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ABSTRACT

A set of statistical tests termed contingency tests, of which x* is the most well-known
example, are commonly employed in linguistics research. Contingency tests compare dis-
crete distributions, that is, data divided into two or more alternative categories, such as
alternative linguistic choices of a speaker or different experimental conditions. These tests
are highly ubiquitous, and are part of every linguistics researcher’s arsenal. However, the
mathematical underpinnings of these tests are rarely discussed in the literature in an
approachable way, with the result that many researchers may apply tests inappropriately,
fail to see the possibility of testing particular questions, or draw unsound conclusions.
Contingency tests are also closely related to the construction of confidence intervals,
which are highly useful and revealing methods for plotting the certainty of experimental
observations. This paper is organized in the following way. The foundations of the sim-
plest type of x> test, the 2 x 1 goodness of fit test, is introduced and related to the z test
for a single observed proportion p and the Wilson score confidence interval about p. We
then show how the 2 x 2 test for independence (homogeneity) is derived from two obser-
vations p; and p, and explain when each test should be used. We also briefly introduce
the Newcombe-Wilson test, which ideally should be used in preference to the y test for
observations drawn from two independent populations (such as two sub-corpora). We then
turn to tests for larger tables, generally termed » X c tests, which have multiple degrees
of freedom and therefore may encompass multiple trends, and discuss strategies for their
analysis. Finally, we turn briefly to the question of differentiating test results. We intro-
duce the concept of effect size (also termed “measures of association”) and finally explain
how we may perform statistical separability tests to distinguish between two sets of
results.
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1. INTRODUCTION

Karl Pearson’s famous chi-square contingency test is derived from another
statistic, called the z statistic, based on the Normal distribution. The sim-
plest versions of y* can be shown to be mathematically identical to equiva-
lent z tests. The tests produce the same result in all circumstances.' For all
intents and purposes “chi-squared” could be called “z-squared”. The critical
values of ¥* for one degree of freedom are the square of the corresponding
critical values of z.

The standard 2 x 2 %* test is another way of calculating the z test for
two independent proportions taken from the same population (Sheskin,
1997, p. 226).

This test is based on an even simpler test. The 2 x 1 (or 1 x 2) “good-
ness of fit” (g.o.f)) y* test is an implementation of one of the simplest tests
in statistics, called the Binomial test, or population z test (Sheskin, 1997,
p. 118). This test compares a sample observation against a predicted value
which is assumed to be binomially distributed.

If this is the case, why might we need chi-square? Pearson’s innovation
in developing chi-square was to permit a test of a larger array with multiple
values greater than 2, i.e. to extend the 2 x 2 test to a more general test
with 7 rows and ¢ columns. Similarly the z test can be extended to an r X
1 y* test in order to evaluate an arbitrary number of rows. Such a
procedure permits us to detect significant variation across multiple values,
rather than rely on two-way comparisons. However, further analysis is then
needed, in the form of 2 x 2 or 2 x 1 g.o.f. * tests, to identify which val-
ues are undergoing significant variation (see Section 3).

The fundamental assumption of these tests can be stated in simple terms
as follows. An observed sample represents a limited selection from a much
larger population. Were we to obtain multiple samples we might get slightly
different results. In reporting results, therefore, we need a measure of their
reliability. Stating that a result is significant at a certain level of error
(o = 0.01, for example) is another way of stating that, were we to repeat

'The known limitation of %, which states that results cannot be relied upon if an expected
cell frequency is less than 5, has its interval equivalent. It also has the same solution, namely
to replace ‘Wald’ confidence intervals with the more accurate Wilson score confidence inter-
val (Wallis, 2013). We return to this issue in Section 6.
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the experiment many times, the likelihood of obtaining a result other than
that reported will be below this error level.

2. THE ORIGIN OF »?

2.1. Sampling Assumptions
In order to estimate this “reliability” we need to make some mathematical
assumptions about data in the population and our sample.

The concept of the “population” is an ideal construct. An example
population for corpus research might be “all texts sampled in the same way
as the corpus”. In a lab experiment it might be “all participants given the
same task under the same experimental conditions”. Generalizations from a
corpus of English speech and writing, such as ICE-GB (Nelson et al.,
2002), would apply to “all similarly sampled texts in the same proportion
of speech and writing” — not “all English sentences from the same period”
and so forth. Deductively rationalizing beyond this population to a wider
population is possible — by arguing why this “operationalising” population
is, in the respect under consideration, representative of this wider popula-
tion — but it is not given by the statistical method.

2.1.1. Randomness and Independence

The first assumption we need to make is that the sample is a random
sample from the population, that is, each observation is taken from the
population at random, and the selection of each member of the sample is
independent from the next. A classical analogy is taking a fixed number of
mixed single-colour billiard balls (say, red or white) from a large bag of
many balls.

Where we are compelled to break this independence assumption by tak-
ing several cases from the same text (common in corpus linguistics), at min-
imum we need to be aware of this and consider the effect of clustering on
their independence (see Nelson et al., 2002, p. 273 and Section 3.3). Ideally
we should be able to measure and factor out any such clustering effects.
Currently methods for such “case interaction” estimation are work in
progress.

2.1.2. The Sample is Very Small Relative to the Population
The second assumption is that the population is much larger than the
sample, potentially infinite. If the sample was, say, half the size of a finite
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Table 1. An example 2 X 2 contingency table.

a —a z
b 20 5 25
—-b 10 10 20
z 30 15 45

population “in the bag”, we would know that half the population had the
observed distribution of our sample, and therefore we should have a greater
confidence in our estimate of the distribution of the entire population than
otherwise. In such circumstances, using a z or y° test would tend to under-
estimate the reliability of our results. In linguistics this assumption is only
broken when generalising from a large subset of the population — such as
treating Shakespeare’s First Folio as a subset of his published plays.”

2.1.3. Repeated Sampling Obtains a Binomial Distribution

The third assumption of these tests is perhaps the most complicated to
explain. This is that repeated sampling from the population of a frequency
count will build up into a Binomial frequency distribution centred on a par-
ticular point, and this distribution may be approximated by the Normal dis-
tribution.

