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Abstract 

  
Both the science and the everyday practice of detecting a lie rest on the same assumption: 
hidden cognitive states that the liar would like to remain hidden nevertheless influence 
observable behavior. This assumption has good evidence. The insights of professional 
interrogators, anecdotal evidence, and body language textbooks have all built up a 
sizeable catalogue of nonverbal cues that have been claimed to distinguish deceptive and 
truthful behavior. Typically, these cues are discrete, individual behaviors - a hand 
touching a mouth, the rise of a brow - that distinguish lies from truths solely in terms of 
their frequency or duration. Research to date has failed to establish any of these 
nonverbal cues as a reliable marker of deception. Here we argue that perhaps this is 
because simple tallies of behavior can miss out on the rich but subtle organization of 
behavior as it unfolds over time. Research in cognitive science from a dynamical systems 
perspective has shown that behavior is structured across multiple timescales, with more 
or less regularity and structure. Using tools that are sensitive to these dynamics, we 
analyzed body motion data from an experiment that put participants in a realistic situation 
of choosing, or not, to lie to an experimenter. Our analyses indicate that when being 
deceptive, continuous fluctuations of movement in the upper face, and somewhat in the 
arms, are characterized by dynamical properties of less stability, but greater complexity. 
For the upper face, these distinctions are present despite no apparent differences in the 
overall amount of movement between deception and truth. We suggest that these unique 
dynamical signatures of motion are indicative of both the cognitive demands inherent to 
deception and the need to respond adaptively in a social context.  
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1. Introduction 1 

 2 

The keystone of ‘dynamical cognition’ is the intimate relationship between mental 3 

and motor processes. Rather than the mind being limited to abstract computation, 4 

encapsulated from the body and its interactions with the environment, the connections 5 

between cognition, action, and perception are tightly intertwined (Port & Van Gelder, 6 

1995; Riley, Shockley, & Van Orden, 2012). Consider the interlocked rhythms of speech 7 

and gesture, where hand and arm movements are timed to coincide with the articulation 8 

of words and phrases during communication. The exact timings suggest that information 9 

carried in gesture subserves the transmission of meaning, with both arising from the same 10 

underlying cognitive processes (McNeill, 1996). Such a relationship counters notions that 11 

the path between cognition and movement is one of discrete, sequential steps, where 12 

instructions to act are handed down from a central executive. Instead, cognition and 13 

action formed a coupled system that co-varies in systematic ways.  14 

The connection between thought and action also suggests that hidden cognitive 15 

processes can be revealed in the dynamics of movement, such as those that occur during 16 

deception. Indeed, deception likely elicits unique cognitive demands that vary markedly 17 

from truthful communication (Vrij, Granhag, & Porter, 2010). By definition, deception 18 

requires mental partitioning of what is and what is not the case, and an intentional effort 19 

to convince listeners of the latter. In addition, it often occurs face-to-face, where a large 20 

array of motor cues are available, from movements of the hands and eyes, to facial 21 

movements and changes in articulatory patterns. Given this mind-body relationship, the 22 

possible consequences on deceptive behavior have not gone unstudied. However, 23 

overwhelming focus has been placed on discrete individual behaviors that can be noted 24 

and counted by human observers (e.g., see Hill & Craig, 2002; Vrij, Semin, & Bull, 25 

1996). In doing so, the dynamics of how movements are patterned across time have not 26 

been examined, and may in part explain why detection reliability in existing studies 27 

remains quite low (Bond & DePaulo, 2006).    28 

Here, we take a different tack by examining the moment-by-moment temporal 29 

dependencies that reside in patterns of motion. At this more granular level, we are able to 30 

provide a dynamical systems account of deceivers' continuous movements in naturalistic 31 

contexts. By examining how fluctuations of movement are structured in time, new 32 

insights can be had about the manner in which mental dynamics are expressed in bodily 33 

dynamics. These insights are particularly relevant for evaluating existing studies based on 34 

an implicit assumption that deception negatively interferes with normal processes of 35 

communication. Such an assumption leads to explanations that are typically couched in 36 

terms of greater processing load, whereby attentional resources are presumably diverted 37 

away from, or overly committed to, the control of action (DePaulo, 1992; DePaulo & 38 

