α)

(
1−

∫
p(w)αq(w)1−αdw

)
,

where α is a real-valued parameter of the divergence. The α-divergence is zero, for all values of α, if and

only if p(w) = q(w) almost everywhere, otherwise the α-divergence is positive. Whilst not a true metric

then, for example it does not in general satisfy the triangle inequality, the α-divergence is a measure of

the discrepancy between the two distributions. Computing the α-divergence, which requires performing

a D-dimensional integral (where D is the dimensionality of w), is typically intractable. However, the

form of the integrand simplifies considerably at the limits α→ 0 and α→ 1.

At the limits α → 0 and α → 1, the α-divergence is known as the Kullback-Leibler divergence or

the relative entropy – see [Cover and Thomas, 1991] for an introduction. Specifically we have that

lim
α→0

Dα(p(w)|q(w)) = KL(q(w)|p(w)) and lim
α→1

Dα(p(w)|q(w)) = KL(p(w)|q(w)) ,

where the functional KL(q(w)|p(w)) is defined as

KL(q(w)|p(w)) :=

∫
W
q(w) log

q(w)

p(w)
dw = 〈log q(w)〉q(w) − 〈log p(w)〉q(w) , (3.2.2)

andW is the support of q(w). The KL divergence has the properties: KL(q(w)|p(w)) ≥ 0 for all den-

sities p(w), q(w); KL(q(w)|p(w)) = 0 iff q(w) = p(w) almost everywhere; and KL(q(w)|p(w)) 6=

KL(p(w)|q(w)) for q(w) 6= p(w).

As the KL divergence is not symmetric, below we consider the KL(q(w)|p(w)) and the

KL(p(w)|q(w)) forms separately as approximate inference objective functions.

Kullback-Leibler divergence : KL(q(w)|p(w))

For q(w) from some constrained distribution class and p(w) the target density as defined in Section 2.3

we have KL(q(w)|p(w)) defined as

KL(q(w)|p(w)) =

〈
log

q(w)

p(w)

〉
q(w)

= 〈log q(w)〉 − 〈logN (w|µ,Σ)〉 −
N∑
n=1

〈
log φn(wThn)

〉
+ logZ, (3.2.3)
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Figure 3.2: (a) Contours of a correlated bivariate Gaussian density target p(w) with zero mean, unit

variance and covariance 0.9. (b) Contours of the optimal factorising Gaussian approximation q(w) to

p(w) found by minimising the KL divergence KL(p(w)|q(w)). (c) Contours of the optimal factorising

Gaussian approximation q(w) to p(w) found by minimising the KL divergence KL(q(w)|p(w)). The

KL(q(w)|p(w)) objective results in mode seeking approximations, whilst the KL(p(w)|q(w)) objective

results in support covering approximations.

where the expectations 〈·〉 in the equation above are taken with respect to the variational density q(w).

Variational approximation methods that seek to optimise the objective in equation (3.2.3) are limited by

the class of distributions, Q, for which these expectations can be computed: in mean field methods Q is

the set of fully factorising densities [Opper, 2001], in ‘variational Bayes’ methodsQ is a particular set of

block factorising densities [Beal, 2003], in Gaussian KL methods Q is the set of multivariate Gaussian

densities [Barber and Bishop, 1998a, Opper and Archambeau, 2009]. In Chapter 6 we introduce a

new method to optimise KL(q(w)|p(w)) where q(w) is constructed as an affine transformation of a

factorising density.

As we can see in equation (3.2.3), one of the core advantages of the KL(q(w)|p(w)) objective

over other α-divergences is that the target density only appears inside the log function. Since the target

density p(w) is typically defined as a product over many potentials, taking its logarithm often results in

a significant analytic and hence computational simplification. What is more, the logarithm separates the

potential functions from the normalisation constant which is an unknown quantity. Thus provided the

expectations of equation (3.2.3) can be evaluated the KL divergence can be computed up to the constant

logZ.

The KL divergence is non-negative, so rearranging equation (3.2.3) provides a lower-bound on

logZ in the form

logZ ≥ BKL := −〈log q(w)〉︸ ︷︷ ︸
entropy

+ 〈logN (w|µ,Σ)〉+

N∑
n=1

〈
log φn(wThn)

〉
︸ ︷︷ ︸

energy

. (3.2.4)

As we saw in Section 2.1, the normalisation constant Z is an essential quantity in empirical probabilistic

modelling – necessary to compute likelihoods and so perform model selection and parameter estimation.

When exact inference is intractable, a lower-bound to the normalisation constant can be used as its

surrogate. Lower-bounds have an advantage over approximations in that they provide exact, concrete
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knowledge about Z. On a practical note, optimising a lower-bound is typically more numerically stable

than approximation methods that do not optimise a numerical objective function.

Having found the optimal approximating density q∗(w) that minimises KL(q(w)|p(w)), for

q(w) ∈ Q some restricted class, what are the general properties of this approximation? Some in-

sight can be gained by inspecting the form of equation (3.2.3). Since KL(q(w)|p(w)) is the expecta-

tion of log (q(w)/p(w)) with respect to q(w), q(w) will be forced to be small where p(w) is small

[Minka, 2005]. This zero forcing property results in the so called ‘mode seeking’ behaviour of the

KL(q(w)|p(w)) approximation. The consequence being that q∗(w) will avoid making false positive ap-

proximation errors, possibly at the expense of false negatives. Whilst this tendency to underestimate the

target density’s entropy or variance is commonly observed, it is not guaranteed [MacKay et al., 2008].

See Figure 3.2 and Figure 3.1 for a depiction of the mode seeking behaviour of the KL(q(w)|p(w))

approximation. In Figure 3.1 a univariate Gaussian q(w) is fitted to a two component Gaussian mixture

target density p(w), for the well separated Gaussian mixture target the optimal Gaussian approximation

places all its mass at a single mode of the target. Similarly, in Figure 3.2, when a bivariate factorising

Gaussian q(w) is fitted to a correlated Gaussian p(w), the optimal variational density covers only the

axis aligned support of the target.

Kullback-Leibler divergence : KL(p(w)|q(w))

The KL divergence KL(p(w)|q(w)) is given by

KL(p(w)|q(w)) =

〈
log

p(w)

q(w)

〉
p(w)

= 〈log p(w)〉p(w) − 〈log q(w)〉p(w) , (3.2.5)

which requires the evaluation of expectations with respect to the intractable target density p(w). As

a result, computing KL(p(w)|q(w)) is generally intractable and approximations to this objective are

required. Expectation propagation, a technique we discuss in Section 3.6, is one method that seeks to

approximately optimise this objective [Minka, 2001a].

Whilst equation (3.2.5) is intractable, it is instructive to consider its properties as an objective so

as to better understand methods that optimise approximations of it. Considering that KL(p(w)|q(w)) is

the expectation of log (p(w)/q(w)) with respect to p(w), we can see that q(w) will be forced to cover

the entire support of p(w) and thus avoid making false negative approximation errors. In Figure 3.1

and Figure 3.2 we plot the optimal variational approximation q∗(w) found using the KL(p(w)|q(w))

divergence as the variational objective. In Figure 3.1, for the univariate Gaussians mixture target, q∗(w)

seeks to cover the entire support of p(w). When the mixture components are well separated we have the

undesirable result that the mode of q∗(w) is in a region of low density for p(w). Thus when p(w) is

multimodal optimising KL(p(w)|q(w)) for q(w) unimodal may not be sensible.

Further insight into the properties of the KL(p(w)|q(w)) objective can be gained by considering

q(w) in the exponential family. If q(w) is an exponential family distribution its density can be expressed

as

q(w) = g(η)h(w) exp
(
ηTu(w)

)
, (3.2.6)
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where η is the vector of natural parameters, u(w) is a vector collecting the sufficient statistics of the

density, and g(η) is a constant such that equation (3.2.6) normalises to one. For q(w) in this form, and

on ignoring terms constants with respect to the variational parameters η, KL(p(w)|q(w)) simplifies to

KL(p(w)|q(w))
c.
= − log g(η)−

〈
ηTu(w)

〉
p(w)

.

Taking the derivative of the equation above with respect to the variational parameters η and equating the

derivative to zero we obtain

∂

∂η
− log g(η) = 〈u(w)〉p(w) .

However, as we show in Appendix A.4, ∂
∂η − log g(η) = 〈u(w)〉q(w), and so at this setting of η we

have that

〈u(w)〉p(w) = 〈u(w)〉q(w) .

Thus a fixed point of KL(p(w)|q(w)) with q(w) in the exponential family exists when the expected

sufficient statistics between the target density and the variational densities are equal. Whilst generally

the expected sufficient statistics 〈u(w)〉p(w) can not easily be computed, the result above shows us that

using the KL(p(w)|q(w)) objective for approximate inference will result in making a moment-matching

approximation.

Relation to Fisher information

The Fisher information is defined as the expectation of the second moments of the log density’s deriva-

tive. Specifically, for p(w|θ) a density on w with parameters θ, the Fisher information is defined as

IF (θ) = −

〈(
∂

∂θ
log p(w|θ)

)(
∂

∂θ
log p(w|θ)

)T
〉

= −
〈

∂2

∂θ∂θT log p(w|θ)

〉
, (3.2.7)

where the expectation is taken with respect to p(w|θ). The second equality in equation (3.2.7) holds

on p(w|θ) satisfying certain regularity conditions [Cover and Thomas, 1991]. The Fisher information

can be viewed as scoring how sharply peaked p(w|θ) is about its mode with respect to θ. The Fisher

information, by means of the Cramer-Rao bound, provides a lower-bound on the variance any unbiased

estimator can achieve.

Whilst the Fisher information is typically used to score the potential for parameter estimation accu-

racy, it is also asymptotically related to the KL divergence. The Fisher information describes the local

curvature of the KL divergence between two densities p(w|θ) and q(w|θ) that are perturbations of one

another. For p(w|θ) a perturbation of q(w|θ) it can be shown that the second order Taylor expansion of

the KL divergence about θ0 is given by

KL(q(w|θ)|p(w|θ0) ≈ 1

2
(θ − θ0)

T
IF (θ0) (θ − θ0) ,

which is symmetric in q(w|θ) and p(w|θ) [Gourieroux and Monfort, 1995]. Thus the Fisher information

can be interpreted as a local distance measure between densities. This observation has motivated the

development of natural gradient preconditioning methods to speed up gradient ascent procedures to

optimise the KL variational bound [Honkela et al., 2010, Amari, 1998].
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x

p(
x)

Figure 3.3: Univariate bimodal target density p(x) (black solid

line) with mean point (black x-axis dot) and two local maxima

(red x-axis dots). The Laplace approximation is centred at the

mode of the target density (red dotted).

3.3 MAP approximation
One of the simplest deterministic approximate inference methods is to approximate the target density

by a delta function. The maximum a posteriori (MAP) approximation centers the delta function at the

mode of the target density wMAP so that q(w) = δ(w − wMAP ). Mode estimation is simpler than

mean estimation since it does not require that we perform a multivariate integral over p(w). The MAP

estimate can be found by optimising the unnormalised target density since

wMAP := argmax
w

p(w) = argmax
w

log p(w)

= argmax
w

logN (w|µ,Σ) +

N∑
n=1

log φn(wThn), (3.3.1)

where logZ can be dropped from the objective since it is invariant to w.

The MAP approximation is generally applicable placing few restrictions on the target densities p(w)

to which it can be applied. However, the approximation may only be reasonable provided the target is

unimodal with negligible variance. Typically this will only be the case provided the site potentials are

log-concave and there is sufficient ‘data’ relative to the dimensionality of the parameter space: N � D.

Approximation to p(w)

Having computed wMAP , the delta approximation δ(w − wMAP ) can be used as a surrogate to

the target p(w) for downstream processing tasks. Since computing an expectation with respect to

q(w) = δ(w −wMAP ) is equivalent to substituting in wMAP for w, this approximation makes down-

stream computations extremely efficient. Indeed, the core advantage of the MAP approximation is the

computational saving it offers over other approximate methods.

Approximation to Z

A significant disadvantage of the MAP approximation is that it does not provide an estimate of the

normalisation constant Z. Whilst many practitioners use the unnormalised target evaluated at the MAP

point, N (wMAP |µ,Σ) +
∑
n log φn(wT

MAPhn), as an estimate of Z this is not a reliable metric.

Substituting the delta approximation as q(w) into the KL bound on logZ, see equation (3.2.4), the

bound’s entropy contribution will be −∞. Therefore, usingN (wMAP |µ,Σ) +
∑
n log φn(wT

MAPhn)
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as an approximation to logZ is unreliable and cannot be used to drive model selection or likelihood

maximisation procedures. See Welling et al. [2008] for a deeper discussion of some of the pathologies

of this approximation when used for parameter estimation.

Optimisation and complexity

The complexity of the MAP approximation method is equivalent to the complexity of the optimisation

problem posed in equation (3.3.1), as such it depends on the functional properties of the target p(w).

When all the potential functions {φn} are log-concave this is a convex optimisation problem for which

many efficient methods have been developed – see for example Nocedal and Wright [2006], Boyd and

Vandenberghe [2004]. Provided also that the potentials are twice continuously differentiable quadratic

convergence rates can be achieved using Newton’s method. If the problem is of sufficiently large dimen-

sionality such that full evaluation of the Hessian is infeasible, quasi-Newton methods such as non-linear

conjugate gradients, LBFGS or Hessian free Newton methods can be used. Hessian free Newton methods

approximately solve the Newton update using linear conjugate gradients with finite difference approx-

imations for Hessian vector products and can be fast and scalable for convex problems [Nocedal and

Wright, 2006].

Storing the MAP approximate posterior requires just D parameters and evaluating the MAP objec-

tive typically scales justO (D(D +N)). The MAP approximation is the cheapest approximate inference

method considered here.

Qualities of approximation

The MAP approximation is widely applicable and the computationally cheapest approximation method

considered in this chapter. Unfortunately, ignoring measure in parameter space can result in extremely

poor approximations: the MAP estimate can be arbitrarily located since it is not invariant to reparame-

terisations of parameter space, ignoring posterior variance results in overly confident predictions and a

reliable estimate of the normalisation constant cannot be derived.

The MAP parameter estimate is not invariant to transformations of parameter space. Invariance

would require that argmax
w

p(w) = f

(
argmax

v
p (v)

)
where w = f(v) and f : RD → RD is

bijective. The density of the transformed distribution p(v) is defined

p(v) =

∫
δ
(
v − f−1(w)

)
p(w)dw = p (f(v))

∣∣∣∣det
(
∂f(v)

∂v

)∣∣∣∣ ,
where the last factor in the equation above is the Jacobian of the transformation f : v → w. Invariance

of the MAP approximation to reparameterisations will only hold then when the Jacobian is invariant to

v, for example when the reparameterisation is linear. Thus the MAP point can be arbitrarily located –

this is a consequence of the fact that the volume surrounding the modal point can have negligible mass –

see Figure 3.3.

Using the delta approximation to p(w) for downstream inferences will typically result in making

overly confident predictions. As we saw in Section 2.1 we are required to compute expectations with

respect to p(w) to make predictions and optimise parameters. For the Bayesian linear regression model

considered in Section 2.1.1, using the MAP approximation to compute the predictive density estimate,



3.4. Mean field bounding 42

we would make the approximation N
(
y∗|mTx∗,x

T
∗Sx∗ + s2

)
≈ N

(
y∗|wT

MAPx∗, s
2
)
. Thus the pos-

terior’s contribution to the predictive variance, xT
∗Sx∗, is ignored using the MAP approximation and so

consequently predictions are over confident.

Since the MAP approximation is not found by optimising a bound on the likelihood, using the

MAP approximation for the E-step in an approximate EM algorithm is not guaranteed to increase the

likelihood or a bound on it.

3.4 Mean field bounding
Mean Field (MF) methods seek to minimise KL(q(w)|p(w)) over Q the class of fully factorising ap-

proximations q(w) =
∏
d q(wd). The KL variational bound, see equation (3.2.4), for this distribution

class can be written

logZ ≥ BMF :=

D∑
d=1

H [q(wd)] + 〈logN (w|µ,Σ)〉+

N∑
n=1

〈
log φn(wThn)

〉
, (3.4.1)

where the expectations are taken with respect to the factorising variational density q(w). The mean field

bound, BMF , is optimised by coordinate ascent in the factors {q(wd)}Dd=1. Asynchronously updating

the factors is guaranteed to increase the bound. Each factor q(wk) is updated by taking the functional

derivative of equation (3.4.1) with respect to it, equating the derivative to zero and solving subject to

normalisation constraints.

For latent linear model target densities, evaluating the mean field bound, equation (3.4.1), and

the corresponding factor updates is not always tractable. The expectation of the multivariate Gaussian

potential in equation (3.4.1) can typically be evaluated for factorising q(w). The difficulty in applying

mean field methods to latent linear models is due to the site-projection potential’s contribution to the KL

bound
∑
n

〈
log φn(wThn)

〉
. For {φn} non-Gaussian, the MF bound is typically intractable for general

H := [h1, ...,hN ]. However, if the ‘data’ vectors are standard normal basis vectors, i.e. H = ID, and so

each factor depends on only a single element of the parameter vector,
∏
n φn(wThn) =

∏
d φd(wd), the

site potentials expectations simplify to 〈log φd(wd)〉q(wd). As a consequence the bound and the factor

update equations can often be efficiently evaluated in this setting. Examples of models that satisfy this

factorisation structure are in fact quite common – and include Gaussian process regression models [Csató

et al., 2000], some independent components analysis models [Højen-Sørensen et al., 2002], and linear

regression models with Gaussian noise and factorising priors on the weights w [Titsias and Lázaro-

Gredilla, 2012].

Approximation to p(w)

For problems where the site-projections depend on only a single element of the parameter vector such

that
∏N
n=1 φn(wThn) =

∏D
d=1 φd(wd), the variational mean field approximation to the posterior is

q(w) =
∏
d q(wd) with the factors q(wd) defined as

q(wd) =
1

Zd
φd(wd)N

(
wd

∣∣∣∣ adΛdd
,Λ−1

dd

)
, (3.4.2)

where the constants ad are defined as expectations of the Gaussian potentials contribution to the KL

bound taken with respect to the remaining variational factors {q(wj)}j 6=d, Λdd := [Σ−1]dd and Zd is
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the factor’s normalisation constant – see Appendix A.7.1 for their precise forms.

Since the factorised approximation q(w) in equation (3.4.2) is generally not of a simple analytic

form, computing expectations with respect to q(w) may be more computationally demanding than for

Gaussian or delta approximations to p(w).

Approximation to Z

For q(w) =
∏
d q(wd), with each factor as defined as in equation (3.4.2), the mean field bound can be

expressed as

logZ ≥ BMF =
∑
d

H[q(wd)] +
∑
d

〈log φd(wd)〉q(wd)

− 1

2

[
log det (2πΣ) + (m− µ)

T
Σ−1 (m− µ) + sTdiag

(
Σ−1

)]
, (3.4.3)

where [m]k := 〈wk〉q(wk) and [s]k :=
〈
(wk −mk)2

〉
q(wk)

.

Optimisation and complexity

Evaluating the MF bound, equation (3.4.3), and updating the variational factors requires the evaluation

of D univariate expectations with respect to q(wd). Whether these expectations have simple analytic

expressions depends on the specific form of the non-Gaussian potentials {φn}. We note, however, that

since the expectations are univariate with a Gaussian factor the domain for which they have significant

mass will typically be easy to assess. Thus it is likely that the required expectations can be efficiently and

accurately computed using univariate numerical integration routines. The mean field bound is generally

cheap to compute – scaling O
(
D2
)

due to the inner product mTΣ−1m assuming the precision matrix

Σ−1 has been pre-computed. In general then, the mean field approximation requires justO (D) memory

and O
(
D2
)

time to evaluate and update the bound. Thus the MF method is generally one of the fastest

global approximation methods considered in this chapter.

Qualities of approximation

The mean field method constructs a global approximation to the target since it optimises the KL diver-

gence and so seeks to approximate p(w) over its entire support. Mean field methods do not in general

suffer from some of the pathologies of local methods such as the MAP and the Laplace approximation.

Furthermore, since the factors are optimal subject only to the factorisation assumption we should expect

the optimal approximation q(w) to accurately capture the axis aligned marginals of the target density.

However, ignoring all correlation in p(w) is a restrictive assumption and renders this approximation un-

suitable in many applications. For example, in Gaussian processes regression models and active learning

procedures approximating target density covariance can be critical.

Since the mean field method is a KL(q(w)|p(w)) bound optimisation procedure, using its approx-

imation q(w) as the E-step density in an approximate EM optimisation procedure is guaranteed to in-

crease a lower-bound on the likelihood.
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3.5 Laplace approximation
The Laplace method approximates the target density by a multivariate Gaussian centred at its mode with

covariance equal to the negative inverse Hessian of log p(w). It is thus equivalent to making a second

order Taylor expansion of log p(w), with the expansion point the MAP estimate. Therefore, the Laplace

approximation can be interpreted as an extension or improvement to the MAP approximation. As such

it inherits some of the same qualities of the MAP approximate inference method.

The only restriction the Laplace approximation places on the site-projection potentials, since it is

a Taylor expansion approximation, is that the second order derivatives exist at the mode of p(w). Note

that some models of significant utility do not satisfy this condition. For example, models with sparse

Laplace potentials φ(w) ∝ e−|w| are often not differentiable at their modes [Seeger, 2008, Kuss, 2006].

Approximation to p(w)

The Taylor expansion to log p(w) implies an exponentiated quadratic approximation to p(w). That is,

the Laplace method approximates the target p(w) by a multivariate Gaussian q(w) = N (w|m,S)

where

m := argmax
w

logN (w|µ,Σ) +

N∑
n=1

log φn(wThn),

S−1 :=
∂2

∂w∂wT log p(w)

∣∣∣∣
w=m

= Σ−1 + XΓXT, (3.5.1)

where Γ is an N × N diagonal matrix such that Γnn = ψ′′n(mThn), ψn := log φn and ψ′′n(x) :=

∂2

∂x2ψn(x).

Approximation to Z

Substituting the second order Taylor approximation into the definition of the normalisation constant Z

in equation (2.3.2), integrating and then taking the logarithm, the Laplace approximation provides the

following approximation to logZ

logZ ≈ logZLap = log det (2πS)− 1

2

[
log det (2πΣ) + (m− µ)

T
Σ−1 (m− µ)

]
+

N∑
n=1

ψn(mThn).

Optimisation and complexity

Computing the posterior mode is the MAP estimation problem considered in Section 3.3. Since the

Laplace approximation requires that the target is twice continuously differentiable, optimisation is typ-

ically performed using a (approximate) second order gradient ascent procedure. For example, when

the potentials are log-concave optimisation can typically be performed very efficiently using Newton’s

method. As we saw in Section 3.3 computing the MAP objective and its gradient scalesO (D(D +N)).

Computing the Laplace approximation to the marginal likelihood requires computing the log de-

terminant of the matrix S, which is defined in equation (3.5.1). Importantly, since the value ZLap is

not required during optimisation, this term only needs to be computed once. Due to the structure of the

covariance, as explained in Section 2.1.1, we can compute this term in O (NDmin {N,D}) time.
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Since cubic matrix operations only need to be performed once, the Laplace approximation is highly

scalable. As we have discussed, the optimisation task is similar to that of the MAP approximation.

In larger problems, when computing the full Hessian is infeasible, we can approximate it either by

computing only a subset of its elements (for instance just its diagonal elements) or we can construct

some low rank eigenvector decomposition of it. For the latter approach, approximations to its leading

eigenvectors may be approximated, for example, using iterative Lanczos methods [Golub and Van Loan,

1996, Seeger, 2010].

Qualities of approximation

The Laplace method makes an essentially local approximation to the target. The Gaussian approximation

to p(w) is centred at the MAP estimate and so the Laplace approximation inherits some of the patholo-

gies of that approximation. For example, if the mode is not representative of the target density, that is

the mode has locally negligible mass, the Laplace approximation will be poor.

If the target is Gaussian, however, the Laplace approximation is exact. From the central limit theo-

rem, we know in the limit of many data points, for a problem of fixed dimensionality, and certain other

regularity conditions holding, the posterior will tend to a Gaussian centred at the posterior mode. Thus

the Laplace approximation will become increasingly accurate in the limit of increasing data. Otherwise,

in problems where D and N are the same order of magnitude the accuracy of the approximation will

be governed by how Gaussian the target density is. Unimodality and log-concavity of the target are

reasonable conditions under which we may expect the Laplace approximation to be effective.

Using Laplace approximations to {p(w|v,θ)} for the E-step of an approximate EM algorithm is not

guaranteed to increase the likelihood or a lower-bound on it and can converge to a degenerate solution.

3.6 Gaussian expectation propagation approximation
Gaussian Expectation Propagation (G-EP) seeks to approximate the target density by sequentially match-

ing moments between marginals of the variational Gaussian approximation and a density constructed

from the variational Gaussian and an individual site potential [Minka, 2001a,b]. G-EP can be viewed as

an iterative refinement of a one pass Gaussian density filtering approximation. Gaussian density filtering,

and the equations necessary to implement it, is presented in Appendix A.2.5.

Approximation to p(w)

Gaussian EP approximates the target by a product of scaled Gaussian factors with the same factorisation

structure as p(w), so that

q(w) :=
1

Z
N (w|µ,Σ)

N∏
n=1

φ̃n(wThn) = N (w|m,S) , (3.6.1)

where φ̃n(wThn) are scaled Gaussian factors defined as

φ̃n(wThn) := γ̃ne
− 1

2σ̃2n
(wThn−µ̃n)

2

, (3.6.2)

with variational parameters γ̃n, µ̃n and σ̃2
n. Since exponentiated quadratics are closed under multiplica-

tion, q(w) is Gaussian distributed also. We denote this global Gaussian approximation as N (w|m,S).
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Individually, each scaled Gaussian factor in equation (3.6.2) can be interpreted as a Gaussian ap-

proximation to the site-projection potential φn(wThn). The scaled Gaussian factors φ̃n(wThn) in equa-

tion (3.6.2) are optimal for the univariate site-projection potentials φn(wThn) we consider here. For

general inference problems G-EP site approximations would require full rank covariance and vector

mean variational parameters.

The moments of the global Gaussian approximation m,S are defined by the variational parameters{
µ̃n, σ̃

2
n

}N
n=1

and the constants of the inference problem µ,Σ and H, where H := [h1, ...,hN ]. Equa-

tions for m,S can be obtained by equating first and second order terms in the exponents of equation

(3.6.1).

Approximation to Z

Gaussian EP can provide an approximation to the normalisation constant Z by substituting the Gaussian

approximate site approximations φ̃n(wThn) in place of the intractable sites φn(wThn) and integrating,

so that

Z ≈ ZEP :=

∫
N (w|µ,Σ)

N∏
n=1

φ̃n(wThn)dw. (3.6.3)

The integral above is tractable since it is an exponentiated quadratic. Completing the square in equation

(3.6.3), integrating and taking its logarithms we arrive at

logZEP =
1

2
log det (2πS)− 1

2
µTΣ−1µ− µ̃TΣ̃µ +

1

2
mTS−1m

− 1

2
log det (2πΣ) +

∑
n

log γ̃n, (3.6.4)

where µ̃ := [µ̃1, ..., µ̃N ]T and Σ̃ = diag
(
[σ̃2

1 , ..., σ̃N ]T
)
. Similarly to the Laplace approximation,

computing the EP approximation to logZ in general scales O (NDmin {N,D}) due to the log det (S)

term.

Optimisation and complexity

EP can be viewed as an approximate method to optimise KL(p(w)|q(w)). Since the exact criterion

is analytically intractable, because it requires computing expectations with respect to the intractable

density p(w), G-EP sequentially optimises a different, loosened objective. At each iteration of the G-EP

optimisation procedure the following criterion is optimised with respect to the moments m and S

KL

(
q\n(w)φn(wThn)

Zn

∣∣∣∣∣ q(w)

)
, (3.6.5)

where q\n(w) denotes a Gaussian cavity potential defined by the product in equation (3.6.1) on omitting

the factor φ̃n so that q\n(w) = q(w)/φ̃n(wThn) and Zn is the normalisation constant such that the

product q\n(w)φn(wThn) is a probability density. The moments of the Gaussian cavity q\n(w) can be

obtained analytically using the results presented in Appendix A.2 – the mean and covariance of which

are denoted m\n and S\n respectively.

For Gaussian q(w), as shown in Section 3.2, equation (3.6.5) is minimised when the moments of

q(w) = N (w|m,S) match the moments of the ‘tilted’ density q\n(w)φn(wThn)/Zn. The moments
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of q\n(w)φn(wThn)/Zn can be computed using the Gaussian density filtering equations as described

in Appendix A.2.5.

The G-EP algorithm initialises the Gaussian approximation’s moments with the prior’s: m ← µ,

S ← Σ. The algorithm then iteratively updates the approximating moments by cycling through each of

the site potentials applying the following procedure until all γ̃n, µ̃n, σ̃2
n have converged. To update the ap-

proximation for site n: first, calculate the Gaussian cavity q\n(w) = N
(
w|m\n,S\n

)
; second, use the

Gaussian density filtering equations to match moments between q\n(w)φn(wThn)/Zn andN (w|m,S)

obtaining mnew,Snew; third, update the factor parameters γ̃n, µ̃n, σ̃2
n so that N (w|mnew,Snew) ∝

q\n(w)φ̃n(wThn) and Zn = q\n(w)φ̃n(wThn).

The iterative G-EP fixed point procedure described above is not guaranteed to converge. Indeed,

G-EP is frequently found to be unstable if the potentials {φn} are not log-concave [Seeger et al., 2007,

Seeger, 2005]. Furthermore, if φn are log-concave but the Gaussian covariance matrix Σ is poorly

conditioned, convergence issues can also occur, as is the case for the Gaussian process regression results

presented in Section 5.1. G-EP places no restrictions on the potential functions regarding continuity or

differentiability. Some G-EP convergence issues can be alleviated by adapting the local site fixed point

update conditions so that the non-Gaussian potentials are taken to non-unity powers. This procedure,

referred to as fractional or power G-EP, optimises a fundamentally different criterion to vanilla G-EP but

is often observed to provide reasonable inferences and more robust convergence – see Minka [2004] and

references therein for details.

An efficient implementation of Gaussian EP maintains the covariance matrix using the Cholesky

decomposition of its inverse the precision matrix S−1 = PTP – see Appendix A.6.1. Using this factori-

sation, the computational bottleneck of a G-EP site update comes from computing a rank one update of

the precision matrix, PTP ← PTP + νhnhT
n, and solving a symmetric D × D linear system, where

both of these computations scale O
(
D2
)
. Thus a single G-EP iteration, where each of the non-Gaussian

site potentials is updated once, scales O
(
ND2

)
.

Provably convergent double loop extensions to G-EP have been developed – see Opper and Winther

[2005] and references therein for details. Typically, these methods are slower than vanilla EP imple-

mentations. However, recent algorithmic developments have yielded significant speed-ups over vanilla

EP whilst maintaining the convergence guarantees [Seeger and Nickisch, 2011a]. Importantly, how-

ever, these procedures still require the exact solution of rank D symmetric linear systems and thus scale

O
(
ND2

)
in general.

G-EP and its provably convergent extensions have been shown to be unstable/infeasible if the pre-

cision matrix S−1 is not computed exactly [Seeger and Nickisch, 2011a]. Therefore, in larger problems

where O
(
D2
)

memory and O
(
ND2

)
time requirements are not practical G-EP approximate inference

is infeasible. Thus G-EP methods seem inherently unscalable for general, densely-connected latent linear

models.
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Qualities of approximation

Whilst G-EP can suffer from convergence issues, in log-concave models when convergence issues do not

arise, it is often reported to be one of the most accurate Gaussian deterministic approximate inference

methods. Nickisch and Rasmussen [2008] applied each of the approximate inference methods consid-

ered here to a Gaussian process binary logistic regression model. The logistic sigmoidal conditional

likelihood is log-concave and G-EP was numerically stable. Comparing G-EP versus Laplace, local

variational bounding, and Gaussian KL bounding, G-EP often achieved the most accurate inferences

regarding the approximation of both Z and p(w).

Since the G-EP procedure does not optimise a lower-bound on Z using its approximation to p(w)

for the E-step of an approximate EM or gradient ascent maximum likelihood optimisation procedure is

not guaranteed to increase the likelihood or a lower-bound on it. However, if the G-EP approximate

inference procedure converges the approximation can often perform well – for example see Kim and

Ghahramani [2006], Nickisch and Rasmussen [2008].

3.7 Gaussian Kullback-Leibler bounding
Gaussian Kullback-Leibler (G-KL) approximate inference seeks to approximate the target p(w) by min-

imising the KL divergence KL(q(w)|p(w)) with the variational density q(w) constrained to be a mul-

tivariate Gaussian. G-KL approximate inference was originally presented by [Hinton and Van Camp,

1993] for factorising Gaussian approximations and Barber and Bishop [1998a] for full covariance Gaus-

sian approximations. Until recently (see for example Opper and Archambeau [2009], Honkela and

Valpola [2005]) G-KL methods have received little attention by the research community in compari-

son to the other deterministic methods considered in this chapter. Principally this is due to the perceived

unfavourable computational demands of the approximation. G-KL approximate inference and the devel-

opments we have made regarding this procedure are the focus of Chapter 4. In this section we present

the G-KL method as proposed in work prior to our contributions.

G-KL approximate inference methods are widely applicable placing few functional restrictions on

the site potentials {φn} to which it can be applied. All that is required, for the KL divergence to be well

defined, is that each site potential has unbounded support.

Approximation to p(w)

G-KL approximate inference obtains the ‘best’ Gaussian approximation q∗(w) := N (w|m∗,S∗) to the

target p(w) by minimising the KL divergence KL(q(w)|p(w)) with respect to the moments m,S, so

that

m∗,S∗ := argmin
m,S

KL(q(w)|p(w))

= argmax
m,S

H [q(w)] + 〈logN (w|µ,Σ)〉+

N∑
n=1

〈
log φn(wThn)

〉
, (3.7.1)

where the expectations in equation (3.7.1) are taken with respect to the variational Gaussian q(w) =

N (w|m,S).
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Approximation to Z

As a KL(q(w)|p(w)) approximate inference method, see Section 3.2, the G-KL method provides the

following lower-bound on the normalisation constant

logZ ≥ BG-KL :=
1

2
log det (2πeS)︸ ︷︷ ︸

entropy

+

N∑
n=1

〈log φn(mn + zsn)〉N (z|0,1)︸ ︷︷ ︸
site-projection potentials

− 1

2

[
log det (2πΣ) + (m− µ)

T
Σ−1 (m− µ) + trace

(
Σ−1S

)]
︸ ︷︷ ︸

Gaussian potential

, (3.7.2)

where we have used the fact that the expectation
〈
log φn(wThn)

〉
q(w)

= 〈log φ(mn + zsn)〉N (z|0,1)

where mn := mThn and s2
n := hT

nShn – this result, due to Barber and Bishop [1998a], is presented in

Appendix A.2.4. For some potential functions the univariate expectation 〈log φn(mn + zsn)〉 will have

a simple analytic form. For example, this is the case for Laplace potentials where φ(x) ∝ e−|x|. When

this expectation cannot be analytically derived we note that since it is a univariate Gaussian expectation

it can typically be computed efficiently using numerical methods.

Optimisation and complexity

G-KL approximate inference proceeds by solving the optimisation problem posed in equation (3.7.1).

Typically this is implemented by performing gradient ascent in the moments m,S using approximate

second order methods.

Specifying the G-KL mean and covariance requires 1
2D(D + 3) parameters which can be a much

larger optimisation task than that required by local variational bounding methods with N variational

parameters, the Laplace approximation with D variational parameters or the G-EP approximation with

2N variational parameters. The size of the G-KL optimisation problem is proffered as the reason for

why other variational methods have been favoured over G-KL methods [Opper and Archambeau, 2009].

Seeger [1999] showed that the Gaussian covariance S can be parameterised using N variational

parameters by noting that if we differentiate equation (3.7.2) with respect to S and equate the derivative

to zero, the optimal covariance has the structure

S−1 = Σ−1 + HΓHT, (3.7.3)

where H = [h1, ...,hN ] and Γ ∈ RN×N is diagonal. Thus we can parameterise the G-KL covariance

using just the N diagonal elements of Γ as parameters. In many modelling scenarios N � 1
2D(D + 1)

and this parameterisation will result in a significant reduction in the size of the optimisation space, and

thus, hopefully, also a commensurate reduction in the complexity of the optimisation problem. How-

ever, using this parameterisation of G-KL covariance does not significantly reduce the cost of the matrix

computations that are required to evaluate the G-KL bound and its derivatives. Using the matrix inver-

sion and matrix determinant lemmas, S and log det (S) can be computed in O (NDmin {D,N}) time,

whereas directly evaluating these terms using the unstructured covariance matrix scales O
(
D3
)
.