Suppose we carry out a simple experiment as follows. We sample 45
cases over two Boolean variables, 4 = {a, —a} and B = {b, —b}, and obtain
the values {{20, 5}, {10, 10}} (Table 1). We will take A as our independent
variable, and B as our dependent variable. This means that we try to see if
A affects the value of B, schematically, 4 — B.

This kind of table might summarise the results of an experiment measur-
ing a speaker’s tendency to employ, say, modal shall rather than will in first
person singular cases (so b stands for shall and —b for will), in a spoken
rather than written English sample (¢ = spoken, —a = written). For this
discussion we will use invented data to keep the arithmetic simple.

Next, imagine that we repeated our experiment, say, 1000 times, to
obtain a “sample of samples”. The more repetitions we undergo, the greater
will be our confidence that the average result will be close to the “correct”
average (if we could measure it) in the population. Sheskin (1997, p. 37)

2A standard adjustment is Singleton et al. (1988) correction, multiplying the standard devia-
tion by v = +/1 — n/Np, where n/Np is the ratio of the sample to population size. If Np is
infinite, v = 1.
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explains that “the standard error of the population mean represents a stan-
dard deviation of a sampling distribution of means.” This “standard error of
the population mean” is also a theoretical value. The tests we discuss here
estimate this value from the standard deviation calculated from a single
sample.

The Binomial model states that the result for any single cell in our table
will likely be distributed in a particular pattern derived from combinatorial
mathematics, called the Binomial distribution, centred on the population
mean. This pattern is represented by the columns in Figure 1.° The fre-
quency axis, F, represents the number of times a value is predicted to have
a particular outcome on the x axis, assuming that each sample is randomly
drawn from the population.

The Binomial distribution is a discrete distribution, that is, it can have
particular integer values, hence the columns in Figure 1. Cell frequencies
must be whole numbers. According to the Central Limit Theorem this may
be approximated to a continuous distribution: the Normal or “Gaussian” dis-
tribution, depicted by the curve in Figure 1.* Note that in inferring this dis-
tribution we are not assuming that the linguistic sample is Normally
distributed, but that very many samples are taken from the population, ran-
domly and independently from each other.

A Normal distribution can be specified by two parameters. The observed
distribution O[x, s] has a mean, x (the centre point), and standard deviation,
s (the degree of spread). The Normal distribution is symmetric, with the
mean, median and mode coinciding.

These distributions are sampling models, i.e. mathematical models of
how future samples are likely to be distributed, based on a single initial
sample. The heart of inferential statistics is attempting to predicting how
future experiments will behave, and our confidence that they will behave
similarly to our current experiment. We can now use the Normal

3Suppose we toss a coin twice and count the number of heads, 4. There are four possible
outcomes: HH, HT, TH, TT. With an unbiased coin, the most likely value of 4 will be 1,
because there are two ways to achieve this result. On the other hand the chance of % being 0
or 2 will each be '4. We can summarise the expected distribution after four repetitions as
F(h) = {1, 2, 1}. We say that the variable 7 forms a Binomial distribution centred on the
mean.

It is possible to calculate significance using only the Binomial distribution (Sheskin, 1997,
p. 114) or Fisher’s 2 x 2 test (ibid. 221; see also Wallis, 2013) — but these tests require
combinatorial calculations which are onerous without a computer. The Binomial approxima-
tion to the Normal has therefore traditionally proved attractive.
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error

v

Fig. 1. Binomial approximation to a Normal frequency distribution plotted over a
probabilistic range p € [0, 1].

distribution model to “peek into the future” and estimate the reliability of
our single sample.

2.2. The “Wald” Confidence interval

We are going to approach our discussion of y* from the perspective of
defining confidence intervals. Approaching the problem this way makes it
easier for us to visualise why > is defined in the way that it is — as an
alternative calculation for estimating confidence and certainty — and
therefore what statistically significant results may mean.

A confidence interval is the range of values that an observation is likely
to hold given a particular probability of error (say, a = 0.05). This can also
be expressed as a degree of confidence: “95%”. What we are interested in
is how far an observation must deviate from the expected value to be
deemed to be statistically significantly different from it at a given error level
(exactly as we would with a y* test). Consider Figure 1. The area under the
curve adds up to 100%. The two tail areas under the curve marked “error”
represent extreme values. Suppose we find the tail areas that each cover
2.5% of the total area. We then have a range between them inside which
95%, or 1 in 20 experimental runs, would fall. If we insist on a smaller
error (o = 0.01) then these tails must be smaller (0.005 or 0.5%) and the
interval must be larger.

Suppose that we performed an experiment and obtained the results in
Table 1, {{20, 5}, {10, 10}}. Consider the first column, ¢ = {20, 10},
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Table 2. Dividing by column totals rewrites Table 1 in terms

of probabilities.

a -a E
b %3 ' o
-b s 2/ A

which in our experiment represents spoken data. Out of n = 30 observa-
tions, 20 are of type b (shall) and 10, —b (will). The probability of picking
type b at random from this set is equal to the proportion of cases of type b,
so p = /5. The probability of choosing type —b given a is the remaining
probability, g = 1 — p = '/5 (Table 2).

The first method we will discuss for creating a confidence interval about
p is the ‘Wald’ method, which is almost universally recommended, but is
based on a misapplication of the Central Limit Theorem. It assumes that the
population mean probability, which we will denote with P, is Normally
distributed around the observed probability p. This is the inverse
relationship from that shown in Figure 1, which is centred around P.

We may calculate a ‘normalised” Wald interval (one standardised to the
probabilistic range) by the following steps. We will employ an error level,
a, of 0.05.

probabilisticmean x=p = 0.667,

standard deviation s = +\/pg/n = 0.086,
error(o = 0.05) e=z,ns =0.169,
Wald interval (Xx—e,x+e) =(0.498,0.835). (1)

where the term z,, is the critical value of the Normal distribution for the
given error level. Common values are z,, = 1.95996 (o = 0.05) and
2.57583 (o = 0.01). Note that as n increases, the standard deviation falls.
More data means a narrower interval, and increased confidence, as we
would expect. The predicted range of the population mean P is between
0.498 and 0.835.