Friedman, 1998; Ekman & Friesen, 1972; Vrij et al., 2008). A consequence is that normal 39 
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behavior is believed to be impaired in some way, often evidenced by decreases in 40 

movement frequency and duration (DePaulo, et al., 2003; Porter & ten Brinke, 2010; Vrij 41 

et al., 2010). 42 

From a dynamical systems perspective, this conclusion is based on a relatively coarse 43 

relationship between mind and body. As will be discussed further in the following section 44 

("2.1. Structure in movement variability"), increases or decreases in movement can serve 45 

only as gross indicators of how the cognitive and motor systems are indeed impaired. 46 

Rather, what is most telling are the structural properties of stability and complexity that 47 

are derived from the fine-grained changes in movement variability. It is here that the 48 

influences of deception might be more directly revealed. We hypothesize that the 49 

outcome may not be one of impairment, but instead a reorganization of behavior over 50 

time that is better able to flexibly respond to the changing demands in deceptive contexts. 51 

Although we provide additional justification for this claim (see section "2.2. Adaptive 52 

responding during deception"), it is important to note that our arguments can only be, at 53 

present, speculative. Nonetheless, combining existing cognitive accounts of deception 54 

and deception detection with further exploration of dynamics may be a fruitful avenue of 55 

investigation. We will argue that dynamics may hold great promise in distinguishing 56 

deception from truth, as well as in understanding the underlying cognitive processes 57 

during deception. 58 

We examine such possibilities by reanalyzing the bodily dynamics of participants in a 59 

deception experiment performed by Eapen, Baron, Street, and Richardson (2010). They 60 

designed two scenarios to elicit deception in participants who believed they were taking 61 

part in a study of mathematical ability and balance. Throughout the experiment, 29 points 62 

on the body, head, and on the face were rapidly sampled in three-dimensional space every 63 

5ms.1   64 

In the first scenario, participants performed a two math tests, and were offered a £5 65 

reward if they performed better on the second test. Crucially, only they knew how well 66 

they actually performed on the second test, but since the difficulty was calibrated 67 

carefully, we could be confident that they performed worse. 68 

As part of the second scenario, participants witnessed a laptop being accidently 69 

dropped by a junior investigator. In fact, the accident was staged, and purposefully 70 

occurred while the senior research was out of the room. Later, the senior research 71 

returned, found his laptop not working, and asked the participant if anything had 72 

happened to it. Part of the participants’ motivation to lie was the demeanor of the 73 

experimenters. The senior researcher was brusque and unpleasant throughout, but the 74 

junior researcher was very friendly towards the participant and expressed anxiety that she 75 

would be found out.  76 
                                                             
1 This study was originally published as a proceeding article for the Cognitive Science Society. Face data 
results were not included in the original report.   



                                                                                                                      The dynamics of deception 5 

In both scenarios the participant was given the means, motive and the opportunity to 77 

spontaneously lie to the experimenter. About 60% did so in each case. Eapen et al. found 78 

that while lying, compared to telling the truth, participants tended to move less. This 79 

conclusion was based on overall movement displacement across all motion points on the 80 

body. It echoes previous findings in the literature, albeit with a more refined, automated 81 

analysis. Here, we aim to extend these findings in two critical ways. First, by introducing 82 

two nonlinear measures used in the biological and physical sciences that provide a novel 83 

analysis of the motor dynamics of deception. Second, by considering the theoretical 84 

implications that such characterizations of behavior have on the responsiveness of the 85 

cognitive system during deception. To better serve these goals, we turn next to an area of 86 

dynamical systems research that strongly motivates the current approach.  87 

 88 

2. Unraveling the dynamics of movement 89 

 90 

2.1. Complexity in movement variability 91 

Even with the most basic types of control, the motor system faces the problem of how 92 

to constrain multiple and redundant bodily degrees of freedom in producing coherent, 93 

functional behaviors (Bernstein, 1967; Dickinson, 2000; Turvey, 2007). Given the 94 

countless physiological, contextual, and environmental interactions that are undoubtedly 95 

at play, assemblies of behavior cannot be captured by simple linear measures of more or 96 

less movement (Harbourne & Stergiou, 2009; Newell, 1998; Riley et al., 2012). Rather, 97 

the interactions are expressed as a process of self-organization, whereby the coordination 98 

of the musculoskeletal and nervous systems, coupled with ever-changing environmental 99 

demands, lead behavioral repertoires into stable response modes. To be maximally 100 

adaptive, movements should not stay fixed in any one mode, but must be able to rapidly 101 

transition to new stable modes of organization (Halley & Winkler, 2008; Kelso, 1995; 102 