Since the G-KL method is a lower-bound optimisation procedure it is typically very numerically

stable. G-KL approximate inference does not require that the targets be log-concave like the G-EP ap-



3.7. Gaussian Kullback-Leibler bounding 50

proximation, differentiable like the Laplace approximation or super-Gaussian like local lower-bounding

methods. Even if the target density p(w) is multimodal the G-KL solution will converge to cover one of

these modes.

Regardless of which parameterisation is used for the G-KL covariance S, G-KL approximate infer-

ence, as presented here, is not a scalable optimisation procedure. Evaluating the bound and computing its

gradient requires multiple cubic matrix operations (for example the log det (S) term and its derivatives)

which need to be computed many times by any gradient ascent procedure. Furthermore, the objective,

parameterised either directly in S or with respect to the diagonal elements of Γ using equation (3.7.3),

is neither concave nor convex. Techniques to overcome these computational limitations are presented in

Chapter 4, and are one of the core contributions of this thesis.

Qualities of approximation

As we saw in Section 3.2 optimising the KL(q(w)|p(w)) objective tends to result in approximations

that are mode seeking or avoid making false positive predictions. However, if our posterior is unimodal,

or is well approximated by a single mode (as is the case, for instance, in mixture models where index

permutations describe equivalent densities), the KL(q(w)|p(w)) objective for Gaussian q(w) can be

expected to perform well. Nickisch and Rasmussen [2008] presented a thorough comparison of deter-

ministic approximate inference methods for Gaussian process logistic regression models. Their results

showed that G-KL approximate inference (alongside the G-EP method) was amongst the most accurate

methods considered.

Opper and Archambeau [2009] showed that the G-KL approximation can be interpreted as an ‘av-

eraged’ Laplace approximation. Laplace approximate moments, m and S, are defined as satisfying the

following critical point conditions:

0 =
∂

∂w
logN (w|µ,Σ)

∏
n

φn(wThn),

S−1 := − ∂2

∂wwT logN (w|µ,Σ)
∏
n

φn(wThn)

∣∣∣∣∣
w=wMAP

.

Opper and Archambeau [2009] show that the optimal G-KL moments satisfy the following implicit

equations:

0 =

〈
∂

∂w
logN (w|µ,Σ)

∏
n

φn(wThn)

〉
,

S−1 = −

〈
∂2

∂wwT logN (w|µ,Σ)
∏
n

φn(wThn)

〉
,

where the expectation 〈·〉 is taken with respect to the G-KL distribution q(w). This result provides an

interpretation of the G-KL approximation as an ‘averaged’ Laplace approximation. Laplace approxima-

tions can be inaccurate since the inverse Hessian of log p(w) at its mode is a poor estimator of target

density covariance. This discrepancy is due to log p(w) not being a quadratic thus a point estimate of

its curvature cannot capture the covariance of the density p(w). We might hope then that the G-KL

approximation, which effectively averages the Laplace approximation over the support of q(w) will be

better at capturing target density covariance.
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Since the G-KL procedure is a KL(q(w)|p(w)) lower-bounding method, using the Gaussian ap-

proximation q(w) in the E-step in an approximate EM procedure is guaranteed to increase a lower-bound

on the likelihood.

3.8 Local variational bounding
Local variational bounding (LVB) procedures lower-bound Z by replacing each non-Gaussian potential

φn(wThn) in the integrand of Z with a function that lower-bounds it and that renders the integral as a

whole analytically tractable. Tractability is obtained by utilising exponentiated quadratic lower-bounds

for each site potential φn(wThn). Local variational bounding methods have received much attention

from the research community over the years and have been employed for a wide variety of latent linear

models – see for example Jaakkola and Jordan [1997], Saul et al. [1996], Seeger and Nickisch [2010],

Gibbs and MacKay [2000], Girolami [2001].

The lower-bound for each non-Gaussian potential φn(wThn) is parameterised by a single varia-

tional parameter which we denote as ξn. See Figure 3.4 for a depiction of a logistic sigmoid and a

Laplace potential, φ(x), with tight exponentiated quadratic lower-bounds evaluated at a particular oper-

ating point x = x∗. Since exponentiated quadratics are closed under multiplication, one may bound the

product of site potentials by an exponentiated quadratic also so that∏
n

φn(wThn) ≥ c(ξ)e−
1
2wTF(ξ)w+wTf(ξ), (3.8.1)

where the matrix F(ξ) takes the form of an outer product matrix with the ‘data’ vectors H :=

[h1, ...,hN ] so that F(ξ) = HΛ(ξ)HT and Λ(ξ) is a N ×N diagonal matrix with elements defined by

each of the site potential bounds. Similarly, the vector f(ξ) and scalar c(ξ) depend on the site bounds

and the ‘data’ H. The ξ vector is of length N containing each of the variational parameters ξn. For any

setting of w there exists a setting of ξ for which the bound is tight.

LVB procedures are applicable provided tight exponentiated quadratic lower-bounds to the site-

projection potentials {φn}Nn=1 exist. Palmer et al. [2006] showed that such bounds exist provided the

site potentials are super-Gaussian. Where they define a function f(x) as super-Gaussian if ∃b ∈ R

s.t. for g(x) := log f(x) − bx is even, convex and decreasing as a function of y = x2. A number

of potential functions of significant practical utility are super-Gaussian. Examples include: the logistic

sigmoid φ(x) = (1 + exp(−x))−1, the Laplace density φ(x) ∝ exp(−|x|) and the Student’s t density.

However, we note that deriving a new bound for each site potential we may want to use can be a non

trivial task.

Approximation to p(w)

Substituting the site potential lower-bounds into the definition of p(w) we can collect first and second

order terms in the exponent to derive the moments of the Gaussian approximation to the target. Doing

so gives q(w) = N
(
w|A−1b,A−1

)
where

A := Σ−1 + F(ξ), b := Σ−1µ + f(ξ), (3.8.2)

and so both A and b are functions of ξ.
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Figure 3.4: Exponentiated quadratic lower-bounds for two super-Gaussian potential functions: (a)

Laplace potential and lower-bound with operating point at 0.5; (b) Logistic sigmoid potential and lower-

bound with operating point at 2.5.

Approximation to Z

Substituting equation (3.8.1) into the definition of Z in equation (2.3.2) we obtain the LVB bound on Z

Z =

∫
N (w|µ,Σ)

N∏
n=1

φn(wThn)dw

≥
∫
N (w|µ,Σ) c(ξ)e−

1
2wTF(ξ)w+wTf(ξ)dw

= c(ξ)
e−

1
2µ

TΣ−1µ√
det (2πΣ)

∫
e−

1
2wTAw+wTbdw. (3.8.3)

LVB methods obtain the tightest lower-bound on Z by optimising equation (3.8.3) with respect to the

variational parameters ξ. Optimisation can be implemented using either a gradient ascent or an EM

procedure where ξ are treated as hyperparameters [Palmer et al., 2006].

Completing the square in equation (3.8.3), integrating and taking its logarithm, we have logZ ≥

BLV B(ξ), where

BLV B(ξ) = log c(ξ)− 1

2
µTΣ−1µ +

1

2
bTA−1b− 1

2
log det (2πΣ)− 1

2
log det (2πA) . (3.8.4)

Optimisation and complexity

Evaluating BLV B(ξ) requires computing log det (A) – typically the most computationally expensive

term in equation (3.8.4). Assuming Σ−1 can be computed efficiently, A and its log determinant can

typically be computed using the matrix inversion lemma and so scales O (NDmin {D,N}).

Optimising the bound, using either expectation maximisation or gradient based methods, requires

solving N linear symmetric D × D systems. Efficient exact implementations of this method maintain

the covariance using its Cholesky factorisation and perform efficient rank one Cholesky updates [Seeger,

2007]. Doing so, each round of updates scales O
(
ND2

)
.
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Recently scalable approximate solvers for local variational bounding procedures have been devel-

oped – see Seeger and Nickisch [2011b] for a review. These methods make use of a number of algo-

rithmic relaxations to reduce the computational burden of local bound optimisation. First, double loop

algorithms are employed that reduce the number of times that log det (A) and its derivatives need to be

computed. Nickisch and Seeger [2009] also proved that for log-concave site potentials {φn} the LVB

objective was a convex optimisation problem and hence global convergence rates could be expected to

be rapid.

Second, these algorithms use approximate methods to evaluate the marginal variances that are re-

quired to drive local variational bound optimisation. Marginal variances are approximated either by con-

structing low rank factorisations of A using iterative Lanczos methods or by perturb and MAP sampling

methods [Papandreou and Yuille, 2010, Seeger, 2010, Ko and Seeger, 2012]. Both of these approxima-

tions can greatly increase the speed of inference and the size of problems to which local procedures can

be applied. Unfortunately, these relaxations are not without consequence regarding the quality of approx-

imate inference. For example, the log det (A) term is no longer exactly computed and a lower-bound on

logZ is no longer maintained – only an estimate of logZ is provided. Using the Lanczos approximation

marginal variances are often found to be strongly underestimated and bound values strongly overesti-

mated. Whilst the scaling properties are, in general, problem and user dependent, roughly speaking,

these relaxations reduce the computational complexity to scaling O
(
KD2

)
where K is the rank of the

approximate covariance factorisation.

Qualities of approximation

One of the core advantages of local variational bounding methods is that they provide a principled lower-

bound on Z. The lower-bound can be used as surrogate for the likelihood and we can derive convergent

approximate EM parameter estimation methods.

Since LVB, G-KL and mean field methods all provide a lower-bound on Z, a natural question to

ask is which of these is the tightest. The lower-bound to logZ presented in equation (3.8.4) is derived

from a fundamentally different criterion from the mean field and G-KL bounds. Mean field and G-KL

bounds are derived from the KL divergence KL(q(w)|p(w)). Local variational bounds are obtained

by lower-bounding each non-Gaussian site-projection potential, integrating and optimising that analytic

expression with respect to the parameters of the site bounds. Since we can substitute the LVB Gaussian

approximation q(w) into the KL divergence we can evaluate the KL bound using the LVB Gaussian. This

observation has lead previous authors to suggest that when using local variational bounding methods,

both bounds should be computed and the greater of the two should be used [Nickisch and Rasmussen,

2008]. Empirical evidence suggests that the LVB bound is poorer than the unconstrained G-KL bound.

In Section 4.4.1 we address this issue specifically and show that in fact the G-KL bound is guaranteed to

be stronger than that provided by LVB methods.

LVB methods provide a global Gaussian approximation to the target density p(w) and as such can

capture its correlational structure. Furthermore, since LVB methods are convex optimisation problems

LVB methods should converge rapidly to their globally optimal parameter setting. LVB methods have
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been reported to underestimate target density variance and the bound on the normalisation constant

versus the G-KL and G-EP approximations [Nickisch and Rasmussen, 2008].

3.9 Comparisons
Each of the approximate inference methods considered above have their own relative strengths and weak-

nesses. Below we briefly discuss and compare these properties in relation to the desiderata laid out in

Section 2.3.

Efficiency

Computationally, the MAP and the Laplace approximations are the fastest and most scalable methods

considered. For some problems, where there is sufficient data relative to the dimensionality of param-

eter space, the MAP approximation, which ignores all uncertainty in the target, may be reasonable. If

an estimate of the covariance of the target is required then the Laplace approximation can be used at

moderate additional expense. The Laplace approximation is highly scalable in so much as approxima-

tions to the Hessian are easy to construct. However, the MAP and the Laplace methods are essentially

local approximation methods that ignore measure in parameter space, and consequently can result in

very poor approximations. Of the global approximation methods considered (mean field, G-EP, G-KL,

and LVB), mean field and LVB methods are the most efficient and scalable techniques. However, mean

field bounding methods, whilst scalable, are often not practical due to the requirement that the site po-

tentials factorise such that
∏
n φn(wThn) =

∏
d φd(wd) and since a factorised approximation may be

inadequate. LVB methods are the most efficient and scalable global approximate inference methods

considered that do not place restrictive factorisation assumptions on the approximating density q(w).

Additionally, LVB methods are the only global approximate inference method (prior to our contribution)

to result in a convex optimisation problem. Whilst G-EP and G-KL can be the most accurate methods

considered here, they are currently not scalable.

Accuracy

With regards to accuracy of inference, the G-EP and the G-KL global approximation methods, for log-

concave site potentials, have been reported to be the most accurate. LVB methods have been reported to

underestimate both target density covariance and its normalisation constant. Mean field methods make

strong factorisation assumptions about the target density approximation, which if unjustified, can result

in poor approximations. As discussed, the local approximations made by the MAP and Laplace methods

can, in some settings, result in extremely inaccurate approximate inferences.

With regards to performing parameter estimation and model selection, G-KL, mean field and LVB

methods all provide a principled lower-bound on Z and so, using their respective criterions as a surrogate

for the likelihood, numerically robust (hyper) parameter estimation and model selection procedures can

be derived. Since the Laplace and G-EP methods are approximation methods, numerical issues can arise

if we use these techniques to drive parameter estimation procedures. The LVB bound on Z is often

reported to be weaker than the G-KL bound.

Laplace, G-EP, G-KL, and LVB methods all provide a Gaussian approximation to the target density
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p(w). Multivariate Gaussian densities have many desirable analytic and computational properties: sim-

ple analytic forms for conditionals and marginals can be derived, first and seconder order moments can

be immediately accessed, the expectations of many functions can often be efficiently computed. The ac-

curacy of a Gaussian approximation depends on the target density and the approximate inference routine

used to find it. Independent of the approximation method used, Gaussian densities can easily capture

and represent the correlation in the target density whereas mean field methods and MAP approximations

cannot.

Generality

We saw that each of the approximate inference methods considered placed different constraints on the

non-Gaussian potential functions to which they could be applied. The Laplace approximation requires

that the site potentials are twice continuously differentiable. LVB methods require that the site potentials

are super-Gaussian. G-EP methods can encounter convergence issues if the sites are not log-concave.

The MAP approximation is highly inaccurate if the target density has non negligible variance. Tractabil-

ity for mean field method requires that the site-projection potentials depend on only a single element

of the parameter vector w. G-KL bounding methods require that the support of the site potentials is

unbounded.

3.10 Extensions
The deterministic approximate inference methods presented above are, in practice, the most commonly

used methods in the latent linear model class. However, each of these techniques impose quite restrictive

structures on the form of the approximating density: The MAP approximation uses a delta function

density, the mean field method uses a fully factorising approximating density and the remaining methods

use a multivariate Gaussian density. In many settings, the target may be far from being well modeled

by such approximations. To that end we now briefly review some methods proposed in the literature to

increase the flexibility of the class of approximating densities.

Mixture mean field

Mixture models, where a density is defined as a finite sum of simpler densities, are a commonly used

technique to construct more flexible distributions. It is natural then to consider extending the KL bound

optimisation techniques, such as the mean field and the G-KL methods, to optimise for q(w) a mixture.

For a variational density with K mixture components, the energy term of the KL bound is tractable and

simply requires the evaluation of K times as many expectations as for standard KL methods. Comput-

ing the entropy term is less straightforward. The entropy of a mixture, q(w) :=
∑
k πkqk(w) where∑

k πk = 1, is defined by the K integrals

H[q(w)] = −
K∑
k=1

πk

∫
qk(w) log

(∑
k

πkqk(w)

)
dw. (3.10.1)

The integrals presented in equation (3.10.1) are typically intractable due to the log sum structure. Bishop

et al. [1998] propose to employ Jensen’s bound, 〈f(x)〉 ≥ f(〈x〉) when f(x) is convex, to take the

negative log outside the expectation, in doing so one obtains a lower-bound on the entropy of the mixture.
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The bounded entropy is then substituted into the KL bound to obtain a weakened, but tractable, lower-

bound to logZ. Accordingly, the class of approximating distributions q(w) can be expanded to include

mixture densities and so increase the accuracy of the mean field approximation. However, this procure

has a two principal disadvantages: bounding the entropy further weakens the bound on Z, and evaluating

the entropy’s bound requires us to evaluate O
(
K2
)
, D-dimensional expectations with respect to the

mixture components qk(w) and so may not be that scalable or efficient.

When the expectation of the energy term cannot be computed exactly, people have proposed ap-

proximately computing their expectation. For example, Gershman et al. [2012] propose using a Gaussian

mixture approximation and replace the site potentials with their first or second order Taylor expansions,

thus a lower-bound on the normalisation constant is lost.

Split variational inference

A related approach to the mixture mean field method discussed above is the split variational inference

technique [Bouchard and Zoeter, 2009]. Split variational inference methods develop the intuition that

if we could partition the integral into a collection of smaller easier to approximate sub-integrals the

accuracy of the approximation could be improved. To do this the authors consider a soft partition of the

integral domain using binning functions such that
∑
k bk(w) ≡ 1 for all w ∈ W . Defining the target

density p(w) = f(w)/Z we can see that

Z =

∫
f(w)dw =

∑
k

∫
bk(w)f(w)dw =:

∑
k

Zk.

Each sub-integral Zk can then be lower-bounded by standard G-KL, LVB or factorising mean field

methods as presented in the previous sections. The sum of the individual lower-bounds on Zk then

provides a global lower-bound on Z.

The authors propose a double loop optimisation procedure to perform split variational inference.

In the outer loop, the global bound is optimised with respect to the binning functions that define the

soft partitioning of the domain. In the inner loop each of the partitioned lower-bounds on Zk are opti-

mised. If the binning functions are taken to be softmax factors the split mean field method is equivalent to

mixture mean field approach. Similarly to the mixture mean field method this method increases the accu-

racy of the approximation. However split variational inference can be quite computationally demanding

since the inner loop of the optimisation procedure requires K lower-bound optimisation problems of

D-dimensional integrals to be solved.

Skew-normal variational inference

Gaussian KL approximate inference minimises the KL(q(w)|p(w)) objective for q(w) a multivariate

Gaussian. This approach is practical since both the energy and entropy terms of the KL bound and their

derivatives can be computed. Unfortunately, few other multivariate parametric densities are known for

which these properties hold. One exception is the skew-normal density [Ormerod, 2011]. The skew

normal variational approximate density q(w) is defined as

q(w|m,S,d) := 2N (w|m,S) Φ(dT (w −m))
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where Φ(x) :=
∫ x
−∞N (t|0, 1) is the standard normal cumulative density function. Thus the skew-

normal density described in the equation above is a one dimensional distortion of a multivariate normal

in the direction of the parameter vector d. This density is more flexible than the multivariate Gaussian (if

d = 0 we recover the multivariate Gaussian) and so it can achieve more accurate inferences. However

it is still a relatively constrained density and so the improvement it can achieve over standard Gaussian

KL is relatively limited.

3.11 Summary
In this chapter we have reviewed some of the most popular approaches to deterministic approximate

inference in the latent linear model class.

We have seen how the multivariate Gaussian density can be used as a flexible yet compact approx-

imation to the target density and how this approximation, with its convenient computational properties,

can render down stream computations such as expectations tractable. The Gaussian EP, the Laplace, the

Gaussian KL and local variational bounding approximations all return a multivariate Gaussian approx-

imation to the target. Each method placed different constraints on the potential functions to which it

could be applied, had different computational complexity and scalability properties and resulted in dif-

ferent approximate inferences. Of each of these methods the G-KL approach has received by far the least

attention by the research community. Principally this is due to the perceived computational complexity

of G-KL bound evaluation and optimisation procedures. In Chapter 4 we consider G-KL approximate

inferences in some depth, and present a range of methods and results that show that in fact this method

is both efficient and scalable.

This chapter also drew attention to some of the limitations of the commonly used deterministic

approximate inference methods. Whilst often convenient to implement and computationally fast, the

approximate methods we present in the first part of this chapter can be inadequate if our target density

is far from Gaussian distributed. In Section 3.10 we presented a few extensions that have been proposed

in the literature to enrich the class of variational approximating distributions. In Chapter 6 we develop

on these methods, providing a new method to evaluate and optimise the KL bound over a broad class of

multivariate approximating densities.
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Chapter 4

Gaussian KL approximate inference

In this chapter we provide a number of novel contributions regarding the application of Gaussian

Kullback-Leibler (G-KL) approximate inference methods to latent linear models. In Section 4.2 we

address G-KL bound optimisation. We provide conditions on the potential functions {φn}Nn=1 for which

the G-KL bound is smooth and concave. Thus we provide conditions for which optimisation using

Newton’s method will exhibit quadratic convergence rates and using quasi-Newton methods super-linear

convergence rates. In Section 4.3 we discuss the complexity of G-KL bound and gradient computations

required to perform approximate inference. To make G-KL approximate inference scalable we present

constrained parameterisations of covariance. In Section 4.4 we compare G-KL approximate inference to

other Gaussian approximate inference methods. We prove that the G-KL lower-bound is tighter than the

bound offered by local lower-bounding methods. We also discuss and compare computational scaling

properties and model applicability issues.

4.1 Introduction

As introduced in Section 3.7, G-KL approximate inference proceeds by fitting the variational Gaussian,

q(w) = N (w|m,S), to the target, p(w), by minimising KL(q(w)|p(w)) with respect to the moments

m and S. For Gaussian q(w) = N (w|m,S) and a latent linear model target of the form described in

Section 2.3, the G-KL lower-bound on logZ can be expressed as

BG-KL (m,S) =
1

2
log det (2πeS)︸ ︷︷ ︸

entropy

+

N∑
n=1

〈log φn(mn + zsn)〉N (z|0,1)︸ ︷︷ ︸
site-projection potentials

− 1

2

[
log det (2πΣ) + (m− µ)

T
Σ−1 (m− µ) + trace

(
Σ−1S

)]
︸ ︷︷ ︸

Gaussian potential

. (4.1.1)

Where we show that the site-projection potential expectations
〈
log φn(wThn)

〉
q(w)

simplify to the uni-

variate Gaussian expectations 〈log φn(mn + zsn)〉 in Appendix A.2 following the original presentation

made by Barber and Bishop [1998a].
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Figure 4.1: Non-differentiable functions and their Gaussian expectations. Figures (a) and (c) plot the

non-differentiable function ψ(x) = −|x| and the non-continuous function ψ(x) = −sgn(x). Figures

(b) and (c) plot the expectations of those functions for Gaussian distributed x as a function of the Gaus-

sian mean m i.e. 〈ψ(x)〉N (x|m,σ2). The expectations are smooth with respect to the Gaussian mean. As

the variance of the Gaussian tends to zero the expectation converges to the underlying function value.

Gaussian expectations taken with respect to N
(
x|m,σ2

)
where σ = 0.0125, 0.5, 1, 2.

4.2 G-KL bound optimisation

G-KL approximate inference proceeds to obtain the tightest lower-bound to logZ and the ‘closest’ Gaus-

sian approximation to p(w) by maximising BG-KL(m,S) with respect to the moments m and S of the

variational Gaussian density. Therefore, to realise the benefits of G-KL approximate inference we re-

quire stable and scalable algorithms to optimise the bound. To this end we now show that for a broad

class of models the G-KL objective is both differentiable and concave.

4.2.1 G-KL bound differentiability

Whilst the target density of our model may not be differentiable in w the G-KL bound with respect to

the variational moments m,S frequently is. See Figure 4.1 for a depiction of this phenomenon for two,

simple, non-differentiable functions. The G-KL bound is in fact smooth for potential functions that are

neither differentiable nor continuous (for example they have jump discontinuities). In Appendix B.3

we show that the G-KL bound is smooth for potential functions that are piecewise smooth with a finite

number of discontinuities, and where the logarithm of each piecewise segment is a quadratic. This class

of functions includes the widely used Laplace density amongst others.

4.2.2 G-KL bound concavity

If each site potential {φn}Nn=1 is log-concave then the G-KL bound BG-KL(m,S) is jointly concave

with respect to the variational Gaussian mean m and C the upper-triangular Cholesky decomposition of

covariance such that S = CTC. We say that f(x) is log-concave if log f(x) is concave in x.

Since the bound depends on the logarithm of
∏N
n=1 φn without loss of generality we may take
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N = 1. Ignoring constants with respect to m and C, we can write the G-KL bound as

BG-KL(m,C)
c.
=

D∑
d=1

logCdd −
1

2
mTΣ−1m + µTΣ−1m− 1

2
trace

(
Σ−1CCT

)
+
〈

log φ(wTh)
〉
. (4.2.1)

Excluding
〈
log φ(wTh)

〉
from the expression above all terms are concave functions exclusively in either

m or C. Since the sum of concave functions on distinct variables is jointly concave the terms in the first

line of equation (4.2.1) represent a jointly concave contribution to the bound.

To complete the proof1 we need to show that
〈
log φ(wTh)

〉
is jointly concave in m and C. Log-

concavity of φ(x) is equivalent to the statement that for any x1, x2 ∈ R and any θ ∈ [0, 1]

log φ(θx1 + (1− θ)x2) ≥ θ log φ(x1) + (1− θ) log φ(x2). (4.2.2)

Therefore, to show that E(m,C) :=
〈
log φ(wTh)

〉
N (w|m,CTC)

is concave it suffices to show for any

θ ∈ [0, 1] that

E(θm1 + (1− θ)m2, θC1 + (1− θ)C2) ≥ θE(m1,C1) + (1− θ)E(m2,C2). (4.2.3)

This can be done by making the substitution w = θm1 + (1− θ)m2 + (θC1 + (1− θ) C2)
T

z, giving

E (θm1 + (1− θ) m2, θC1 + (1− θ) C2) =

∫
N (z|0, I)×

log φ
(
θhT

(
m1 + CT

1z
)

+ (1− θ) hT
(
m2 + CT

2z
))

dz.

Using concavity of log φ(x) with respect to x and equation (4.2.2) with w1 = m1 + CT
1z and w2 =

m2 + CT
2z we have that

E (θm1 + (1− θ) m2, θC1 + (1− θ) C2) ≥ θ
∫
N (z|0, I) log φ

(
hT
(
m1 + CT

1z
))

dz

+ (1− θ)
∫
N (z|0, I) log φ

(
hT
(
m2 + CT

2z
))

dz

= θE (m1,C1) + (1− θ) E (m2,C2) .

Thus the G-KL bound is jointly concave in m,C provided all site potentials {φn}Nn=1 are log-concave.

With consequence to the theoretical convergence rates of gradient based optimisation procedures,

the bound is also strongly-concave. A function f(x) is strongly-concave if there exists some c < 0 such

that for all x, ∇2f(x) � cI [Boyd and Vandenberghe, 2004, Section 9.1.2].2 For the G-KL bound the

constant c can be assessed by inspecting the covariance of the Gaussian potential, Σ. If we arrange the

set of all G-KL variational parameters as a vector formed by concatenating m and the non-zero elements

of the column’s of C then the Hessian of 〈logN (w|µ,Σ)〉 is a block diagonal matrix. Each block of this

Hessian is either −Σ−1 or its submatrix
[
−Σ−1

]
i:D,i:D

, where i = 2, . . . , D. The set of eigenvalues

of a block diagonal matrix is the union of the eigenvalues of each of the block matrices’ eigenvalues.
1This proof was provided by Michalis K. Titsias and simplifies the original presentation made in Challis and Barber [2011],

and which is reproduce in Appendix B.7.
2We say for square matrices A and B that A � B iff B−A is positive semidefinite.
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Furthermore, the eigenvalues of each submatrix are bounded by the upper and lower eigenvalues of

−Σ−1. Therefore∇2BG-KL(m,S) � cI where c is −1 times the smallest eigenvalue of Σ−1. The sum

of a strongly-concave function and a concave function is strongly-concave and thus the G-KL bound as

a whole is strongly-concave.

For G-KL bound optimisation using Newton’s method to exhibit quadratic convergence rates two

additional sufficient conditions, beyond strong concavity and differentiability, need to be shown. The

additional requirements being that the G-KL bound has closed sublevel sets and that the G-KL bound’s

Hessian is Lipschitz continuous on those sublevel sets. For brevity of exposition we present both of these

results in Appendix B.3.

4.2.3 Summary

In this section, and in Appendix B.3, we have provided conditions for which the G-KL bound is strongly

concave, smooth, has closed sublevel sets and Lipschitz continuous Hessians. Under these conditions

optimisation of the G-KL bound will have quadratic convergence rates using Newton’s method and

super-linear convergence rates using quasi-Newton methods [Nocedal and Wright, 2006, Boyd and Van-

denberghe, 2004]. For larger problems, where cubic scaling properties arising from the approximate

Hessian calculations required by quasi-Newton methods are infeasible, we will use limited memory

quasi-Newton methods, nonlinear conjugate gradients or Hessian free Newton methods to optimise the

G-KL bound.

Concavity with respect to the G-KL mean is clear and intuitive – for any fixed G-KL covariance

the G-KL bound as a function of the mean can be interpreted as a Gaussian blurring of log p(w) – see

Figure 4.1. As S = ν2I → 0 then m∗ → wMAP where m∗ is the optimal G-KL mean and wMAP is

the maximum a posteriori (MAP) parameter setting.

Another deterministic Gaussian approximate inference procedure applied to the latent linear model

class are local variational bounding methods – introduced in Section 3.8. For log-concave potentials local

variational bounding methods, which optimise a different criterion with a different parameterisation to

the G-KL bound, have also been shown to result in a convex optimisation problem [Seeger and Nickisch,

2011b]. To the best of our knowledge, local variational bounding and G-KL approximate inference

methods are the only known concave variational inference procedures for latent linear models as defined

in Section 2.3.

Whilst G-KL bound optimisation and MAP estimation share conditions under which they are

concave problems, the G-KL objective is often differentiable when the MAP objective is not. Non-

differentiable potentials are used throughout machine learning and statistics. Indeed, the practical utility

of such non-differentiable potentials in statistical modelling has driven a lot of research into speeding up

algorithms to find the mode of these densities – for example see Schmidt et al. [2007]. Despite recent

progress these algorithms tend to have slower convergence rates than quasi-Newton methods on smooth,

strongly-convex objectives with Lipschitz continuous gradients and Hessians.

One of the significant practical advantages of G-KL approximate inference over MAP estimation

and the Laplace approximation is that the target density is not required to be differentiable. With regards
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to the complexity of G-KL bound optimisation, whilst an additional cost is incurred over MAP estimation

from specifying and optimising the variance of the approximation, a saving is made in the number of

times the objective and its gradients need to be computed. Quantifying the net saving (or indeed cost) of

G-KL optimisation over MAP estimation is an interesting question reserved for later work.

4.3 Complexity : G-KL bound and gradient computations
In the previous section we provided conditions for which the G-KL bound is strongly concave and differ-

entiable and so provided conditions for which G-KL bound optimisation using quasi-Newton methods

will exhibit super-linear convergence rates. Whilst such convergence rates are highly desirable they do

not in themselves guarantee that optimisation is scalable. An important practical consideration is the nu-

merical complexity of the bound and gradient computations required by any gradient ascent optimisation

procedure.

Discussing the complexity of G-KL bound and gradient evaluations in full generality is complex

we therefore restrict ourselves to considering one particularly common case. We consider models where

the covariance of the Gaussian potential is spherical, such that Σ = ν2I. For models that do not satisfy

this assumption, in Appendix B.4 we present a full breakdown of the complexity of bound and gradient

computations for each G-KL covariance parameterisation presented in Section 4.3.1.3 and a range of

parameterisations for the Gaussian potential N (w|m,Σ).

Note that problems where Σ is not a scaling of the identity can be reparameterised to an equivalent

problem for which it is. For some problems this reparameterisation can provide significant reductions in

complexity. This procedure, the domains for which it is suitable, and the possible computational savings

it provides are discussed at further length in Appendix B.5.

For Cholesky factorisations of covariance, S = CTC, of dimension D the bound and gradient

contributions from the log det (S) and trace (S) terms in equation (4.1.1) scale O (D) and O
(
D2
)

re-

spectively. Terms in equation (4.1.1) that are a function exclusively of the G-KL mean, m, scale at most

O (D) and are the cheapest to evaluate. The computational bottleneck arises from the projected varia-

tional variances s2
n = ‖CThn‖2 required to compute each

〈
log φn(wThn)

〉
term. Computing all such

projected variances scales O
(
ND2

)
.3

A further computational expense is incurred from computing the N one dimensional integrals re-

quired to evaluate
∑N
n=1

〈
log φn(wThn)

〉
. These integrals are computed either numerically or ana-

lytically depending on the functional form of φn. Regardless, this computation scales O (N), possi-

bly though with a significant prefactor. When numerical integration is required, we note that since〈
log φn(wThn)

〉
can be expressed as 〈log φn(mn + zsn)〉N (z|0,1) we can usually assert that the inte-

grand’s significant mass lies for z ∈ [−5, 5] and so that quadrature will yield sufficiently accurate results

at modest computational expense. For all the experiments considered here we used fixed width rectangu-

lar quadrature and performing these integrals was not the principal bottleneck. For modelling scenarios

where this is not the case we note that a two dimensional lookup table can be constructed, at a one off

3We note that since a Gaussian potential,N (w|µ,Σ), can be written as a product overD site-projection potentials computing

〈logN (w|µ,Σ)〉 will in general scale O
(
D3

)
– see Appendix B.1.3.
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cost, to approximate 〈log φ(m+ zs)〉 and its derivatives as a function of m and s.

Thus for a broad class of models the G-KL bound and gradient computations scale O
(
ND2

)
for

general parameterisations of the covariance S = CTC. In many problems of interest the fixed vectors hn

are sparse. Letting L denote the number of non-zero elements in each vector hn, computing
{
s2
n

}N
n=1

scales now O (NDL) where frequently L � D. Nevertheless, such scaling for the G-KL method can

be prohibitive for large problems and so constrained parameterisations are required.

4.3.1 Constrained parameterisations of G-KL covariance

Unconstrained G-KL approximate inference requires storing and optimising 1
2D(D + 1) parameters to

specify the G-KL covariance’s Cholesky factor C. In many settings this can be prohibitive. To this

end we now consider constrained parameterisations of covariance that reduce both the time and space

complexity of G-KL procedures.

Gaussian densities can be parameterised with respect to the covariance or its inverse the precision

matrix. A natural question to ask is which of these is best suited for G-KL bound optimisation. Un-

fortunately, the G-KL bound is neither concave nor convex with respect to the precision matrix. What

is more, the complexity of computing the φn site potential contributions to the bound increases for the

precision parameterised G-KL bound. Thus the G-KL bound seems more naturally parameterised in

terms of covariance than precision.

4.3.1.1 Optimal G-KL covariance structure

As originally noted by Seeger [1999], the optimal structure for the G-KL covariance can be assessed by

calculating the derivative of BG-KL(m,S) with respect to S and equating it to zero. Doing so, S is seen

to satisfy

S−1 = Σ−1 + HΓHT, (4.3.1)

where H = [h1, . . . ,hn] and Γ is diagonal such that

Γnn =

〈(
z2 − 1

) log φn(mn + zsn)

2s2
n

〉
N (z|0,1)

. (4.3.2)

Γ depends on S through the projected variance terms s2
n = hT

nShn and equation (4.3.1) does not provide

a closed form expression to solve for S. Furthermore, iterating equation (4.3.1) is not guaranteed to

converge to a fixed point or uniformly increase the bound. Indeed this iterative procedure frequently

diverges. We are free, however, to directly optimise the bound by treating the diagonal entries of Γ as

variational parameters and thus change the number of parameters required to specify S from 1
2D(D+1)

to N . This procedure, whilst possibly reducing the number of free parameters, requires us to compute

log det (S) and S which in general scales O (NDmin {D,N}) using the matrix inversion lemma –

infeasible when N,D � 1.

A further consequence of using this parameterisation of covariance is that the bound is non-concave.

We know from Seeger and Nickisch [2011b] that parameterising S according to equation (4.3.1) renders

log det (S) concave with respect to (Γnn)−1. However the site-projection potentials are not concave with

respect to (Γnn)−1 thus the bound is neither concave nor convex for this parameterisation resulting in
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convergence to a possibly local optimum. Non-convexity and O
(
D3
)

scaling motivates the search for

better parameterisations of covariance.