It is now straightforward to scale this standardized interval by the data, i.e.
multiply the above by #, to obtain the standard deviation for the first cell, b.
The values for the second cell, —b, have the same standard deviation: x = 10
and s = 2.58. Swapping p for ¢ does not affect the formula for s. The Wald
interval (scaled) = (14.94, 25.06).
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Were we to repeat the same sampling exercise many times, we would
expect that only in '/» of cases would the value in the upper left cell in
Table 1, F(a, b), fall outside the range (14.94, 25.06). (Of course samples
will be represented in terms of integer frequency values; these decimal frac-
tions derive from the continuous nature of the Normal distribution.)

However, this approach, whilst extremely common, is incorrect. The
error lies in the assumption that the population mean, P, is Binomially (and
approximately Normally) distributed around the observation, p.

Wallis (2013) argues that the correct way to think about the confi-
dence interval on p is by considering what the observation p tells us
about likely values of the population probability, P. To do this we need
to estimate the Binomial distribution about P for n observations. If p is
at the upper bound of P, then P must be at the lower bound of p, and
vice versa.

In a goodness of fit test we compare two values, one of which we take
as the predicted value, P and the other our observation p. We can calculate
the Wald interval about P and then test that p is far enough away to be sig-
nificantly different. However to calculate a confidence interval about an
observation p we should not use this Wald formula. A better, but less well-
known, formula for computing confidence intervals about p is discussed in
Section 2.4 below.

2.3. Single-Sample Population z tests and Goodness of Fit

The single-sample z test for a sample probability (Sheskin, 1997, p. 34)
simply compares a given value, p, with a Normal (Wald) interval about P.
Values of p inside the interval do not overturn the null hypothesis that there
is no difference between the predicted result P and the sample. Those out-
side the range are significant at the chosen error level.

The z test can be applied to any value of P, and is mathematically
equivalent to the 2 x 1 x> goodness of fit test, in conditions where P is
simply the mean across all values in a dataset, P = p(b) = °/o. The term
“goodness of fit” (g.o.f.) refers to the fact that we compare one distribu-
tion for its consistency with a given expected distribution. In the simplest
case the distribution has two cells, but may be extended to multinomial
variables.

We will demonstrate how the test is computed using both methods.



358 S. A. WALLIS

NS
p

Fig. 2. The single-sample population z test: left, comparing an observed p = 0.667 with the
population mean confidence interval (0.378, 0.733). The confidence interval (dotted) may be
plotted as an I-shaped error bar in an equivalent graph (right).

2.3.1. The single sample z test

The null hypothesis of the z test is that an observation p is consistent with
the expected value P. The ¥ test uses the distribution over the total column
(Table 1, column marked X) as its expected distribution, scaled to the same
number of cases as the observed column (in our case, a). This distribution
is {25, 20}, or, normalised, {°/o, */o} = {0.556, 0.444}.

We calculate the interval at P, so s = V(0.556 x 0.444/30) = 0.091. We
then compare our expected interval P + z.s = 0.556 + 0.178 (all data) with
the observation given a (spoken) — so p = p(b | @) = 0.667. Note that the
sample size n is the observation sample size (30) for a. After all, this is
the data supporting the observation. The test is significant if p falls outside
the confidence interval of the expected distribution E[x, s]. In our case the
result is not significant.

2.3.2. The 2 x 1 Goodness of fit ¥° test
An alternative calculation employs the y* formula:

X2:Z(O_e) 7 (2)

e

where the observed distribution o = {20, 10} and expected distribution is
based on the total column, e = {25, 20} x 30/45 = {*/o, */5} x 30. This test
result obtains ¥* = 0.667 + 0.833 = 1.5, which is below the critical value of
x> with one degree of freedom, and is not significant.

In the %> test we sum terms calculated from both cells. In effect, we
also compare p(—b | a) with x = p(—b) = 0.444. We don’t need to do this in
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a z test because these values depend entirely on the other cell values (p(—b)
= 1 — p(b), etc). The significance of the result obtained for the lower cell is
entirely dependent on the significance test for the upper. This is what is
meant by saying “the test has one degree of freedom”. It is only necessary
to carry out a single comparison because the second comparison is mathe-
matically determined by the first.”

Both tests assume that the population probability is correctly estimated
by the average probability p(b). Only the subset column is free to vary, so
the confidence interval is calculated using the number of cases n in that
column. In section 3 we discuss when this test is appropriate.

2.4. The Wilson score interval

Calculating the confidence interval for p accurately requires a different
approach than the “Wald” approach, which although common, is based on a
misconception. The nub of the problem is, quite simply, that the confidence
interval around a given observation taken from a Binomially distributed
population is not itself Binomially distributed. With small volumes of data,
or where cell values and hence probability are skewed, the interval does
not approximate to the Normal distribution.

As a result, if p is very close to zero or 1, a Wald interval can exceed
the probabilistic range [0, 1]. This cannot make sense: how can a probabil-
ity be negative — or greater than 1?

To attempt to address this, researchers are told to not use the interval for
highly skewed-values, leading to rules like “the normalised mean be more
than 3 standard deviations from 0 or 1”.° However, highly skewed distribu-
tions are common in linguistics: we may well be interested in the behaviour
of low frequency terms (particularly in lexical studies), and data is often
hard to come by. Clearly, simply ceasing an analysis simply due to the pres-
ence of unevenly distributed data would be very restrictive.

The correct approach uses the Wilson score interval about an observa-
tion p (Wilson, 1927).

*Note that comparing p(b |-a) with p(b) is a different test and obtains a different result. This
considers how closely the distribution for—a (writing) matches that for the total column.
®This error is often conflated with the less severe question of continuity correction, which
we end this section with. This leads to the ‘Cochran rule’ of avoiding using y* with small
expected cell values or arguments for using log-likelihood in preference to *. Wallis (2013)
compares the performance of a range of tests against comparable exact Binomial and Fisher
tests and finds that this rule is overcautious and log-likelihood does not perform well.
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Wil interval(w—, w) = D2y A PL LT (1222 3

ilson score interval(w™,w™) <p+ o T3\ +4n2 /1 1+ ; (3)

We can use this interval to test to see if a point x falls outside the
expected range (w, w'). Wilson’s interval about p inverts the Gaussian dis-
tribution about P (Wallis, 2013) and so obtains the same result as the single
sample z test and 2 x 1 goodness of fit y* test.