Port & van Gelder, 1995; Riley & Turvey, 2002; Van Orden, Holden, & Turvey, 2003). 103 

These transitions are the hallmark of complexity, expressed as short- and long-term 104 

dependencies in movement stability and instability.  105 

The complexity exhibited in motor control also sheds new light on the influences of 106 

cognitive demand during processing tasks, an issue that is pertinent to deception. Despite 107 

the paucity of examples that can be drawn from the deception literature, this is offset by 108 

the extensive research involving the self-organization of postural control under dual-task 109 

conditions. The dual-task context is similar in form to deception, where one is trying to 110 

balance both what is true and what is a lie. In these postural dual-task designs, intentions 111 

and cognitive demands act to shape behavior in meaningful, albeit subtle ways. In a 112 

typical set-up, participants attempt to maintain an upright stance while performing 113 

cognitive tasks presented visually or auditorily, and that can vary in attentional and 114 

processing demands. The resulting outcomes suggest that there is no one-to-one 115 
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correspondence between the cognitive constraints and how movements are expressed, 116 

such as saying that increased task difficulty leads to degraded movements (Frazier et al., 117 

2008; Riley, Baker, Schmidt, & Weaver, 2005). Even when attentional resources are 118 

heavily drawn upon, the behavioral system does not necessarily break down, as would be 119 

the case if cognitive and motor processes were separate components competing for a 120 

limited pool of resources (e.g., as proposed in limited capacity theories, see Schmidt & 121 

Lee, 2003; 2005; Woollacott & Shumway-Cook, 2002 for review). Rather, because these 122 

cognitive and motor processes are tightly coupled, new solutions as to how to optimally 123 

redistribute resources are more quickly realized and expressed. Put simply, the cognitive 124 

system is not just breaking down or being overwhelmed, but is reorganizing dynamically 125 

in response to a new situation. How this might be relevant for deception in considered 126 

next.  127 

 128 

2.2. Adaptive responding during deception  129 

Deception makes heavy demands on cognitive resources (see Vrij, Granhag, Mann, & 130 

Leal, 2011 for discussion). The truth also seems to be spontaneously activated with a lie, 131 

requiring additional effort to overcome (Duran, Dale, & McNamara, 2010; Osman, 132 

Channon & Fitzpatrick, 2009). It is thought that performing concurrent tasks with 133 

deception, such as controlling one's body movements, will leave fewer resources 134 

available for successful deceptive performances (Leal, Vrij, Fisher, & van Hoff, 2008). 135 

With less to work with, the movements of deceivers will become impaired in some way, 136 

whether it is an overall decrease in animation or overly controlled movements that appear 137 

rigid and unnatural (DePaulo & Friedman, 1998; Vrij et al., 1996; Zuckerman et al., 138 

1981). However, from a dynamical systems perspective, this impairment interpretation 139 

does not necessarily reflect how the cognitive and motor systems are actually operating. 140 

Instead, the contextually and socially rich environment in which deception occurs 141 

provides a myriad of constraints that allow for the adaptive and functional reorganization 142 

of movement.  143 

This view is inspired by Interpersonal Deception Theory (IDT), in which emphasis is 144 

placed on deceivers' ability to adapt within real-time interaction (Buller & Burgoon, 145 

1996; Burgoon, 2005; Burgoon & Qin, 2006). Here, intentional and motivational factors 146 

allow deceivers to better regulate their behavior, doing so in a way that is highly 147 

responsive to their communication partner. According to this account, and the account 148 

considered here, deceptive displays of movement may not be driven by limited cognitive 149 

resources per se (i.e., impairment), but by the larger context. There is an important caveat 150 

however, in that IDT claims that resulting movements are largely under strategic control. 151 

We remain agnostic to this conclusion. Rather, our focus is on the reorganization of 152 

underlying "micro-behaviors" that are not intentionally controlled, and that may suggest a 153 

more subtle level of adaptivity. These movements are a non-conscious consequence of 154 
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being on the ready in a situation that requires quick thinking and responsiveness in 155 

averting suspicion or detection. Finding greater complexity in the deceptive movements 156 

would support such a claim. Of course, if deceptive behavior has less complexity than 157 

honest behavior, doubt would be cast on our hypothesis and support would be lent to the 158 

impairment position. By adopting a dynamical systems approach, we can test these 159 

predictions. 160 

We employed two measures used in the motor control literature, as well as the 161 

cognitive sciences more broadly. These two measures, recurrence quantification analysis 162 