Khan et al. [2012] propose a new technique that uses the decomposition of covariance described

in equation (4.3.1) to efficiently optimise the G-KL bound for the special case of Gaussian process

regression models. Since for GP regression models H = IN×N , the algorithm makes use of the fact that

at the optimum of the G-KL bound S−1 differs from Σ−1 only at the diagonal elements. The derived

fixed point optimisation procedure can potentially speed up G-KL inference in GP models. However, for

general latent linear models this approach is not applicable and the need for scalable and general purpose

G-KL bound optimisation methods remains.

4.3.1.2 Factor analysis

Parameterisations of the form S = ΘΘT + diag
(
d2
)

can capture the K leading directions of variance

for a D × K dimensional loading matrix Θ. Unfortunately this parameterisation renders the G-KL

bound non-concave. Non-concavity is due to the entropic contribution log det (S) which is not even

unimodal. All other terms in the bound remain concave under this factorisation. Provided one is happy

to accept convergence to possibly local optimum, this is still a useful parameterisation. Computing the

projected variances with S in this form scales O (NDK) and evaluating log det (S) and its derivative

scales O
(
K2(K +D)

)
.

4.3.1.3 Constrained concave parameterisations

Below we present constrained parameterisations of covariance which reduce both the space and time

complexity of G-KL bound optimisation whilst preserving concavity. To reiterate, the computational

scaling figures for the bound and gradient computations listed below correspond to evaluating the pro-

jected G-KL variance terms, the bottleneck for models with an isotropic Gaussian potential Σ = σ2I.

The scaling properties for other models are presented in Appendix B.4. The constrained parameteri-

sations below have different qualities regarding the expressiveness of the variational Gaussian approx-

imation. We note that a zero at the (i, j)th element of covariance specifies a marginal independence

relation between parameters wi and wj . Conversely, a zero at the (i, j)th element of precision corre-

sponds to a conditional independence relation between parameters wi and wj when conditioned on the

other remaining parameters.

Banded Cholesky

The simplest option is to constrain the Cholesky matrix to be banded, that isCij = 0 for j > i+B where

B is the bandwidth. Doing so reduces the cost of a single bound or gradient computation to O (NDB).

Such a parameterisation describes a sparse covariance matrix and assumes zero covariance between

variables that are indexed out of bandwidth. The precision matrix for banded Cholesky factorisations of

covariance will not in general be sparse.

Chevron Cholesky

We constrain C such that Cij = Θij when j ≥ i and i ≤ K, Cii = di for i > K and 0 otherwise. We

refer to this parameterisation as the chevron Cholesky since the sparsity structure has a broad inverted
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(a) Full (b) Banded (c) Chevron (d) Subspace (e) Sparse

Figure 4.2: Sparsity structure for constrained concave Cholesky decompositions of covariance.

‘V’ shape – see Figure 4.2. Generally, this constrained parameterisation results in a non-sparse covari-

ance but sparse precision. This parameterisation is not invariant to index permutations and so not all

covariates have the same representational power. For a Cholesky matrix of this form bound and gradient

computations scale O (NDK).

Sparse Cholesky

In general the bound and gradient can be evaluated more efficiently if we impose any fixed sparsity

structure on the Cholesky matrix C. In certain modelling scenarios we know a priori which variables

are marginally dependent and independent and so may be able construct a sparse Cholesky matrix to

reflect that domain knowledge. This is of use in cases where a low band width index ordering cannot

be found. For a sparse Cholesky matrix with DK non-zero elements bound and gradient computations

scale O (NDK).

Subspace Cholesky.

Another reduced parameterisation of covariance can be obtained by considering arbitrary rotations in

parameter space, S = ECTCET where E is a rotation matrix which forms an orthonormal basis over

RD. Substituting this form for the covariance into equation (4.2.1) and for Σ = ν2I we obtain, up to a

constant,

BG-KL(m,C)
c.
=
∑
i

logCii−
1

2ν2

[
‖C‖2 + ‖m‖2

]
+

1

ν2
µTm+

∑
n

〈log φ(mn + zsn)〉N (z|0,1) ,

where sn = ‖CEThn‖. One may reduce the computational burden by decomposing E into two subma-

trices such that E = [E1,E2] where E1 ∈ RD×K and Ew ∈ RD×L for L = (D −K). Constraining C

such that C = blkdiag (C1, cIL×L), with C1 a K ×K Cholesky matrix we have that

s2
n = ‖C1E

T
1hn‖2 + c2(‖hn‖2 − ‖ET

1hn‖2),

meaning that only the K subspace vectors in E1 are needed to compute
{
s2
n

}N
n=1

.

Since {‖hn‖}Nn=1 need to only be computed once the complexity of bound and gradient computa-

tions reduces to scaling in K not D. Further savings can be made if we use banded subspace Cholesky

matrices: for C1 having bandwidthB each bound evaluation and associated gradient computation scales

O (NBK).

The success of this factorisation depends on how well E1 captures the leading directions of posterior

variance. One simple approach to select E1 is to use the leading principal components of the ‘dataset’
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H. Another option is to iterate between optimising the bound with respect to {m,C1, c} and E1. We

consider two approaches for optimisation with respect to E1. The first utilises the form for the optimal

G-KL covariance, equation (4.3.2). By substituting in the projected mean and variance terms mn and

s2
n into equation (4.3.2) we can set E1 to be a rank K approximation to this S. The best rank K

approximation is given by evaluating the smallest K eigenvectors of Σ−1 + HΓHT. For very large

sparse problems we can approximate this using the iterative Lanczos methods described by Seeger and

Nickisch [2010]. For smaller non-sparse problems more accurate approximations are available. The

second approach is to optimise the G-KL bound directly with respect to E1 under the constraint that the

columns of E1 are orthonormal. One route to achieving this is to use a projected gradient ascent method.

In Appendix B.1 we provide equations for each term of the G-KL bound and its gradient for each

of the covariance parameterisations considered above.

4.4 Comparing Gaussian approximate inference procedures
Due to their favourable computational and analytical properties multivariate Gaussian densities are used

by many deterministic approximate inference routines. As discussed in Chapter 3, for latent linear

models three popular, deterministic, Gaussian, approximate inference techniques are local variational

bounding methods, Laplace approximations and Gaussian expectation propagation. In this section we

briefly review and compare the G-KL procedure, as proposed in this chapter, to these other deterministic

Gaussian approximate inference methods.

Of the three Gaussian approximate inference methods listed above only one, local variational

bounding, provides a lower-bound to the normalisation constant Z. Local variational bounding (LVB)

methods were introduced in Section 3.8. In Section 4.4.1 we develop on this presentation and show that

the G-KL lower-bound dominates the local lower-bound on logZ.

In Section 4.4.2 we discuss and compare the applicability and computational scaling properties of

each deterministic Gaussian approximate inference method presented in Chapter 3 to the G-KL proce-

dure as presented in this chapter.

4.4.1 Gaussian lower-bounds

An attractive property of G-KL approximate inference is that it provides a strict lower-bound on logZ.

Lower-bounding procedures are particularly useful for a number of theoretical and practical reasons.

The primary theoretical advantage is that it provides concrete exact knowledge about Z and thus also the

target density p(w). Thus the tighter the lower-bound on logZ is the more informative it is. Practically,

optimising a lower-bound is often a more numerically stable task than the criteria provided by other

deterministic approximate inference methods.

Another well studied route to obtaining a lower-bound for latent linear models are local variational

bounding methods. Local variational bounding (LVB) methods were introduced and discussed in Section

3.8. Whilst both G-KL and LVB methods have been discussed in the literature for some time, little work

has been done to elucidate the relation between them. Below we prove that G-KL provides a tighter

lower-bound on Z than LVB methods.
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BLV B(ξ) = B̃G-KL(mξ,Sξ, ξ)
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Figure 4.3: Schematic of the relation between the G-KL bound, BG-KL (blue), and the weakened KL

bound, B̃KL (red), plotted as a function of the Gaussian moments m and S with ξ fixed. For any

setting of the local site bound parameters ξ we have that BG-KL (m,S) ≥ B̃KL(m,S, ξ). We show

in the text that the local bound, B(ξ), is the maximum of the weakened KL bound, that is that B(ξ) =

maxm,S B̃(m,S, ξ) with mξ,Sξ = argmaxm,SB̃(m,S, ξ) in the figure. The G-KL bound can be

optimised beyond BG-KL (mξ,Sξ) to obtain different, optimal G-KL moments m∗ and S∗ that achieve

a tighter lower-bound on logZ.

Comparing G-KL and local bounds

An important question is which method, LVB or G-KL, gives a tighter lower-bound on logZ. Each

bound derives from a fundamentally different criterion and it is not immediately clear which if either

is superior. The G-KL bound has been noted before, empirically in the case of binary classification

[Nickisch and Rasmussen, 2008] and analytically for the special case of symmetric potentials [Seeger,

2009], to be tighter than the local bound. It is tempting to conclude that such observed superiority of the

G-KL method is to be expected since the G-KL bound has potentially unrestricted covariance S and so a

richer parameterisation. However, many problems have more site potentials φn than Gaussian moment

parameters, that is N > 1
2D(D + 3), and the local bound in such cases has a richer parameterisation

than the G-KL.

We derive a relation between the local and G-KL bounds for {φn}Nn=1 generic super-Gaussian site

potentials. We first substitute the local bound on
∏N
n=1 φn(wThn), in equation (3.8.1), into equation

(4.1.1) to obtain a new bound

BG-KL(m,S) ≥ B̃G-KL(m,S, ξ),



4.4. Comparing Gaussian approximate inference procedures 68

where

2B̃G-KL = −2 〈log q(w)〉 − log det (2πΣ) + 2 log c(ξ)−
〈
(w − µ)

T
Σ−1(w − µ)

〉
−
〈
wTF(ξ)w

〉
+ 2

〈
wTf(ξ)

〉
.

Using equation (3.8.2) this can be written as

B̃G-KL = −〈log q(w)〉 − 1

2
log det (2πΣ) + log c(ξ)− 1

2
µTΣ−1µ− 1

2

〈
wTAw

〉
+
〈
wTb

〉
.

By defining q̃(w) = N
(
w|A−1b,A−1

)
we obtain

B̃G-KL = −KL(q(w)|q̃(w))− 1

2
log det (2πΣ) + log c(ξ)− 1

2
µTΣ−1µ

+
1

2
bTA−1b − 1

2
log det (2πA) .

Since m,S only appear via q(w) in the KL term, the tightest bound is given when m,S are set such that

q(w) = q̃(w). At this setting the KL term in B̃KL is zero and m and S are given by

Sξ =
(
Σ−1 + F(ξ)

)−1
, mξ = Sξ

(
Σ−1µ + f(ξ)

)
, (4.4.1)

and B̃KL (mξ,Sξ, ξ) = B (ξ). To reiterate, mξ and Sξ maximise B̃KL(m,S, ξ) for any fixed setting of

ξ. Since BG-KL(m,S) ≥ B̃KL(m,S, ξ) we have that,

BG-KL(mξ,Sξ) ≥ B̃G-KL(mξ,Sξ, ξ) = BLV B(ξ).

The G-KL bound can be optimised beyond this setting and can achieve an even tighter lower-bound on

logZ,

BG-KL(m∗,S∗) = max
m,S
BG-KL(m,S) ≥ BG-KL(mξ,Sξ).

Thus optimal G-KL bounds are provably tighter than both the local variational bound and the G-KL

bound calculated using the optimal local bound moments mξ and Sξ. A graphical depiction of this

result is presented in Figure 4.3.

The experimental results presented in Chapter 5 show that the improvement in bound values can be

significant. Furthermore, constrained parameterisations of covariance, introduced in Section 4.3, which

are required when D � 1, are also frequently observed to outperform local variational solutions despite

the fact that they are not provably guaranteed to do so.

4.4.2 Complexity and model suitability comparison

In Chapter 3 we considered various techniques to perform deterministic approximate inference in the

latent linear model class, including the G-KL procedure. Below we reconsider the model applicability,

optimisation and scalability properties of the G-KL procedure in light of the contributions made in this

chapter.

G-KL approximate inference requires that each site-projection potential has unbounded support on

R. Unlike Laplace procedures G-KL is applicable for models with non-differentiable site potentials.
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Unlike local variational bounding procedures G-KL does not require the site potentials to be super-

Gaussian. In contrast to the Gaussian expectation propagation (G-EP) approximation, which is known

to suffer from convergence issues when applied to non log-concave target densities, G-KL procedures

optimise a strict lower-bound and convergence is guaranteed when gradient ascent procedures are used.

When {φn}Nn=1 are log-concave G-KL bound optimisation is a concave problem and we are guar-

anteed to converge to the global optimum of the G-KL bound. Local variational bounding methods

have also been shown to be concave problems in this setting [Nickisch and Seeger, 2009]. However,

as we have shown in Section 4.4.1, the optimal G-KL bound to logZ is provably tighter than the local

variational bound.

Exact implementations of G-KL approximate inference require storing and optimising over
1
2D(D + 3) parameters to specify the Gaussian mean and covariance. The Laplace approximation and

mean field bounding methods require storing and optimising over just O (D) parameters. The G-EP

approximation and LVB bounding methods require storing and optimising over O (N) variational pa-

rameters. Thus the G-KL procedure will often requiring storing and optimising over more variational

parameters than these alternative deterministic approximate inference methods. G-KL approximate in-

ference will generally be a more computationally expensive procedure than the MAP and Laplace local

approximate methods. However, compared to the G-EP and LVB non-factorising global approximation

methods, the computations required to evaluate and optimise the G-KL bound compare favourably. An

LVB bound evaluation and parameter update scales O
(
ND2

)
using the efficient implementation pro-

cedures discussed. A full G-EP iteration scales O
(
ND2

)
, where we have assumed for simplicity that

N > D. Similarly, a singe G-KL bound and gradient evaluation scales O
(
ND2

)
. Thus G-KL proce-

dures whilst defining larger optimisation problems require the evaluation of similarly complex compu-

tations. Furthermore, since the G-KL bound is concave for log-concave sites G-KL bound optimisation

should be rapid using approximate second order gradient ascent procedures. The results of the next chap-

ter confirm that G-KL procedures are competitive with regards to speed and scalability of approximate

inference versus these other, non-factorising global Gaussian approximate inference methods.

Importantly, G-KL procedures can be made scalable by using constrained parameterisations of

covariance that do not require making a priori factorisation assumptions on the approximating density

q(w). Scalable covariance decompositions for G-KL inference maintain a strict lower-bound on logZ

whereas approximate local bound optimisers do not. G-EP, being a fixed point procedure, has been

shown to be unstable when using low-rank covariance approximations and appears constrained to scale

O
(
ND2

)
[Seeger and Nickisch, 2011a].

4.5 Summary
In this chapter we have presented several novel theoretical and practical developments concerning the

application of Gaussian Kullback-Leibler (G-KL) approximate inference procedures to the latent linear

model class. G-KL approximate inference is seing a resurgence of interest from the research community

– see for example: Opper and Archambeau [2009], Ormerod and Wand [2012], Honkela et al. [2010],

Graves [2011]. The work presented in this chapter provides further justification for its use.
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G-KL approximate inference’s primary strength over other deterministic Gaussian approximate in-

ference methods is the ease with which it can be applied to new models. All that is required to apply

the G-KL method to a target density in the form of equation (2.3.1) is that each potential has unbounded

support and that univariate Gaussian expectations of the log of the potential, 〈log φ(z)〉N (z|m,s), can be

efficiently computed. For most potentials of interest this is equivalent to requiring that the pointwise

evaluation of the univariate functions {log φn(z)} can be efficiently computed. Notably, implementing

the G-KL procedure for a new potential function φ does not require us to derive its derivatives, lower-

bounds on it, or complicated update equations. Neither does the procedure place restrictive conditions on

the form of the potential functions, for example that it is log-concave, super-Gaussian or differentiable.

Furthermore, since the G-KL method optimises a strict lower-bound G-KL approximate inference is

found to be numerically stable.

A long perceived disadvantage of G-KL approximate inference is the difficulty of optimising the

bound with respect to the Gaussian covariance. Previous authors have advocated optimising the bound

with respect to either the full covariance matrix S or with respect to a particular structured form of

covariance that is defined in Section 4.3.1.1. However, using either of these parameterisations renders

the bound non-concave and requires multiple cubic matrix operations to evaluate the bound and its

derivatives. In this chapter we have shown that using the Cholesky parameterisation of G-KL covariance

both reduces the complexity of single bound/derivative evaluations and results in a concave optimisation

problem for log-concave sites {φn}Nn=1. Furthermore, for larger problems we have provided concave

constrained parameterisations of covariance that make G-KL methods fast and scalable without resorting

to making fully factorised approximations of the target density.

Limited empirical studies have reported that G-KL approximate inference can be one of the most

accurate deterministic, global, Gaussian, approximate inference methods considered here. The most

closely related global Gaussian deterministic approximate inference method is the local variational

bounding procedure since both methods provide a principled lower-bound to the target densities normal-

isation constant. However, as we showed in Section 4.4.1, G-KL procedures are guaranteed to provide a

lower-bound on logZ that is tighter than LVB methods. Furthermore, in log-concave models, since the

G-KL bound is concave, we are guaranteed to find the global optimum of the G-KL bound.

4.6 Future work
As detailed in Section 2.3 we want any deterministic approximate inference routine to be widely applica-

ble, fast and accurate. The work presented in this chapter provided techniques and results that show that

G-KL approximate inference (relative to other Gaussian approximate inference methods when applied to

latent linear models) can be made accurate and fast. In this section, we consider directions of research to

develop the G-KL procedure in terms of its generality, its accuracy or its speed. The generality of G-KL

inference can be improved by developing methods to apply the technique to inference problems beyond

the latent linear model class. The accuracy of G-KL inference can be improved by expanding the class

of variational approximating densities beyond the multivariate Gaussian. The speed and scalability of

G-KL inference can by improved by developing new numerical techniques to optimise the G-KL bound.
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4.6.1 Increasing the generality

Increasing the generality of the G-KL approximate inference procedure refers to increasing the class

of inference problems to which G-KL methods can be successfully and efficiently applied. Below we

consider the problem of extending the G-KL approximation method to perform inference in the bilinear

model class.

Bilinear models

The latent linear model class describes a conditional relation between the variables we wish to pre-

dict/model y, some fixed vector x, and the latent variables w in the form y = f(wTx) + ε, where f

is some non-linear function and ε some additive noise term. One extension to this model is to consider

bilinear models such that

y = f(uTXv) + ε, (4.6.1)

where we now have two sets of parameters/latent variables u ∈ RDu and v ∈ RDv , where the ma-

trix X ∈ RDu×Dv is fixed. Examples of this model class include popular matrix factorisation models

[Seeger and Bouchard, 2012, Salakhutdinov and Mnih, 2008], models to disambiguate style and content

[Tenenbaum and Freeman, 2000] and Bayesian factor analysis models where we want to approximate

the full posterior on both the factor loading vectors and the latent variables [Tipping and Bishop, 1999].

Often, the MAP approximation is used in this model class since the problem is analytically intractable

and the datasets tend to be large. Since the MAP approximation can be quite inaccurate, see the discus-

sion presented in Section 3.3, it is an important avenue of research to develop more accurate yet scalable

inference procedures in this model class.

To perform G-KL approximate inference in this model class we would need to optimise the KL

divergence KL(q(u,v)|p(u,v|y)) with respect to q(u,v) a multivariate Gaussian. Re-arranging the KL

we can obtain the familiar lower-bound on the normalisation constant of p(u,v|y) such that

log p(y) ≥ H[q(u,v)] + 〈log p(u)〉q(u) + 〈log p(v)〉q(v) +
〈

log φ(uTXv)
〉
q(u,v)

, (4.6.2)

where we have assumed that the prior/latent densities on u,v are independent. For Gaussian q(u,v),

the difficulty in evaluating and optimising equation (4.6.2) with respect to q(u,v) is due to the energy

term
〈
log φ(uTXv)

〉
. Constraining the Gaussian approximation to factorise so that q(u,v) = q(u)q(v),

we see that the energy will not simplify to a univariate Gaussian expectation since z := uTXv is not

Gaussian distributed. However, we note that if φ(·) is a exponentiated quadratic function its expectation

will admit a simply analytic form [Lim and Teh, 2007].

Therefore, one direction for future work would be to try to construct methods that provide efficient,

possibly approximate, evaluation of the energy term in equation (4.6.2). Possible routes to achieve this

include: approximately computing the expectation and its derivatives using sampling methods improving

on the techniques described in Graves [2011], Blei et al. [2012], bounding the non-Gaussian potential

φ by a function whose expectation can be computed making a more accurate approximation than is

proposed by Seeger and Bouchard [2012], Khan et al. [2010], or by developing numerical techniques



4.6. Future work 72

to compute the density of z := uTXv exactly – for example by adapting the methods considered in

Chapter 6.

4.6.2 Increasing the speed

In this section we consider two possible methods that could increase the speed of convergence for G-KL

bound optimisation. First, we consider a method that could possibly increase the speed of convergence

in moderately sized models. Second, we consider a method to possibly obtain distributed or parallel

optimisation of the G-KL objective suitable for much larger problems than previously considered.

Convergent fixed points for S

Honkela et al. [2010] proposed a method to use the local curvature of the KL divergence as a natural

gradient pre-conditioner for non-linear conjugate gradient optimisation of the G-KL objective with re-

spect to the Gaussian mean m. The authors reported that this procedure provided faster convergence in

a Bayesian Gaussian mixture model and a Bayesian non-linear state space model compared with G-KL

bound optimisation using non-linear conjugate gradients. Our own experiments suggest that these exper-

iments do not offer considerable improvements over standard conjugate gradients methods, LBFGs or

Hessian free Newton methods for log-concave latent linear models. Presumably this is because the nat-

ural gradient preconditioner does not provide significant additional information about the KL objective

surface for the simpler, strongly-concave lower-bound surfaces we consider in the latent linear model

class. Honkela et al. [2010] optimise S using the recursion defined in equation (4.3.1) which we have

observed to occasionally result in oscillatory, non-convergent updates.

One direction for future work is to try to develop a fixed point iterative procedure for S by augment-

ing the recursion in equation (4.3.1). Possibly, convergence could be imposed by damping the update.

One possible damping procedure could be to use Γnew := θΓold + (1 − θ)Γ with θ ∈ (0, 1) and Γ

defined as in equation (4.3.2). Another avenue of research would be to derive conditions under which

the fixed point is guaranteed to increase the bound. Using these conditions one could possibly construct

an optimisation procedure that switches between gradient ascent updates and the fixed point updates.

Such a procedure is limited to problems of moderate dimensionality since the fixed point update requires

a matrix inversion.

Dual decomposition for distributed optimisation

Modern applications of machine learning and statistics are posing ever larger inference problems. For

example, Graepel et al. [2010] develop a Bayesian logistic regression model to drive advertisement click

prediction on the web. In this problem the feature set size D and the number of training instances

N can be of the order of 109. Posterior inference has benefits over point estimation techniques such

as the MAP approximations in this problem domain since the posterior can be used to drive on-line

exploration and active learning approaches, using for example Thompson sampling methods [Chapelle

and Li, 2011]. Typically, inference in problems of this dimensionality is facilitated by placing strong

factorisation constraints on the approximating density. However, it may be beneficial to approximate

posterior covariance in such problems since this would allow us to derive more accurate (and hence less
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costly) exploration strategies. One approach to scaling the G-KL procedure to problems of this size

could be to develop distributed optimisation methods.

Following the notation set out earlier in this chapter, the G-KL lower-bound for a model with a

spherical zero mean Gaussian potential, N
(
w|0, σ2ID

)
, and N non-Gaussian site potentials can be

expressed as

BG-KL(m,C)
c.
=

D∑
i=1

logCii −
1

2σ2

D∑
i=1

m2
i −

1

2σ2

D∑
i,j≥i

C2
ij +

N∑
n=1

〈
log φn(wThn)

〉
, (4.6.3)

where we have omitted constants with respect to the variational parameters m,C. As we can see in

equation (4.6.3), excluding the site potential’s contribution, the G-KL bound is separable with respect

to the variational parameters m = {mi}Di=1 and C = {Cij}i,j≥i. The complication in developing a

parallel optimisation technique for the objective described in equation (4.6.3) is due to the site poten-

tial energy terms
〈
log φn(wThn)

〉
. However, as we have shown previously, these terms, alongside the

separable entropy and Gaussian potential contribution’s to the bound, are concave. Efficient distributed

algorithms, for example dual decomposition techniques and the alternating direction method of multi-

pliers (ADMM), have been developed for optimising objectives of this form – see Boyd et al. [2011] for

a comprehensive review of such techniques. Thus one possibly fruitful direction for future work would

be to adapt methods such as ADMM, which are typically used for MAP estimation problems, to drive

distributed optimisation of the G-KL bound. Indeed, recently Khan et al. [2013] have proposed a dual

formulation of the G-KL objective that affords a more scalable parallel optimisation procedure.

4.6.3 Increasing the accuracy

G-KL approximate inference is feasible since for Gaussian q(w) both the entropy and the energy terms

of the KL bound can be efficiently computed. For the latent linear model class, the energy terms can

be efficiently computed for Gaussian q(w) since the D-dimensional expectation
〈
log φ(wTh)

〉
q(w)

can

be simplified to the univariate expectation 〈log φ(y)〉q(y) where q(y) is a known, and cheap to evaluate,

density – specifically a univariate Gaussian. A natural question to ask then, is for what other density

classes q(w) can we express
〈
log φ(wTh)

〉
q(w)

= 〈log φ(y)〉q(y) where q(y) can be efficiently com-

puted? In the next chapter we address this question quite generally by performing marginal inferences

in the Fourier domain. Here we consider another density class for which this property might also hold.

Elliptically contoured variational densities

One possible route to generalising the class of approximating densities q(w) is to consider elliptically

contoured multivariate densities constructed as a univariate scale mixture of a multivariate Gaussian.

Following Eltoft et al. [2006a,b], we define a univariate Gaussian scale mixture as

q(w|m,S,ρ) =

∫
N (w|m, αS) p(α|ρ)dα, (4.6.4)

where α is a positive, real-valued random variable with density function p(α|ρ). One candidate for

p(α|ρ) is the Gamma density, in which case equation (4.6.4) is known as the multivariate K distribution.

Since the variance scale weighting is univariate, equation (4.6.4) describes a family of densities with

elliptic contours.
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KL approximate inference could then be generalised beyond simple Gaussian approximations pro-

vided the KL divergence KL(q(w|m,S,ρ)|p(w)) can be evaluated and optimised with respect to the

variational parameters {m,S,ρ}. This would require that we can develop simple efficient routines to

compute the energy, the entropy and both of their derivatives for elliptically contoured q(w|m,S,ρ) as

defined in equation (4.6.4).

A single energy term, for q(w) as defined in equation (4.6.4), can be expressed as〈
log φ(wTh)

〉
q(w)

=

∫ ∫
N (w|m, αS) p(α|ρ)ψ(wTh)dwdα

=

∫ ∫
N (z|0, α) p(α|ρ)dαψ(m+ zs)dz

=

∫
p(z|ρ)ψ(m+ zs)dz,

where m := mTh, s2 := hTSh and ψ := log φ. Thus the multivariate expectation
〈
ψ(wTh)

〉
q(w)

can

be expressed as a univariate expectation with respect to the marginal p(z) :=
∫
N (z|0, α) p(α|ρ)dα.

For these energy terms to be efficiently computable we need to construct a representation of p(α|ρ) such

that the density p(z|ρ) can also be efficiently computed.

The entropy for the Gaussian scale mixture can be decomposed asH[q(w|m,S,ρ)] = log det (S)+

H[q(v|ρ)], where H[q(v|ρ)] is the entropy of the ‘standard normal’ scale mixture q(v|ρ) :=∫
N (v|0, αI) p(α|ρ)dα. Therefore, we additionally require a method to efficiently compute, or bound,

H[q(v|ρ)] to make this procedure practical.
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Chapter 5

Gaussian KL approximate inference :

experiments

In this chapter we seek to validate the analytical results presented previously by measuring and compar-

ing the numerical performance of the Gaussian KL approximate inference method to other determinis-

tic Gaussian approximate inference routines. Results are presented for three popular machine learning

models. In Section 5.1 we compare deterministic Gaussian approximate inference methods in robust

Gaussian process regression models. In Section 5.2 we asses the performance of the constrained pa-

rameterisations of G-KL covariance that were presented in Section 4.3.1 to perform inference in large

scale Bayesian logistic regression models. In light of this, in Section 5.3 we compare the performance

of constrained covariance G-KL methods and fast approximate local variational bounding methods in

three, large-scale, real world, Bayesian logistic regression models. Finally, in Section 5.4 we compare

Gaussian approximate inference methods to drive sequential experimental design procedures in Bayesian

sparse linear models.

5.1 Robust Gaussian process regression
Gaussian Processes (GP) are a popular non-parametric approach to supervised learning problems, see

Rasmussen and Williams [2006] for a thorough introduction, for which inference falls into the general

latent linear model form described in Section 2.3. Excluding limited special cases, computing Z and

evaluating the posterior density, necessary to make predictions and set hyperparameters, is analytically

intractable.

The supervised learning model for fully observed covariates X ∈ RN×D and corresponding de-

pendent variables y ∈ RN is specified by the GP prior on the latent function values w ∼ N (µ,Σ) and

the likelihood p(y|w). The GP prior moments are constructed by the GP covariance and mean functions

which take the covariates X and a vector of hyperparameters θ as arguments. The posterior on the latent

function values, w, is given by

p(w|y,X,θ) =
1

Z
p(y|w)N (w|µ,Σ) . (5.1.1)

The likelihood factorises over data instances, p(y|w) =
∏N
n=1 φ(wn), thus the GP posterior is of the

form of equation (2.3.1).
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Figure 5.1: Gaussian process regression with a squared exponential covariance function and (a) a Gaus-

sian or (b) a Student’s t likelihood. Covariance hyperparameters are optimised for a training dataset with

outliers. Latent function posterior mean (solid) and ±1 standard deviation (dashed) values are plotted in

blue (a) and red (b). The data generating function is plotted in black. The Student’s t model makes more

conservative interpolated predictions whilst the Gaussian model appears to over-fit the data.

GP regression

For GP regression models the likelihood is most commonly Gaussian distributed, equivalent to assuming

zero mean additive Gaussian noise. This assumption leads to analytically tractable, indeed Gaussian,

forms for the posterior. However, Gaussian additive noise is a strong assumption to make, and is often

not corroborated by real world data. Gaussian distributions have thin tales – the density function rapidly

tends to zero for values far from the mean – see Figure 2.6. Outliers in the training set then do not have

to be too extreme to negatively affect test set predictive accuracy. This effect can be especially severe

for GP models that have the flexibility to incorporate training set outliers to areas of high likelihood –

essentially over-fitting the data.

An example of GP regression applied to a dataset with outliers is presented in figure 5.1(a). In

this figure a GP prior with squared exponential covariance function coupled with a Gaussian likelihood

over-fits the training data and the resulting predicted values differ significantly from the underlying data

generating function.

One approach to prevent over-fitting is to use a likelihood that is robust to outliers. Heavy tailed

likelihood densities are robust to outliers in that they do not penalise too heavily observations far from

the latent function mean. Two distributions are often used in this context: the Laplace otherwise termed

the double exponential, and the Student’s t. The Laplace probability density function can be expressed

as

p(y|µ, τ) =
1

2τ
e−|y−µ|/τ ,

where τ controls the variance of the random variable x with var(y) = 2τ2. The Student’s t probability
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density function can be written as

p(y|µ, ν, σ2) =
Γ
(

1
2 (ν + 1)

)
Γ
(

1
2ν
)√

πνσ2

(
1 +

(y − µ)
2

νσ2

)− ν+1
2

where ν ∈ R+ is the degrees of freedom parameter, σ ∈ R+ the scale parameter, and var(y) = σ2ν/(ν−

2) for ν > 2. As the degrees of freedom parameter becomes increasingly large the Student’s t distribution

converges to the Gaussian distribution. See Figure 2.6 for a comparison of the Student’s t, Laplace and

Gaussian density functions.

GP models with outlier robust likelihoods such as the Laplace or the Student’s t can yield significant

improvements in test set accuracy versus Gaussian likelihood models [Vanhatalo et al., 2009, Jylanki

et al., 2011, Opper and Archambeau, 2009]. In figure 5.1(b) we model the same training data as in figure

5.1(a) but with a heavy tailed Student’s t likelihood, the resulting predictive values are more conservative

and lie closer to the true data generating function than for the Gaussian likelihood model.

Approximate inference

Whilst Laplace and Student’s t likelihoods can successfully ‘robustify’ GP regression models to outliers

they also render inference analytically intractable and approximate methods are required. In this sec-

tion we compare G-KL approximate inference to other deterministic Gaussian approximate inference

methods, namely: the Laplace approximation (Lap), local variational bounding (LVB) and Gaussian

expectation propagation (G-EP).

Each approximate inference method cannot be applied to each likelihood model. Since the Laplace

likelihood is not differentiable everywhere Laplace approximate inference is not applicable. Since the

Student’s t likelihood is not log-concave, indeed the posterior can be multi-modal, vanilla G-EP im-

plementations are numerically unstable [Seeger et al., 2007]. Recent work [Jylanki et al., 2011] has

alleviated some of G-EP’s convergence issues for Student’s t GP regression, however, these extensions

are beyond the scope of this work.

Local variational bounding and G-KL procedures are applied to both likelihood models. For local

variational bounding, both the Laplace and Student’s t densities are super-Gaussian and thus tight expo-

nentiated quadratic lower-bounds exist – see Seeger and Nickisch [2010] for the precise forms that are

employed in these experiments. Laplace, local variational bounding and G-EP results are obtained using

the GPML toolbox [Rasmussen and Nickisch, 2010].1 G-KL approximate inference is straightforward,

for the G-KL approximate posterior q(w) = N (w|m,S) the likelihood’s contribution to the bound is

〈log p(y|w)〉q(w) =
∑
n

〈
log φn(mn + z

√
Snn)

〉
N (z|0,1)

. (5.1.2)

Thus the equation above is of the standard site-projection potential form but with hn = en the unit norm

basis vector and φn the likelihood of the nth data point. The expectations for the Laplace likelihood site

potentials have simple analytic forms – see Appendix A.5.2. The expectations for the Student’s t site

potentials are evaluated numerically. All other terms in the G-KL bound have simple analytic forms and

1The GPML toolbox can be downloaded from www.gaussianprocess.org.

www.gaussianprocess.org
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Gauss Student’s t Laplace

Exact G-KL LVB Lap G-KL LVB G-EP

C. ST

LML −15±2 −75±2 −240±21 −7±1 8±5 2±2 −−±−−

MSE 1.15±0.2 1.6±0.2 23.8±4 2.2±0.4 1.3±1.1 1.2±1.0 −−±−−

TLP 0.79±0.10 0.73±0.05 −0.65±0.06 0.41±0.03 0.97±0.06 0.91±0.05 −−±−−

Friedman

LML 70±6 −159±7 −578±34 −97±4 −69±6 −73±8 −−±−−

MSE 10±3 5±1 17±2 13±1 5±1 3±1 −−±−−

TLP −0.26±0.09 0.12±0.09 −0.54±0.06 −0.65±0.06 0.07±0.09 0.25±0.11 −−±−−

Neal

LML 39±10 −171±14 −962±1 −21±15 −26±9 −27±8 −14±7

MSE 1.7±0.6 2.9±1.1 4.4±1.3 0.9±0.5 0.9±0.4 0.9±0.4 0.9±0.5

TLP 0.22±0.12 0.88±0.03 0.36±0.02 0.67±0.08 0.86±0.04 1.13±0.02 0.91±0.04

Boston

LML 51±3 −133±13 −551±37 −53±3 −60±3 −61±3 −53±4

MSE 26±1 25±2 26±1 23±2 25±2 26±1 22±1

TLP −0.74±0.07 −0.44±0.03 −0.58±0.03 −0.44±0.03 −0.52±0.06 −0.51±0.02 −0.46±0.03

Table 5.1: Gaussian process regression results for different (approximate) inference procedures, like-

lihood models and datasets. First column section: Gaussian likelihood results with exact inference.

Second column section: Student’s t likelihood results with G-KL, local variational bounding (LVB)

and Laplace (Lap.) approximate inference. Third column section: Laplace likelihood results with G-

KL, LVB and Gaussian expectation propagation (G-EP) approximate inference. Each row presents the

(approximate or lower-bound) log marginal likelihood (LML), test set mean squared error (MSE), or

approximate test set log probability (TLP) values obtained by dataset. Table values are the mean and

standard error of the values obtained over the 10 random partitions of the data.

computations that scale≤ O
(
N3
)
. G-KL results are obtained, as for all other results in this paper, using

the vgai Matlab package – see Appendix B.8. For the Laplace likelihood model, which is log-concave,

Hessian free Newton methods were used to optimise the G-KL bound. For the Student’s t likelihood,

which is not log-concave, LBFGS was used to optimise the G-KL bound.