This method should be used for plotting confidence intervals on graphs,
where we may plot values of p and error bars extending to w~ and w".

With p = 0.667, n = 30 and z,, = 1.95996, we obtain a score interval
for the probability of using shall in speech, p(b | a), of (0.488, 0.808).
Figure 3 (left datapoint) has a narrower interval than the equivalent Wald
interval (0.498, 0.835), which is slightly skewed toward the centre.

We may obtain a similar interval for the second ‘writing’ column, p(b |
—a), Figure 3 (right datapoint). Any number of points may be plotted with
confidence intervals, and in time series data, a best-fit line may be plotted
between them.

Wilson’s score confidence interval is based on an asymmetric distribu-
tion, which is always restricted to the probability range [0, 1]. For p = 0.5,
Wilson’s interval is similar to the Wald confidence interval, as one might
expect.

1.0 -
p(b)
0.8 -

0.6

0.4 -

0.0

a (spoken) —a (written)

Fig. 3. Plotting Wilson score intervals on the probability of b.
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2.5.2 x 2 %* and z test for two independent proportions

The z test for two independent proportions (Sheskin, 1997, p. 226) com-
pares two observations to see if they are alike. This is equivalent to com-
paring columns a and —a in Table 1 using a 2 x 2 y* test. In this case both
samples are free to vary (Figure 4). Suppose we use O; to represent the
Normal distribution for p; in the first column of Table 2 (i.e. p; = p(b | a)
= probability of shall in spoken data). Similarly O, will stand for the distri-
bution for written data, p, = p(b | —a).

This z test combines distributions O; and O, into a single difference dis-
tribution D[O0, s'] centred on 0. D represents the sampling distribution of the
difference, d, between observed probabilities.

To carry out this test we must calculate the standard deviation of the dif-
ference, s', which depends on the pooled probability estimate, p. In our con-
tingency table this works out simply as the row total over the grand total N
= n; + n,, i.e. the overall probability of b, p(b).

probability estimate p = (mp, + nyp2)/N,

and

standard deviation s = \/ p(l —p) (l + i) . (4)
ni np
The equivalent confidence interval is simply +z,,.s. Once s' has been
estimated, carrying out the test becomes extremely simple. Since the
distribution is symmetric and centred at zero we can dispense with signs.
We simply test if |d| > z.s' where d = p; — p» = p(b | a) — p(b | —a).

0,

p

Fig. 4. The z test/2 x 2 > test assumes uncertainty in both observations O;[%;, s;] and
O[x2, 52]-
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Our data in Table 1 gives us the following:
probability estimate p = (204 5)/45 = 0.556,

standard deviation s = 0.157.

This gives us a confidence interval of + 0.308 at the p < 0.05 level.

The difference in the observed probabilities d = p; — p, = 25 — '/5 =
0.333. Since this exceeds 0.308, this result is significant. As before, it is
possible to demonstrate that the result one obtains from this test is equiva-
lent to that obtained from the 2 x 2 %> test where the expected distribution
is computed in the usual way (Section 3.4).

The 2 x 2 y* test has one further useful property. It can be calculated
by simply adding together the results of the two g.o.f. ¥* values for a and
—a. The degrees of freedom and critical value of ¥* do not change. Conse-
quently, a 2 x 1 g.o.f. * test is stricter than its corresponding 2 x 2 %%,
which will be significant if either goodness of fit test is significant.

2.6. The z test for two independent proportions from independent
populations

In the 2 x 2 y* test it is generally assumed that ¢ and —a are drawn from

the same population. For example, if a and —a represented two different

grammatical choices uttered by speakers/writers, then the same participant

could genuinely choose to use one or other construction.

However in some cases it is more correct to characterise the z test in
terms of sampling different populations. In our example we gave the exam-
ple of speech versus writing: here participants and the texts they contribute
to are categorised by the independent variable 4 group (also known as a
“between subjects” design).

In this situation the two populations are considered to vary
independently, so the standard deviation is taken to be simply the Pythago-
rean sum of the independent standard deviations s’ = /s? +s3 (Sheskin,
1997, p. 229) — rather than being based on the pooled probability.

If the independent variable divides the corpus by texts (a sociolin-
guistic variable or subcorpus) this test should be used in place of 2 x 2
x>. However, Sheskin’s formula performs poorly, because it is based on
the incorrect “Wald” standard deviation at p; and p,. Newcombe (1998)
demonstrated that a better approach uses the Wilson score interval for p,
and p,.
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The idea is to combine both inner interval widths in Figure 3 using the
Pythagorean formula. Since p, < p;, the inner interval is composed of the
lower bound of p; (w;”) and the upper bound of p, (w,"). If p, > p, then
we would need to combine the other pair. This obtains the following
“Newcombe-Wilson” interval against which we can test the difference

d=pi —p».

NW interval (W=, W) —( \/(pl wy) fpz)z,\/(WT*p1)2+(pz*WE)2)~ (5)

Using the data in Table 1 this obtains an interval of (—0.230, 0.307),
which is slightly less conservative than the z test for samples from the
same population. Recall that in this type of experiment we are assuming
that our data is constrained into two independent samples where partici-
pants fall into one or other group, so distributions are more constrained.

2.7. Yates’ correction, Log-likelihood and other methods

When we employed the Normal approximation to the Binomial distribution
we approximated a discrete distribution (a set of possible values) into a con-
tinuous curve. By rounding this curve we introduced a small error into the
calculation.