(RQA) and multiscale entropy analysis (MSE), provide complementary insights into the 163 

structure (as opposed to the amount) of variability exhibited in motor behavior. They do 164 

so by quantifying patterns of stability and complexity of body movement, expressed as 165 

time series of marker positions in a motion capture system. In the sections that follow, we 166 

first turn to a more detailed, albeit introductory, tutorial of the conceptual and technical 167 

underpinnings of RQA and MSE (Section 3). In Section 4, we outline the methodology 168 

from Eapen et al. (2010), and detail our analytical approach for reinterpreting the 169 

collected data, targeting the undifferentiated movements of the arms, head, and upper 170 

face. To draw distinctions between deceptive and truthful behavior, we then contrast a 171 

displacement measure of movement (a traditional summary approach) with the RQA and 172 

MSE results (Section 5). Finally, we return to the theoretical and diagnostic potential of 173 

the current research in the discussion (Section 6).  174 

 175 

3. Quantifying the structure in time  176 

 177 

Human cognition is driven by many factors, all of which must work together in a 178 

coherent, integrated fashion. This multiscale characteristic is a hallmark of a complex, 179 

dynamical system. In such systems, subtle fluctuations of behavior may reveal transitions 180 

between stable behaviors, strategies, or states. If a system transitions frequently, this may 181 

reflect the buildup and breakdown of constraints over system elements as new potentials 182 

for movement are formed. Sticking to a single strategy will work against an individual 183 

when vigilance is required. These frequent transitions between strategies or states, then, 184 

maximize the potential for adaptive responding. To capture this underlying stability and 185 

complexity, a number of nonlinear measures have been developed to quantify these 186 

properties (Dale, Warlaumont, & Richardson, 2011; Seely & Macklem, 2004). 187 

The first of the two measures employed here, RQA, makes use of a method called 188 

"phase-space reconstruction" to capture geometric properties of how a system evolves in 189 

time (Eckmann, Kamphorst, & Ruelle, 1987; Marwan, Romano, Theil, & Kurtha, 2007; 190 

Webber & Zbilut, 1994). As will be explained below, a measure of stability can be 191 

derived based on how often a system revisits various regions within its phase space. In 192 

essence, more visits to the same region of phase space represents greater stability. The 193 
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second measure, MSE, provides an assessment of system complexity as variation in 194 

sequences of observations in a time series, measured across different temporal window 195 

sizes (Costa, Goldberger, & Peng, 2005; Gao, Cao, Tung, & Hu, 2007). Rather than 196 

phase-space reconstruction, this measure is based on sample entropy, which is computed 197 

over coarse-grained versions of the original series. The result offers insights into 198 

meaningful complexity, where less complexity is a system with too few or excessive 199 

transitions across stable states, and is either locked into a limited number of behavioral 200 

repertoires, or devolves into stochastic noise. An example of a system with less 201 

complexity can be seen in the movements of young children who are first learning to 202 

walk (Newell, 1998). Their movements are often rigidly fixed or seemingly random, both 203 

conditions that suggest a lack of motor control in adapting to changing situational 204 

demands. Taken together, RQA and MSE may serve as powerful new tools for assessing 205 

nonlinear changes in movement. In the next section, we flesh out the details of these 206 

methods in simple, qualitative terms.2   207 

 208 

3.1. Recurrence quantification analysis 209 

As already touched upon, the idea of phase space is critical to RQA. It is worth 210 

carefully explaining the concept of a "phase space," and how it is reconstructed from a 211 

time series. A phase space is defined by the variables (i.e., dimensions) that govern a 212 

dynamical system. For example, velocity and angle of the arms are necessary variables in 213 

explaining movement coordination, just as temperature and pressure are necessary 214 

variables for defining a thermodynamic system. Because these variables are time varying 215 

and directional, temporal succession over them produces a "behavioral trajectory" in a 216 

system's phase space. By examining the shape of the trajectory, it is possible to identify 217 

dynamic stabilities and instabilities as they emerge. One problem with this approach is 218 

that many state variables are unknown or cannot be measured. Another problem is the 219 

need to perform complex mathematics over a set of differential equations (e.g., 220 

integrating velocity vectors associated with state variables). To compensate, a solution is 221 

to reconstruct a phase space from time-lagged copies of a single time series of behavioral 222 

change. As originally observed by Takens (1981), a single state variable will be tightly 223 

coupled with all other state variables and thus is able to "stand in" for those that are 224 

unknown (Marwan, 2003; Stephen, Boncoddo, Magnuson, & Dixon, 2009). Once plotted 225 

in high dimensional space, these surrogate variables are able to estimate the topography 226 

of system organization.  Put simply, by analyzing just one behavioral time series, we can 227 