Experimental setup

We consider GP regression with training data D = {(yn,xn)}Nn=1 for covariates xn ∈ RD and depen-

dent variables yn ∈ R. We assume a zero mean Gaussian process prior on the latent function values,

w = [w1, ..., wN ]
T ∼ N (0,Σ). The covariance, Σ, is constructed as the sum of the squared exponential

kernel and the independent white noise kernel,

Σmn = k(xm,xn,θ) = σ2
see
−

∑
d(xnd−xmd)2/l2d + γ2δ(n,m), (5.1.3)

where xnd refers to the dth element of the nth covariate, σ2
se is the ‘signal variance’ hyperparameter, ld

the squared exponential ‘length scale’ hyperparameter, and γ the independent white noise hyperparam-

eter (above δ(x, y) is the Kronecker delta such that δ(n,m) = 1 if n = m and 0 otherwise). Covariance

hyperparameters are collected in the vector θ.

We follow the evidence maximisation or maximum likelihood two (ML-II) procedure to estimate

the covariance hyperparameters, that is we set covariance hyperparameters to maximise p(y|X,θ). Since

p(y|X,θ) cannot be evaluated exactly we use the approximated values offered by each of the approxi-

mate inference methods. Covariance hyperparameters are optimised numerically using nonlinear conju-
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gate gradients. The marginal likelihood, p(y|X,θ), is not unimodal and we are liable to converge to a

local optima regardless of which inference method is used. All methods were initialised with the same

hyperparameter setting. Hyperparameter derivatives for the G-KL bound are presented in Appendix

B.6.2.

Likelihood hyperparameters were selected to maximise test set log probability scores on a held

out validation dataset. Simultaneous likelihood and covariance ML-II hyperparameter optimisation for

the Student’s t and Laplace likelihoods yielded poor test set performance regardless of the approximate

inference method used (as has been previously reported for Student’s t likelihoods in other experiments

[Vanhatalo et al., 2009, Jylanki et al., 2011]). For the Student’s t likelihood model the d.o.f. parameter

was fixed with ν = 3.

Results were obtained for the four approximate inference procedures on the four datasets using both

the Laplace and the Student’s t likelihoods. Two UCI datasets were used:2 Boston housing and Concrete

Slump Test. And two synthetic datasets: Friedman3 and Neal.4 Each experiment was repeated over 10

randomly assigned training, validation and test set partitions. The size of each dataset is as follows:

Concrete Slump Test D = 9, Ntrn = 50, Nval = 25, Ntst = 28; Boston D = 13, Ntrn = 100,

Nval = 100, Ntst = 306; Friedman D = 10, Ntrn = 100, Nval = 100, Ntst = 100; Neal D = 1,

Ntrn = 100, Nval = 100, Ntst = 100. Each partition of the data was normalised using the mean and

standard deviation statistics of the training data.

To asses the validity of the Student’s t and Laplace likelihoods we also implemented GP regression

with a Gaussian likelihood and exact inference.

Results

Results are presented in Table 5.1. Approximate Log Marginal Likelihood (LML), test set Mean Squared

Error (MSE) and approximate Test set Log Probability (TLP) mean and standard error values obtained

over the 10 partitions of the data are provided. It is important to stress that the TLP values are approx-

imate values for all methods, obtained by summing the approximate log probability of each test point

using the surrogate score presented in Appendix B.6.1. For G-KL and LVB procedures the TLP values

are not lower-bounds.

The results confirm the utility of heavy tailed likelihoods for GP regression models. Test set pre-

dictive accuracy scores are higher with robust likelihoods and approximate inference methods than with

a Gaussian likelihood and exact inference. This is displayed in the lower MSE error and higher TLP

scores of the best performing robust likelihood results than for the Gaussian likelihood. Exact inference

for the Gaussian likelihood model achieves the greatest LML in all problems except the Concrete Slump

Test data. That exact inference with a Gaussian likelihood achieves the strongest LML and weak test set

scores implies the ML-II procedure is over-fitting the training data with this likelihood model.

For the Student’s t likelihood the performance of each approximate inference method varied sig-

nificantly. LVB results were uniformly the weakest. We conjecture this is an artifact of the squared

2UCI datasets can be downloaded from archive.ics.uci.edu/ml/datasets/.
3The Friedman dataset is constructed as described in Kuss [2006] Section 5.6.1. and Friedman [1991].
4The Neal dataset is constructed as described in Neal [1997] Section 7.

archive.ics.uci.edu/ml/datasets/
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exponential local site bounds employed by the gpml toolbox poorly capturing the non log-concave

potential functions mass. For Student’s t potentials improved LVB performance has been reported by

employing bounds that are composed of two terms on disjoint partitions of the domain [Seeger and Nick-

isch, 2011b], validating their efficacy in the context of Student’s t GP regression models is reserved for

future work. For the test set metrics G-KL approximate inference achieves the strongest performance.

Broadly, the Laplace likelihood achieved the best results on all datasets. G-EP frequently did not

converge for both the Friedman and Concrete Slump Test problems and so results are not presented. Un-

like the Student’s t likelihood model, results are more consistent across approximate inference methods.

G-KL achieves a narrow but consistently superior LML value to LVB. Approximate test set predictive

values are roughly the same for all inference methods with LVB achieving a small advantage.

We reiterate that standard G-EP approximate inference, as implemented in the GPML toolbox, was

used to obtain these results. The authors did not anticipate convergence issues for G-EP in the GP

models considered - the Laplace likelihood model’s log posterior is concave and the system has full

rank. Power G-EP, as proposed in Minka [2004], has previously been shown to have robust convergence

for under determined linear models with Laplace potentials [Seeger, 2008]. Similarly, we expect that

power G-EP would also exhibit robust convergence in GP models with Laplace likelihoods. Verifying

this experimentally and assessing the performance of power G-EP approximate inference in noise robust

GP regression models is left for future work.

The G-KL LML uniformly dominates the LVB values. This is theoretically guaranteed for a model

with fixed hyperparameters and log-concave site potentials, see Section 4.4.1 and Section 4.2.2. How-

ever, the G-KL bound is seen to dominate the local bound even when these conditions are not satisfied.

The results show that both G-KL bound optimisation and G-KL hyperparameter optimisation is numer-

ically stable. G-KL approximate inference appears more robust than G-EP and LVB – G-KL hyperpa-

rameter optimisation always converged, often to a better local optima.

Summary

The results confirm that the G-KL procedure as a sensible route for approximate inference in GP models

with non-conjugate likelihoods. The G-KL procedure is generally applicable in this setting and easy

to implement for new likelihood models. Indeed, all that is required to implement G-KL approximate

inference for a GP regression model is the pointwise evaluation of the univariate likelihood function

p(yn|wn). Furthermore, we have seen that G-KL optimisation is numerically robust, in all the experi-

ments G-KL converged and achieved strong performance.

5.2 Bayesian logistic regression : covariance parameterisation
In this section we examine the relative performance, in terms of speed and accuracy of inference, of each

of the constrained G-KL covariance decompositions presented in Section 4.3.1.3. As a bench mark, we

also compare G-KL approximate inference results to scalable approximate LVB methods with marginal

variances approximated using iterative Lanczos methods [Seeger and Nickisch, 2011b]. Our aim is

not make a comparison of deterministic approximate inference methods for Bayesian logistic regres-
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Ntrn = 250 Ntrn = 500 Ntrn = 2500

K = 25 K = 50 K = 25 K = 50 K = 25 K = 50

Time
G-KL

Chev 0.49±0.02 0.69±0.08 1.25±0.04 1.36±0.04 16.50±0.89 17.31±0.82

Band 0.96±0.02 1.37±0.02 2.25±0.10 4.06±0.29 24.31±0.96 29.60±1.18

Sub 0.73±0.01 0.93±0.03 1.41±0.03 1.93±0.04 11.89±0.54 15.26±1.02

FA 2.05±0.26 2.29±0.21 2.92±0.17 3.47±0.17 20.06±1.51 22.69±2.70

LVB 0.37±0.00 0.47±0.01 0.46±0.02 0.52±0.00 1.56±0.03 1.85±0.01

B̃
G-KL

Chev −1.19±0.01 −1.15±0.01 −0.93±0.01 −0.91±0.01 −0.42±0.00 −0.41±0.00

Band −1.15±0.01 −1.09±0.01 −0.92±0.01 −0.88±0.01 −0.42±0.00 −0.41±0.00

Sub −3.08±0.02 −2.20±0.01 −1.90±0.01 −1.46±0.01 −0.62±0.00 −0.54±0.00

FA −1.19±0.01 −1.17±0.01 −0.93±0.01 −0.91±0.01 −0.41±0.00 −0.40±0.00

LVB –±– –±– –±– –±– –±– –±–

‖w −wtr‖2/D
G-KL

Chev 0.88±0.00 0.87±0.00 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

Band 0.87±0.00 0.87±0.00 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

Sub 0.88±0.00 0.87±0.01 0.87±0.00 0.86±0.00 0.71±0.00 0.70±0.00

FA 0.88±0.00 0.87±0.01 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

LVB 0.90±0.00 0.89±0.00 0.89±0.00 0.88±0.00 0.72±0.00 0.72±0.00

log p(y∗|X∗)/Ntst
G-KL

Chev −0.58±0.01 −0.58±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Band −0.58±0.01 −0.57±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Sub −0.72±0.02 −0.65±0.02 −0.63±0.01 −0.59±0.01 −0.20±0.00 −0.20±0.00

FA −0.58±0.01 −0.58±0.01 −0.51±0.01 −0.50±0.01 −0.18±0.00 −0.18±0.00

LVB −0.75±0.02 −0.77±0.02 −0.63±0.01 −0.64±0.01 −0.20±0.00 −0.20±0.00

Table 5.2: Synthetic Bayesian logistic regression results for a model with unit variance Gaussian

prior w ∼ N (0, I) with dim(w) = 500, likelihood p(y|w,X) =
∏Ntrn
n=1 σ(ynwTxn), class labels

yn ∈ {+1,−1} and Ntst = 5000 test points. G-KL results obtained using chevron Cholesky (Chev),

banded Cholesky (Band), subspace Cholesky (Sub) and factor analysis (FA) constrained parameterisa-

tions of covariance. Results presented are the mean and ±1 standard error values obtained over the 10

randomly sampled datasets (±0.00 corresponds to a standard error score less than 0.005). Approximate

local variational bounding (LVB) results are obtained using low-rank factorisations of covariance com-

puted using iterative Lanczos methods. The parameter K denotes the size of the constrained covariance

parameterisation.

sion models but to investigate the time accuracy trade-offs of each of the constrained G-KL covariance

parameterisations.

Given a dataset, D = {(yn,xn)}Nn=1 with class labels yn ∈ {−1, 1} and covariates xn ∈ RD,

Bayesian logistic regression models the class conditional distribution using p(y = 1|w,x) = σ
(
wTx

)
,

with σ(x) := 1/(1 + e−x) the logistic sigmoid function and w ∈ RD a vector of parameters. Under a

Gaussian prior, N (w|0,Σ), the posterior is given by

p(w|D) =
1

Z
N (w|0,Σ)

N∏
n=1

σ
(
ynwTxn

)
. (5.2.1)

Where we have used the symmetry property of the logistic sigmoid such that p(y = −1|w,x) = 1 −

p(y = 1|w,x) = σ
(
−wTx

)
. The expression above is of the form of equation (2.3.1) with log-concave

site-projection potentials φn(x) = σ(x) and hn = ynxn.
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Experimental setup

We synthetically generate the datasets. The data generating parameter vector wtr ∈ RD is sampled

from a factorising standard normal wtr ∼ N (0, I). The covariates, {xn}Nn=1, are generated by first

sampling an independent standard normal, then linearly transforming these vectors to impose correlation

between some of the dimensions, and finally the data is renormalised so that each dimension has unit

variance. The covariate linear transformation matrix a sparse square matrix generated as the sum of the

identity matrix and a sparse matrix with one element from each row sampled from a standard normal.

Class labels yn ∈ {1,−1} are sampled from the likelihood p(yn|w,xn) = σ(ynwTxn). The inferential

model’s prior and likelihood distributions are set to match the data generating process.

Results are obtained for a range of dataset dimensions: D = 250, 500, 1000 and N = 1
2D,D, 5D.

We also vary the size of the constrained covariance parameterisations, which is reported as K in the

result tables. For chevron Cholesky K refers to the number of non-diagonal rows of C. For subspace

Cholesky K is the dimensionality of the subspace. For banded Cholesky K refers to the band width

of the parameterisation. For the factor analysis (FA) parameterisation K refers to the number of factor

loading vectors. For local variational bounding (LVB) approximate inference K refers to the number of

Lanczos vectors used to update the variational parameters. The parameter K is varied as a function of

the parameter vector dimensionality with K = 0.05×D and K = 0.1×D.

Since the G-KL bound is strongly concave we performed G-KL bound optimisation using Hessian

free Newton methods for all the Cholesky parameterised covariance experiments. G-KL bound optimi-

sation was terminated when the largest absolute value of the gradient vector was less than 10−3. For

subspace Cholesky we iterated between optimising the subspace parameters {m,C, c} and updating the

subspace basis vectors E each five times. The subspace vectors were updated using the fixed point iter-

ation with the Lanczos approximation (see Appendix B.2.3 for details). For the FA parameterisation the

G-KL bound is not concave so we use LBFGS to perform gradient ascent. All other minFunc options

were set to default values.

LVB approximate inference is achieved using the glm-ie 1.4 package [Nickisch, 2012]. LVB

inner loop optimisation used nonlinear conjugate gradients with at most 50 iterations. The maximum

number of LVB outer loop iterations was set to 10. All other LVB glm-ie optimisation settings were

set to default values. Results for these experiments were obtained using Matlab 2011a on a Intel E5450

3Ghz machine with 8 cores and 64GB of RAM.

Results

Results forD = 500 are presented in Table 5.2. For reasons of space, results forD = 250 andD = 1000

are presented at the end of this chapter in Table 5.4 and Table 5.5. The tables present average and standard

error scores obtained from 10 synthetically generated datasets.

The average convergence time and standard errors of each of the methods is presented in the first

row section of the result tables. In the smaller problems considered, the best G-KL times were achieved

by the chevron Cholesky covariance followed by the banded, the subspace and the FA parameterisations

in that order.
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The recorded banded Cholesky convergence times are seen to scale super-linearly with K. This

is an implementational artefact. Whilst bound/gradient computations for chevron and banded parame-

terisations both scale O (NDK) they access and compute different elements of the data and Cholesky

matrices. The chevron gradients can be computed using standard matrix multiplications for which Mat-

lab is highly optimised. The banded parameterisation needs to access matrix elements in a manner not

standard to Matlab – this implementational issue, despite a Matlab mex C implementation, could not be

entirely eliminated.

LVB and chevron G-KL achieved broadly similar convergence times for the N ≤ D and D ≤ 500

experiments with LVB faster in the largerD experiments. LVB is significantly faster than G-KL methods

for the N = 5×D experiments, possibly this is a consequence of the double-loop structure of the LVB

implementation. Whilst the subspace G-KL method is significantly slower in the smaller problems when

D = 1000 it is the fastest G-KL method, beating LVB in problems where N ≤ D.

In the result tables, the bound values are normalised by the size of the training set, i.e. B̃ = B/Ntrn,

to make comparisons across models easier. As the training set size increases the normalised bound value

increases, presumably reflecting the fact that the posterior tends to a Gaussian in the limit of large data.

Furthermore, the difference in bound values between the parameterisations become smaller as the size

of the training set increases.

The G-KL banded covariance parameterisation achieves the strongest bound value with the chevron

and factor analysis parameterisations a close second place. The subspace bound values are comparatively

poor. This is not unexpected since the subspace parameterisation has a single parameter (denoted c in

Section 4.3.1.3) that specifies the variance in all directions orthogonal to the subspace vectors E. It is

known that the density q that minimises KL(q|p) tends to seek out the modes of p and avoid those regions

of parameter space where p is close to zero. Therefore the parameter c will tend to the smallest value of

the variance of p in the directions orthogonal to the subspace vectors, the resulting G-KL bound value

will therefore be greatly underestimated. The approximate LVB method does not provide a lower-bound

when marginal variances are approximated using low-rank methods and therefore values are not reported

in the result tables.

Since these results are obtained from datasets sampled from densities with known parameters we

can directly asses the accuracy of the posterior parameter estimate against the ground truth. The posterior

mean minimises the expected loss ‖wtr − w‖2. Thus, in the third row section of the results table, we

report the average error ‖wtr − m‖2 where m is the mean of the Gaussian posterior approximation

q(w) = N (m,S). To make comparisons easier, the `2 errors are normalised by the dimensionality

of the respective models D. The results show that the G-KL mean is broadly invariant to the G-KL

covariance parameterisations used. LVB results are noticeably poorer than the G-KL methods.

Approximate test set log predictive probabilities are presented in the fourth row section of the

result tables. This metric is arguably the best suited to measure the global accuracy of the poste-

rior approximations since it is an expectation over the support of the approximate posterior [MacKay

and Oldfield, 1995]. The values reported in the table are approximated using log p(y∗|X∗) ≈
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n log

〈
p(y∗nwTx∗n)

〉
q(w)

. The values presented are normalised by the size of the test set where

Ntst = 10 × D in all experiments. The results show that chevron, banded and FA parameterisations

achieve the best, and broadly similar, performance. Test set predictive accuracy increases for all meth-

ods as a function of the training set size. Subspace G-KL and approximate LVB achieve broadly similar

and noticeably weaker performance than the other methods.

Summary

The results support the use of the constrained Cholesky covariance parameterisations to drive scalable

G-KL approximate inference procedures. Whilst neither the banded nor chevron Cholesky parameterisa-

tions are invariant to permutations of the index set they both achieved the strongest bound values and test

set performance. Unfortunately, due to implementational issues, the banded Cholesky parameterisation

gradients are slow to compute resulting in slower recorded convergence times. The non-concavity of the

factor analysis parameterised covariance resulted in slower recorded convergence times than the concave

models. Whilst the subspace G-KL parameterisation had poorer performance in the smaller problems it

broadly matched or outperformed the approximate LVB method in the largest problems.

5.3 Bayesian logistic regression : larger scale problems
In the previous section we examined the performance of the different constrained parameterisations of

G-KL covariance that we proposed in Section 4.3.1 to make G-KL methods fast and scalable. The results

presented showed that banded Cholesky, chevron Cholesky and subspace Cholesky factorisations were

the generally the most efficient and accurate parameterisations. In this section we apply these constrained

covariance G-KL methods and fast approximate local variational bounding (LVB) methods to three large

scale real world logistic regression problems.

Experimental Setup

We obtained results for three large scale datasets: a9a, realsim and rcv1.5 Training and test datasets

were randomly partitioned such that: a9a D = 123, Ntrn = 16, 000, Ntst = 16, 561 with the number

of non-zero elements in the combined training and test sets (nnz) totalling nnz = 451, 592 ; realsim

D = 20, 958, Ntrn = 36, 000, Ntst = 36, 309 and nnz = 3, 709, 083; rcv1 D = 42, 736, Ntrn =

50, 000, Ntst = 50, 000 and nnz = 7, 349, 450.

Model parameters were, for the purposes of comparison, fixed to the values stated by Nickisch and

Seeger [2009]: τ , a scaling on the likelihood term p(yn|w,xn) = σ(τynwTxn), was set with τ = 1

in the a9a dataset and τ = 3 for realsim and rcv1; the prior covariance was spherical such that

Σ = s2I with s2 = 1.

Approximate LVB results were obtained with the glm-ie Matlab toolbox using low rank Lanczos

factorisations of covariance. The size of the covariance parameterisation is denoted as K in the results

table. For the chevron Cholesky parameterisation K refers to the number of non-diagonal rows in the

Cholesky matrix. In the subspace Cholesky factorisation K refers to the number of subspace vectors

used. For the fast approximate LVB methods K is the number of Lanczos vectors used to approximate

5These datasets can be downloaded from www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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covariance. For the a9a dataset K = 80, for the other two problems K = 750. Approximate LVB

optimisation was obtained using five outer loop iterations after which no systematic increase in the LVB

approximate bound values was observed.

G-KL results were obtained using the vgai toolbox. Three constrained parameterisations of G-

KL covariance were considered: diagonal Cholesky, chevron Cholesky and subspace Cholesky. For the

subspace Cholesky results we used the fixed point procedure described in Appendix B.2.3. The G-KL

bound was optimised using non-linear conjugate gradients. G-KL bound optimisation was terminated

when the largest absolute value of the gradient was < 0.1.

Results

Results are presented in Table 5.3. The LVB bound value for the a9a dataset is calculated by substituting

the optimal approximate local variational Gaussian moments into the G-KL bound. The G-KL bound

evaluated using the local variational moments cannot be computed in the larger datasets since computing

A−1, required to evaluate the G-KL bound, is infeasible. Approximate LVB methods that use low

rank approximations of covariance do not provide a lower-bound to the normalisation constant only an

approximation to it, thus lower-bound values are not reported for the larger problems in Table 5.3.

The approximate LVB method is significantly faster for the small K a9a problem (albeit with

a worse bound) than the G-KL method. In the larger experiments however the results show that G-

KL approximate inference utilising constrained Gaussian covariances can achieve similar convergence

speeds to fast approximate local bound solvers. The experiments considered here are of significantly

larger dimensionality, both in N and D, than the experiments of the previous section. However, both the

LVB and G-KL methods achieve fast convergence, this is a consequence of the sparsity of the datasets,

evidencing that both algorithms have the desirable property of scaling with respect to the number of

non-zero terms in each data vector (the effective dimensionality) and not its raw dimensionality. Test set

accuracies are broadly the same for both approximate inference procedures.

Summary

The results presented here provide further evidence of the utility of the constrained parameterisations

of covariance described in Section 4.3.1. Using constrained parameterisations of covariance, the G-KL

procedure is able to achieve rapid convergence and performance achieving results on a par with state of

the art fast approximate local variational bound approximate inference methods.

5.4 Bayesian sparse linear models
Many problems in machine learning and statistics can be addressed by linear models with sparsity induc-

ing prior distributions. Examples include, feature selection in regression problems [Wipf, 2004], source

separation [Girolami, 2001], denoising or deblurring problems [Fergus et al., 2006], and signal recon-

struction from a set of under-determined observations [Seeger and Nickisch, 2008]. In all of these cases,

the prior results in a posteriori parameter estimates that are biased towards sparse solutions. For feature

selection problems this assumption can be useful if we believe that only a small subset of the features
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a9a realsim rcv1

G-KL

Full

G-KL

Chev

G-KL

Sub

LVB G-KL

Diag

G-KL

Chev

G-KL

Sub

LVB G-KL

Diag

G-KL

Chev

G-KL

Sub

LVB

K − 80 80 80 − 100 750 750 − 50 750 750

BKL(m,S) −5, 374 −5, 375 −5, 379 −5, 383 −5, 564 −5, 551 −5, 723 − −6, 981 −6, 979 −7, 286 −

CPU(s) 85 91 68 5 180 350 575 583 176 424 955 436

Acc. % 15.12 15.10 15.12 15.10 2.86 2.86 2.86 2.87 2.90 2.89 2.94 2.94

Table 5.3: G-KL and approximate local variational bound (LVB) Bayesian binary logistic regression

results for the a9a, realsim and rcv1 datasets. K refers to the size of the covariance approximation:

G-KL chevron Cholesky covariance has K non-diagonal rows; G-KL subspace Cholesky covariance has

aK subspace basis vectors and a diagonal Cholesky subspace matrix; approximate local bounding results

obtained with K Lanczos vectors. G-KL diag refers to a bandwidth one Cholesky parameterisation of

covariance. CPU times were recorded in Matlab R2009a using an Intel 2.5Ghz Core 2 Quad processor.

are necessary to model the data. Using an informative prior is essential in the case of under-determined

linear models where there are more sources than signals, in which case hyper-planes in parameter space

have equiprobable likelihoods and priors are needed to constrain the space of possible solutions.

Figure 2.7 depicts the posteriors resulting from an under-determined linear model for a selection

of different priors. Since the Laplace prior is log-concave the posterior is unimodal and log-concave.

For non log-concave priors the resulting posterior can be multimodal – for instance when p(w) is the

Student’s t distribution or the sparsity promoting distribution composed from a mixture of Gaussians.

In the case of signal reconstruction, deblurring and source separation sparse priors are used to

encode some of the prior knowledge we have about the source signal we wish to recover. Natural images

for instance are known to have sparse statistics over a range of linear filters (an example filter being the

difference in intensities of neighbouring pixels) [Olshausen and Field, 1996]. Sparse priors that encode

this knowledge about the statistics of natural images then bias estimates towards settings that share this

statistical similarity.

In this section we consider Bayesian Sequential Experimental Design (SED) for the sparse linear

model. At each stage of the SED process we approximate the posterior density of the model parameters

and then use the approximate posterior to greedily select new, maximally informative measurements.

First, we describe the probabilistic model and the experimental design procedure. Second, we compare

approximate inference methods on a small scale artificial SED problem. Third, we compare G-KL and

approximate local variational bounding methods for SED on a 64 × 64 = 4, 096 pixel natural image

problem. Our approach broadly follows that laid out by Seeger and Nickisch in [Seeger and Nickisch,

2008, Seeger, 2009, Seeger and Nickisch, 2011b].

Probabilistic model

We observe noisy linear measurements y ∈ RN assumed to be drawn according to y = Mw + ν where

M ∈ RN×D is the linear measurement matrix withN � D, ν ∼ N
(
0, ν2I

)
is additive Gaussian noise,

and w ∈ RD is the signal that we wish to recover. A sparse prior, here we use either the Laplace or the

Student’s t, is placed on s the linear statistics of w such that s = Bw. The matrix B ∈ RM×D is a
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Figure 5.2: Sequential experimental design for the Bayesian sparse linear model with synthetic signals.

Sparse signals, w, are sampled from (a) a Laplace with τ = 0.2 and (b) a Student’s t with ν = 3,

σ2 = 0.0267.

collection ofM linear filters. By placing the prior directly on the statistics, s, the posterior is proportional

to the product of the Gaussian likelihood and the sparse prior potentials,

p(w|M,y, τ , ν2) ∝ N
(
y|Mw, ν2I

)
p(s), where s = Bw.

Since the priors are placed directly on the statistics s and not w they are not normalised densities with

respect to w, as a consequence BG-KL(m,S) is no longer a lower-bound to logZ. However, since the

normalisation constant of p(s) is constant with respect to w ignoring this constant does not affect the

G-KL approximation to the posterior density.

Sequential experimental design

SED for the sparse linear model described above is the problem of iteratively choosing which new mea-

surement vectors, M∗, to append to M so as to maximise subsequent estimation accuracy. Bayesian

SED iterates between estimating the posterior density on w, conditioned on current observations, and

then using this density to select which new measurements to make. Following Seeger and Nickisch

[2011b] we use the information gain metric to decide which measurement vectors will be maximally

informative. Information gain is defined as the difference in differential Shannon information of the pos-

terior density before and after the inclusion of new measurements and their corresponding observations.

For the linear model we consider, it is given by

Igain(M∗) = H [p(w|M,y)]−H [p(w|M,y,M∗,y∗)] , (5.4.1)

where H [p(x)] := −〈log p(x)〉p(x) is the Shannon differential entropy. Since inference is not analyti-

cally tractable we cannot access either of the densities required by equation (5.4.1). We can, however,

obtain an approximation to the information gain by substituting in a Gaussian approximation to the pos-

terior. Doing so with p(w|M,y) ≈ N (w|m,S) we have 〈log p(w|M,y)〉 ≈ 1
2 log det (S) + c with c
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an additive constant. The second entropy is obtained by Gaussian conditioning on the joint approximate

Gaussian density p(w,y∗|y) ∝ N (w|m,S)N
(
y∗|M∗w, ν2I

)
. The approximation to the information

gain can then be written as

Igain(M∗) ≈ 1

2
log det

(
M∗SM∗T + ν2I

)
+ c. (5.4.2)

If we constrain the measurements to have unit norm Igain(M∗) above will be maximised when the rows

of M∗ lie along the leading principal eigenvectors of the approximate posterior covariance S. These

eigenvectors are approximated in our experiments using iterative Lanczos methods.

Synthetic signals

Initially we consider applying sequential experimental design to a sparse signal reconstruction problem

using small scale synthetic signals. In this artificial set up we wish to recover some signal wtr ∈ R512

from a set of noisy linear measurement y ∈ Rm where m � 512. We initialised the experiments with

m0 = 40 random unit norm linear measurement vectors M ∈ Rm0×512.

In this setup we placed the sparse prior directly on w with B = I. Sparse signals, wtr, were

sampled independently over dimensions from either the Laplace (µ = 0, τ = 0.2) or the Student’s t

(ν = 3, σ2 = 0.027) densities. Noisy linear measurements were sampled from the source signals with

y ∼ N
(
Mwtr, ν

2I
)

and ν2 = 0.005 throughout. Model priors and likelihoods were fixed to match the

data generating densities.

For the Laplace generated signals we applied G-KL, local variational bounding (LVB) and power

G-EP (η = 0.9) approximate inference methods. G-EP and LVB results were obtained using the publicly

available glm-ie Matlab toolbox. Since the model is of sufficiently small dimensionality approximate

covariance decompositions were not required. For the Student’s t generated signals only G-KL and LVB

approximate inference methods were applied since G-EP is unstable in this setting.

For the Laplace signals, when D = 512 and N = 110, inference takes 0.3 seconds for LVB,

0.6 seconds for G-EP, and 1.6 seconds for G-KL.6 For the Student’s t signals, again with D = 512

and N = 110, inference takes 0.3 seconds for LVB and 6 seconds for G-KL. For Laplace signals, for

which the G-KL bound is concave, gradient ascent was performed using a Hessian free Newton method

with finite differences approximation for Hessian vector products (see Chapter 7 Nocedal and Wright

[2006]). For the Student’s t signals, for which the G-KL bound is not guaranteed to be concave or even

unimodal, gradient ascent was performed using nonlinear scaled conjugate gradients. G-KL optimisation

was terminated in both settings once the largest absolute value of the bound’s gradient was less than 0.01.

LVB and G-EP were optimised for seven outer loop iterations after which no systematic improvement in

the approximate logZ value was observed.

`2 norm reconstruction error mean and standard error scores obtained over the 25 experiments

conducted are presented in Figure 5.2. For the Laplace generated signals LVB, G-EP and G-KL approx-

imate inference procedures provide broadly the same reconstruction error performance. All sequentially

designed procedures outperform MAP estimates with standard normal random measurements. The im-

6Experiments were timed using MATLAB R2009a on a 32 bit Intel Core 2 Quad 2.5 GHz processor.
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proved performance comes mainly in the first few iterations of the SED process with all methods achiev-

ing broadly similar iterative improvements in reconstruction error after that. For the Student’s t prior

again LVB and G-KL procedures obtain broadly the same performance with G-KL appearing to become

slightly less effective towards the end of the experiment.

Figure 5.3: Reconstructed images from the Bayesian sequential experimental design (SED) experiments.

We plot the estimated images obtained by each approximate inference procedure at different stages of

the SED process. Each pane corresponds to a different underlying image. The true image is shown

in the last image of the first row of each pane. Otherwise, the first row of each pane plots the G-KL

mean, the second row the LVB mean and the third row the MAP reconstruction with randomly selected

measurement vectors. The kth column of each pane plots the estimated image using 100+300× (k−1)

measurements.
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Figure 5.4: `2 reconstruction errors for the natural image sequential experimental design task. Mean and

standard error scores are presented averaged over 16 different 64× 64 pixel images.

Natural images

We consider sequential experimental design for the problem of recovering natural images from a set of

under-determined noisy linear measurements. This problem is modelled by placing priors on the statis-

tics of natural images that are known to exhibit sparsity. These statistics can be captured by suitable

linear projections of the image vector (formed by concatenating the pixel value columns of the image).

For the results presented we employ two types of image filter known to exhibit sparse statistics in natural

images: finite differences, the difference in intensity values of horizontally or vertically neighbouring

pixels; and multi-scale orthonormal wavelet transforms, constructed using the Daubechies four wavelet

(see Seeger and Nickisch [2011b] for further details). Both filters can be expressed as extremely sparse

vectors, the set of which is collected in the matrix B, giving B ∈ RM×D where M = 3 × D. Im-

age filters were implemented using the glm-ie package. Laplace priors placed on each of the linear

filter responses had τ = 0.1 for the finite difference filters and τ = 0.14 for the wavelet filters. This

experimental approach follows that laid out in Chapter 5 of Nickisch [2010].

We apply the SED procedure detailed above by iteratively approximating the posterior density

p(w|y,M,B, τ , ν2) where: w ∈ RD corresponds to the unknown image vector; y ∈ RN the noisy

measurements where N � D; and M ∈ RN×D is the linear measurement matrix constrained to have

rows with unit norm. The measurement matrix is initialised with 100 standard normal randomly sam-

pled vectors normalised to have unit norm. The sequential experimental design process approximates

the posterior based on current measurements and the prior, these are then used to select new unit norm

linear measurement vectors M∗ ∈ R3×D to append to M. New observations are then synthetically

generated by drawing samples from the Gaussian y∗ ∼ N
(
Mwtr, ν

2I
)
. In the experiments conducted

we use 64× 64 = 4096 = D pixel grey scale images. The images were down sampled from a collection
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frequently used by the vision community,7 gray scale pixel intensities were linearly transformed to lie in

[−1, 1]. The likelihood model was fixed with ν2 = 0.005.

In this larger setting we apply G-KL and LVB approximate inference methods only and make use of

approximate covariance decompositions. For G-KL approximate inference we use the chevron Cholesky

decomposition with 80 non-diagonal rows. The chevron Cholesky parameterisation was chosen due to

its strong performance in previous experiments with respect to both convergence time and accuracy of

inference – see Section 5.2. LVB inference is applied with low rank decompositions of covariance us-

ing 80 Lanczos vectors. For the first iteration of the SED procedure, N0 = 100, G-KL converged in

30 seconds and LVB in 5 seconds. At each iteration of the SED process each inference procedure was

initialised with the posterior from the previous SED iteration. When N = 2048 updating the Gaus-

sian approximate posterior took 60 seconds for G-KL and 25 seconds for LVB. Convergence of LVB

inference is difficult to asses since the double loop algorithm with Lanczos approximated covariance is

not guaranteed at each iteration to increase the approximated marginal likelihood. We iterated the LVB

procedure for seven outer loop iterations at which point no systematic increases of approximate marginal

likelihood values were observed. Fluctuations in LVB approximate marginal likelihood value in subse-

quent iterations were roughly ±10. G-KL inference was terminated when the greatest absolute value

of the bounds gradient was less than 0.1, at which point G-KL bound values increased by less than 0.5

per iteration. These results highlight a general distinction between the two methods, LVB optimisation

is an approximate EM algorithm whilst G-KL optimisation in this setting is implemented using an ap-

proximate second order gradient ascent procedure. EM is often reported to exhibit rapid convergence to

low accuracy solutions but can be very slow at achieving high accuracy solutions [Salakhutdinov et al.,

2003].

Reconstruction error results are plotted in Figure 5.4. We can see that SED offers greater recon-

struction accuracy over random designs for a fixed budget of measurements. Up to roughly 400 designed

measurement vectors both G-KL and LVB procedures achieve similar reconstruction errors, after which

the rate of LVB iterative performance slows down eventually being overtaken by MAP reconstruction

without design (MAP Rand). The reasons for this phenomenon are unclear. As more measurements

are added the posterior density will become more spherical, for approximately spherical posteriors the

benefit of design over simply adding random measurements is negligible. This could possibly explain

the observation that G-KL and the MAP Rand procedures have similar gradients in Figure 5.4 towards

the end of the experiment. Why the performance of LVB approximate inference in particular degrades

as more observations are added is not clear. One possible explanation is due to the Lanczos covari-

ance approximation, as the posterior becomes increasingly spherical its spectrum will get flatter and the

low-rank approximate factorisation may cause degraded Gaussian mean estimation.

Figure 5.3 displays the estimated deconvolved images at different stages of the SED process. Specif-

ically we plot the G-KL and LVB Gaussian mean estimates and the randomly designed MAP estimate.