Yates’ correction to the chi-square statistic performs a continuity cor-
rection by subtracting 0.5 from the absolute difference |0 — e| in the chi-
square formula, and is recommended for 2 x 1 and 2 x 2 tests. A sim-
ilar correction may also be applied to the Wilson score interval (Wallis,
2013), slightly increasing the width of the confidence interval (and can
be applied to the Newcombe-Wilson interval). This correction is slightly
conservative, meaning that in some borderline cases it may lead to
rejecting hypotheses which would otherwise be accepted, but this is pref-
erable to the alternative.

Another school of thought (e.g. Dunning, 1993) has advanced the case
for contingency tests based on the likelihood ratio statistic, citing some
demonstrable accuracy in selected cases. However, recent exhaustive evalu-
ation using computation (by among others, Newcombe, 1998 and Wallis,
2013) has found that in fact log-likelihood performs less reliably than
comparable y* tests, and if caution is required a continuity corrected chi-
square or Wilson interval is to be preferred.

Wallis (2013) demonstrates that Yates’ “continuity corrected” y* obtains
a closer approximation to the Binomial distribution than standard ¥, and
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notes that Newcombe’s continuity corrected interval also mirrors this
adjusted Gaussian.

Finally note that for small samples, we should fall back on “exact”
tests. These are the Binomial test for 2 x 1 goodness of fit tests and Fish-
er’s exact test for 2 x 2 tests. For more information, see Wallis (2013),
which also employs exact paired Binomial intervals for independent sample
conditions.

3. THE APPROPRIATE USE OF »?

3.1. Selecting Tests

Figures 2 and 4 pictorially demonstrate the mathematical difference between
the two types of x> test we have discussed. Figure 6 summarises their dif-
ferent purpose.

(1) The goodness of fit test (Figure 6, left) can be used to examine varia-
tion in the distribution of a single value in a typological hierarchy, as
a proportion of a super-ordinate value.
Conclusion: Use the g.o.f. test when you want to examine if a
single value, a, has a different distribution than a superset 4 = {a,
—a (e.g. modal must compared to all modal verbs). If a is affected
by the independent variable B differently to A4, then it may be worth
reporting.

difference in p

D

—> \ >

n

Fig. 5. The new difference confidence interval D[0, s'] centred on the origin, and the
difference x = |x; — X,|.
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Fig. 6. Employing y* tests for different purposes. The superset 4 is considered a fixed
origin; a and —a are free to vary; a and —a are free to vary.

(2) The 2 x 2 y* test (Figure 6, lower) examines variation within the set
{a, —a}. It assumes that the expected distribution is averaged
between two observed distributions. The standard deviation of the
corresponding difference distribution is also a kind of average of the
two distributions. The test takes variance over both columns, ¢ and
—q, into account.

Conclusion: Use the 2 x 2 y* test when you want to examine if there is
variation within the set 4 = {a, —a} (e.g. modal shall vs. will). The test tells
us whether the values ¢ and —a behave differently from each other with
respect to B.

If these columns divide the dataset into independent samples, such as
spoken vs. written, different sub-corpora, or represent two independent runs
of the same experiment under different conditions, then you should ideally
use a Newcombe-Wilson test. However, the difference in performance
between the Newcombe-Wilson test and the standard chi-square is small.

3.2. The Problem of Linguistic Choice
The correct application of these tests relies on the assumption that speakers
or writers are free to choose either construction, such as shall or will, for
every case sampled. We have seen that tests can be employed, with modifi-
cations, for cases where the independent variable is not free to vary —
speakers assigned to one category or another cannot “choose” to contribute
to the other data set. However all tests assume that the dependent variable
is free to vary, i.e. p can range from 0 to 1.

Note that we specifically limited our example of shall and will to first
person singular cases, where contemporary alternation in English is possi-
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ble. Speakers can, with a few formulaic exceptions, freely choose to say /
shall go to the pictures or I will go to the pictures without violence to the
semantic context (cf. Lavendera, 1978).

However, this requirement of the test is not always upheld. This problem
is quite prevalent in corpus linguistics where it is not possible to experi-
mentally condition choices in advance. In a highly influential paradigm, cor-
pus linguists have frequently cited rates per million words, and used log-
likelihood tests (Rayson, 2003)” to evaluate whether change in such rates
are significant.

It should be apparent from the foregoing discussion that this type of
approach undermines the mathematics of the test — whether carried out
using a %, log-likelihood or other formula. It is not plausible to allow that
every word in a sentence could be shall or will, and so these other cases
should be excluded from the experiment.

Wallis (2012a) demonstrates that the introduction of invariant terms
(cases that can be neither shall nor will) first, introduces unwanted noise
into the experiment (although these words may not replace shall or will
they may change in frequency), and second, causes the test to overestimate
confidence intervals and lose power. The conclusion, quite simply, is to
eliminate these invariant terms as far as possible and try to focus on
alternates.®

3.3. Case Interaction in Corpora

One of the assumptions we made was that the sample was randomly drawn
from a much larger population. However, in corpus linguistics in particular
it is common to derive samples from a database consisting of substantive
texts. Participants may produce the sampled choice of constructions (shall
or will in our example) multiple times in the same text. If we maximise the
use of our data, and include every case found, then we are not strictly
engaging in random sampling — even if the texts themselves are effectively
randomly obtained. There may be numerous reasons why a speaker may
prefer one construction over another, tend to reuse a construction, prime
others’ uses, or, in writing at least, editorially avoid repetition.

"See also http://ucrel.lancs.ac.uk/llwizard.html

8A slightly better option for the Rayson school would be to employ goodness of fit tests to
test the distribution of the word against the distribution of numbers of words, but in fact, as
this website notes, they employ 2 x 2 homogeneity tests. Again, the validity of conclusions
drawn depends on the experimental design and test employed.
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This issue affects all standard statistical tests, not just contingency tests.
The principal effect is to overestimate the significance of results, because
we have assumed in our mathematical model that all » cases are indepen-
dent from each other. If all cases were dependent on the first then n should
be 1! So one correction that could be applied is to try to estimate the degree
to which case interaction applies in the data, and then reduce »n accordingly.
Addressing this problem is beyond the scope of this paper, but the author
has published some guidelines on the web.’