"reconstruct" the phase space.  228 

 229 

                                                             
2 For a more technical treatment of each approach, we recommend Riley and Van Orden (2005), Dale, 
Warlaumont, and Richardson (2011), and Marwan, Romano, Theil, and Kurtha (2007) for RQA, and Costa, 
Goldberger, and Peng (2005) for MSE.  
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Figure 1. Schematic illustration of the basic procedure of recurrence quantification 230 

analysis using a hypothetical example.   231 

 232 

 233 
  234 

Figure 1 provides an illustrative example of phase space reconstruction, as well as 235 

how RQA makes use of this space to derive measures that describe a system's behavior. 236 

To begin, in (a), a univariate time series of movement fluctuation, xk, is shifted by any 237 

number of time steps (horizontal bars) to produce new time-delayed copies, xk+1 and xk+2, 238 

of the original series. The number of copies (i.e., embedding dimensions) is inferred to be 239 

the number of dimensions in which the system is really operating. These are limited to 240 

three for current purposes. The resulting vectors are then plotted in temporal order, with 241 

the first three time points, enclosed in colored boxes, plotted in (b), and with all 242 

hypothetical points plotted in (c). The result is a phase space trajectory that, from visual 243 

inspection, tends to pass through regions previously visited at earlier points in time. It is 244 

the proximity of these recurrent points that is crucial to RQA. Recurrent points, 245 

particularly sequences of recurrent points, indicate that the system is in a preferred region 246 

of its state space, i.e., an attractor. In the top inset of (c), the Euclidean distance between 247 

two points, say at ti=45 and tj=85, fall within a predetermined threshold radius that 248 

defines a narrow region of space. When this occurs, it is simply plotted in what is known 249 

as a recurrence plot, shown in (d; left panel). Using the same logic, sequences of points 250 

that fall within the threshold radius are also captured: bottom inset of (c). Thus, the 251 

corresponding diagonal in (d; left panel) can be interpreted as follows: the system at time 252 



                                                                                                                      The dynamics of deception 10 

points; tj=49, tj =50, tj =51, is also where the system was at points; ti=22, ti =23, ti =24; a 253 

stable region.        254 

A complete (albeit hypothetical) recurrence plot is shown in (d; right panel). 255 

Properties of this plot provide the basis for all RQA measures. Here, we focus on just 256 

two: percent recurrence and determinism. The first is simply the percentage of filled 257 

points given the number of possible points, calculated according to the equation, 258 

 259 

!! = ! 1!! !!,!!,!
!

!,!!!
, 

 260 

that counts all points between the two time series, (!, !), that fall within a radius !. The 261 

latter, determinism, is the percentage of points that fall on diagonal lines, where diagonal 262 

lines indicate continuous sequences of repeating movements at different time points.3 263 

This is computed as a ratio between diagonal sequences and overall recurrence,  264 

 265 

!"# = !!!(!)!
!!!!"#

!!,!!,!!
!,!

, 

 266 

where !! ! != ! !!; ! = 1!..."!! !is the frequency distribution of all lengths of diagonal 267 

lines. Determinism is thus derived from basic recurrence, and is especially relevant for 268 

the current study. Specifically, it provides an intuitive measure of overall movement 269 

stability. However, as discussed earlier, determinism does not necessarily have a 270 

straightforward correspondence with system complexity. Movements that are highly 271 

predictable, occurring at regular, unchanging intervals, will exhibit high determinism, but 272 

are not complex. Likewise, movements characterized by random noise will show low 273 

determinism, but again are void of meaningful complexity. To identify what is 274 

meaningful, a suite of entropy-based measures has been developed that are based on the 275 

degree of repetitiveness in a time series. One measure in particular, MSE, provides a 276 

powerful technique for assessing complexity over multiple spatiotemporal scales in a 277 