Interestingly, each method displays different visual traits with regards to the quality of the reconstructed

7Images were downloaded from decsai.ugr.es/cvg/dbimagenes/index.php.

decsai.ugr.es/cvg/dbimagenes/index.php
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image. G-KL estimates have patches with high fidelity and patches with low fidelity and a soft cloudy

texture. LVB and MAP Rand estimates appear more pixelated than the G-KL estimates with image

accuracy more uniform across the image pane.

5.5 Summary
The results presented in this chapter confirm that the G-KL approach to approximate inference, as pro-

posed in Chapter 4, is a widely applicable, accurate, fast and scalable deterministic approximate infer-

ence method in latent linear models.

One of the principal advantages of the G-KL procedure is the ease with which it can be implemented

and applied to new latent linear models. G-KL approximate inference places few restrictions on the

model’s potential functions {φn} to which it can be applied. In Section 5.1 and Section 5.4 we saw

that the Gaussian expectation propagation and Laplace approximations could be impractical due to the

potentials being either non-differentiable or not log-concave. Whilst local variational bounding methods

could be applied to the Student’s tGaussian process regression model the site potential bounds resulted in

poor performance. Whereas the G-KL procedure was applicable to each of these models, did not require

deriving complicated updates or novel site bounds and achieved strong results and robust convergence in

each setting.

The results also confirm that G-KL approximate inference is comparatively accurate versus other

deterministic Gaussian approximate inference methods. In each experimental domain considered the G-

KL procedure achieved competitive accuracies versus the other Gaussian approximate inference methods

considered. What is more the G-KL approximation returns a rigorous lower-bound on the marginal

likelihood using either full or constrained parameterisations of covariance. As was expected, using a full

Cholesky covariance in the GP experiments, the G-KL bound uniformly dominated the LVB bound.

In Sections 5.2,5.3 and 5.4 we saw that using constrained parameterisations of covariance the G-KL

method could be made scalable and fast. Fast approximate solvers for local variational bounding methods

are one of the most scalable global, non-factorising, Gaussian approximate inference methods in latent

variable models. The results presented show that G-KL approximate inference, with constrained covari-

ance parameterisations, and off the shelf gradient based optimisation methods can achieve comparable

convergence times and performance.

5.6 Bayesian logistic regression result tables
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Ntrn = 125 Ntrn = 250 Ntrn = 1250

K = 13 K = 25 K = 13 K = 25 K = 13 K = 25

Time
G-KL

Chev 0.14±0.01 0.16±0.00 0.32±0.02 0.34±0.01 3.31±0.09 3.38±0.14

Band 0.21±0.01 0.28±0.01 0.41±0.01 0.53±0.01 4.05±0.09 4.64±0.09

Sub 0.42±0.05 0.46±0.02 0.69±0.03 0.81±0.04 4.24±0.15 5.17±0.28

FA 0.75±0.05 0.74±0.05 0.94±0.08 1.12±0.08 6.18±0.61 5.49±0.40

LVB 0.27±0.01 0.28±0.00 0.29±0.00 0.31±0.01 0.46±0.01 0.45±0.00

B̃
G-KL

Chev −1.08±0.02 −1.05±0.02 −0.89±0.01 −0.87±0.01 −0.41±0.00 −0.40±0.00

Band −1.05±0.02 −1.00±0.01 −0.88±0.01 −0.85±0.01 −0.41±0.00 −0.40±0.00

Sub −2.93±0.01 −2.11±0.02 −1.83±0.01 −1.43±0.01 −0.60±0.00 −0.52±0.00

FA −1.08±0.02 −1.06±0.02 −0.89±0.01 −0.87±0.01 −0.40±0.00 −0.39±0.00

LVB –±– –±– –±– –±– –±– –±–

‖m−wtr‖2/D
G-KL

Chev 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

Band 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

Sub 1.49±0.01 1.48±0.01 1.43±0.01 1.41±0.01 1.20±0.01 1.18±0.01

FA 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

LVB 1.52±0.01 1.51±0.01 1.45±0.01 1.45±0.02 1.21±0.01 1.21±0.01

log p(y∗|X∗)/Ntst
G-KL

Chev −0.57±0.01 −0.56±0.01 −0.47±0.01 −0.47±0.01 −0.19±0.00 −0.19±0.00

Band −0.56±0.01 −0.56±0.01 −0.47±0.01 −0.46±0.01 −0.19±0.00 −0.19±0.00

Sub −0.67±0.02 −0.63±0.02 −0.57±0.02 −0.54±0.02 −0.21±0.01 −0.20±0.01

FA −0.57±0.01 −0.57±0.01 −0.48±0.01 −0.47±0.01 −0.19±0.00 −0.19±0.00

LVB −0.68±0.02 −0.68±0.02 −0.57±0.01 −0.56±0.01 −0.21±0.01 −0.21±0.01

Table 5.4: Bayesian logistic regression covariance parameterisation comparison results for a unit vari-

ance Gaussian prior, with parameter dimension D = 250 and number of test points Ntst = 2500.

Experimental setup and metrics are described in Section 5.2

Ntrn = 500 Ntrn = 1000 Ntrn = 5000

K = 50 K = 100 K = 50 K = 100 K = 50 K = 100

Time
G-KL

Chev 2.68±0.04 3.37±0.05 6.41±0.11 7.28±0.14 75.23±1.51 78.38±2.10

Band 6.66±0.58 8.97±0.14 12.81±0.15 20.59±0.26 127.69±2.36 190.65±3.47

Sub 1.59±0.07 2.58±0.12 3.24±0.03 7.71±0.20 56.67±1.80 75.35±1.63

FA 9.94±1.00 12.24±0.63 16.21±0.74 18.64±1.09 70.87±3.92 82.13±5.83

LVB 1.78±0.03 2.65±0.05 4.12±0.04 6.17±0.07 21.88±0.03 33.87±0.02

B̃
G-KL

Chev −1.28±0.01 −1.24±0.01 −0.99±0.00 −0.96±0.00 −0.42±0.00 −0.41±0.00

Band −1.24±0.01 −1.17±0.01 −0.98±0.00 −0.94±0.00 −0.42±0.00 −0.42±0.00

Sub −5.40±0.23 −4.54±0.25 −7.56±0.00 −1.52±0.00 −0.62±0.00 −0.54±0.00

FA −1.29±0.01 −1.26±0.01 −1.00±0.00 −0.97±0.00 −0.42±0.00 −0.41±0.00

LVB –±– –±– –±– –±– –±– –±–

‖w −wtr‖2/D
G-KL

Chev 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

Band 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

Sub 0.56±0.00 0.55±0.00 0.56±0.00 0.50±0.00 0.44±0.00 0.43±0.00

FA 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

LVB 0.54±0.00 0.54±0.00 0.52±0.00 0.52±0.00 0.45±0.00 0.45±0.00

log p(y∗|X∗)/Ntst
G-KL

Chev −0.62±0.01 −0.61±0.01 −0.51±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Band −0.61±0.01 −0.59±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Sub −0.62±0.01 −0.61±0.01 −0.69±0.00 −0.61±0.01 −0.21±0.00 −0.21±0.00

FA −0.62±0.01 −0.61±0.01 −0.52±0.01 −0.51±0.01 −0.18±0.00 −0.18±0.00

LVB −0.88±0.01 −0.95±0.02 −0.68±0.01 −0.70±0.01 −0.21±0.00 −0.21±0.00

Table 5.5: Bayesian logistic regression results for a unit variance Gaussian prior, with parameter dimen-

sion D = 1000 and number of test points Ntst = 5000. Experimental setup and metrics are described

in Section 5.2.
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Chapter 6

Affine independent KL approximate inference

In Chapters 4 and 5 we showed that using a Gaussian approximating density and the KL variational

objective we could achieve comparatively accurate and efficient approximate inferences versus other de-

terministic Gaussian approximate inference methods. It is therefore an important avenue of research to

develop KL bounding methods further by extending the class of tractable approximating distributions

beyond the multivariate Gaussian. Whilst simple mixtures of Gaussians have previously been devel-

oped these typically require additional bounds to compute the entropy and can result in computationally

demanding optimisation problems [Bishop et al., 1998, Gershman et al., 2012, Bouchard and Zoeter,

2009].

In this chapter we present a procedure to evaluate and optimise the KL bound over a flexible class of

approximating variational densities that includes the multivariate Gaussian as a special case. Specifically,

we consider optimising the KL bound for variational ‘affine independent’ densities q(w) constructed as

an affine transformation of an independently distributed latent density q(v). In Section 6.2 we introduce

and discuss the affine independent density class. In Section 6.3 and 6.4 we show how the KL bound

can be evaluated and optimised over this density class. In Section 6.5 we discuss some of the numerical

issues associated with the proposed method. In Section 6.7 we present results showing the efficacy of

this procedure. Finally, in Section 6.9 we discuss directions for future work.

6.1 Introduction
Similar to previous chapters, we seek to perform approximate inference in the latent linear model class.

Specifically, for a vector of parameters w ∈ RD, a multivariate Gaussian density N (w|µ,Σ), we seek

to approximate the density defined as

p(w) =
1

Z
N (w|µ,Σ)

N∏
n=1

φn(wThn), (6.1.1)

and its normalisation constant Z defined as

Z =

∫
N (w|µ,Σ)

N∏
n=1

φn(wThn)dw, (6.1.2)

where φn : R→ R+ are non-Gaussian, real valued, positive potential functions and hn ∈ RD are fixed

real valued vectors. Note, the inference problem defined above is equivalent to that specified in Section

2.3, we reproduce it here only for clarity of exposition.
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Figure 6.1: Two dimensional Bayesian sparse linear regression posterior specified by a Laplace prior

φd(w) ≡ 1
2τ e
−|wd|/τ with τ = 0.16 and Gaussian likelihood N

(
y|wTh, σ2

l

)
, σ2

l = 0.05 and two data

points h, y. (a) True posterior with logZ = −1.4026. (b) Optimal Gaussian approximation with bound

value BG = −1.4399. (c) Optimal AI generalised-normal approximation with bound value BAI =

−1.4026.

We approach the problem of forming an approximation q(w) to p(w) and a lower-bound to logZ

using the KL(q(w)|p(w)) divergence as a variational objective function. As described in Section 3.2,

the KL divergence KL(q(w)|p(w)) provides a lower-bound on logZ in the form

logZ ≥ BKL := H[q(w)] + 〈logN (w|µ,Σ)〉+

N∑
n=1

〈
log φn(wThn)

〉
,

where the expectations 〈·〉 are taken with respect to the variational density q(w). Optimising the lower-

bound BKL with respect the density q(w) we can find the ‘tightest’ lower-bound to logZ and the ‘clos-

est’ approximation to p(w). The larger the set of approximating distributions q(w) that this optimisation

can be performed over the more accurate this approximate inference procedure has the potential to be.

In Chapter 4 we considered multivariate Gaussian q(w) approximations. In this chapter we introduce

a more flexible class of approximating densities which we call the affine independent density class and

show how the KL bound can be efficiently evaluated and optimised with respect to it.

6.2 Affine independent densities
We first consider independently distributed latent variables v ∼ qv(v|θ) =

∏D
d=1 qvd(vd|θd) with ‘base’

distributions qvd . To enrich the representation, we form the affine transformation w = Av + b where

A ∈ RD×D is invertible and b ∈ RD. The distribution on w is then1

qw(w|A,b,θ) =

∫
δ (w −Av − b) qv(v|θ)dv =

1

|det (A) |
∏
d

qvd
([

A−1 (w − b)
]
d
|θd
)

(6.2.1)

where δ (h) =
∏
d δ(hd) is the Dirac delta function, θT = [θ1, ..., θd] and [h]d refers to the dth element of

the vector h. Typically we assume the base distributions are homogeneous, qvd ≡ qv . For instance, if we

1This construction is equivalent to a form of square noiseless independent components analysis. See Ferreira and Steel [2007]

and Sahu et al. [2003] for similar constructions.
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constrain each factor qvd(vd|θd) to be the standard normal N (vd|0, 1) then qw(w) = N
(
w|b,AAT

)
.

By using, for example, Student’s t, Laplace, logistic, generalised-normal or skew-normal base distribu-

tions, equation (6.2.1) parameterises multivariate extensions of these univariate distributions. This class

of multivariate distributions has the important property that, unlike the Gaussian, they can approximate

skew and/or heavy-tailed p(w). See figures 6.1, 6.2 and 6.3, for examples of two dimensional distribu-

tions qw(w|A,b,θ) with skew-normal and generalised-normal base distributions used to approximate

toy machine learning problems.

Provided we choose a base distribution class that includes the Gaussian as a special case (for ex-

ample generalised-normal, skew-normal and asymptotically Student’s t) we are guaranteed to perform

at least as well as classical multivariate Gaussian KL approximate inference.

Choosing a dimensionally homogenous base density, that is qvd ≡ qv for all d, we note that we

may arbitrarily permute the indices of v. Furthermore, since every invertible matrix is expressible as

LUP for L lower, U upper and P permutation matrices, without loss of generality, we may use an LU

decomposition to parameterise A such that A = LU. Doing so, therefore, incurs no loss in expressibility

of q(w) whilst reducing the complexity of subsequent computations.

Whilst defining such affine independent (AI) distributions is straightforward, critically we require

that the KL bound, equation (3.2.4), is fast to compute. As we explain below, this can be achieved using

the Fourier transform both for the bound and its gradients. Full derivations of these results are presented

in Appendix C.

6.3 Evaluating the AI-KL bound
The KL bound can be readily decomposed as

BKL = log |det (A)|+
D∑
d=1

H [q(vd|θd)]︸ ︷︷ ︸
Entropy

+ 〈logN (w|µ,Σ)〉+

N∑
n=1

〈
log φn(wThn)

〉
︸ ︷︷ ︸

Energy

, (6.3.1)

where we used H [qw(w)] = log |det (A)| +
∑
dH [qvd(vd|θd)] – see for example Cover and Thomas

[1991]. For many standard base distributions the entropy H [qvd(vd|θd)] is closed form. When the en-

tropy of a univariate base distribution is not analytically available, we assume it can be cheaply evaluated

numerically. The energy contribution to the KL bound is the sum of the expectation of the log Gaus-

sian term, which requires only first and second order moments, and the nonlinear ‘site-projections’. The

non-linear site-projections, and their gradients, can be evaluated using the methods described below.

6.3.1 Site-projection potentials

Defining y := wTh, the expectation of the site-projection function ψ : R → R and fixed vector h is

equivalent to a one-dimensional expectation,
〈
ψ
(
wTh

)〉
qw(w)

= 〈ψ(y)〉qy(y) with

qy(y) =

∫
δ(y − hTw)qw(w)dw =

∫
δ(y −αTv − β)qv(v)dv,

where w = Av + b and α := ATh, β := bTh. If h = ed with ed the dth standard normal basis

vector the equation above defines the axis aligned marginal q(y) = q(wd|A,b,θ). We can rewrite this
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Figure 6.2: Two dimensional Bayesian logistic regression posterior defined by the Gaussian prior

N (w|0, 10I) and the logistic sigmoid likelihood φn(w) = σ(τlcnwThn), τl = 5. Here σ(x) is the

logistic sigmoid and cn ∈ {−1,+1} the class labels; N = 4 data points. (a) True posterior with

logZ = −1.13. (b) Optimal Gaussian approximation with bound value BG-KL = −1.42. (c) Optimal

AI skew-normal approximation with bound value BAI-KL = −1.17.

D-dimensional integral as a one dimensional integral using the integral transform δ(x) =
∫
e2πitxdt:

qy(y) =

∫ ∫
e2πit(y−αTv−β)

D∏
d=1

qvd(vd)dvdt =

∫
e2πi(t−β)y

D∏
d=1

q̃ud (t) dt (6.3.2)

where f̃(t) denotes the Fourier transform of the function f(x) and qud(ud|θd) is the density of the

random variable ud := αdvd so that qud(ud|θd) = 1
|αd|qvd( udαd |θd). Equation (6.3.2) can be interpreted

as the (shifted) inverse Fourier transform of the product of the Fourier transforms of {qud(ud|θd)}Dd=1.

Unfortunately, most distributions do not have Fourier transforms that admit compact analytic forms

for the product
∏D
d=1 q̃ud(t). The notable exception is the family of stable distributions for which linear

combinations of random variables are also stable distributed – see Nolan [2012] for an introduction.

With the exception of the Gaussian (the only stable distribution with finite variance), the Levy and the

Cauchy distributions, stable distributions do not have analytic forms for their density functions and are

analytically expressible only in the Fourier domain. Nevertheless, when qv(v) is stable distributed,

marginal quantities of w such as y can be computed analytically in the Fourier domain [Bickson and

Guestrin, 2010].

In general, therefore, we need to resort to numerical methods to compute qy(y) and expectations

with respect to it. To achieve this we discretise the base distributions and, by choosing a sufficiently fine

discretisation, limit the maximal error that can be incurred. As such, up to a specified accuracy, the KL

bound may be exactly computed.

First we define the set of discrete approximations to {qud(ud|θd)}Dd=1 for ud := αdvd. These

‘lattice’ approximations are a weighted sum of K delta functions

qud(ud|θd) ≈ q̂ud(ud) :=

K∑
k=1

πdkδ (ud − lk) where πdk =

∫ lk+ 1
2 ∆

lk− 1
2 ∆

q(ud|θd)dud. (6.3.3)

The lattice points {lk}Kk=1 are spaced uniformly over the domain [l1, lK ] with ∆ := lk+1 − lk. The
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weighting for each delta spike is the mass assigned to the distribution qud(ud|θd) over the interval [lk −
1
2∆, lk + 1

2∆].

Given the lattice approximations to the densities {qud(ud|θd)}Dd=1 the Fast Fourier Transform (FFT)

can be used to evaluate the convolution of the lattice distributions. Doing so we obtain the lattice ap-

proximation to the marginal y = wTh such that

qy(y) ≈ q̂y(y) =

K∑
k=1

δ(y − lk − β)ρk where ρ = ifft

[
D∏
d=1

fft [π′d]

]
. (6.3.4)

where πd is padded with (D − 1)K zeros, π′d := [πd,0]. The only approximation used in finding the

marginal density is then the discretisation of the base distributions, with the remaining FFT calculations

being exact. See Appendix C.1.2 for a derivation of this result. The time complexity for the above

procedure scales O
(
D2K logKD

)
.

Efficient site derivative computation

Whilst we have shown that the expectation of the site-projections can be accurately computed using the

FFT, how to cheaply evaluate the derivative of this term is less clear. The complication can be seen by

inspecting the partial derivative of
〈
g(wTh)

〉
with respect to Amn

∂

∂Amn

〈
f(wTh)

〉
q(w)

= hn

∫
qv(v)f ′

(
hTAv + bTh

)
vmdv,

where f ′(y) = d
dyf(y). Naively, this can be readily reduced to a, relatively expensive, two dimensional

integral. Critically, however, the computation can be simplified to a one dimensional integral. To see this

we can write

∂

∂Amn

〈
f
(
wTh

)〉
= xn

∫
f ′(y)dm(y)dy,

where

dm(y) :=

∫
vmqv(v)δ

(
y −αTv − β

)
dv.

Here dm(y) is a univariate weighting function with Fourier transform:

d̃m(t) = e−2πitβ ẽm(t)
∏
d6=m

q̃ud(t), where ẽm(t) :=

∫
um
αm

qum(um)e−2πitumdum.

Since {q̃(t)}Dd=1 are required to compute the expectation of
〈
f(wTh)

〉
the only additional computations

needed to evaluate all partial derivatives with respect to A are {ẽd(t)}Dd=1. Thus the complexity of

computing the site derivative is equivalent to the complexity of the site expectation of Section 6.3.1.

Further derivations and computational scaling properties are provided in Appendix C.1.

6.3.2 Gaussian potential

For the Gaussian potential N (w|µ,Σ), its log expectation under qw(w) can be expressed as

2 〈logN (w|µ,Σ)〉 = −D log 2π− log det (Σ)−
〈
wTΣ−1w

〉
+ 2 〈w〉Σ−1µ−µTΣ−1µ, (6.3.5)
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Figure 6.3: Two dimensional robust linear regression with Gaussian priorN (w|0, I), Laplace likelihood

φn(w) = 1
2τl
e−|yn−wThn|/τl with τl = 0.1581 and 2 data pairs hn, yn. (a) True posterior with logZ =

−3.5159. (b) Optimal Gaussian approximation with bound value BG-KL = −3.6102. (c) Optimal AI

generalised-normal approximation with bound value BAI-KL = −3.5167.

where analytic forms for the quadratic expectation
〈
wTΣ−1w

〉
and the linear expectation 〈w〉 can be

expressed in terms of the first and second order moments of the factorising base density qv(v). Ex-

plicit forms for equation (6.3.5) are given in Appendix C.1.3. The moments of the skew-normal and

generalised-normal base densities, for which closed form expression exist, used for the experiments

in this chapter are presented in Appendix A.5. Thus the Gaussian potential’s contribution to the A-

KL bound, and its gradient, can be computed using standard matrix vector operations. For a Gaussian

potential with unstructured covariance, computing its contribution to the AI-KL bound scales O
(
D3
)

simplifying to O
(
D2
)

for isotropic covariance such that Σ = σ2ID.

6.4 Optimising the AI-KL bound

Given fixed base distributions, we can optimise the KL bound with respect to the parameters A = LU

and b. Provided {φn}Nn=1 are log-concave the KL bound is jointly concave with respect to b and either

L or U. This follows from an application of the concavity result we provided in the Gaussian KL bound

– see Appendix C.2.

Using a similar approach to that presented in Section 6.3.1 we can also efficiently evaluate the

gradients of the KL bound with respect to the parameters θ that define the base distribution. These

parameters θ can control higher order moments of the approximating density q(w) such as skewness

and kurtosis. We can therefore jointly optimise over all parameters {A,b,θ} simultaneously; this means

that we can fully capitalise on the expressiveness of the AI distribution class, allowing us to capture non-

Gaussian structure in p(w).

In many modeling scenarios the best choice for qv(v) will suggest itself naturally. For example, in

Section 6.7.1 we choose the skew-normal distribution to approximate Bayesian logistic regression pos-

teriors. For heavy-tailed posteriors that arise for example in robust or sparse Bayesian linear regression

models, one choice is to use the generalised-normal as base density, which includes the Laplace and
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Gaussian distributions as special cases. For other models, for instance mixed data factor analysis [Khan

et al., 2010], different distributions for blocks of variables of {vd}Dd=1 may be optimal. However, in

situations for which it is not clear how to select qv(v), several different distributions can be assessed and

then that which achieves the greatest lower-bound BKL is preferred.

6.5 Numerical issues
The computational burden of the numerical marginalisation procedure described in Section 6.3.1 depends

on the number of lattice points used to evaluate the convolved density function qy(y). For the results

presented we implemented a simple strategy for choosing the lattice points [l1, ..., lK ]. Lattice end

points were chosen2 such that [l1, lK ] = [−6σy, 6σy] where σy is the standard deviation of the random

variable y: σ2
y =

∑
d α

2
dvar(vd). From Chebyshev’s inequality, taking six standard deviation end points

guarantees that we capture at least 97% of the mass of qy(y). In practice this proportion is often much

higher since qy(y) is often close to Gaussian for D � 1. We fix the number of lattice points used during

optimisation to suit our computational budget. To compute the final bound value we apply the simple

strategy of doubling the number of lattice points until the evaluated bound changes by less than 10−3

[Bracewell, 1986].

Fully characterising the overall accuracy of the approximation as a function of the number of lattice

points is complex, see Ruckdeschel and Kohl [2010], Schaller and Temnov [2008] for a related discus-

sion. One determining factor is the condition number (ratio of largest and smallest eigenvalues) of the

posterior covariance. When the condition number is large many lattice points are needed to accurately

discretise the set of distributions {qud(ud|θd)}Dd=1 which increases the time and memory requirements.

One possible route to circumventing these issues is to use base densities that have analytic Fourier

transforms (such as a mixture of Gaussians). In such cases the discrete Fourier transform of qy(y) can

be directly evaluated by computing the product of the Fourier transforms of each {qud(ud|θd)}Dd=1. The

implementation and analysis of this procedure is left for future work.

The computational bottleneck for AI inference, assuming N > D, arises from computing the

expectation and partial derivatives of the N site-projections. For parameters w ∈ RD this scales

O
(
ND2K logDK

)
. Whilst this might appear expensive it is worth considering it within the broader

scope of lower-bound inference methods. As we showed in Chapter 4, exact Gaussian KL approxi-

mate inference has bound and gradient computations which scale O
(
ND2

)
. Similarly, local variational

bounding methods (see below) scale O
(
ND2

)
when implemented exactly.

6.6 Related methods
Another commonly applied technique to obtain a lower-bound for densities of the form of equation

(6.1.1) is the local variational bounding procedure introduced in Section 3.8. Local variational bounding

methods approximate the normalisation constant by bounding each non-conjugate term in the integrand,

equation (6.1.2), with a form that renders the integral tractable. In Chapter 4 we showed that the Gaussian

2For symmetric densities {qud (ud|θd)} we arranged that their mode coincides with the central lattice point.
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KL bound dominates the local bound in such models. Hence the AI-KL method also dominates the local

and Gaussian KL methods.

Other approaches to increasing the flexibility of the approximating distribution class include ex-

pressing qw(w) as a mixture distribution – see Section 3.10. However, computing the entropy of a

mixture distribution is in general difficult. Whilst one may bound the entropy term [Gershman et al.,

2012, Bishop et al., 1998], employing such additional bounds is undesirable since it limits the gains

from using a mixture. Another recently proposed method to approximate integrals using mixtures is

split variational inference which iterates between constructing soft partitions of the integral domain and

bounding those partitioned integrals [Bouchard and Zoeter, 2009]. The partitioned integrals are approx-

imated using local or Gaussian KL bounds. Our AI method is complementary to the split mean field

method since one may use the AI-KL technique to bound each of the partitioned integrals and so achieve

an improved bound. However, this procedure should only be considered if extremely high accuracy

approximations are required since it is likely to be very computationally demanding.

6.7 Experiments
For the experiments below3, AI-KL bound optimisation is performed using L-BFGS4. Gaussian KL

inference is implemented in all experiments using the vgai package.

6.7.1 Toy problems

We compare Gaussian KL and AI-KL approximate inference methods in three, two-dimensional gen-

eralised linear models against the true posteriors and marginal likelihood values obtained numerically.

Figure 6.1 presents results for a linear regression model with a sparse Laplace prior; the AI base den-

sity is chosen to be generalised-normal. Figure 6.2 demonstrates approximating a Bayesian logistic

regression posterior, with the AI base distribution skew-normal. Figure 6.3 corresponds to a Bayesian

linear regression model with the noise robust Laplace likelihood density and Gaussian prior; again the

AI approximation uses the generalised-normal as the base distribution.

The AI-KL procedure achieves a consistently higher bound than the G-KL method, with the AI

bound nearly saturating at the true value of logZ in two of the models. In addition, the AI approxima-

tion captures significant non-Gaussian features of the posterior: the approximate densities are sparse in

directions of sparsity of the posterior; their modes are approximately equal (where the Gaussian mode

can differ significantly); tail behaviour is more accurately captured by the AI distribution than by the

Gaussian.

6.7.2 Bayesian logistic regression

We compare Gaussian KL and AI-KL approximate inference for a synthetic Bayesian logistic regression

model. The AI density has skew-normal base distribution with θd parameterising the skewness of vd.

We optimised the AI-KL bound jointly with respect to L,U,b and θ simultaneously with convergence

3All experiments are performed in Matlab 2009b on a 32 bit Intel Core 2 Quad 2.5 GHz processor.
4L-BFGS was implemented using the minFunc optimisation package (www.di.ens.fr/˜mschmidt)

www.di.ens.fr/~mschmidt
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Figure 6.4: Gaussian KL and AI-KL approximate inference comparison for a Bayesian logistic regres-

sion model with different training dataset sizes Ntrn. w ∈ R10; Gaussian prior N (w|0, 5I); logistic

sigmoid likelihood φn = σ(τlcnwThn) with τl = 5; covariates hn sampled from the standard nor-

mal, wtrue sampled from the prior and class labels cn = ±1 sampled from the likelihood. (a) Bound

differences, BAI-KL − BG-KL, achieved using Gaussian KL and AI-KL approximate inference for dif-

ferent training dataset sizes Ntrn. Mean and standard errors are presented from 15 randomly generated

models. A logarithmic difference of 0.4 corresponds to 49% improvement in the bound on the marginal

likelihood. (b) Mean and standard error Averaged Testset Log Probability (ATLP) differences obtained

with the Gaussian and AI approximate posteriors for different training dataset sizes Ntrn. ATLP values

calculated using 104 test data points sampled from each model.

taking on average 8 seconds with D = N = 10, compared to 0.2 seconds for Gaussian KL.5

In figure 6.4(a) we plot the performance of the KL bound for Gaussian qw(w) versus the skew-

normal AI qw(w) as we vary the number of data points. We plot the mean and standard error bound

differences BAI-KL − BG-KL obtained over 15 randomly generated datasets. For a small number of

data points the bound difference is small. This difference increases up to D = N , and then decreases

for larger datasets. This behaviour can be explained by the fact that when there are few data points the

Gaussian prior dominates, with little difference therefore between the Gaussian and optimal AI approxi-

mation (which becomes effectively Gaussian). As more data is introduced, the non-Gaussian likelihood

terms have a stronger impact and the posterior becomes significantly non-Gaussian. However as even

more data is introduced the central limit theorem effect takes hold and the posterior becomes increasingly

Gaussian.

In figure 6.4(b) we plot the mean and standard error differences for the averaged testset log prob-

abilities (ATLP) calculated using the Gaussian and AI approximate posteriors obtained in each model.

5We note that split mean field approximate inference was reported to take approximately 100 seconds for a similar logistic

regression model achieving comparable results [Opper and Archambeau, 2009].
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For each model and each training set size the ATLP is calculated using 104 test points sampled from

the model. The log testset probability of each test data pair h∗, c∗ is calculated as log 〈p(c∗|w,h∗)〉q(w)

for q(w) the approximate posterior. The bound differences can be seen to be strongly correlated with

testset log probability differences, seeming to confirm that tighter bound values correspond to improved

predictive performance.

6.7.3 Sparse noise robust kernel regression

In this experiment we consider sparse noise robust kernel regression. Sparsity is encoded using a Laplace

prior on the weight vectors
∏
n pn(wn) where pn(wn) = e−|wn|/τp/2τp. The Laplace distribution is

also used as a noise robust likelihood φn(w) = p(yn|w,kn) = e−|yn−wTkn|/τl/2τl where kn is the nth

vector of the kernel matrix. For these experiments we use the isotropic squared exponential kernel such

that

km,n := K (xm,xn, κl, κn) = e−κl
∑D
d=1(xmd−xnd)2 + κnδ(n,m)

where δ(n,m) is the Kronecker delta function, xnd is the dth element of the nth data point, the length

scale parameter is set to κl = 0.05 and the additive noise is set to κn = 1. Thus the target density is

defined as

p(w|D,θ) =
1

Z

Ntrn∏
n=1

1

2τp
e
− |wn|τp

1

2τl
e
− |yn−wTkn|

τl , (6.7.1)

where θ denotes the collection of hyperparameters θ := {τp, τl, κl, κn} and the vector of parameters is

w ∈ RNtrn . In all experiments the prior and likelihood were fixed with τp = τl = 0.16.

Three datasets were considered: Boston housing6 (D = 14, Ntrn = 100, Ntst = 406); Concrete

Slump Test7 (D = 10, Ntrn = 100, Ntst = 930); and a synthetic dataset constructed as described in

Kuss [2006] §5.6.1 (D = 10, Ntrn = 100, Ntst = 406). Results are collected for each dataset over 10

random training and testset partitions. All datasets are zero mean unit variance normalised based on the

statistics of the training data.

AI-KL inference is performed with a generalised-normal base distribution. The parameters θd con-

trol the kurtosis of the base distributions q(vd|θd); for simplicity we fix θd = 1.5 and optimise jointly

for L,U,b. Bound optimisation took roughly 250 seconds for the AI-KL procedure, compared to 5

seconds for the Gaussian KL procedure. Averaged results and standard errors are presented in Table 6.1

where B̄KL denotes the bound value divided by the number of points in the training dataset. Whilst the

improvements for these particular datasets are modest, the AI bound dominates the Gaussian bound in

all three datasets, with predictive log probabilities also showing consistent improvement.

Whilst we have only presented experimental results for AI distributions with simple analytically

expressible base distributions we note the method is applicable for any base distribution provided

{qvd(vd)}Dd=1 are smooth, a condition that is required to ensure differentiability of the AI-KL bound.

For example smooth univariate mixtures for qvd(vd) can be used.

6archive.ics.uci.edu/ml/datasets/Housing
7archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

archive.ics.uci.edu/ml/datasets/Housing
archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
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Dataset B̄G-KL B̄AI-KL B̄AI-KL − B̄G-KL ATLPG ATLPAI ATLPAI −ATLPG

Conc. CS. −2.08± 0.09 −2.06± 0.09 0.022± 0.004 −1.70± 0.11 −1.67± 0.11 0.024± 0.010

Boston −1.28± 0.05 −1.25± 0.05 0.028± 0.003 −1.18± 0.10 −1.15± 0.09 0.023± 0.006

Synthetic −2.49± 0.10 −2.46± 0.10 0.028± 0.004 −1.84± 0.11 −1.83± 0.11 0.009± 0.009

Table 6.1: AI-KL approximate inference results for the sparse noise robust kernel regression model. The

model is defined by a factorising Laplace prior on the weights such that p(wn) = e−|wn|/τp/2τp and a

Laplace conditional likelihood p(yn|wTkn) = e−|yn−wTkn|/τl/2τl, with τp = τl = 0.16 and a squared

exponential kernel. Values are the mean and standard error scores obtained from 10 random training and

testset splits. B̄G-KL and B̄AI-KL denote the log marginal likelihood KL bound values, normalised by di-

viding by the size of the dataset Ntrn, achieved using the Gaussian or AI variational densities. Averaged

Testset Log Probability (ATLP ) scores are calculated using ATLP = 1
Ntst

∑
n log 〈p(y∗n|w,k∗n)〉q(w).

6.8 Summary
Affine independent KL approximate inference has several desirable properties compared to existing de-

terministic bounding methods. We have shown how it generalises on classical multivariate Gaussian KL

approximations and our experiments confirm that the method is able to capture non-Gaussian effects in

posteriors. Since we optimise the KL divergence over a larger class of approximating densities than the

multivariate Gaussian, the lower-bound to the normalisation constant is also improved. This is particu-

larly useful for model selection purposes where the normalisation constant plays the role of the model

likelihood.

6.9 Future work
The AI-KL approximate inference procedure proposed here poses several interesting directions for fur-

ther research. The numerical procedures presented in Section 6.3 provide a general and computationally

efficient means for inference in non-Gaussian densities whose application could be useful for a range

of probabilistic models. However, our current understanding of the best approach to discretise the base

densities is limited and further study of this is required. Furthermore, optimisation was found to be slow

compared to G-KL procedures. Whilst this is not surprising, the AI-KL seeks a more accurate approx-

imation than a Gaussian and requires optimising more than twice as many parameters, it would remain

highly beneficial to develop faster optimisation routines.

Numerical errors

The numerical procedure we introduced to evaluate the marginal density y := wTh for w ∼ qw(w)

an AI distributed random variable introduces three separate sources for numerical error which we detail

below. We take this analysis from Schaller and Temnov [2008].

truncation error The lattice approximations p̂(ud) have bounded support. Provided we have analytic

forms for the densities p(vd) the probability mass that is truncated can be assessed. For example

limit points [l0, lK ] can chosen such that 1 −
∫ lK
l0

p(ud)dud < 10−6 for all d. For heavy tailed

densities limit points that satisfy such a condition may be infeasibly far apart.
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aliasing error Discrete convolution algorithms perform a cyclic convolution. However, since πd is

not periodic it must be padded with DK zeros to remove aliasing error completely. Full zero

padding can be computationally expensive thus allowing for a small amount of aliasing error may

be computationally necessary.

discretisation error Discretisation error is introduced at the numerical convolution step required to cal-

culate the marginal density. The analysis of discretisation error is more involved than the aliasing

and truncation errors.

The first proposed direction for future research is to better understand how these three sources of nu-

merical error described above depend on the parameters of the AI density A,b, the base density class

{qvd(vd|θd)} and the marginal projection vector h. One possible relation between these factors, that was

observed in our experimental work, was discussed in Section 6.5. Analysis of these errors is complex

and would presumably require some sophistication in numerical analysis.