The key point is to exercise due diligence over your data, and check for
clustering and priming effects. If a small number of texts are the source for
a large proportion of the data, there is a bigger problem than if data is
evenly distributed. As a rule of thumb, if you were to divide your frequen-
cies by 2 and still obtain a significant result, you are likely to be in the
clear.

3.4. Analysing Larger Tables

In some experiments we may start with a larger table than 2 x 2: a multi-
valued » X ¢ contingency table (see, e.g., Nelson et al., 2002, p. 276). In
such cases you can carry out an initial » X ¢ %> test to determine if variation
is being observed at all. However, a general » x ¢ test merely tells us that
there appears to be significant variation somewhere! The data may be more
revealing if it is analysed more closely. It is necessary to “drill down” using
more focused tests.

These tests have problems with small expected cell values (usually e; <
5). In this case either rows or columns should be added together and the
test performed again.

Let us assume that the independent variable 4 = {a;, a,, a3} is distrib-
uted across the columns as before. The dependent variable B is distributed
across the rows. Table 3(a)—(c) illustrates a simple 3 x 3 x* test for homo-
geneity. Table 3(a) shows an observed distribution O = {o;} with row and
column totals »; and c; respectively, and grand total N. Table 3(b) then has
the expected distribution E = {e;;} obtained by the x> homogeneity formula
e; = (r; X ¢;)/N. Finally, Table 3(c) contains a table of y* partial values cal-
culated by the formula %*(i, j) = (0 — e,-j)z/el-j.

%See also http://corplingstats.wordpress.com/2012/04/15/case-interaction
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Table 3. (a)—(c) Analysing a 3 x 3 contingency table.

(a) observed O a; a as >
by 20 5 30 55
b, 10 10 25 45
b3 20 10 10 50
> 50 25 65 140
(b) expected E a a as

b; 19.64 9.82 25.54

b, 16.07 8.04 20.89

b; 14.29 7.14 18.57

2z

(C) Xz a day as >
by 0.01 2.37 0.78 3.15
b, 2.29 0.48 0.81 3.58
bs 2.29 1.14 3.96 7.38
> 4.59 3.99 5.54 14.12

An important property of y* is that it is additive, that is the total value
of * is the sum of its component parts y*(i, /), all of which are positive.'’
The final column and row in Table 3(c) display the “y* contribution” for
each row and column respectively. The bottom right cell contains the over-
all sum. This is significant at four degrees of freedom (x%, = 9.488 for
a = 0.05).

The first steps are simply to look at some of the totals used to calculate
the  x ¢ chi-square (Table 3(c), bottom right).

(1) Where does 4 vary? Examine the y* contribution (the partial sum
used in the calculation), (i), for each column in the r x ¢ table. As
the y* test is additive this tells us which values of the independent
variable are contributing the greatest amount to the overall result.
Columns with smaller values (e.g. a,) will be more similar to the
overall distribution across the column.

'Sheskin (1997, p. 240) offers an alternative method involving comparing standardized
residuals R; = (0; — e;)le;. This is essentially the same idea, but it reveals the direction
(sign) of the variation from the expected value.
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These > contribution values are equivalent to » x 1 goodness of fit tests
for each column. All we need do is compare y*(i) with the critical value of
x* for r — 1 degrees of freedom (5.991 at a = 0.05). As we have seen this
tells us whether any particular value of the dependent variable is distinct
from the overall distribution.'" In this case no single column distribution (4
= a,) over B is significantly different from the overall distribution.

You can also compute percentage swing and Cramér’s ¢ values for the
size of the effect for each column, and compare column swings. See the fol-
lowing section.

(2) Where does B impact on A? Examine the y* contribution for each
row in the » x ¢ table. This gives us an indication as to the values of
the dependent variable contributing to the overall result. We can see
that b3 is having a greater impact on the result than any other value
of B.

Any large contingency table may be simplified by collapsing columns and
rows to obtain one of a large set of possible 2 x 2 tables. The question is
then how to proceed. There are two approaches:

(a) Compare every cell against the others to produce the “x against the
world” 2 x 2 . Cells are reclassified as to whether they are in the
same Tow or column as a given cell, obtaining a 2 x 2 table {{o;, r;
— 04}, {¢; — 045 N — ¢; — r; + 0;}}. Thus to examine the upper left
cell o;; we would collapse rows 2 and 3, and columns 2 and 3, to
obtain the array {{20, 35}, {30, 55}}. The problem is that there will
be r x ¢ cells each requiring a separate 2 x 2 x> test. While this is
possible to compute, it seems like overkill.

(b) A more selective and meaningful approach would likely be premised
on linguistic theoretical assumptions. The idea is to simplify the
experiment on the basis of a linguistic argument (e.g. that sub-types
of transitivity are more meaningfully related than non-transitive and
copular types). You might group say, b; and b, together, and then

You can also collapse the other column values and carry out an r x 2 chi-square where
the other column represents the remaining values of the dependent variable. However this is
less powerful than the g.o.f. test and would obtain a significant result if the rest of the table
was varying but the current column did not.
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compare b3 with the group, so B becomes hierarchically structured: B
= {{b1, by}, b3}. The experiment is thereby divided into two or more
sub-experiments at different levels of granularity (e.g. all types of
transitivity vs. other classes of verb, followed by sub-types of
transitivity).

With care there is no need to dispense with your original result. Once you
have obtained y* contribution values for rows and columns it should be
possible to identify which sub-values are behaving differently than others.
Thus it is straightforward to see that b3 is contributing 7.38 toward the
overall ¥* sum (this g.o.f. test is significant with 2 degrees of freedom at a
=0.05).

4. COMPARING THE RESULTS OF EXPERIMENTS

A frequent question asked by researchers is whether they can argue that the
result of one experiment is in some sense “better” or “stronger” than
another. It is a common fallacy to state that if one y° test is significant at
o = 0.01 and another at o = 0.05 that the first is a “better” result than the
second. There are three objections to this line of argument:

(1) Standard deviation, and thus the threshold for a difference to be sig-
nificant, falls with increased sample size. Different experiments will
typically be based on different sample sizes. Quoting y* and z values
is problematic for the same reason: measures must be scaled by
1/+/N. Tests such as x* or z do two things: estimate the size of effect
(¢, d) and test this value against a threshold (a critical value or confi-
dence interval width).