single series, a method we turn to next4. 278 

                                                             
3 RQA also produces 11 additional measures that capture further dynamical properties of the recurrence 
plots, such as averaged diagonal length and length of the longest diagonal line. These measures may 
provide new directions for analysis, but for current purposes of examining general stability, we focus on a 
parsimonious set of variables.  
4 It should be noted that RQA also produces an entropy measure based on recurrence plots. This measure is 
derived from the number of diagonal lines of different lengths, with a greater number indicating greater 
entropy. However, results can sometimes be difficult to interpret if long diagonal lines are present with  
many smaller lines. Such a system would be considered highly entropic, yet the presence of long diagonals 
indicates high stability. The MSE measure allows for a more straightforward interpretation of entropy and 
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3.2. Multiscale entropy 279 

MSE is a two-step process, with the first step being the computation of sample 280 

entropy over a univariate time series. As previously stated, sample entropy is a measure 281 

of regularity, and captures, as Richman and Moorman (2000) observe, "the rate 282 

generation of new information." This new information is related to the degree to which 283 

sequences of some length (m) in a time series remain similar after the sequence length is 284 

extended by an additional time point (m+1). Figure 2, adapted from Costa et al. (2005), is 285 

presented to help conceptually ground what is meant by the given definition. A relevant 286 

pattern constitutes a short sequence of consecutive points, represented here as sequences 287 

of two points. This pattern is tallied as it repeats in the time series. For example, the 288 

consecutive values at t=2 and t=3 are a candidate pattern of interest (enclosed by box), 289 

and can be seen to repeat starting at t=10 and at t=27, as they occur within a similar range 290 

(or threshold radius; designated by horizontal dashed lines). This brings the total tally 291 

count to three. What needs to be determined is whether these two-point sequences can be 292 

extended by a similar, consecutive point. Returning to the original pattern in Figure 2, 293 

this value corresponds to t=5 (marked by red arrow), and is only extendable at the t=28 294 

location (marked by green arrow), resulting in a tally of two three-point sequences. After 295 

repeating this process over all possible patterns, the natural log of the ratio between the 296 

final two-point and three-point tallies is computed. The result is sample entropy (a 297 

conditional probability), where greater values indicate that there are more two-point 298 

sequence patterns that cannot be extended by a similar third point; thus, there are a 299 

greater number of unique patterns, i.e., more information, greater complexity, and less 300 

regularity.      301 

 302 

                                                                                                                                                                                     
complexity. Furthermore, by turning to a measure outside of RQA, we can ensure that the observed patterns 
are not limited to the RQA-based analysis. 
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Figure 2. Schematic illustration of the procedure for computing sample entropy (adapted 303 

from Costa et al., 2005). 304 

 305 

 306 
 307 

 308 

Although not immediately obvious, this measure has a fundamental problem in that 309 

higher entropy values also scale with increasing amounts of random noise (Costa et al., 310 

2005). In other words, if there is less repetitiveness in a signal, it may not necessarily be 311 

due to complexity. One way to solve this problem is to evaluate how sample entropy 312 

changes over various spatiotemporal scales of the time series. Motor behavior is 313 

composed of a number of interacting elements that must come together to perform a task. 314 

Although these elements are closely bound and depend on each other for expression, each 315 

has its own intrinsic frequency that, when combined, produce organized structure across 316 

multiple spatiotemporal scales. The reader may ask: "What elements, what scales?" The 317 

relevant ones could be the various structures (head, torso, arms, etc.), cognitive processes 318 

(e.g., memory, language, etc.), and even finer-grained scales of neural organization. It is 319 

obvious that any organized cognitive performance, such as deception, is grounded in such 320 

an array of elements and processes. Yet, even without making any commitments about 321 

the physical or cognitive constraints on the system, this coherent self-organization is a 322 

fundamental characteristic of a dynamical process (Bar-Yam, 2004). Thus, a complex 323 

system reveals new information (complexity) across scales of decreasing frequency, 324 

whereas a random signal (void of underlying element interactions) will show less and less 325 

new information. 326 

To produce a range of scales, the second step of MSE, the original time series is 327 

divided into nonoverlapping windows of increasing sizes (i.e., coarse-graining). The 328 

values in each window are then averaged and replotted as a new point in a reduced series, 329 

producing a new time series, calculated by the following equation 330 

 331 
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!!(!) = 1 ! !!!"
!!(!!!)!!! , 1 ≤ ! ≤ ! !. 332 