The second direction for future work is to develop methods to reduce these errors. For example,

for heavy tailed densities truncation error can be reduced by using ‘exponential windowing’ methods

that pre-transform the marginals {q(ud|θd)} by an exponentially decaying function and then invert the

transform after convolution [Schaller and Temnov, 2008]. Reduced aliasing and discretisation error

could possibly also be achieved by constraining the class of base densities.

Another possible direction of work to increase the accuracy of the marginal evaluation and reduce

complexity of this computation is to consider discretisations performed in the Fourier domain. For ex-

ample, it might be possible to construct a discrete approximation directly on q̃(y), as defined in equation

(6.3.2), and numerically invert that approximation. Such a procedure, if feasible, could possibly reduce

the effects of discretisation and aliasing error whilst reducing the computational complexity.



106

Chapter 7

Summary and conclusions

Latent linear models are widely used and form the backbone of many machine learning and computa-

tional statistics methods. Latent linear models are employed principally for their simplicity and repre-

sentational power. As discussed in Chapter 2, performing inference in this model class has numerous

advantages over simple point estimation techniques. However, beyond the most simple, fully Gaussian

latent linear models, exact analytic forms for the inferential quantities of interest can rarely be derived

and so approximations are required. One approach to approximate inference is to use sampling based

methods such as Monte Carlo Markov chain. Whilst sampling techniques are widely applicable and

can be highly accurate, assessing convergence can be difficult. An alternative approach to approximate

inference is to use deterministic variational methods. Deterministic methods can exploit the highly struc-

tured form of the latent linear model class to provide relatively accurate approximate inferences quickly.

Often, speed and accuracy of inference are critical if we are to employ the latent linear model class in

real world applications. It is to this end that we seek to develop fast, accurate and widely applicable

deterministic approximate inference methods for latent linear models.

In Chapter 2 we briefly introduced, reviewed and motivated the need for and uses of the inferential

quantities p(w) and Z in latent linear models. In Chapter 3 we provided an introduction and overview of

the most commonly used deterministic approximate inference methods in the latent linear model class.

In chapters 4, 5 and 6 we presented our core contributions to this problem domain. Below we briefly

review and summarise these contributions.

7.1 Gaussian Kullback-Leibler approximate inference
In Chapter 4 we considered a method to obtain a Gaussian approximation to a latent linear model tar-

get density p(w), and a lower-bound on the target density’s normalisation constant Z, by minimising

the Kullback-Leibler divergence between the two distributions. We referred to this procedure as the

Gaussian Kullback-Leibler (G-KL) approximation. As we saw in Chapter 3, G-KL methods have been

known about for some time but have received comparatively little attention from the research community.

Principally this was because of the perceived computational complexity of G-KL procedures.

Previous authors advocated optimising the G-KL bound using a particular constrained form of co-

variance which we described in Section 4.3.1.1. However, as discussed in Chapter 4, this parameterisa-
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tion requires multiple cubic matrix operations to evaluate the G-KL bound and its derivative and renders

the bound non-concave. Thus G-KL procedures using this parameterisation are both inefficient and un-

scalable. In Chapter 4 we showed that these problems can be addressed by parameterising the G-KL

bound with respect to the Cholesky decomposition of covariance. For Cholesky parameterisations of

G-KL covariance we showed that bound and gradient computations could be performed more efficiently

and that the bound was concave for this parameterisation. Furthermore, we provided constrained pa-

rameterisations of covariance that made the G-KL method scalable. These developments make G-KL

approximate inference methods one of the most efficient and scalable deterministic Gaussian approxi-

mate inference methods in the latent linear model class. As our numerical experiments in Chapter 5 show,

G-KL procedures are highly competitive compared to other deterministic Gaussian approximations with

regards to accuracy, speed and scalability.

As we saw in Chapter 3, many deterministic approximate inference methods provide a Gaussian

approximation to the target density and at least two other methods, local variational bounding and mean

field bounding, provide a lower bound on Z. Each of these methods differ, however, in the restrictions

they place on the non-Gaussian potentials of the latent linear model, the speed and scalability properties

of their optimisation procedures and the accuracy of their approximations. Local Variational Bounding

(LVB) and G-KL methods provide a Gaussian approximation the target density, approximate the full

covariance structure of the target and provide a lower-bound to the target’s normalisation constant Z.

Under which circumstances then, if any, should one of these methods be preferred over the other? Prior

to our contributions, with regards to accuracy of inference, the answer to this question was unclear, and

with regards to speed and scalability the answer was that LVB should be preferred. Previous empirical

work suggested that the G-KL approach could be more accurate than LVB but was found to be much

more computationally demanding. However, as we showed in Section 4.4.1, the G-KL procedure’s

lower-bound is guaranteed to dominate that provided by the LVB procedure. Furthermore, following our

contributions, the results we provide in Chapter 5 show that G-KL procedures can be made as fast and

as scalable as LVB methods in a range of problems, whilst also often dominating this method in terms

of accuracy.

The primary strength of G-KL procedures is the ease with which they can be implemented and ap-

plied to new latent linear models. The only restriction G-KL methods place on the latent linear model, as

described in Section 2.3, is that each of its non-Gaussian potentials {φn} has unbounded support. Unlike

the Laplace approximation, G-KL does not require that the target is twice continuously differentiable.

Unlike local variational bounding methods, G-KL does not require that each potential is super-Gaussian.

Unlike expectation propagation methods, G-KL is numerically stable and does not require that each po-

tential is log-concave. Unlike mean field methods, G-KL procedures can be applied to problems that do

not satisfy the restrictive factorisation structure
∏
n φn(wThn) =

∏
d φd(wd). Indeed all that is required

to apply G-KL methods to a linear model with a new potential function (that has unbounded support) is

that we can numerically compute 〈log φ(z)〉 for z univariate normally distributed. For most potentials of

practical interest this is equivalent to requiring that log φ(z) can be efficiently evaluated pointwise. G-
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KL methods do not require the derivation or construction of novel bounds, derivatives or expectations for

each new potential function considered. Despite the simplicity and ease of implementation of the G-KL

procedure, our results confirm that it is also one of the most accurate deterministic Gaussian approximate

inference methods.

To aid future development and research into G-KL procedures and other areas we have developed

and released the vgaiMatlab package. The vgai package implements G-KL approximate inference for

the latent linear model class using the methods proposed in this thesis. The vgai package is described

in Appendix B.8 and can be downloaded from mloss.org/software/view/308/.

7.2 Affine independent Kullback-Leibler approximate inference
As we saw in Chapter 3, the majority of popular deterministic approximate inference methods construct

a coarse, highly structured approximation to the target density, namely a delta function approximation,

a fully factorised approximation or a multivariate Gaussian approximation. However, in some contexts

it may be important to more accurately approximate the finer structure of the target density. In such a

setting we may be willing to sacrifice speed in exchange for increased accuracy of inference. It was

this motivation, combined with the successes that had been achieved with Gaussian Kullback-Leibler

procedures, that lead us to develop techniques to expand the class of variational approximating densities

beyond the multivariate Gaussian.

Previous approaches to increasing the accuracy of deterministic approximate inference methods

focused on using mixture densities to approximate the target density – see the discussion presented in

Section 3.10. Deterministic mixture model approximations can be obtained using either mixture mean

field methods or split variational inference methods. Mixture mean field methods optimise the KL lower-

bound on Z with respect to q(w) a mixture. To do this an additional bound on the entropy of the mixture

density is required to make the computations tractable. Whilst increasing the representational power of

the approximating density, this approach further weakens the bound on Z and requires the computation

of O
(
K2
)

expectations to evaluate the bound on the entropy and, so, can be quite slow, where K is the

number of mixture components. Split variational inference is implemented using a double loop algorithm

that requiresK mean field or G-KL optimisations for the inner loop and optimises the soft partition of the

integral domain in the outer loop. Due to this double loop structure, split variational inference methods

may also be quite slow.

In Chapter 6 we proposed to optimise the KL divergence over a class of multivariate densities

that are constructed as the affine transformation of a fully factorised density – the Affine Independent

density class. To make the Affine Independent KL (AI-KL) approximation tractable we developed a

novel efficient numerical procedure, using the Fast Fourier Transform, to evaluate and optimise the KL

bound. The resulting AI-KL variational inference procedure can be interpreted as a means to learn the

basis of a factorising mean field like approximation.

Since the Gaussian is a special case of the AI density class, the AI-KL method is guaranteed to

provide approximate inferences at least as good as standard G-KL procedures, and thus also local varia-

tional bounding methods. The numerical results we provided showed that the AI-KL approach is able to

mloss.org/software/view/308/
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capture non-Gaussian properties of target densities and consequently make more accurate inferences and

predictions. Additionally, if required, the AI-KL procedure can be used in conjunction with the mixture

mean field and split variational procedures to improve the accuracy of those methods in latent linear

model inference problems.
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Appendix A

Useful results

In this appendix we present general results that are made use of throughout the thesis: in Appendix A.1

we present information theoretic results and definitions, in Appendix A.2 we present results for Gaussian

distributed random variables, in Appendix A.3 we introduce the expectation maximisation algorithm and

log likelihood gradient ascent techniques to perform parameter estimation in latent variable models, in

Appendix A.4 we briefly introduce the exponential family, in Appendix A.5 we provide equations for

each of the potential functions used in this thesis and implemented in the vgai G-KL approximate

inference Matlab package, in Appendix A.6 we provide various identities from linear algebra.

A.1 Information theory
Below we define both the differential Shannon entropy and the differential Kullback-Leibler divergence.

Additional results regarding these quantities can be found in Cover and Thomas [1991].

A.1.1 Entropy

Shannon’s entropy is a measure of the uncertainty of a random variable. For a continuous random

variable w with density function p(w), Shannon’s differential entropy is defined as

H[p(w)] := −
∫
W
p(w) log p(w)dw,

where W denotes the support of p(w) such that W :=
{
w ∈ RD|p(w) > 0

}
. Unlike the discrete

entropy of a discrete random variable, the differential entropy is unbounded and can be either positive or

negative.

Linear transformation. If we linearly transform the continuous random variable w such that w̃ =

Aw + b, with A ∈ RD×D non-singular and b ∈ RD, it is easy to show that the entropy of w̃ can be

expressed as

H[p(w̃)] = H[p(w)] + log |det (A) |.

A.1.2 Conditional entropy

The conditional entropy is a measure of the uncertainty of one random variable conditioned on another.

For a joint density p(w,v), the conditional differential entropy of w given v is defined as

H[p(w|v)] := −
∫ ∫

p(w,v) log p(w|v)dvdw =

∫
p(v)H[p(w|v)]dv.
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The conditional entropy is upper bounded by the marginal entropy such that H[p(w|v)] ≤ H[p(w)],

with equality if and only if w and v are independent.

A.1.3 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence, otherwise termed the relative entropy, is a measure the statistical

difference between to random variables. The KL divergence is discussed at greater depth in Section 3.2.

For the probability density functions p(w) and q(w) the differential KL divergence is defined as

KL(q(w)|p(w)) =

∫
W
q(w) log

q(w)

p(w)
dw,

where W denotes the support of q(w). Note that the KL divergence can only be finite provided the

support of q(w) is contained in the support of p(w).

The KL divergence between two multivariate Gaussian density functions q(w) = N
(
w|µq,Σq

)
and p(w) = N

(
w|µp,Σp

)
is given by the equality

2KL(q(w)|p(w)) = trace
(
Σ−1
p Σq

)
+ (µp − µq)

TΣ−1
p (µp − µq)−D

+ log det (Σp) − log det (Σq) .

A.2 Gaussian random variables
Gaussian random variables have various unique analytic and computational properties versus other con-

tinuous unbounded random variables. Below we introduce the univariate and multivariate Gaussian

forms and describe some of the results that we make use of throughout the thesis. We note that ‘Gaus-

sian’ and ‘normal’ are synonymous for the random variable described here.

A.2.1 Univariate Gaussian

For v ∈ R a univariate Gaussian standard normal (zero mean and unit variance) random variable, v ∼

N (0, 1), has its density function given by

p(v) =
1√
2π
e−

1
2 v

2

=: N (v|0, 1) .

The linear transformation of v such that w = σv + µ, with σ ∈ R+ and µ ∈ R fixed, is also Gaussian

distributed, the density of w is given by

p(w|µ, σ) =
1√

2πσ2
e−

(w−µ)2

2σ2 =: N
(
w|µ, σ2

)
,

where µ is the mean of w and σ2 is its variance.

The univariate Gaussian density N
(
w|µ, σ2

)
admits the gradients

∂

∂µ
N
(
w|µ, σ2

)
=

(w − µ)

σ2
N
(
w|µ, σ2

)
, and

∂

∂σ2
N
(
w|µ, σ2

)
=

(w − µ)2

σ4
N
(
w|µ, σ2

)
.

A.2.2 Multivariate Gaussian

The joint density of a collection ofD independent univariate Gaussian standard normal random variables

v := [v1, ..., vD]T is defined by the product of the D univariate densities such that

p(v1, ..., vD) =

D∏
d=1

1√
2π
e−v

2
d =

1

(2π)D/2
e−

1
2vTv = p(v) =: N (v|0, ID) .
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If we linearly transform v such that w = CTv+µ where C ∈ RD×D is non-singular and µ ∈ RD,

the density of w is given by

p(w|µ,C) =
1√

2πdet (Σ)
e−

1
2 (w−µ)Σ−1(w−µ) =: N (w|µ,Σ) ,

where we let Σ = CTC. Therefore Σ is positive definite, and so without loss of generality we can

restrict C to be upper-triangular with positive diagonal elements. For symmetric positive definite Σ

such that Σ = CTC, with C upper-triangular, then C is the unique Cholesky factorisation of Σ – see

Appendix A.6.1 for further details of this factorisation.

Whitening data. The converse of the result above provides a means to ‘whiten’ data. For multivariate

Gaussian random variables x ∼ N (µ,Σ) the data can be ‘whitened’ by transforming it such that

x̃ = C−T (x− µ). Having performed this transformation, x̃ ∼ N (0, ID). Whitening, is often used as

a data pre-processing step to remove correlation from a set of covariates D = {xn}Nn=1 with Σ and µ

approximated using their empirical estimates.

Products and quotients of Gaussian densities. The product of two multivariate Gaussian densities is

an unnormalised Gaussian density. Defining the product

N (w|µ1,Σ1)N (w|µ2,Σ2) = ZN (w|µ,Σ) ,

then we have:

Σ =
(
Σ−1

1 + Σ−1
2

)−1
, µ = Σ

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
, and Z = N (µ1|µ2,Σ) .

The equations above can be used to derive moments of the Gaussian defined by the quotient

N (w|µ,Σ) ∝ N (w|µ1,Σ1) /N (w|µ2,Σ2) that is required, for example, when calculating Gaus-

sian cavity densities during Gaussian expectation propagation optimisation procedures – see Section

3.6.

Normalisation constant. An exponentiated quadratic potential defined as

φ(w) ∝ e− 1
2wTAw+wTb, (A.2.1)

with A ∈ RD×D symmetric positive definite and b ∈ RD, defines an unnormalised multivariate Gaus-

sian density. The normalisation constant of p(w) = φ(w)/Z can be evaluated by completing the square

in the exponent of equation (A.2.1) and equating terms with the multivariate Gaussian. Doing so we see

that

p(w) = N
(
w|A−1b,A−1

)
, and Z :=

∫
e−

1
2wTAw+wTbdw = det (2πA)

1
2 e

1
2bTA−1b.

Independencies. Zeros in the covariance matrix of a multivariate Gaussian density encode marginal in-

dependence relations, such that wi is marginally independent of wj iff Σij = 0. Zeros in the precision

matrix of a multivariate Gaussian density, where the precision matrix is defined as Γ := Σ−1, encode

conditional independence relations, so that wi is independent of wj conditioned on the remaining vari-

ables w\{i,j} iff Γij = 0.
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A.2.3 Gaussian inference

For a multivariate Gaussian density p(w) := N (w|µ,Σ), if we re-order and partition the variables w

such that wT =
[
wT

1 ,w
T
2

]
, and similarly shuffle the parameters µ and Σ according to the same index

partition so that µT =
[
µT

1,µ
T
2

]
and

Σ =

 Σ11 Σ12

Σ21 Σ22

 ,
then marginals such as p(w1) and conditionals such as p(w1|w2) are Gaussian densities also. Below we

specify the mean and covariance for these Gaussian marginal and conditional densities.

Gaussian marginal. The density of the marginal p(w1) is multivariate Gaussian with

p(w1) =

∫
p(w)dw2 = N (w1|µ1,Σ11) .

Gaussian conditional. The density of w1 conditioned on w2 is multivariate Gaussian with

p(w1|w2) = N
(
w1|µ1 + Σ12Σ

−1
22 (w2 − µ2) ,Σ11 −Σ12Σ

−1
22 Σ21

)
.

A.2.4 Gaussian expectations

For multivariate Gaussian random variables, w ∼ N (µ,Σ), the expectations of many functions f(w),

〈f(w)〉N (w|µ,Σ), admit compact analytic forms. Below we give a few examples of such functions that

we make use of in the thesis.

Quadratic

For f(w) a quadratic in w, such that f(w) := wTAw + bTw, its Gaussian expectation with respect to

N (w|µ,Σ) given by〈
wTAw + bTw

〉
N (w|µ,Σ)

= µTAµ + trace (AΣ) + bTµ.

Non-Gaussian univariate potential

For f(w) a site projection potential such that f(w) = g(wTh) where g : R → R and h ∈ RD a

fixed vector, the expectation
〈
g(wTh)

〉
N (w|µ,Σ)

can be expressed as a univariate expectation such that〈
g(wTh)

〉
N (w|µ,Σ)

= 〈g(y)〉N (y|µTh,hTΣh). This result is relied upon to derive efficient Gaussian KL

bound evaluation and optimisation routines in Chapter 4. The result is originally due to Barber and

Bishop [1998b], we present it here for clarity of exposition.

We start by showing that the D-dimensional expectation
〈
g(wTh)

〉
N (w|µ,Σ)

can be expressed as a

univariate integral by making the substitution g(wTh) =
∫
δ(y −wTh)g(y)dy〈

g(wTh)
〉
N (w|µ,Σ)

=

∫
N (w|µ,Σ) g(wTh)dw

=

∫
N (w|µ,Σ)

∫
δ(y −wTh)g(y)dydw

=

∫ ∫
N (w|µ,Σ) δ(y −wTh)dw︸ ︷︷ ︸

:=p(y)

g(y)dy.
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We now seek to show that p(y) = N
(
y|µTh,hTΣh

)
. First we make the substitution w = CTv + µ,

where C is the Cholesky decomposition of Σ such that Σ = CTC, to get

p(y) :=

∫
N (w|µ,Σ) δ(y −wTh)dw =

∫
N (v|0, I) δ(y − vTCh− µTh)dv.

We now define a basis in the vector space v with unit normal basis vectors {ed}Dd=1 such that e1 is

parallel to Ch so eT
1Ch = ‖Ch‖2 and eT

dCh = 0 when d 6= 1. SinceN (v|0, I) is isotropic the density

is invariant to orthonormal transformations N (v|0, I) =
∏D
d=1N

(
eT
dv|0, 1

)
and so

p(y) =

∫ D∏
d=1

N (vd|0, 1) δ(y −
D∑
d=1

vde
T
dCh− µTh)dv

=

∫
N (v1|0, 1) δ(y − v1e

T
1Ch− µTh)dv1

= N
(
y|µTh, ‖Ch‖22

)
= N

(
y|µTh,hTΣh

)
.

Entropy

Shannon’s differential entropy for multivariate Gaussian random variables, w ∼ N (µ,Σ), is defined as

the expectation of − logN (w|µ,Σ) and has the analytic form

H [N (w|µ,Σ)] := −
∫
N (w|µ,Σ) logN (w|µ,Σ) dw =

1

2
log det (2πeΣ) .

A.2.5 Gaussian density filter

Gaussian density filtering provides a means to approximate a density p(w) ∝ N (w|µ,Σ)
∏
n φ(wThn),

where φn are non-Gaussian potential functions, by a multivariate Gaussian N (w|m,S). The ap-

proximation is obtained by iteratively re-approximating the ‘tilted’ density defined as p̃(w) =

N (w|m,S)φ(wThn) until all the non-Gaussian sites
{
φn(wThn)

}N
n=1

have been ‘included’ in

N (w|m,S). The Gaussian N (w|m,S) is initialised with m = µ and S = Σ. The results pro-

vided below follow the presentations made in [Minka, 2004, Herbrich, 2005].

It can be shown, see for example Minka [2001a], that the first two moments of p̃(w) are given by

m̃ := 〈w〉p̃(w) = m + Sg,

S̃ :=
〈

(w −m)(w −m)T
〉
p̃(w)

= S− S
(
mmT − 2G

)
S, (A.2.2)

where the vector g and the matrix G are defined by

g :=
∂

∂m
logZ(h,m,S) = hα(h,m,S), and G :=

∂

∂S
logZ(h,m,S) = hhTγ(h,m,S),

where

Z(h,m,S) :=

∫
φ(y)N

(
y|m, s2

)
dy,

α(h,m,S) :=
1

Z(h,m,S)

∫ (
y −m
s2

)
φ(y)N

(
y|m, s2

)
dy,

γ(h,m,S) :=
1

Z(h,m,S)

∫ (
y −m
s2

)2

φ(y)N
(
y|m, s2

)
dy, (A.2.3)
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and m := mTh, s2 := hTSh.

Note that in many cases the univariate expectations defined in equation (A.2.3) will have compact

analytic forms. This is the case, for example, if φ(x) is a symmetric mixture of Heaviside step function

or if φ(x) is the standard normal cumulative distribution function. When these expectations can not be

evaluated analytically they can typically be computed efficiently using numerical integration routines

[Zoeter and Heskes, 2005].

Using the mean and covariance as defined in equation (A.2.2), Gaussian density filtering recursively

updates the approximating Gaussian moments by setting m ← m̃ and S ← S̃ until each non-Gaussian

potential
{
φn(wThn)

}
has been ‘included’ in the approximation N (w|m,S). The Gaussian density

filter is thus equivalent to a one pass sweep of the Gaussian EP updates – see Section 3.6.

A.3 Parameter estimation in latent variable models
In this section we present two approaches that are commonly used to perform parameter estimation

in latent variable models: the Expectation Maximisation (EM) algorithm and log-likelihood gradient

ascent. The EM and the gradient ascent procedures are closely related parameter estimation techniques

with various authors having advocated methods that blend or switch between the two techniques to

achieve more rapid convergence – for example see Jamshidian and Jennrich [1993], Salakhutdinov et al.

[2003].

We consider the general form for the likelihood of a latent variable model to be defined as

p(v|θ) =

∫
p(v,h|θ)dh,

where v ∈ RD denotes the visible variables, h ∈ RN denotes the hidden or latent variables and θ

is the set of parameters that we wish to optimise. Here we consider the special case where both the

visible and hidden variables are continuous, for discrete hidden variables the integrals over h should be

replaced by sums. The joint density p(v,h|θ) is often referred to as the complete likelihood. Here we

make the additional assumption that it can be naturally decomposed into the factorisation p(v,h|θ) =

p(v|h,θv)p(h|θh), where θT = [θT
v,θ

T
h].

For a dataset consisting of M data points, D = {vm}Mm=1, which are assumed independent and

identically distributed (i.i.d.) given the parameters of the model θ, the likelihood of the data is given by

the product

p(D|θ) =

M∏
m=1

p(vm|θ) =

M∏
m=1

∫
p(vm|hm,θv)p(hm|θh)dhm,

and the log likelihood of the data by the sum

log p(D|θ) =

M∑
m=1

log p(vm|θ) =

M∑
m=1

log

∫
p(vm|hm,θv)p(hm|θh)dhm. (A.3.1)

Due to the log integral structure of the data log-likelihood, it is typically not easy to directly optimise

equation (A.3.1) with respect to the parameters θ. Principally this is because the derivatives of equa-

tion (A.3.1) with respect to θ will not, typically, admit simple analytic forms. Below we present two

techniques that are often used to derive local optimisation procedures in latent variable models.
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Expectation maximisation

The Expectation Maximisation (EM) algorithm is a general technique that can be used to perform param-

eter optimisation in latent variable models [Dempster et al., 1977]. The EM algorithm can be interpreted

as a Kullback-Leibler lower-bound optimisation technique. To see this, first we consider the KL diver-

gence between p(h|v,θ) and a variational density q(h). Since KL(q(h)|p(h|v,θ)) is positive for all

densities q(h) it provides the lower-bound

log p(v|θ) ≥ H[q(h)]+ 〈log p(v,h|θ)〉q(h) = H[q(h)]+ 〈log p(v|h,θv)〉q(h) + 〈log p(h|θh)〉q(h) ,

where H[q(h)] is the differential entropy of q(h). Since the log-likelihood of each data point can be

bounded in this fashion, the log-likelihood of the data, equation (A.3.1), can be bounded using

log p(D|θ) ≥
M∑
m=1

H[q(hm)]︸ ︷︷ ︸
entropy

+ 〈log p(vm|hm,θv)〉q(hm) + 〈log p(hm|θh)〉q(hm)︸ ︷︷ ︸
energy

. (A.3.2)

The EM algorithm is an iterative, two stage, procedure to find a local optima of the log-likelihood. The

EM algorithm iterates between performing the E-step and the M-step optimisations described below until

convergence is achieved.

E-step During the E-step of the EM algorithm, equation (A.3.2) is optimised with respect to each of

the variational densities {q(hm)}Mm=1 with the parameters θ held fixed. Differentiating equation

(A.3.2) with respect to q(hm), equating the derivative to zero, and on imposing normalisation con-

straints on q(hm), we can see that equation (A.3.2) will be optimised when q(hm) = p(hm|vm,θ)

for allm = 1, . . . ,M . Updating each of the variational densities in this manner is the exact E-step

of the EM algorithm. Having performed an exact E-step, the bound in equation (A.3.2) saturates

and is equal to the log-likelihood of the data at that parameter setting θ.

M-step During the M-step of the EM algorithm, equation (A.3.2) is optimised with respect to the pa-

rameters θ with the variational densities {q(hm)}Mm=1 held fixed. Ignoring constants with respect

to the parameters θ in equation (A.3.2), defines the ‘energy’ contribution to the bound, E(θ) such

that

E(θ) =

M∑
m=1

〈log p(vm,hm|θ)〉q(hm) =

M∑
m=1

〈log p(vm|hm,θv)〉q(hm)+〈log p(hm|θh)〉q(hm) .

An exact M-step corresponds to updating θ := θ∗ where θ∗ = argmaxθE(θ). Often closed

forms expressions can be derived for the M-step update. However, if this is not the case numerical

procedures can also be used. Performing a partial M-step, where the parameters are updated to

a setting that increases but does not optimise the energy, is referred to as the generalised EM

algorithm. Both the generalised EM and the exact EM algorithm are guaranteed to increase the

log-likelihood after each EM iteration.
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Gradient ascent

The following well-known identity can be used to derive simple forms for the derivative of the log-

likelihood in latent variable models

∂

∂θ
log p(v|θ) =

1

p(v|θ)

∂

∂θ
p(v|θ) =

1

p(v|θ)

∫
∂

∂θ
p(v,h|θ)dh

=

∫
p(h|v,θ)

∂

∂θ
log p(v,h|θ)dh, (A.3.3)

where we have made use of the relation that (log f(x))
′

= f ′(x)/f(x). Thus evaluating the derivative,

as expressed on the right hand side of the equation above, requires the evaluation of the latent variable

conditional p(h|v,θ).

This identity can then be used to calculate the derivative of the log-likelihood of the data

∂

∂θ
log p(D|θ) =

M∑
m=1

〈
∂

∂θ
log p(vm,hm|θ)

〉
p(hm|vm,θ)

.

The derivative above can then be used to perform parameter estimation by gradient ascent of the log-

likelihood. Similarly to the E-step of the EM algorithm, at each iteration of the gradient ascent procedure

we need to infer the set of conditional densities {p(hm|vm,θ)}Mm=1.

Approximate EM algorithm

The EM algorithm can be relaxed by performing inexact E-steps. We refer to the EM algorithm with

a partial or approximated E-step as the approximate EM algorithm. If a partial E-step is performed by

optimising (but not maximising) equation (A.3.2) with respect to the variational densities {q(hm)}Mm=1

the approximate EM algorithm is guaranteed to increase the lower-bound on the log-likelihood but not

the log-likelihood itself. If the partial E-step is performed by updating the variational densities using

some other approximation, for example the Laplace approximation, the approximate EM algorithm is

not guaranteed to increase the log-likelihood or a lower bound on it.

A.4 Exponential family
A continuous random variable w is said to belong to the exponential family set of distributions if its

density function can be expressed as

p(w|η) = g(η)h(w) exp
(
ηTu(w)

)
, (A.4.1)

where η is a vector collecting all the parameters of the density and is referred to as the distributions

natural parameters. The function u(w) is a vector collecting the ‘sufficient statistics’ of the distribution

and the function g(η) ensures normalisation. Since the exponential family is linear with respect to the

parameters η and the sufficient statistics u(w) in the exponent of equation (A.4.1), many simple analytic

results can be derived for probabilistic models defined with respect to exponential family distributions.

For example, below we show that ∂
∂η − log g(η) = 〈u(w)〉p(w|η) which can be used to derive maximum

likelihood estimates to η and fixed point updates for expectation propagation approximate inference

routines – see Section 3.6.
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To see that the relation ∂
∂η − log g(η) = 〈u(w)〉p(w|η) holds we take the derivative of the identity∫

p(w|η)dw − 1 = 0 with respect to η, so that(
∂

∂η
g(η)

)∫
h(w) exp

(
ηTu(w)

)
dw = −g(η)

∫
u(w)h(w) exp

(
ηTu(w)

)
dw

∂

∂η
log g(η)

∫
g(η)h(w) exp

(
ηTu(w)

)
dw = −〈u(w)〉p(w|η)

where the last line above follows from making the substitution ∂
∂η g(η) = g(η) ∂

∂η log g(η).

A.5 Potential functions
In this section we provide explicit parametric forms for each of the potential functions considered in this

thesis and implemented in the vgai package. For each potential we give its moments and the deriva-

tive of the log density function which is required to implement the affine independent KL approximate

inference method presented in Chapter 6.

A.5.1 Logistic

For a logistic distributed random variable, v ∼ Logistic(m, s), we parameterise its density using

Logistic(v|m, s) :=
e−r

s (1 + e−r)
2 , where r :=

v −m
s

,

with location parameter m ∈ R and scale parameter s ∈ R+. The logistic density has moments: mean

〈v〉 = µ, variance var(v) = 1
3πσ

2, skew skw(v) = 0 and excess kurtosis kur(v) = 6
5 . The derivative of

the log density is given by

∂

∂v
log Logistic(v|m, s) = −1

s
+ 2

(
e−r

s(1 + e−r)

)
.

A.5.2 Laplace

For a Laplace distributed random variable, v ∼ Laplace(m, s), we parameterise its density using

Laplace(v|m, s) :=
1

2s
e−|r|, where r :=

v −m
s

,

with location parameter m ∈ R and scale parameter s ∈ R+. The Laplace density has moments: 〈v〉 =

µ, var(v) = 2s2, skw(v) = 0 and kur(v) = 3. The derivative of the log Laplace density is not defined

at its mean/mode. Excluding this point the derivative can be expressed using the sgn : R → {−1,+1}

function which returns the unit sign of its argument, so that

∂

∂v
log Laplace(v|m, s) =

−sgn(r)

s
.

Analytic Gaussian expectation of log Laplace potential. The Gaussian expectation of the logarithm

of a Laplace potential can be expressed analytically. Laplace potentials, as considered here, take the

product of site projections form. Accordingly, to perform G-KL approximate inference, we need only

evaluate the derivatives with respect to µ and σ2. We consider the case of a zero mean Laplace density,

p(wThn|s) = e−|w
Thn|/s/2s, giving

〈log p(z|s)〉N (z|µ,σ2) = 〈log p(µ+ zσ)〉z = − log(2s)− 1

s
〈|µ+ zσ|〉z . (A.5.1)
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Laplace potentials with non-zero mean, p(x) = e−|x−m|/s/s, can be calculated by making the trans-

formation µ′ = µ − m. Evaluating the last term of equation (A.5.1) above involves computing the

expectation of a rectified univariate Gaussian random variable,

〈|µ+ zσ|〉z =

(
2

π

) 1
2

σe−
1
2a

2
n + µ [1− 2Φ (−an)]

where Φ(x) =
∫ x
−∞N (t|0, 1) dt and a = µ/σ. The corresponding derivatives of which are

∂

∂µ
〈|µ+ zσ|〉 = 1− 2Φ (−a) ,

∂

∂σ2
〈|µ+ zσ|〉 =

a2 + 1√
2πσ2

e−
1
2a

2

− a2

σ
N (a|0, 1) .

A.5.3 Student’s t

For a Student’s t distributed random variable, v ∼ Student(ν,m, s), we parameterise its density using

Student(v|ν,m, s) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνs2

(
1 +

r2

ν

)− ν+1
2

, where r :=
v −m
s

,

with location parameter m ∈ R, degrees of freedom parameter ν ∈ R+, and scale parameter s ∈ R+.

The moments of this density are: 〈v〉 = µ for ν > 1, var(x) = σ2 ν
ν−2 for ν > 2, skw(v) = 0 for ν > 3,

and kur(v) = 6
ν−2 for ν > 4. The derivative of the log of the Student’s t density is given by

∂

∂v
log Student(v|ν,m, s) =

m

s

(
(ν + 1)r

ν + r2

)
.

A.5.4 Cauchy

For a Cauchy distributed random variable, v ∼ Cauchy(m, s), we parameterise its density using

Cauchy(v|m, s) =
1

πs (1 + r2)
, where r :=

v −m
s

with location parameter m ∈ R and scale s ∈ R+. For Cauchy distributed random variables the mean

and all higher order moments are undefined for all values of m, s. The derivative of the log Cauchy

density is given by

∂

∂v
log Cauchy(v|m, s) =

−2r

s(1 + r2)
.

A.5.5 Sigmoid : logit

The logistic sigmoid distribution for v a binary valued random variable, v ∈ {−1,+1}, is parameterised

using

p(v = +1|m) =
1

1 + e−m
=: σlogit(m),

with location parameter m ∈ R. The logistic sigmoid has the symmetry property that p(v = +1|m) =

1 − p(v = −1|m) so that p(v|m) = σlogit(vm) for v ∈ {−1,+1}. The derivative of the log of the

logistic sigmoid is given by

∂

∂m
log σlogit(m) = 1− σlogit(m).
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A.5.6 Sigmoid : probit

The probit sigmoid distribution for binary random variables v ∈ {−1,+1} is parameterised using

p(v = +1|m) =

∫ m

−∞
N (x|0, 1) dx = Φ(m) =: σprobit(m),

with location parameter m. The logistic probit again has the symmetry property that p(v = +1|m) =

1 − p(v = −1|m) so that p(v|m) = σprobit(vm) for y ∈ {−1,+1}. The derivative of the log sigmoid

probit function is given by

∂

∂m
log σprobit(m) =

N (m)

Φ(m)
,

where N (m) denotes the standard normal density evaluated at m.

A.5.7 Sigmoid : mixture of Heaviside step functions

As advocated in Hyun-Chul and Ghahramani [2006] a mixture of Heaviside step functions can be used as

a noise robust probability mass function for binary classification in latent linear models. The distribution

for binary random variables v ∈ {−1,+1} is parameterised using

p(v = +1|m, ε) =

ε, m < 0

1− ε, m ≥ 0

= (1− 2ε)I [m > 0] + ε =: σheavi(m)

where ε ∈ [0, 1
2 ) is a parameter specifying the label misclassification rate or noise and m ∈ R is a

location parameter. For this distribution the symmetry property holds such that p(v = −1|m, ε) =

1 − p(v = 1|m, ε) and so p(v|m, ε) = σheavi(vm). The derivative of the mixture heaviside sigmoid is

zero for all m 6= 0 and can be represented by the Dirac delta when we take its expectation

∂

∂m
log σheavi(m) = log

(
1− ε
ε

)
δ(m).

Analytic Gaussian expectation of log Heaviside mixture sigmoid. The univariate Gaussian expecta-

tion of the log sigmoid heaviside potential has a simple analytic expression. Below we present these

expectations, and their corresponding derivatives, for efficient evaluation of the G-KL bound.