(2) Reducing the chance of one type of error increases the chance of
another. As the error level a falls we increase our confidence that,
were the experiment to be repeated many times, we would reach the
same conclusion. In other words our results are more robust. But it
also means that we will tend to be conservative, and prematurely
eliminate promising results (so-called Type II errors). Researchers
should select different o values to control this trade-off, and not con-
flate this question with the size of the result.
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(3) Correlations are not causes. Numerical assessment is secondary to
experimental design. As we saw in Section 2, a test is crucially pre-
mised on how data is sampled, which may vary for different datasets
or corpora.'” This is another way of pointing out that statistical tests
cannot distinguish between correlation and causality. A “better”
experiment is one that is framed sufficiently precisely to eliminate
alternate hypotheses. Accurately identifying linguistic events and
restricting the experiment to genuine choices (semantic alternates,
Section 3.2) is more important than the error level reached.

We have seen how a significant result for a 2 x 2 x* test means that the
absolute difference between distributions O; and O, exceeds the confi-
dence interval, i.e. | p; — p» | > zy» . Saying that two y* results are indi-
vidually significant does not imply that they are jointly separable, i.e. that
one result is significantly greater than the other. However, this question
may be correctly determined using a test based on the methods we have
already discussed. We end this section by introducing the topic of separa-
bility tests.

4.1. Measuring Swing on a Single Dependent Value
An easy way of expressing the impact of an independent variable on a
dependent variable in a 2 x 2 table involves considering how the probabil-
ity of selecting a particular dependent value B = b changes over the inde-
pendent variable 4. This approach is compatible with goodness of fit tests.
If we return to Table 1 we can see that the probability of selecting b
given a (spoken) is p(b | a) = 20/30 (0.667), whereas the probability of
selecting b given —a (writing), p(b | —a), is 5/15 (0.333).
The difference between these p values, d = p, — p;, represents the abso-
lute change in probability of selecting b between values of a:

swing d = p(b|—a) — p(bla) = —0.333. (6)

">Thus, in claiming that a change detected between 1960s and 1990s data taken from the Lan-
caster-Oslo-Bergen corpus set {LOB, FLOB} is attributable to a change in time, one must elimi-
nate all other variables. We tend to assume that corpora are sampled equally randomly for all
other variables, such as level of formality, but this is seldom possible to guarantee in practice.
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We can also divide this difference by the starting point to obtain a swing
relative to the starting point, p(b | a):

percentage swingd” = p(b|-a) — p(b|a)/p(bla) = —50%. (7)

The advantage of citing percentage swing is that it minimizes the impact
of normalization. It is possible to use any normalised frequency to perform
this calculation, e.g. per million words, when the absolute swing will tend
to be very small. Percentage change is in common usage, to the extent that
it is rarely expressed formulaically.

Thus far we have quoted simple frequencies. We can use the z test for
two independent proportions (Section 2.4) or Newcombe-Wilson interval
(Section 2.5) to compute a confidence interval on d (and, by dividing by p
(a | b), on d”°). Assuming that samples are drawn from a within subjects
design, p = 25/45 and s’ = 0.157. The Gaussian interval for d at 0.05 level,
Zgn 8" = 0.308, thus: swing d = —0.333 £ 0.308.

Alternatively, as a percentage of p(a | b), percentage swing d”° = —50%
+ 46.20%. The confidence interval will not span zero if the test is signifi-
cant (cf. Figure 7).

4.2. Measuring Effect Size Over All Dependent Values
There are two main problems with swing-based measures. The first is
numerical: percentage swing is unequal about zero — i.e. a percentage fall
of 50% is not the same as a percentage rise of 50%, and any change from
zero is infinite! Secondly, measures of change should be constrained to the
same range, but d’’ can range over any value. Ideally, measures of effect
size should share a probabilistic range ([0, 1], or potentially, if sign is
important, [—1, 1])."*

A second set of methods use the y* calculation to measure the size of an
effect. The optimum standard measure is called Cramér’s phi or ¢. This
may be calculated very simply as

XZ
¢ Nx (k=1 (8)

BA signed ¢ for 2 x 2 tables can be calculated with an alternative formula (Sheskin, 1997,
p. 244).
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Table 4. ¢ measures the degree by which a flat matrix F is perturbed towards the identity
matrix L.

¢=0| F a -a | ¢=p | @ a —a ¢ =1 I a —a
b AA b e, A-p)y, b 1 0
-5 ' ' -5 4P, ey -5 0 1

where £ is the smaller of the number of rows and columns, i.e. £ = min(, c).
For a 2 x 2 table, k = 1 and the formula simplifies to the root of y* over
the total n. For Table 1, ¢ = 0.32.

Cramér’s ¢ has two important properties which makes it superior to
other competing measures of association. First, ¢ is probabilistic i.e. ¢ €
[0, 1]. Second (and this is a point rarely noted), ¢ measures the level of
perturbation from a flat matrix F to the identity matrix /. For any interme-
diate matrix for a point, p € [0, 1] between F and I, ¢ = p (Table 4). This
is conceptually appealing and similar to the idea of information flow from
A to B (to what degree does the value of 4 determine the value of B?).

It is possible to calculate confidence intervals on ¢ but this is outside
the scope of this current paper. Readers are referred to Wallis (2011) for
more information.

4.3. Using ¢ to Measure Effect Size on a Single Dependent Value
The formula above measures perturbation for a 2 x 2 (or r x ¢) y* test of
homogeneity.

It is also possible to calculate an equivalent ¢ for a goodness of fit test.
However the g.o.f. ¥* cannot just be substituted into the formula above.
In order to limit ¢ to a probabilistic range (and render results easily
comparable) we need to modify it.

Wallis (2012b) considers a wide range of alternative approaches to mea-
suring the size of goodness of fit before concluding that a simple formula,
¢,, is the most reliable. First, we calculate a revised chi-square calculation
multiplying each contribution by its prior probability p(b;) = e;/n.