 333 

Here, the original time series, !!!..."!! , is divided into nonoverlapping windows of length 334 

!, with the datapoints in each window averaged to produce !!(!). An example of this 335 

process is shown in Figure 3 with an original time series of x1...x12 that is reduced by a 336 

scale of 2 (! = 2), to y1...y6, and then by a scale of 3 (! = 3), to z1...z4. In actual time 337 

series, which are comprised of thousands of points, reduction continues to a scale of 9 338 

(! = 9). These resulting scales correspond to signals of lower and lower frequencies. 339 

Finally, sample entropy is computed for each new reduced series and plotted with scale 340 

increasing along the x-axis (Figure 3b). The resulting curves are then used to compare 341 

relative differences between groups, an issue we return to when comparing deceptive and 342 

truthful movements in the following section.   343 

 344 

Figure 3. In (a), the original time series, x1-12 (scale 1), is reduced by a lower-order scale 345 

to produce new time series, y1-6 (scale 2) and z1-4 (scale 3). Although not shown, this 346 

continues to scale 9. In (b), sample entropy is computed for these new lower frequency 347 

time series and plotted as a function of scale, from 1 to 9 (adapted from Costa et al., 348 

2005). 349 

     350 

 351 
 352 

 353 

 354 

 355 

 356 

 357 

 358 
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4. Extending an analysis of spontaneous deception 359 

 360 

4.1. Overview of Eapen et al. (2010) 361 

To apply these dynamical techniques to deception, data captured during an interaction 362 

between a participant and two experimenters are explored here.5 To ensure recordings 363 

were of natural spontaneous behavior, participants were told their behaviors would be 364 

captured while they took part in a study supposedly examining the relationship between 365 

mathematical ability and body sway. In reality, two critical recording periods were 366 

captured when the experiment was apparently at an end: one regarding their performance 367 

on a math test and the other regarding an accident they witnessed. 368 

An amiable female experimenter welcomed participants. Soon after, a male 369 

experimenter entered and acted in a cold and unpleasant manner.6 The male experimenter 370 

placed a laptop on the edge of a table and told the female experimenter, "I’ve got that 371 

report of yours on my laptop. Remind me about it at the end." Participants donned a body 372 

motion tracking shirt and hat and were calibrated before being seated at a computer to 373 

take part in a math test. The test consisted of two stages of 30 multiplication questions 374 

with three multiple choices. Pilot testing indicated people scored approximately 75% 375 

correct. 376 

After the first stage, the male experimenter excused himself while the female 377 

experimenter explained what the second stage would entail. She told them what we had 378 

found and hoped to continue to find was that standing improves math ability, purposely 379 

violating good experimental practice to give the impression that it was normative to 380 

perform well on the second stage. In addition, participants were offered £5 if they 381 

performed better. They were also told that since they were standing they would be unable 382 

to reach the keyboard, so it was also their task to mentally keep track of approximately 383 

how many they calculated correctly, but not to voice this. That is, they were encouraged 384 

to claim they performed better on the second stage and they were aware there was no way 385 

to verify their claim. At this point the female experimenter accidentally knocked the 386 

laptop to the floor. She quickly expressed relief saying, "Thank God the cameras were 387 

off," implying that only she and the participant were witnesses to the accident. 388 

The second block was initiated as the male experimenter re-entered the room. The 389 

block was designed to become increasingly difficult over time, such that the absolute 390 

                                                             
5 This experiment was conducted under the permission of the UCL Research Ethics Committee. 
6 A reviewer raised the interesting point that had we used different gender roles, our results would have 
been quite different, citing Wraga, Duncan, Jacobs, Helt, and Church (2006) as support. Although this is an 
intriguing possibility, our aim was to set up a social situation that draws upon social norms about lying and 
honesty, and correct behavior between participants and experimenter. The goal was to rely upon these 
schemas of social interaction to elicit a higher rate of spontaneous deception. Had we used other gender 
roles in doing so, we might expect the rates of deception to decrease. Nevertheless, we believe that the roles 
used here adhere to reasonable expectations about social interaction and are optimized for the current 
research question. 
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difference between the three multiple choices was smaller on all trials in comparison to 391 

the first stage and that the time to respond was gradually reduced with each successive 392 

trial. All participants in a norming test performed worse on the second stage. 393 