〈log σheavi(z)〉N (z|µ,σ2) = log

(
ε

1− ε

)
Φ
(
−µ
σ

)
+ log(1− ε)

where Φ(z) :=
∫ z
−∞N (z|0, 1). Which admits the gradients

∂

∂µ
〈log σheavi(z)〉N (z|µ,σ2) = − log

(
1− ε
ε

)
N
(µ
σ

) 1

σ
,

∂

∂σ2
〈log σheavi(z)〉N (z|µ,σ2) = −1

2
log

(
1− ε
ε

)
N
(µ
σ

) µ

σ3
.

A.6 Matrix identities
Below we specify some of the core linear algebra matrix identities that are used throughout the thesis.

The results in this section are taken from Boyd and Vandenberghe [2004], Golub and Van Loan [1996].
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A.6.1 Cholesky factorisation

If S ∈ RD×D is a symmetric positive definite matrix then it can be uniquely factorised as S = CTC

where C ∈ RD×D is an upper-triangular non-singular matrix with positive diagonals. C is called the

Cholesky factorisation of S. Computing the Cholesky factorisation scales O
(

1
3D

3
)

and is generally a

very numerically stable procedure. Given the Cholesky factorisation of a symmetric positive definite

matrix S, various computations involving S can be performed at a reduced complexity than working

with S directly. Some of these techniques are:

• The Cholesky factorisation is the preferred method of solving the linear system Sx = b, since

x = C−1C−Tb and since C−1 is triangular, x can be evaluated by two back substitutions and so

scales O
(
2D2

)
.

• Once the Cholesky factorisation of S has been computed, the determinant det (S), and the log

determinant log det (S), can be evaluated inO (D) time since det (C) =
∏
d Cdd and so det (S) =

det (C)
2

=
∏
d C

2
dd.

• Efficient routines exist to perform rank one updates of Cholesky factorisations. Defining S′ :=

S + xxT, where we already have C such that S = CTC, then C′ the Cholesky factorisation of S′

can be computed in O
(
D2
)

time [Seeger, 2007].

A.6.2 LU factorisation

Every non-singular matrix A ∈ RD×D can be factorised as A = PLU, where P ∈ RD×D is a

permutation matrix, L ∈ RD×D is a lower triangular matrix and U ∈ RD×D is a upper-triangular

matrix. Such a factorisation is referred to as the LU factorisation. For general unstructured A computing

the LU factorisation scales O
(

2
3D

3
)
. Similarly to the Cholesky factorisation the LU factorisation can

be used to make computations with respect to A cheaper, some of these methods include:

• Solving the linear system Ax = b can be performed by sequential back substitutions: solve

Pz1 = b using z1 = PTb, then solve Lz2 = z1 by forward substitution, then solve Ux = z2

by back substitution. Thus, provided with the LU factorisation of A, solving the linear system

A−1x = b scales O
(
2D2

)
.

• The determinant of A can be computed inO (2D) time since det (A) = (−1)#rowdet (L) det (U) =

(−1)#row∏
d LddUdd, where #row denotes the number of row permutations defined by the per-

mutation P.

A.6.3 Matrix inversion lemma

The matrix inversion lemma, otherwise known as the Sherman-Morrison-Woodbury identity, provides a

means to potentially compute the inverse and determinant of a structured square matrix more efficiently

than direct evaluation. For square matrices A ∈ RD×D and Γ ∈ RN×N and matrices U,VT ∈ RD×N

then

(A + UΓV)
−1

= A−1 −A−1U
(
Γ−1 + VA−1U

)−1
VA−1. (A.6.1)
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Provided that N < D and A−1 can be efficiently computed, for example it is diagonal or banded, this

identity provides a possibly more efficient means to compute the inverse as expressed on the left hand

side of equation (A.6.1).

Matrix determinant lemma. This identity expressed in equation (A.6.1) can also by used to evaluate

the determinant of a matrix that satisfies the same factorisation structure. Specifically we have that

det (A + UΓV) = det (A) det (Γ) det
(
Γ−1 + VA−1U

)
. (A.6.2)

A.7 Deterministic approximation inference

A.7.1 Mean field equations

Following Csató et al. [2000], for a factorising approximation q(w) =
∏D
d=1 q(wd) we derive the mean

field updates for a target density of the form

p(w) =
1

Z
N (w|µ,Σ)

D∏
d=1

φd(wd).

Importantly the non-Gaussian potential factorises over the dimensions of w. The KL variational bound

for a target of this form and a the fully factorising approximation q(w) then takes the form

logZ ≥ BMF :=

D∑
d=1

−〈log q(wd)〉q(wd) + 〈logN (w|µ,Σ)〉∏
d q(wd) +

D∑
d=1

〈log φd(wd)〉q(wd) .

Considering the Gaussian potential’s contribution to the bound first

2 〈logN (w|µ,Σ)〉∏
d q(wd) = − log det (2πΣ)− µTΣ−1µ−

〈
wTΣ−1w

〉
+ 2 〈w〉Σ−1µ.

We let Λ = Σ−1 to ease notation,〈
wTΣ−1w

〉
=
∑
i

∫
q(wi)Λiiw

2
i dwi +

∫
q(w)

∑
i,j:i 6=j

wiwjΛijdw

=
∑
i

∫
w2
i q(wi)Λiidwi +

∑
i

∫
wiq(wi)

∑
j 6=i

∫
q(wj)wjΛijdwidwj

The functional derivative of this term with respect to q(wk) can be written as

∂

∂q(wk)

〈
wTΣ−1w

〉
= Λkkw

2
k + wk

∑
j 6=k

∫
wjq(wj)Λkjdwj .

Taking the functional derivative of the bound as a whole we get

∂

∂q(wk)
BMF = log q(wk) + log φk(wk) + wk [Λµ]k −

1

2
Λkkw

2
k − wk

∑
j 6=k

〈wj〉Λkj .

Equating the derivative above to zero and exponentiating we get

q(wk) ∝ φk(wk) exp

(
−wkak +

1

2
Λkkw

2
k

)
, where ak := − [Λµ]k +

∑
j 6=k

〈wj〉Λkj ,

which can be expressed as the following product of the site potential and a Gaussian

q(wk) =
1

Zk
φk(wk)N

(
wk

∣∣∣∣ akΛkk
,Λ−1

kk

)
. (A.7.1)
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Optimising the mean field bound BMF requires asynchronously updating each of the factors of the

factorising density as defined in equation (A.7.1). Whether the integrals required to define the moments

and the normalisation constant can be analytically computed depends on the analytic form of the potential

functions φk considered. We note that since all integrals are univariate they can be computed cheaply

using some univariate numerical integration procedure. In what follows we denote the moments mk :=∫
wkq(wk)dwk which is the kth element of the vector m and sk :=

∫
(wk −mk)2q(wk)dwk which is

the kth element of the the vector s.

Plugging the optimised factorising approximation q(w) defined by the factors in equation (A.7.1)

into the bound we get

BMF =
∑
d

H[q(wk)]− 1

2
log det (2πΣ)− 1

2
µTΣ−1µ− 1

2
sTdiag

(
Σ−1

)
− 1

2
mTΣ−1m

+
∑
d

〈log φd(wd)〉q(wd) ,

where the diag (·) operator constructs a column vector from the diagonal elements of a square matrix or

a diagonal matrix from a column vector.
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Appendix B

Gaussian KL approximate inference

In this appendix we present additional results concerning Gaussian Kullback-Liebler approximate infer-

ence methods that were the subject of Chapters 4 and 5. In Appendix B.1 we present various identities

required to efficiently evaluate and optimise the G-KL bound by gradient ascent. In Appendix B.2 we

discuss in greater depth the constrained subspace parameterisation of G-KL covariance. In Appendix

B.3 we provide conditions for which G-KL bound optimisation will exhibit quadratic convergence rates

using Newton’s method. In Appendix B.4 we present the computational complexity scaling figures of

G-KL bound and derivative evaluations for a range of potentials and parameterisations of covariance. In

Appendix B.5 we present a technique that can be used to reduce the complexity of inference problems

where the Gaussian potential has an unstructured covariance matrix. In Appendix B.6 we present various

details required to apply G-KL methods to Gaussian process models. In Appendix B.7 we present an

alternative derivation of the G-KL bound concavity result as originally published in Challis and Barber

[2011]. Finally in Appendix B.8 we present documentation for the G-KL approximate inference Matlab

package vgai.

B.1 G-KL bound and gradients

We present the G-KL bound and its gradient for Gaussian and generic site projection potentials with full

Cholesky and factor analysis parameterisations of G-KL covariance. Gradients for the chevron, banded

and sparse Cholesky covariance parameterisations are implemented simply by placing that Cholesky pa-

rameterisation’s sparsity mask on the full Cholesky gradient matrix. Subspace Cholesky G-KL gradients

and the associated optimisation procedures are discussed in Section B.2.

B.1.1 Entropy

For the Cholesky decomposition of covariance, S = CTC, the entropy term of the G-KL bound and its

gradient with respect to C are given by

−〈log q(w)〉q(w) =
D

2
log(2π) +

D

2
+

D∑
d=1

log(Cdd),

∂

∂Cij
− 〈log q(w)〉q(w) = δij

1

Cij
,



B.1. G-KL bound and gradients 125

where δij is the Kronecker delta. For the factor analysis (FA) parameterisation of G-KL covariance,

S = diag
(
d2
)

+ ΘΘT where d ∈ RD and Θ ∈ RD×K , the entropy is given by,

−〈log q(w)〉 =
D

2
log(2π) +

D

2
+
∑
d

log(dd) +
1

2
log det

(
IK×K + ΘTdiag

(
1

d2

)
Θ

)
,

admitting the gradients,

∂

∂d
〈log q(w)〉q(w) = 2d� diag

(
S−1

)
,

∂

∂Θ
〈log q(w)〉q(w) = 2S−1Θ.

Where � refers to taking the element wise product and diag () refers to either constructing a square

diagonal matrix from a column vector or forming a column vector from the diagonal elements of a

square matrix. Evaluating S−1 scales O
(
K2D

)
using the Woodbury matrix inversion identity:

S−1 = diag

(
1

d2

)
− diag

(
1

d2

)
Θ

(
IK×K + ΘTdiag

(
1

d2

)
Θ

)−1

ΘTdiag

(
1

d2

)
.

B.1.2 Site projection potentials

Each site projection potential’s contribution to the G-KL bound can be expressed as

In :=
〈

log φn(wThn)
〉

= 〈log φn(y)〉N (y|mn,s2n) = 〈log φn(mn + zsn)〉N (z|0,1) ,

where mn = hT
nm and s2

n = hT
nShn. In order that general potentials of this form can be easily imple-

mented for different functions φn we present the gradients according to their chain rule decomposition,

∂In
∂m

=
∂In
∂mn

∂mn

∂m
and

∂In
∂C

=
∂In
∂s2
n

∂s2
n

∂C
. (B.1.1)

Expressing In and its derivative as an expectation with respect to the standard normal density renders

the implementation of numerical integration routines simpler and avoids having to derive the potential

functions derivative. Doing so, In and its derivatives are given by:

In =

∫
N (z|0, 1) log φn(mn + zsn)dz,

∂In
∂mn

=

∫
zN (z|0, 1)

log φn(mn + zsn)

sn
dz,

∂In
∂s2
n

=

∫ (
z2 − 1

)
N (z|0, 1)

log φn(mn + zsn)

2s2
n

dz.

The partial derivatives of mn = hT
nm and s2

n = hT
nShn are

∂mn

∂m
= hn, and

∂s2
n

∂C
= 2triu

(
ChnhT

n

)
,

where triu (·) is a sparsity mask such that elements below the diagonal are fixed to zero. For FA param-

eterisations we have

∂s2
n

∂d
= 2h2

n � d, and
∂s2
n

∂Θ
= 2hnhT

nΘ.
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B.1.3 Gaussian potentials

For a Gaussian potential N (w|µ,Σ) the log expectation is given by

〈logN (w|µ,Σ)〉q(w) = −1

2

[
log det (2πΣ) + (m− µ)

T
Σ−1 (m− µ) + trace

(
Σ−1S

)]
.

Derivatives with respect to the mean and covariance are

∂

∂m
〈logN (w|µ,Σ)〉 = Σ−1 (µ−m) , and

∂

∂C
〈logN (w|µ,Σ)〉 = −triu

(
CΣ−1

)
.

For the FA covariance structure we have,

∂

∂d
〈logN (w|µ,Σ)〉 = −diag

(
Σ−1

)
� d, and

∂

∂Θ
〈logN (w|µ,Σ)〉 = −Σ−1Θ.

Gaussian likelihoods

Linear models with additive Gaussian noise have a likelihood potential that can be expressed as

N
(
y|HTw,Σ

)
where H ∈ RD×N and y ∈ RN . In this setting typically we assume isotropic noise

Σ = ν2I and so present gradients for this case only. The expectation of the log of this term has the

following algebraic from〈
logN

(
y|HTw, ν2I

)〉
= −1

2

[
N log(2πν2) +

1

ν2

〈(
y −HTw

)T (
y −HTw

)〉]
, (B.1.2)

where the expectation of the quadratic can be expressed as〈(
y −HTw

)T (
y −HTw

)〉
= yTy − 2yTHTm +

∑
ij

[CH]
2
ij +

∑
i

[
HTm

]2
i
.

Equation (B.1.2) admits the gradients:

∂

∂m

〈
logN

(
y|HTw, ν2I

)〉
=

1

ν2

(
yTHT −HHTm

)
,

∂

∂C

〈
logN

(
y|HTw, ν2I

)〉
= − 1

ν2
triu

(
CHHT

)
.

For the FA parameterised covariance we have〈(
y −HTw

)T (
y −HTw

)〉
= yTy − 2yTHTm +

∑
i

[
HTm

]2
i

+
∑
ij

[
ΘTHT

]2
ij

+
∑
j

(∑
i

H2
ji

)
d2
j

with corresponding gradients:

∂

∂dj

〈
logN

(
y|HTw, ν2I

)〉
= − 1

ν2

(∑
i

H2
ji

)
dj ,

∂

∂Θ

〈
logN

(
y|Mw, ν2I

)〉
= − 1

ν2
HHTΘ.

Gaussian potentials as site projections

The Gaussian potential N (w|µ,Σ) can be equivalently expressed as a product of D site projection

potentials. To see this we use the Cholesky factorisation of the precision matrix Σ−1 = PTP. Making
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this substitution, we see that

N (w|µ,Σ) ∝ e− 1
2 (w−µ)TPTP(w−µ) = e−

1
2‖P(w−µ)‖22 =

D∏
d=1

e−
1
2 (pT

d(w−µ))
2

, (B.1.3)

where the vector pd is the dth row vector of P, that is pd := Pd,:. Thus Equation B.1.3 is a product of

D site projections with potential function φd(x) ∝ e− 1
2x

2

.

B.2 Subspace covariance decomposition
We consider optimising the G-KL bound with respect to a covariance matrix parameterised on a subspace

of the parameters w ∈ RD. Letting E = [E1,E2] be a matrix of orthonormal vectors that span RD such

that ET
1E1 = IK×K and ET

2E2 = IL×L where L := D −K, then we may parameterise the covariance

as

S′ = ESET = [E1,E2] S [E1,E2]
T
,

which is equivalent to making an orthonormal transformation in the space of parameters w using E.

If we restrict S to be block diagonal, S = blkdiag (S1,S2) where S1 is K-dimensional and S2 is L

dimensional, we can write S′ as the sum

S′ = E1S1E
T
1 + E2S2E

T
2.

Since E is orthonormal it does not effect the value or gradient of the entropy’s contribution to the bound

since log det (S) = log det (S′). Provided the Gaussian potential has spherical covariance, Σ = ν2I,

then E does not effect its contribution the G-KL bound since

trace
(
Σ−1S′

)
=

1

ν2
trace

(
ESET

)
=

1

ν2
trace (S) .

Thus we are left to evaluate the projected variance terms
{
s2
n

}N
n=1

required to evaluate the product of

site potentials contribution. For S block diagonal with the second block component spherical, S2 = c2I,

the orthonormal basis vectors E2 do not need to be computed or maintained since

s2
n = hT

nS′hn = hT
nE1S1E

T
1hn + c2hT

nE2E
T
2hn = hT

nE1S1E
T
1hn + c2

(
‖hn‖22 − ‖ET

1hn‖2
)
.

We seek to optimise the G-KL bound with respect to the subspace parameterised variational Gaus-

sian by iterating between optimising the bound with respect to the parameters {m,C1, c} and updating

the subspace basis vectors E1. In Section B.2.1 we present the gradients required to optimise the G-

KL bound with respect to {m,C1, c}. In Section B.2.2 and B.2.3 we present two different methods to

optimise the subspace basis E1.

B.2.1 Subspace Cholesky G-KL bound gradients

In this subsection we present the subspace Cholesky G-KL bound gradients. The subspace covariance

matrix is given by S = E1C
T
1C1E

T
1 + c2E2E

T
2 , where C1 ∈ RK×K is a Cholesky matrix, c ∈ R+

and D = K + L. Since E2 does not occur in the expressions presented below, in what follows we

omit subscripts and denote E1 and C1 as E and C. We reiterate that we assumer here that the Gaussian
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potential has spherical covariance Σ = ν2I. The G-KL bound for the subspace Cholesky covariance

parameterisation is given by

BG-KL(m,C, c,E) =
D

2
log (2π) +

D

2
+

K∑
k=1

log (Ckk) + L log(c)

− D

2
log
(
2πν2

)
− 1

ν2

[
‖m− µ‖22 + trace

(
CTC

)
+ Lc2

]
+

N∑
n=1

〈log φn(mn + zsn)〉N (z|0,1) .

The gradient of the G-KL entropy’s contribution to the bound is

∂

∂Cij
− 〈log q(w)〉 = δij

1

Cij
, and

∂

∂c
− 〈log q(w)〉 =

L

c
.

The Gaussian potential’s contribution to the G-KL bound admits the gradients:

∂

∂C

〈
logN

(
w|µ, ν2I

)〉
= − 1

ν2
C, and

∂

∂c

〈
logN

(
w|µ, ν2I

)〉
= −Lc

ν2
.

The site projection potential’s contribution to the G-KL bound is computed as in Section B.1.2 but with

the partial derivatives of s2
n with respect to C and c:

∂s2
n

∂C
= 2triu

(
Ch̃nh̃T

n

)
,

∂s2
n

∂c
= 2c

(
‖hn‖22 − ‖h̃n‖22

)
,

where h̃n := EThn.

B.2.2 Subspace optimisation : projected gradient ascent

One route to finding good subspace vectors E1 is to directly optimise the bound with respect to them.

Again we omit subscripts since E2 makes no contribution to the expressions below. Optimisation is

complicated by the fact that we require E to be orthonormal, i.e. we require that ETE = IK×K . The

set of all such orthonormal vectors forms a smooth manifold in RD×K . A crude but simple approach

to optimising the bound with respect to E is projected gradient ascent – after each gradient step we

orthonormalise the updated basis:

Enew := orth
[
E + α

∂

∂E
BG-KL(m,C,E, c)

]
where orth [·] denotes an orthonormalisation operator, implemented for instance using a Gram-Schmidt

procedure or the singular value decomposition, and α is a parameter controlling the gradient step size.

As described above, when Σ = ν2I, the only term in the G-KL bound that depends on E are the

site projection potential functions
〈
log φn(wThn)

〉
. The derivative of the bound then with respect to E

is given by

∂

∂E
BG-KL (m,C,E, c) =

∑
n

∂

∂s2
n

〈log φ(mn + zsn)〉 ∂s
2
n

∂E
,

where the partial derivative with respect to s2
n is given in Section B.1.2 and

∂s2
n

∂E
=

∂

∂E
hT
nECTCEThn = 2CTCEThnhT

n.
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B.2.3 Subspace optimisation : fixed point iteration

Another route to optimising the subspace vectors E is to use the form for optimal G-KL covariance

matrix as presented in Section 4.3.1.1. Using this method, once we have optimised the bound with

respect to {m,C1, c} we update the subspace vectors E to be the leading K eigen vectors of S as

defined in equation (B.2.1). Whilst this procedure is not guaranteed to increase the bound in experiments

it has yielded strong performance – see the results presented in Chapter 5.

For problems where the Gaussian potential has isotropic variance, Σ = ν2I, the form for the

optimal G-KL inverse covariance, equation (4.3.1), simplifies to

S−1 =
1

ν2
I + HΓHT, (B.2.1)

where Γ is defined in equation (4.3.2) of Section 4.3.2. We now consider two routes to updating the

subspace vectors E. First, we consider an approximate eigen decomposition method suitable for smaller

non-sparse problems. Second, we consider an iterative Lanczos method better suited to larger sparse

problems.

Approximate eigen decomposition. One route to possibly recovering the K leading eigenvectors of S

is to evaluate the K smallest eigenvectors of 1
ν2 I + HΓHT. We note that HΓHT ≈ HΓ′HT where

Γ′nn = Γnn if Γnn > δ and zero otherwise - we set δ small enough such that there are K non-zero

diagonal elements Γ′. If we now calculate the eigen decomposition to HΓ′HT = EΛET we see that[
1

ν2
I + HΓ′HT

]−1

= Ediag

(
ν2

1 + λ′nnν
2

)
ET.

For L � D we can evaluate the L eigenvectors of HΓ′HT cheaply since the eigenvalues of XXT

coincide with the eigenvalues of XTX1. Therefore approximating the K dimensional subspace eigen

decomposition reduces to the complexity of decomposing a K × K matrix. If δ is small enough this

method can often outperform approximate iterative decompositions provided the data is non-sparse and

of moderate dimensionality.

Iterative Lanczos methods. Iterative Lanczos methods can approximately recover the eigen vectors cor-

responding to the largest and smallest eigen values of a matrix. General details about Lanczos methods

can be found in Golub and Van Loan [1996], for the special case of covariance matrices of the form

equation (B.2.1) details are provided in Seeger [2010]. Iterative Lanczos methods are fast provided the

number of eigen vectors we wish to recover is not too large and matrix vector products can be computed

efficiently – for example when the matrix has some special structure or is sparse.

B.3 Newton’s method convergence rate conditions
Sufficient conditions under which optimising BG-KL(m,C) using Newtons method will exhibit

quadratic convergence rates are that BG-KL(m,C) is twice continuously differentiable, strongly con-

cave, has closed sublevel sets and has Lipschitz continuous Hessians on the sublevel sets [Boyd and

Vandenberghe, 2004, section 9.5.3]. In Section 4.2.2 we showed that if all φn are log-concave then the

1To see this consider the eigen equation for XTXE = EΛ thus XXTXE = XEΛ.
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bound is strongly concave in m,C. In this section we provide conditions for which the other require-

ments hold. We consider G-KL inference problems of the form defined in Section 2.3 with {φn}Nn=1

site projection potentials that are piecewise exponentiated quadratics, log-concave and have unbounded

support on R. Specifically, we show that the required properties hold for potential functions that can be

written

φ(x) :=

I∑
i=0

I [x ∈ (li, li+1)] exp(aix
2 + bix+ ci),

where −∞ = l0 < l1, ..., lI+1 = ∞ and I [·] is an indicator function equal to one when its argument is

true and zero otherwise. Note that φ(x) need not be continuous and can have jump discontinuities at the

partition points lk. For such functions we have that log φ(x) =
∑I
i=0 I [x ∈ (li, li+1)] aix

2 + bix+ ci.

Continuously differentiable. The expectation of such potentials can then be expressed as a sum of

integrals each over a disjoint domain〈
log φ(wTh)

〉
=

I∑
i=0

∫ li+1

li

N
(
z|m, s2

)
aiz

2 + biz + cidz, (B.3.1)

where m = mTh and s2 = ‖Ch‖22. Each integral on the right hand side of equation (B.3.1) has a

known analytic form which depends on terms of up to order 2 in m, s, standard normal density functions

and cumulative density functions – see Marlin et al. [2011], Herbrich [2005] for their explicit forms and

derivatives w.r.t. m, s. As an example, and to make this more concrete, we give the truncated expectation

of just the quadratic term aiz
2 below∫ li+1

li

aiz
2N
(
z|m, s2

)
dz

= ai

[
s2
(
l̃iN (l̃i)− l̃i+1N (l̃i+1)

)
+
(
s2 +m2

) (
Φ(l̃i+1)− Φ(l̃i)

)]
,

where l̃i := (li − m)/s, N (x) is the standard normal density function and Φ(x) the standard normal

cumulative distribution function. The truncated Gaussian expectation of the linear, biz, and the constant,

ci, terms have similar simpler analytic expressions.

We note that the standard normal density function and the standard normal cumulative density

function are both smooth. Thus the expectation in equation (B.3.1) is the sum of smooth functions w.r.t.

the parameters m, s. Therefore equation (B.3.1) as a function of m,C is the composition of a function

that is smooth in m, s and the functions m = mTh and s2 = ‖Ch‖22 that are smooth in m,C. By the

chain rule, we see that
〈
log φ(wTh)

〉
is smooth with respect to m,C.

By Lebesgues dominated convergence theorem, we expect the differentiability of
〈
log φ(wTh)

〉
to hold for a much broader class of potentials φ than the piecewise exponentiated quadratic class of

functions considered here.

G-KL sublevel sets are closed. The G-KL sublevel sets, S, are defined

S :=
{
m ∈ RD,C ∈ RD×Dchol |B(m,C) ≥ B(m0,C0)

}
, (B.3.2)

where m0,C0 are the moments that the G-KL bound optimisation procedure is initialised with and

RD×DChol is the set of D ×D upper triangular Cholesky matrices with strictly positive diagonals. Impor-

tantly S is closed since the G-KL bound is a closed function – which is a sufficient condition [Boyd and
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Vandenberghe, 2004, p.471]. A function f : RD → R with dom(f) open is closed iff f converges to

−∞ along every sequence converging to a boundary point of dom(f) [Boyd and Vandenberghe, 2004,

p.640]. The G-KL bound is closed since it is the sum of the entropic term (which up to a constant is

equal to
∑
d log(Cdd)), a negative quadratic in m,C, and

〈
log φ(wTh)

〉
(proven to be jointly concave

in m,C). Thus for any sequence of moments {mk,Ck} that converges to the boundary of the G-KL

domain we have BG-KL(mk,Ck) converging to −∞.

G-KL Lipschitz continuous Hessians. We say the Hessian of f is Lipschitz continuous on S if there

exists a constant L ≥ 0 such that ∀x,y ∈ S

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2. (B.3.3)

An equivalent condition is that the Hessian has bounded and continuous derivatives on S. Since the

bound is continuously differentiable, since the sublevel sets are closed and since the entropys contribution

to the bound ensures that s2 is bounded below by a positive constant this property holds.

B.4 Complexity of bound and gradient computations
To perform G-KL approximate inference we optimise the G-KL bound, equation (4.1.1), by gradient

ascent. In this section we consider the computational scaling properties of single evaluations of the bound

and its gradient. We consider each term that depends on the variational parameters m and S separately,

namely: log det (S) from the entropy’s contribution, trace
(
Σ−1S

)
and mTΣ−1m from the Gaussian

potential’s contribution, and
{
mn, s

2
n

}N
n=1

from the product of site projection potential’s contribution.

The G-KL covariance parameterisations we consider are: full Cholesky, diagonal Cholesky, banded

Cholesky with bandwidth B, chevron Cholesky with K non-diagonal rows, subspace Cholesky with

K dimensional subspace, sparse Cholesky with DK non-zeros, and factor analysis (FA) with K factor

loading vectors. We report only the leading scaling terms and assume, for the sake of clarity, that

N ≥ D ≥ K,B where N is the number of site factors and D is the dimensionality of the parameter

vector w. In the last column we report the complexity figures required to compute the projected Gaussian

moments {mn, s
2
n}Nn=1 where mn = mThn, s2

n = ‖Chn‖22, and nnz : RD → N is a function that

counts the number of non-zero elements in a vector.

log det (S) trace
(
Σ−1S

)
mTΣ−1m {mn, s

2
n}Nn=1

Σ - iso Σ - diag Σ - full Σ - iso Σ - diag Σ - full nnz(h) = D nnz(h) = L

Cfull O (D) O
(
D2
)

O
(
D2
)

O
(
D3
)

O (D) O (D) O
(
D2
)

O
(
ND2

)
O (NDL)

Cdiag O (D) O (D) O (D) O (D) O (D) O (D) O
(
D2
)

O (ND) O (NL)

Cband O (D) O (DB) O (DB) O
(
D2B

)
O (D) O (D) O

(
D2
)

O (NDB) O (NLB)

Cchev O (D) O (DK) O (DK) O
(
D2K

)
O (D) O (D) O

(
D2
)

O (NDK) O (NLK)

Csub O (K) O (DK) O (DK) O
(
K3
)

O (D) O (D) O
(
D2
)

O
(
NK2

)
O
(
NK2

)
Cspar O (D) O (DK) O (DK) O

(
D2K

)
O (D) O (D) O

(
D2
)

O (NDK) O (NLK)

SFA O
(
D2K

)
O (DK) O (DK) O

(
KD2

)
O (D) O (D) O

(
D2
)

O (NDK) O (NLK)

B.5 Transformation of Basis
When the model’s Gaussian potential,N (w|µ,Σ), has a full unstructured covariance matrix optimising

the G-KL bound can sometimes be made less expensive by linearly transforming the basis of the param-



B.6. Gaussian process regression 132

eters m and C. To do this, essentially we hard code the information contributed to the posterior from

the Gaussian potential into our G-KL parameters. That is we parameterise m and C using

C = C̃P and m = PTm̃ + µ, (B.5.1)

where P is the Cholesky decomposition of the prior covariance Σ = PTP. Using this parameterisation

each term of the G-KL bound simplifies such that:

−〈log q(w)〉 = log det
(
C̃
)

+ log det (P) +
D

2
log (2π) +

D

2
,

2 〈logN (w|µ,Σ)〉 = −D log (2π)−D − 2 log det (P)− m̃Tm̃− trace
(
C̃TC̃

)
,〈

ψ(wTh)
〉

=

∫
N (z|0, 1)ψ(m+ zs)dz,

where m := m̃Th̃ + µTh, s := ‖C̃h̃‖22 and h̃ := Ph. Combining these terms the G-KL bound as a

whole can be expressed as

B(m,C) = B̃(m̃, C̃) =
∑
d

log
(
C̃dd

)
− 1

2
m̃Tm̃− 1

2

∑
ij

C̃2
ij +

∑
n

〈log φn (mn + zsn)〉N (z|0,1) .

We are free then to optimise the transformed G-KL bound, B̃(m̃, C̃), just with respect to m̃, C̃ at a

reduced cost. For a model with a full covariance Gaussian potential and non-sparse H = [h1, ...,hN ]

computing the bound and gradient of B̃(m̃, C̃) scales O
(
D2 +ND2

)
whereas computing the bound

and gradient of the untransformed bound scales O
(
D3 +ND2

)
– see the table in Appendix B.4.

This procedure requires some pre-processing – namely the Cholesky decomposition of Σ and the

‘whitening’ of the dataset H̃ = PH which scale O
(
D3
)

and O
(
ND2

)
respectively. And some post-

processing – the final G-KL moments m and C are obtained using equations (B.5.1) which require a

matrix-vector and a matrix-matrix product which scale O
(
D2
)

and O
(
D3
)

respectively.

Since during optimisation the bound and its gradient are usually computed many more times that

twice, the basis transformation procedure detailed above will result in a significant computational saving.

Note that this procedure can speed up G-KL bound optimisation only in settings where hn are not sparse.

For example Gaussian process regression models, where hn are standard normal basis vectors, will not

benefit from this reparameterisation since h̃n = Phn are not in general sparse.

B.6 Gaussian process regression
In this section we present some simple identities and approximations required to apply G-KL approxi-

mate inference to Gaussian process models. First we show how predictive densities can be approximated

upon having approximated the posterior on the training data. Secondly we show how the G-KL bound’s

covariance hyperparameter derivatives can be computed for the Gaussian process model.

B.6.1 Predictive density

A Gaussian approximation to the posterior density on the latent function values of the training data may

be used to obtain an approximation to the predictive density of the latent function value for a new test

point. The GP predictive density to the target variable y∗ for a new input x∗ is defined by the integral

p(y∗|x∗,X,y) =

∫
p(y∗|w∗)p(w∗|X,y,x∗)dw∗. (B.6.1)
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The distribution on the test point latent function value, p(w∗|X,y,x∗), is approximated by marginal-

ising out the training set latent variables using our Gaussian approximate posterior, N (w|m,S) ≈

p(w|X,y,θ), giving

p(w∗|X,y,x∗) =

∫
p(w∗|w,X,x∗)p(w|y,X)dw (B.6.2)

=

∫
N
(
w∗|σT

∗Σ
−1w, σ∗∗ − σT

∗Σ
−1σ∗

)
p(w|y,X)dw (B.6.3)

≈
∫
N
(
w∗|σT

∗Σ
−1w, σ∗∗ − σT

∗Σ
−1σ∗

)
N (w|m,S) dw (B.6.4)

= N
(
w∗|σT

∗Σ
−1m, σ∗∗ − σT

∗Σ
−1σ∗ + σT

∗Σ
−1SΣ−1σ∗

)
, (B.6.5)

where σ∗ and σ∗∗ are the prior covariance and variance terms of the test data point x∗. The elements

of σ∗ are calculated by evaluating the covariance function, k(x,x′), between the each of the training

covariates test point covariate such that [σ∗]m = k(xm,x∗) and σ∗∗ = k(x∗,x∗).

B.6.2 Hyperparameter optimisation

For a general likelihood p(y|w) =
∏N
n=1 φn(wn) and GP prior N (w|0,Σ) with covariance function

Σmn = k(xm,xn) we get the G-KL bound

BG-KL(m,C) =
D

2
+
∑
n

logCnn −
1

2
log det (Σ)− 1

2
mTΣ−1m− 1

2
trace

(
Σ−1S

)
+
∑
n

〈
log φ(mn + z

√
Snn)

〉
N (z|0,1)

. (B.6.6)

Taking the derivative of the above expression with respect to the covariance hyperparameters θ we get

∂BG-KL

∂θ
= −1

2
trace

(
Σ−1 ∂Σ

∂θ

)
+

1

2
mTΣ−1 ∂Σ

∂θ
Σ−1m+

1

2
trace

(
CΣ−1 ∂Σ

∂θ
Σ−1C

)
. (B.6.7)

Note that m and C implicitly depend on the covariance hyperparameters θ. However, cross terms such

as

∂BG-KL

∂m

∂m

∂θ
or

∂BG-KL

∂C

∂C

∂θ
(B.6.8)

do not contribute to equation (B.6.7) at the optimum of the G-KL bound since the gradients of BG-KL

with respect to m or C are zero at this point. Therefore, to evaluate the gradient of BG-KL with respect

to the covariance hyperparameters first the G-KL bound is optimised with respect to m,C with θ fixed,

then at that optimum we use equation (B.6.7) to calculate the derivative with respect to θ.

B.7 Original concavity derivation
The concavity proof presented in Section 4.2.2 is due to Michalis Titsias, which provides a cleaner

presentation of the original result we made in Challis and Barber [2011]. For completeness, below we

present our original derivation.

For log-concave potentials φ(x) we show that the G-KL bound BG-KL(m,S), equation (4.1.1), is

jointly concave with respect to the variational Gaussian parameters m and C where C is the Cholesky

decomposition of the covariance such that S = CTC.
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Since the bound depends on the logarithm of φ, without loss of generality we may take N = 1, and

on ignoring constants with respect to m and S, we have that

BG-KL(m,C)
c.
=
∑
i

logCii−
1

2
mTΣ−1m+µTΣ−1m−1

2
trace

(
Σ−1CTC

)
+
〈

log φ(wTh)
〉

(B.7.1)

Excluding
〈
log φ(wTh)

〉
from the expression above, all terms are concave functions exclusively in either

m or C. Since the sum of concave functions on distinct variables is jointly concave, these terms represent

a jointly concave contribution. To complete the proof we therefore need to show that
〈
log φ(wTh)

〉
is

jointly concave in m and C. We first transform variables to write
〈
log φ(wTh)

〉
as

〈log φ(a)〉N (a|mTh,hTSh) = 〈ψ(µ(m) + zσ(C))〉z (B.7.2)

where 〈·〉z refers to taking the expectation with respect to the standard normal N (z|0, 1) and, µ(m) :=

mTh, σ(C) :=
√

hTCTCh and ψ := log φ. Note that establishing the concavity of equation (B.7.2) is

non-trivial since the function ψ(µ(m) + zσ(C)) is itself not jointly concave in C and m.