TR SR LI MU ©)

i=1 €i n

b, = \/13/2n. (10)

and
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Second, this probabilistically-weighted sz cannot exceed a limit of 2n, so
we define ¢, € [0, 1] accordingly. This formula is simply the standardised
root mean square (r.m.s.) of differences.

4.4. Testing Swings for Statistical Separability

In some circumstances it can be valuable to compare results to decide
whether or not one change is greater than the other. Consider Table 5,
which represents the results of a second run of the same experiment in
Table 1. The swing is clearly a larger value numerically. We might ask
whether the swing observed here is significantly greater than that seen in
the first experiment.

We will denote the previously seen swing for Table 1 as d;(a) and the
new swing Table 4 as d»(a). We obtain di(a) = —0.333 = 0.308 and d»(a) =
—0.833 + 0.245 (Figure 7). Both results are independently statistically
significant, that is they express a non-zero change over values.

-0.1

-0.2 A

-0.3

I dxa)
04 |

-0.5

-0.6 4

d(a)

-0.7

Y

Fig. 7. Comparing two experiments by contrasting each swing.

Table 5. The results of a second “experiment”.

a —a z
b 50 0 50
—b 10 20 30

z 60 20 80




Z-SQUARED: THE ORIGIN AND APPLICATION OF »2 375

In absolute terms, the second result is greater than the first. The
difference between d)(a) and d>(a), D = —0.5, which is large. However, this
does not mean that the second swing is sufficiently greater than the first
such that their difference D would be considered significant. Imagine if we
repeated both experiments many times: Will the swing for the second exper-
iment exceed that of the first, 95% or more of the time?

To test this hypothesis, Wallis (2011) uses an independent-population z-
test for 2 independent samples (see Section 2.5) to compare |d,(a) — d>(a))
> zon -+ 8'. We calculate the standard deviation using this formula to reflect
the fact that the experiments are conducted on different datasets.

We use the sum of variances rule s = \/s? + s3. A shortcut exploits the
equality e = z,» - s, so we can reuse confidence intervals ¢ = e% + e% to
calculate the new interval. We obtain ¢ = 0.397, which is less than D. The
experimental runs are therefore significantly different or statistically
separable.

This method can be used to compare the results of different experiments
(as here) or different swings observed within a multi-valued experiment.
Wallis (2011) provides separability tests for repeated runs of all the tests we
have discussed, i.e. goodness of fit, 2 x 2 homogeneity and independent
population tests, and multinomial » x 1 and » X c¢ tests.

This type of test has the same number of degrees of freedom as each
individual test. If individual tests have one degree of freedom (and hence
interpretation), so does the separability test.'* Therefore, not only can we
report that the two swings significantly differ, we can also say that the fests
differ in their result. 2 x 2 signed ¢ values (see Section 4.2) must also sig-
nificantly differ. The effect of 4 on B is significantly greater on the second
experimental run.'’

5. CONCLUSIONS

Inferential statistics is a field of mathematics that models the likely outcome
of repeated runs of the same experiment, based on an underpinning mathe-
matical model, from the observation of a single experiment. For types of

I the swings significantly differ for one column, say a, then the same is true for —a. The
differences are equal but inverted, i.e. di(a) — dx(a) = d>(—a) — di(—a), with the same confi-
dence interval.

'SA spreadsheet for separability tests is available at www.ucl.ac.uk/english-usage/statspapers/
2x2-x2-separability.xls
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linguistic experiments where the dependent variable represents a single
Boolean alternative, the Binomial model is the appropriate mathematical
model for carrying out this type of prediction. A related model, termed the
multinomial model, applies for more than two outcomes. This paper con-
centrates on the simplest versions of tests because only one degree of free-
dom implies only one potential conclusion.

Since the Binomial distribution is arduous to compute from first princi-
ples, it is common to employ a Normal approximation to the Binomial, and
on this basis, carry out * tests and compute confidence intervals. Although
this is an approximation, the errors introduced in this step are small, and
may be compensated for by employing Yates’ continuity correction.

A rather more serious and common error is the use of this approxima-
tion in ‘Wald’ confidence intervals, which leads to the perplexing situation
that we may observe p at zero, but the confidence interval for p appears to
allow values to be less than zero! Since confidence intervals increase in size
with small n, this problem also affects less skewed observations supported
by small amounts of data. The correct approach is to use Wilson’s score
interval in place of the Wald interval. This assumes a Poisson skewed distri-
bution which can never exceed the range [0, 1].

We discussed the difference between three experimental designs: the
goodness of fit test, the test for independence (also known as the homoge-
neity test) and the independent samples test. The first compares an observed
distribution against a specific given distribution; the second and third com-
pare two sample distributions against each other, the difference between
them lying in whether we assume that the samples are drawn from the same
underlying population of participants (sometimes termed the within-subject/
between-subject distinction).

Section 3 concerns the correct application of these tests. We discussed
when different tests should be used and note common problems, particularly
prevalent in ex post facto corpus linguistics research, of attempting to
employ contingency tests on data where dependent variables are not free to
vary and where cases are not independently sampled. These problems are
not easily addressed by modifying the statistical test, but may be minimised
by refining the experimental design and taking care when sampling poten-
tially interacting cases.

Methods for analysing larger tables were also covered in Section 3. The
purpose of re-analysing larger tables is to examine experimental data draw-
ing linguistically meaningful distinctions and simplifying tables to do so.
Here the emphasis on simplicity of test can pay off.
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Finally we turned to the question of the strength of different results. We
introduced some basic effect size measures which are applicable to a variety
of conditions, including goodness of fit tests.

We noted that the common practice of citing x* scores or error levels is
highly misleading and should be avoided. As an alternative, we introduced
and demonstrated a separability test, a statistical test for evaluating whether
the size or pattern of effect found in one set of results is significantly differ-
ent from that found in another. This type of test is based on the same
underlying mathematics as the simpler y° tests, but allows researchers to
make statistically sound claims about multiple runs of the same test.
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