For ease of notation we let σ′ := vec
(
∂σ(C)
∂C

)
, where vec (X) is the vector obtained by concate-

nating the columns of X, with dimension D2; σ′′ := ∂2σ(C)
∂C is the Hessian of σ with respect to C with

dimension D2 × D2; µ′ := ∂µ(m)
∂m is a column vector with dimension D. Then the Hessian of ψ with

respect to m and C can be expressed in the following block matrix form

H[ψ] =

 ∂2ψ
∂C

∂2ψ
∂C∂m

∂2ψ
∂m∂C

∂2ψ
∂m

 =

 ψ′′z2σ′σ′
T

+ ψ′zσ′′ ψ′′zσ′µ′
T

ψ′′zµ′σ′
T

ψ′′µ′µ′
T


The Hessian of 〈ψ(µ(m) + zσ(C))〉z is equivalent to 〈H[ψ(µ(m) + zσ(C))]〉z , which we now show

to be negative semi-definite. Since the expectation in 〈H[ψ(µ(m) + zσ(C))]〉z is with respect to an

even Gaussian density function, provided that for all γ ≥ 0, the combined Hessian defined as

Hz=−γ [ψ] +Hz=+γ [ψ] � 0 (B.7.3)

is negative definite then the expectation of H[ψ] with respect to z is negative definite. To show this we

first note that for all u ∈ RD2

and v ∈ RD u

v

T

H[ψ]

 u

v

 = ψ′′
[
vTµ′ + zuTσ′

]2
+ ψ′zuTσ′′u

The first term of the right hand side is negative for all values of z since ψ′′(x) ≤ 0. To show that equation

(B.7.3) is satisfied it is sufficient to show that

(ψ′(µ+ γσ)− ψ′(µ− γσ)) γuTσ′′u ≤ 0

which is true since σ′′ � 0, σ(C) ≥ 0 and because ψ′(x) is a decreasing function from the assumed

log-concavity of φ.

To see that σ′′ � 0 we write, σ2(C) =
∑
j g

2
j (C) where gj(C) = |

∑
i hiCij | is convex and

non-negative for all j. For convex and non-negative functions gj and p > 1, then
(∑W

j=1 gj(x)p
)1/p

is

convex [Boyd and Vandenberghe, 2004], which reveals that σ(C) is convex on setting p = 2.
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B.8 vgai documentation
A Matlab implementation of the G-KL approximate inference methods described in this thesis is publicly

available via the mloss.org website at mloss.org/software/view/308/. The vgai package im-

plements G-KL approximate inference for latent linear models of the form described in Section 2.3. The

toolbox includes implementations of a selection of non-Gaussian site-projection potentials – see Table

B.1. Generic non-Gaussian site-projection potentials are supported if an implementation of ψ : R → R

where ψ := log φ is provided. The package implements the constrained concave parameterisations of co-

variance discussed in Section 4.3.1.3 and the factor analysis parameterisation. G-KL bound optimisation

is achieved in the vgai implementation using Mark Schmidt’s minFunc optimisation package.2

B.8.1 Code structure

The vgai package has two core data structures that define the G-KL approximate inference problem: the

vg Matlab struct which specifies the properties of the Gaussian approximation to the target density,

and the pots Matlab cell of stucts which specifies the intractable target density. Below we review

how each of these data structures must be defined and used in the vgai Matlab package.

Specifying the Gaussian approximation : vg

The vg structure is used to store and specify the variational Gaussian approximation, q(w) =

N (w|m,S), to the target density p(w). The Gaussian variational density q(w) = N (w|m,S), with

w ∈ RD the parameters of interest and m ∈ RD, S ∈ RD×D the Gaussian’s mean and covariance, is

stored and specified as a Matlab struct variable with the following fields:

vg.dim Is an integer D that specifies the dimension of the parameter vector w (and thus also the

dimensionality of m,S). There is no default value for this field – the user must set its value before

optimising the G-KL bound.

vg.m Is a D× 1 column vector specifying the G-KL mean m. Unless specified its default initialisation

is the zero vector.

vg.param Is a string that specifies which parameterisation of G-KL covariance is used. Its default set-

ting is ’full’ corresponding to the full Cholesky parameterisation. The constrained parameteri-

sations can be specified using: ’band’ for a banded Cholesky, ’chev’ for a chevron Cholesky,

’sub’ for subspace Cholesky and ’fa’ for a factor analysis parameterised covariance. The

additional fields associated with each of these parameterisations are described below:

full S = CTC with C an upper-triangular Cholesky matrix. C is stored and accessed as vg.c.

The default initialisation for C is the identity matrix.

band S = CT
BandCBand where CBand is an upper-triangular banded Cholesky matrix with

bandwidth K. The banded diagonal elements are stored in a tall matrix such that

[Cband]i,j = [B]j,j−i+1 if 0 < j − i < K otherwise [Cband]i,j = 0. Banded Cholesky

2The minFunc optimisation package can be downloaded from www.di.ens.fr/˜mschmidt/Software/minFunc.

html.

mloss.org/software/view/308/
www.di.ens.fr/~mschmidt/Software/minFunc.html
www.di.ens.fr/~mschmidt/Software/minFunc.html
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covariances require the bandwidth K to be specified in the field vg.bw. The matrix B is

specified using the field vg.b. The default initialisation corresponds to setting Cband to the

identity matrix.

chev S = CT
chevCchev . A chevron Cholesky matrix with K non-diagonal rows is defined such

that [Cchev]ij = [Θ]i,j if j ≤ i ≤ K, or [Cchev]ij = di if i = j or zero otherwise. The

number of non-diagonal rows K needs to be specified in the field vg.k. ΘT is stored in the

field vg.t. The default initialisation corresponds to setting Cchev to the identity matrix.

sub S = E1C
TCET

1 + c2E2E
T
2 , where E1 ∈ RD×K is the orthonormal subspace basis vec-

tors such that ET
1E1 = IK×K , C ∈ RK×K is the subspace Cholesky matrix, c2 is the

off-subspace isotropic variance and E2 refers to the off-subspace basis vectors that do not

need to be computed or maintained (as explained in Appendix B.2). The subspace parame-

terisation of covariance requires the specification of K the ‘rank’ of the parameterisation in

the field vg.k. The field vg.cs stores the K ×K subspace Cholesky matrix C, the field

vg.ci stores the off-subspace isotropic standard deviation c, and vg.es stores the D×K

orthonormal subspace basis vectors E1. The default initialisation is C = IK×K , c = 1 and

E1 is constructed as a vertical concatenation of K-dimensional identity matrices.

fa S = ΘΘT + diag
(
d2
)

where Θ ∈ RD×K and d ∈ RD×1. The factor analysis parameteri-

sation of covariance requires the ‘rank’ K of the parameterisation to be specified in the field

vg.k. The matrix Θ is stored in the field vg.t and the column vector d is stored in the

field vg.d. The default initialisation is d = 1 and Θ constructed as a vertical concatenation

of IK×K matrices.

Specifying the inference problem : pots

We consider solving inference problems where the target density p(w) can be defined by the product

p(w) =
1

Z

M∏
m=1

φm(w), (B.8.1)

where each factor φm(w) is itself a product of site-projection potentials or is a multivariate Gaussian

potential such that:

φm(w) :=

Nm∏
n=1

φn(wThmn ), or φm(w) := N
(
HmTw|µ,Σ

)
.

In this section we refer each factor φm(w) as a group potential. To enforce consistency between the

Gaussian and the non-Gaussian group potentials we define Hm := [hm1 , . . . ,h
m
Nm

] ∈ RD×Nm . The

Gaussian group potential defined above has mean µ ∈ RNm and covariance Σ ∈ RNm×Nm .

To specify an inference problem of the form of equation (B.8.1) in the vgai package we use the

pots variable which is a cell of structs. The mth element of the pots cell is a pot struct

which defines the mth group potential φm(w). In the Bayesian generalised linear models considered in

this thesis typically M = 2, where φ1(w) describes the collection of potentials that define the prior and

the second group potential φ2(w) describes the collection of potentials that define the likelihood. Below

we show how either a Gaussian or a non-Gaussian site-projection group potential can be defined.
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Group potential : product of site-projection potentials. For φm(w) :=
∏Nm
n=1 φ(wThmn ) we define

the mth element of the pots cell using pots{m}=pot, where pot is a Matlab struct with the

following fields:

pot.type User specified string that has to be set to the value ’prodPhi’.

pot.dim User specified two element row vector such that pot.dim(1) = D the dimensionality of

w and pot.dim(2) = Nm the number of site-projection potentials.

pot.logphi User specified function handle to the function that evaluates log φ(x). For example for

a logistic regression likelihood this should be set to pot.logphi=@log siglogit.

pot.params Optional structure of parameters that is passed to the function that evaluates log φ(x) :

R→ R. Default value is null.

pot.logphi c Optional user specified function that evaluates normalisation constants of potential

functions that are constant when taking the log potential’s expectation with respect to w. This

function must take only the pot.params struct as its argument. The returned value is added

to each evaluation of log φ. The default value is the zero function.

pot.numint Optional user specified structure that defines the numerical integration procedure used

to evaluate the site-projection potential expectations.

Group potential : multivariate Gaussian potential. For φm(w) := N
(
HmTw|µ,Σ

)
a multivariate

Gaussian potential we define the mth element of the pots cell using pots{m}=pot, where pot is

defined using the fields:

pot.type User specified string that has to be set to the value ’gaussian’.

pot.dim User specified two element row vector such that pot.dim(1) = D the dimensionality of

w and pot.dim(2) = Nm such that Hm ∈ RD×Nm .

pot.H This field defines the Hm ∈ RD×Nm matrix. If D = Nm then this field is optional with its

default value the D-dimensional identity matrix. If D 6= Nm this field must be specified by the

user.

pot.mu Vector specifying the Nm × 1 Gaussian mean vector µ. Default value is the zero vector.

pot.cov Optional specification of the Gaussian Nm ×Nm covariance matrix. This field can be spec-

ified by a scalar which corresponds to a scaling of the identity matrix, an Nm × 1 column vector

which corresponds to a diagonal covariance, or a full Nm ×Nm covariance matrix.

Demo code : Bayesian logistic regression
The following short Matlab script generates some synthetic data, defines the G-KL inference problem
and performs G-KL approximate inference using the vgai package.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROBLEM PARAMETERS

D = 100; % data dimension

Ntrn = 200; % no. of training instances

Ntst = 500; % no. of test instances

nu = 0.2; % fraction of miss labeled data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GENERATE SYNTHETIC DATA

wtr = randn(D,1); % true data generating weight vector

X = randn(D,Ntrn+Ntst); % covariates X(d,n) ˜ N(0,1)

Y = sign(X’*wtr); % class labels y_n \in {-1,1}

flipy = rand(Ntrn+Ntst,1)<nu; Y(flipy)=-Y(flipy); % add label noise

Xtrn=X(:,1:Ntrn); Xtst=X(:,Ntrn+1:end); % training test split

Ytrn=Y(1:Ntrn); Ytst=Y(Ntrn+1:end);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEFINE THE INFERENCE PROBLEM

% Potential 1 is the Gaussian distributed prior on the weights:

% pot{1} := \prod_d N(w_d|0,1).

%

% vgai assumes a default Gaussian mean = 0 and identity covariance

% matrix.

pot{1}.type = ’gaussian’;

pot{1}.dim = [D D];

%

% Potential 2 is the likelihood:

% pot{2} := \prod_nˆN p(y_n|x_n,w),

% where p(y_n|w’*x_n)=sig(y_n*w’*x_n) and sig(x) is the logistic

% sigmoid function sig(x)=1./(1+exp(-x)).

pot{2}.type = ’prodPhi’;

pot{2}.logphi = @log_siglogit; % :=log phi(x). where x=w’*h_n

pot{2}.dim = [D Ntrn];

pot{2}.H = bsxfun(@times,Xtrn,Ytrn’);% H = [h_1,...,h_(n-1),h_n]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PERFORM G-KL APPROXIMATE INFERENCE

% Define the vg structure.

vgo.dim=D; % specify dimension of variational Gaussian

[vg logZBoundTrace] = vgopt(pot,vgo); % optimise the G-KL bound

Demo code : sparse latent linear model

The following short Matlab script generates some synthetic data from a sparse latent linear model and

then performs G-KL approximate inference.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROBLEM PARAMETERS

D = 50; % data dimension

D0 = 20; % no. of zeros in weight vector used to sample data

Ntrn = D; % no. training instances

Ntst = 500; % no. of test instances
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Potential function Matlab name Evaluation method Parameters Section ref.

Logistic(v|m, s) logistic numeric m,s Section A.5.1

Laplace(v|m, s) laplace analytic m,s Section A.5.2

Student(v|ν,m, s) stut numeric m,s,nu Section A.5.3

Cauchy(v|m, s) cauchy numeric m,s Section A.5.4

σlogit(m) siglogit numeric Section A.5.5

σprobit(m) sigprobit numeric Section A.5.6

σheavi(m) sigheavi analytic eps Section A.5.7

Table B.1: A list of potential functions implemented in the vgai package.

s2 = 0.01; % observation noise variance

tau = 1./sqrt(2); % Laplace prior variance

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GENERATE SYNTHETIC DATA

wtr = randn(D,1); % sample data generating weight vector

wtr(1:D0)=0; wtr=wtr(randperm(D));

X = randn(D,Ntrn+Ntst); % sample observation matrix X(d,n) ˜ N(0,1)

Y = X’*wtr + sqrt(s2).*randn(Ntrn+Ntst,1); % y_n ˜ N(w’*x_n|0,s2)

Xtrn=X(:,1:Ntrn); Xtst=X(:,Ntrn+1:end); % training test split

Ytrn=Y(1:Ntrn); Ytst=Y(Ntrn+1:end);

%%%%%%%%%%%%%%%%%%%%%%%%% SPARSE LINEAR MODEL WITH A STUDENT’S T PRIOR

% Potential 1 is the sparse Laplace prior on the weight vectors w:

% pot{1} := \prod_d phi_d(w_d),

% where phi_d := 1/(2*tau_d) eˆ(-|w_d|/tau_d)

pot{1}.type = ’prodPhi’; % define the potential type.

pot{1}.int = ’analytic’; % integral is performed analytically.

pot{1}.explogphi = @exp_log_laplace; % :=<log phi(mu_n+z*sigma_n)>_N(w|m,S)

pot{1}.dim = [D D];

pot{1}.params.tau= tau; % gives unit variance.

% Potential 2 is the Gaussian likelihood:

% pot{2} := N(y|H’*w,sˆ2)

pot{2}.type = ’gaussian’;

pot{2}.H = Xtrn;

pot{2}.mu = Ytrn;

pot{2}.dim = [D Ntrn];

pot{2}.cov = s2; % isotropic gaussian covariance

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PERFORM G-KL APPROXIMATE INFERENCE

vg_full.dim = D; % Need to specify dim. of variational Gaussian.

[vg logZTrace]=vgopt(pot,vg_full); % optimise the gkl bound.
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Appendix C

Affine independent KL approximate inference

C.1 AI-KL bound and gradients
In this section we describe how to efficiently numerically evaluate the AI-KL bound and associated

gradients with respect to the parameters A = LU,b and θ.

C.1.1 Entropy

The entropy’s contribution to the AI-KL bound can be written as

H [qw(w|A,b,θ)] = log |det (A)|+
D∑
d=1

H [qvd(vd|θd)] , (C.1.1)

where H [q(vd|θd)] is the univariate differential entropy of the base density qvd(vd|θd). The partial

derivatives of equation (C.1.1) with respect to A are given by

∂

∂A
H [qw(w|A,b,θ)] = A−T.

The derivatives of each of the marginal base density’s entropies, H [q(vd|θd)], depend on the parametric

form of the chosen base density qvd(vd|θd) and the parameter θd only. For the results presented in

Chapter 6, only two base densities were used: the skew-normal and the generalised-normal. The entropy

and respective derivatives of these base distributions are presented in Section A.5.

For the LU parameterised bound, such that A = LU with L lower-triangular and U upper-

triangular matrices, we have

log |det (A)| =
D∑
d=1

logLdd + logUdd.

Thus the partial derivatives of the entropy with respect to L and U are given by

∂

∂Lmn
H [qw(w|A,b,θ)] = δmn

1

Lmn
, and

∂

∂Umn
H [qw(w|A,b,θ)] = δmn

1

Umn
,

where δmn is the Kronecker delta.

C.1.2 Site projection potentials

In the main text we showed that the expectation of ψ
(
hTw

)
with respect to qw(w|A,b,θ) can be

efficiently computed by using the FFT. In this section first we review this result making clear each step

of the derivation. Second, we show how the derivatives of
〈
ψ
(
hTw

)〉
with respect to A,b,θ can also

be efficiently computed.
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Computing the expectation

The expectation
〈
ψ(hTw)

〉
qw(w)

for ψ : R → R some non-linear non-quadratic function, h ∈

RD some fixed vector and qw(w|A,b,θ) an AI density is equivalent to the univariate expectation

〈ψ(y)〉qy(y) where the density qy(y) can be expressed as the convolution of the scaled base densities

{qud(ud|θd)}Dd=1. To show this, first we write the expectation of ψ(hTw) with respect to qw(w|A,b,θ)

as an expectation with respect to qv(v),〈
ψ
(
hTw

)〉
qw(w)

=

∫
ψ
(
hTw

)
qw(w)dw =

∫
ψ
(
hTAv + hTb

)
qv(v)dv, (C.1.2)

above, and in what follows, to simplify notation we omit the conditional terms A,b,θ from the AI

density qw(w|A,b,θ). The last equality in equation (C.1.2) is obtained by making the substitution

w = Av + b. Again, for a cleaner notation, in what follows we let α = ATh and β = hTb. We now

substitute ψ(αTv+β) =
∫
δ(y−αTv−β)ψ(y)dy, where δ(x) is the Dirac delta function, into equation

(C.1.2) to give us〈
ψ
(
wTh

)〉
qw(w)

=

∫
ψ(y)

∫ ∏
d

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy = 〈ψ(y)〉qy(y) . (C.1.3)

In equation (C.1.3) above qy(y) is the density of the random variable y defined as the linear projection

of the random variables v such that y = αTv + β. Thus the univariate marginal density qy(y) is defined

by the integral

qy(y) :=

∫
δ
(
y −αTv − β

)∏
d

qvd(vd|θd)dv.

Whilst this integral is generally intractable we can make the substitution δ(x) =
∫
e2πitxdt to give us

qy(y) =

∫ ∫
e2πit(y−αTv−β)

∏
d

qvd(vd|θd)dvdt (C.1.4)

=

∫
e2πitye−2πitβ

∏
d

∫
e−2πitαdvdqvd(vd|θd)dvddt. (C.1.5)

We now inspect each term in equation (C.1.5). First we consider an individual factor of the group

product:∫
qvd(vd)e

−2πitαdvddvd =
1

|αd|

∫
qvd

(
ud
αd

)
e−2πituddud

=

∫
qud (ud|θd) e−2πituddud =: q̃ud(t),

where the first equality above comes from making the substitution ud = αdvd. This substitution defines

the univariate density qud(ud|θd) = 1
|αd|qvd( udαd |θd). Thus each factor of the group product in equation

(C.1.5) is the Fourier transform of the density qud(ud|θd). The e−2πitβ factor corresponds to the Fourier

transform of a delta mean shift δ(y − β). Putting this together, equation (C.1.5) can be interpreted as

the inverse Fourier transform of the product of the Fourier transforms of {qud(ud|θd)}Dd=1 and of the β

mean shift. Algebraically this gives us an expression for the marginal qy(y) in the form

qy(y) =

∫
e2πitye−2πitβ

∏
d

q̃ud(t)dt. (C.1.6)
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This result is a reworking of the D-fold convolution theorem for probability densities. We provide the

derivation here so that it may form the basis of subsequent derivations required to evaluate the AI-KL

bound’s derivatives as univariate integrals.

Numerical evaluation

Since only in very special cases we have simple analytic forms for the univariate density qy(y) we resort

to numerical methods to evaluate it. To do so we evaluate equation (C.1.6) replacing {qud(ud|θd)}Dd=1

with their discrete lattice approximations {q̂ud(ud|θd)}Dd=1. We now show that making this substitution

results in q̂y(y) as defined in equation(2.6) which can be efficiently computed by utilising the FFT

algorithm.

First, we must define the set of lattice points used to evaluate the discrete approximate densities

{q̂ud(ud|θd)}Dd=1. The user defines the number of lattice points K ∈ N according to their computational

budget or accuracy requirements. The accuracy can be roughly assessed by computing the difference in

the expectation using K and 2K lattice points. The lattice end points are chosen such that [l1, lK ] =

[−νσy, νσy] where σy is the standard deviation of the random variable y given by σ2
y =

∑
d α

2
dvar(vd).

ν is a user defined parameter, in our experiments we set ν = 6 and double K until the bound value

changes by less than 10−3. The lattice points [l1, ..., lK ] are evenly spaced such that ∆ = lk+1 − lk is

constant for all k.

The continuous Fourier transform of the lattice density q̂ud(ud|θd) takes the form

˜̂qud(t) :=

∫
e−2πitud q̂ud(ud|θd)dud =

K∑
k=1

πdke
−2πitlk .

Taking the inverse Fourier transform of the product of these transforms, as q(y) is defined in equation

(C.1.6), we get

q̂y(y) =

∫
e2πit(y−β)

∏
d

K∑
kd=1

πdkde
−2πitlkddt

=
∑

[k1,...,kD]

∫
e2πit(y−β−

∑
d lkd)

∏
d

πdkddt

=
∑

[k1,...,kD]

δ

(
y − β −

∑
d

lkd

)∏
d

πdkd , (C.1.7)

where the sum over [k1, ..., kD] in equation (C.1.7) refers to the sum over the KD permutations of the D

dimensional cartesian product of lattice point indices [k1, ..., kD]. We note that lkd = lk, the subscript is

only to distinguish the different permutations of the sum.

Equation(C.1.7) describes a mixture of delta distributions and is the exact result from computing the

convolution of the lattice approximate densities by means of the continuous Fourier transform. Impor-

tantly, the KD mixtures in equation (C.1.7) collapse to just DK distinct delta points since lk are evenly

spaced.

When D = 2:

q̂y(y) =

K∑
j=1

K∑
k=1

π1jπ2kδ(y − β − lj − lk). (C.1.8)
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We can see from equation (C.1.8) above that q̂y(y) is a mixture of 2K delta densities evenly spaced at

lattice points [2l1, ..., 2lK ],

q̂y(y) =

2K∑
n=1

ρnδ(y − β − ln)

for suitably defined ρ. For a single lattice point lm,

ρm =
∑

i,j:i+j=m

π1jπ2k =

2K∑
n=1

π′1nπ
′
2(m−n) = [ifft [fft[π′1] · fft[π′2]]]m ,

Here π′ refers to the zero padded vector of delta mixture weights π′ = [π,0] such that 0 is a K

dimensional vector of zeros. If m− n < 1 we extend the indices π′m−n := π′2K+m−n; this extension is

valid and does not affect the convolution due to the zero padding of π′. The last equality in the expression

above is the statement of the discrete Fourier transform convolution theorem.

The result can be extended to higher dimensions D > 2 by induction, using the associativity of the

convolution operator and the fact that lattice point locations are invariant to convolution, to give

q̂y(y) =

DK∑
n=1

ρnδ(y − β − ln) where ρ = ifft

[∏
d

fft [π′d]

]
,

For general D, π′ refers to the zero padded vector of delta mixture weights π′ = [π,0] such that 0 is a

(D − 1)K dimensional vector of zeros.

Partial derivatives : A

Taking the partial derivative of
〈
ψ
(
wTh

)〉
with respect to Amn we obtain

∂

∂Amn

〈
ψ(wTh)

〉
= hn

∫
qv(v)ψ′

(
hTAv + bTh

)
vmdv.

As previously mentioned the above form is not equivalent to hn 〈vmψ′(y)〉qy(y). It can, however, still be

expressed as a one dimensional integral:

∂

∂Amn

〈
ψ
(
wTh

)〉
= hn

∫
vm

D∏
d=1

qvd(vd|θd)ψ′
(
hTAv + bTh

)
dv

= hn

∫
vm

D∏
d=1

qvd(vd|θd)
∫
δ
(
y −αTv − β

)
ψ′(y)dydv

= hn

∫
vmqvm(vm|θm)

∏
d6=m

qvd(vd|θd)
∫
δ
(
y −αTv − β

)
ψ′(y)dydv

= hn

∫
ψ′(y)

∫
vmqvm(vm|θm)

∏
d 6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy

where ψ′(y) := d
dyψ(y), α := ATh and β := bTh as before. To evaluate the expression above we

define the univariate weighting function dm(y), such that

dm(y) :=

∫
vmqvm(vm|θm)

∏
d6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dv.

Using this weighting function the gradient can be expressed simply as

∂

∂Amn

〈
ψ
(
wTh

)〉
= hn

∫
ψ′(y)dm(y)dy.
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We evaluate dm(y) by means of computing its Fourier transform. The Fourier transform of dm(y) is

given by

d̃m(t) =

∫
e−2πity

∫
vmqvm(vm|θm)

∏
d 6=m

qvd(vd|θd)δ
(
y −αTv − β

)
dvdy

= e−2πitβ

∫
vmqvm(vm|θm)e−2πitαmvm

∏
d6=m

qvd(vd|θd)e−2πitαdvddv

= e−2πitβ × ẽm(t)×
∏
d6=m

q̃ud(t|θd)

where ẽm(t|θm) is the Fourier transform of the univariate expectation

ẽm(t|θm) :=

∫
vmqvm(vm|θm)e−2πitαmvmdvm =

∫
um
αm

qum (um|θm) e−2πitumdum.

Partial derivatives : b

Taking the partial derivative of
〈
ψ
(
wTh

)〉
with respect to bm we get

∂

∂bm

〈
ψ
(
wTh

)〉
= hm

∫ D∏
d=1

qvd(vd|θd)ψ′
(
hTAv + bTh

)
dv

= hm

∫
qy(y)ψ′(y)dy.

Partial derivatives : θ

Taking the derivative of
〈
ψ
(
wTh

)〉
with respect to θm we get

∂

∂θm

〈
ψ
(
wTh

)〉
=

∂

∂θm

∫ D∏
d=1

qvd(vd|θd)ψ
(
hTAv + bTh

)
dv

=

∫ [
∂

∂θm
qvm(vm|θm)

] ∏
d 6=m

qvd(vd|θd)ψ
(
hTAv + bTh

)
dv

=

∫
ψ(y)

∫ [
∂

∂θm
qvm(vm|θm)

] ∏
d6=m

qvd(vd|θd)δ
(
y − hTAv − bTh

)
dydv

Similar to the gradient of
〈
ψn(wThn)

〉
with respect to Amn we define a derivative weighting function

p̃′d such that

p̃′d(t) :=

∫
e−2πity

∫ [
∂

∂θm
qvm(vm|θm)

] ∏
d6=m

qvd(vd|θd)δ
(
y − hTAv − bTh

)
dydv

= e−2πitβ

∏
d6=m

q̃ud(t|θd)

∫ e−2πitαmvm
∂

∂θm
p(vm|θm)dvm.

For p′d(y) the inverse Fourier transform of p̃′d(t) we obtain the gradient

∂

∂θm

〈
ψ
(
wTh

)〉
=

∫
p′d(y)ψ(y)dy.

C.1.3 Gaussian potentials

For the Gaussian potential N (w|µ,Σ), its log expectation under qw(w|A,b,θ) is given by

2 〈logN (w|µ,Σ)〉 = −D log 2π − log det (Σ)−
〈
wTΣ−1w

〉
+ 2 〈w〉Σ−1µ− µTΣ−1µ.
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To evaluate this expression we precompute the Cholesky decomposition of Gaussian precision matrix

Σ−1 = PTP, which scales O
(
D3
)

and only needs to be performed once. Since 〈w〉 = A 〈v〉+ b and〈
vTBv

〉
= 〈v〉T B 〈v〉+ trace (Bcov(v)) we have that〈

wTΣ−1w
〉

=
〈
vTATΣ−1Av

〉
+ 2

〈
vTATΣ−1b

〉
+ bTΣ−1b,

= 〈v〉T ATΣ−1A 〈v〉+ trace
(
ATΣ−1Acov(v)

)
+ 2 〈v〉T ATΣ−1b + bTΣ−1b

〈w〉Σ−1µ = 〈v〉T ATΣ−1µ + bTΣ−1µ.

Since v are assumed independent we define D := cov(v) = diag (var(v)). All terms in the expression

above, except for the trace term, can be computed as a sequence of matrix vector products. To compute

the trace term we use trace
(
ATΣ−1Acov(v)

)
= vec

(
PLUD

1
2

)T
vec
(
PLUD

1
2

)
, where vec (X)

constructs a column vector by concatenating the columns of the matrix X and D
1
2 is the square root

of the diagonal covariance matrix, which scale O
(
D3
)

for general Σ. When Σ = σ2I this reduces to

O
(
D2
)
.

Partial derivatives : A

The partial derivatives of the Gaussian potential’s contribution to the AI-KL bound, as detailed above,

with respect to A and b are

∂

∂A
2 〈logN (w|µ,Σ)〉 =

∂

∂A
− 〈v〉T ATΣ−1A 〈v〉 − trace

(
ATΣ−1AD

)
− 2 〈v〉T ATΣ−1b + 2 〈v〉T ATΣ−1µ + 2bTΣ−1µ,

which can be expressed as

∂

∂A
〈logN (w|µ,Σ)〉 = −Σ−1A

(
〈v〉 〈v〉T + D

)
+ 〈v〉

(
µΣ−1 − Σ

−1
b
)T
,

and can be computed using sequential matrix vector products and vector outer products.

Partial derivatives : b

The partial derivative of the Gaussian potential’s contribution to the AI-KL bound with respect to b is

given by

∂

∂b
2 〈logN (w|µ,Σ)〉 =

∂

∂b
− 2 〈v〉T ATΣ−1b− bTΣ−1b + 2bTΣ−1µ

= −2Σ−1 (A 〈v〉+ b + µ) .

Partial derivatives : L,U

We extend the above results to the LU decomposition of the transformation matrix such that A = LU

where L is lower-triangular and U upper-triangular matrices. To do so, we apply the chain rule, noting

that Amn =
∑
k LmkUkn, to give us

∂Amn
∂Luv

= δmuUvn and
∂Amn
∂Ust

= δtnLms
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for δij the Kronecker delta. Thus to compute the derivative of F (A) = F (LU) we have that

∂

∂Luv
F (A) =

∑
mn

∂

∂Amn
F (A)δmuUvn when u ≥ v and zero otherwise

∂

∂Ust
F (A) =

∑
mn

∂

∂Amn
F (A)δtnLms when t ≥ s and zero otherwise.

C.2 Blockwise concavity
Here we present a simple reworking, and extension, of the concavity result provided in Chapter 4 for

log-concave potentials {φn}Nn=1 and Gaussian KL approximate inference. Whilst the AI-KL bound is

jointly concave in L and b or U and b it is not jointly concave in L and U simultaneously.

The entropy of the AI bound is clearly concave in both L and U being a sum of log terms acting on

individual elements of L and U.

The Gaussian potential’s contribution to the AI bound is a negative quadratic in L or U. To see this

we consider the Gaussian contribution, omitting constants w.r.t. U, L and b we have that

2 〈logN (w|µ,Σ)〉 c.= −v̄TUTLTΣ−1LUv̄ − trace
(
UTLTΣ−1LUD

)
− 2v̄TUTLTΣ−1b

− bTΣ−1b + 2v̄UTLTΣ−1µ + 2bTΣ−1µ

where v̄ = 〈v〉 and D = diag (var(v)). Keeping L fixed and denoting X = LTΣ−1L we get

2 〈logN (w|µ,Σ)〉 c.= −v̄TUTXUv̄ − trace
(
UTXUD

)
− 2v̄TUTLTΣ−1b

− bTΣ−1b + 2v̄UTLTΣ−1µ + 2bTΣ−1µ

which is a negative quadratic in U and b and is thus jointly concave in these parameters. A similar

analysis carries through for L keeping U fixed.

Without loss of generality we can consider the concavity of a single non-linear site potential’s

contribution to the AI-KL bound. For a single site potential we define

E(A,b) := 〈log φn(w)〉 =

∫
qv(v)ψ(hTAv + bTh)dv

where ψ(x) = log φ(x) for a non-Gaussian site potential φ(x) : R → R+, and φ(x) is assumed log-

concave so that ∀θ ∈ [0, 1] we have

ψ (θx+ (1− θ)y) ≥ θψ(x) + (1− θ)ψ(y).

Thus considering two affine parameter settings {A1,b1} and {A2,b2} we have that

E (θA1 + (1− θ)A2, θb1 + (1− θ)b2) =〈
ψ
(
θ
(
hTA1v + bT

1h
)

+ (1− θ)
(
hTA2v + bT

2h
))〉

,

from the concavity of ψ, and the linearity of the expectation operator, we have

E(θA1 + (1− θ)A2, θb1 + (1− θ)b2) ≥ θ
〈
ψ(hTA1v + bT

1h)
〉

+ (1− θ)
〈
ψ(hTA2v + bT

2h)
〉
,

and so the non-Gaussian site potentials contribute terms that are concave in A to the AI-KL bound.

Concavity in L follows through by letting h = Uh, similarly the converse holds for concavity in U

keeping L fixed.
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C.3 AI base densities
In this section we specify the base densities used to construct affine independent multivariate densities

for the experiments presented in Chapter 6. Specifically we present the generalised-normal and the

skew-normal base densities, providing equations to compute the density’s entropy, partial derivatives

and moments.

C.3.1 Skew-normal

For a skew-normal distributed random variable, v ∼ SN (m, s, ν), we parameterise its density using

SN (v|m, s, ν) =
2

s
N (r)Φ (νr) , where r :=

v −m
s

,

N (z) = N (z|0, 1), Φ(z) =
∫ z
−∞ φ(x)dx, with location parameter m ∈ R, scale parameter s ∈ R+ and

skew parameter ν ∈ R. When ν = 0 the skew-normal density is equivalent to the univariate Gaussian

density N
(
v|m, s2

)
.

Moments. The moments of the skew-normal density are: 〈v〉 = m+ sδ
√

2/π, var(v) = s2
(

1− 2δ2

π

)
where δ = ν√

1+ν2
, with skew and excess kurtosis defined

skw(v) =
4− π

2

(
d
√

2/π
)3

(1− 2δ2/π)
3/2

, kur(v) = 2 (π − 3)

(
δ
√

2/π
)4

(1− 2δ2/π)
2 .

Derivatives. The derivative of the log of the skew-normal density with respect to ν is given by

∂

∂ν
logSN (v|m, s, ν) =

rφ (νr)

Φ (r)
where r =

v −m
s

. (C.3.1)

Similarly to the generalised-normal base density, we do not need to consider optimising the AI-KL bound

with respect to the scale and location parameters of the skew-normal since for qw(w) location and scale

is already parameterised by A,b.

Entropy. We are not aware of an analytic form for the skew-normal density’s entropy. Therefore we

used univariate rectangular quadrature to compute these terms.

C.3.2 Generalised-normal

For a generalised-normal distributed random variable, v ∼ GN (m, s, η), we parameterise its density

using

GN (v|m, s, η) =
η

2sΓ (η−1)
e−|r|

η

, where r :=
v −m
s

,

with location parameter m ∈ R, scale parameter s ∈ R+ and shape parameter η ∈ R+. The Gamma

function is defined as Γ(x) :=
∫∞

0
e−ttx−1dt.

Moments. The generalised-normal distribution has moments: 〈v〉 = m,

var(v) =
s2Γ

(
3η−1

)
Γ (η−1)

, skw(v) = 0, and kur(v) =
Γ(5η−1)Γ(η−1)

Γ(3η−1)2
− 3.
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Derivatives. The derivative of the log of the generalised-normal density with respect to the shape param-

eter η is

∂

∂η
log GN (v|m, s, η) =

1

η
+

1

η2
g

(
1

η

)
− |r|η log (|r|) .

For affine independent KL inference we constrain η > 1 to ensure differentiability of the KL bound.

We do not require the derivatives of the base density with respect to either the scale parameter or the

location parameter since under the affine transformation these aspects of the density qw(w) are already

parameterised by A,b.

Entropy. The generalised-normal admits the following analytic form for the differential entropy

H [GN (v|m, s, η)] =
1

η
− log

[
η

2sΓ (η−1)

]
,

whose gradient with respect to η is given by

∂

∂η
H [v] = − 1

η2
− 1

η
+ digamma

(
1

η

)
1

η2
,

where the digamma function is defined as digamma(x) = d
dx log Γ(x).
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