After completing the math test, participants were asked a baseline question ("Did you 394 

feel the second stage took more or less time to complete?") and a critical question ("Did 395 

you feel you performed better on the first or the second test?"). The responses to these 396 

two questions, from the onset of their reply, constitute the neutral and critical recording 397 

periods for the math test. Participants who claimed to have performed better were paid 398 

the additional £5. Participants were then thanked for taking part and asked to remain in 399 

the kit while the male experimenter took a backup of the data onto his laptop. During this 400 

time, the neutral (“Did the math experiment run ok?”) and critical laptop-accident 401 

questions (“My computer doesn’t seem to be working. Did you see anything happen?”) 402 

were posed to the participant and recorded.  403 

 404 

4.2. Capturing movement 405 

A Vicon Nexus body motion tracker captured three-dimensional movement at 200 Hz 406 

by recording near-infrared reflections from 20 plastic markers attached to a tight-fitting 407 

shirt and cap. An additional nine markers were attached around the face, on the back of 408 

each hand and on the tips of each index finger. Marker positions were captured with an 409 

accuracy of 0.1mm in terms of position in space (Figure 4). 410 

 411 

Figure 4. Marker placement for body, head, and face, reconstructed with an accuracy of 412 

0.1mm using Vicon Nexus motion tracking software.  413 

 414 

 415 
 416 

 417 
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4.3. Movement displacement 418 

We focus here on undifferentiated movements of the arms, head, and upper face. 419 

These regions have been targeted in deception research as being especially relevant for 420 

detection purposes (DePaulo et al., 2003; Ekman & Friesen, 1969, 1972; Hill & Craig, 421 

2011; Hurley & Frank, 2011; Jensen, Meservy, Burgoon, & Nunamaker, 2010; Vrij, 422 

Akehurst, & Morris, 1997; Vrij et al., 1996). In the majority of these previous studies, 423 

participants are asked to rate the frequency, duration, or functional purpose of the 424 

movements, such as whether the movement has communicative intent (e.g., gestures used 425 

to emphasize verbal statements) or is unintentional (e.g., a "leakage" cue flashed across 426 

the face). In the current work, we avoid the assumptions needed to make these 427 

distinctions, evaluating only the rhythmic sequences of movement over time.  428 

As mentioned, the output of the motion tracker system is in three-dimensional 429 

coordinate positions across multiple body markers; and as such, we need to convert 430 

position to a single-dimensional measure of movement displacement. To begin, we first 431 

averaged the three-dimensional coordinate positions of body markers within each region 432 

of interest. For the arms, this includes six points distributed across right/left forearms, 433 

hands, and wrists; for the head, five points distributed across the top, right/left, and 434 

back/front; and for the face, five points distributed across the eyes and nose, thus 435 

minimizing influences from speech articulation. 436 

Averaging produces a single vector of coordinate positions for each region. Change in 437 

movement displacement was computed over windows of 250 ms, equivalent to 20 time 438 

steps (based on a sampling rate of 200 Hz). For arms and head, this was done by 439 

averaging the Euclidean distances between contiguous (x, y, z) coordinate positions in the 440 

moving window. A sample time series is shown in Figure 5. For the face, a slight 441 

modification was made based on the observation that movements of the face will co-vary 442 

with movements of the head. To remove this influence, Euclidean distances were 443 

computed between each face point and a composite head position, and then averaged in 444 

the moving window of 20 time steps.  445 

 446 
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Figure 5. Time series of movement displacement (based on Euclidean distance) for arms 447 

(a), head (b), and upper face (c) for a deceptive responder in the math-test condition.   448 

 449 

 450 
 451 

4.4. Parameter selection 452 

The generated displacement time series were normalized (mean zero and standard 453 

deviation of one) and used for the RQA and MSE analyses. It should be noted that 454 

although the movements here differ from those typically used in the motor control 455 

literature, they are still amenable to nonlinear analyses and interpretation. Various types 456 

of movements have been assessed using a similar approach; for example, changes in the 457 

angular velocity of hand movements (Stephen et al., 2009), and movement displacement 458 

in the video recordings of facial/head movements (D'Mello, 2011). The main requirement 459 

for these analyses is a movement signal that is thought to be generated by a complex 460 

system. However, the parameters for RQA and MSE still need to be uniquely specified 461 

for signal source in order to avoid spurious or unaccounted structure.  462 
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For RQA, the critical parameters correspond to time delay, embedding dimension, 463 

and radius for determining whether two points in phase space are sufficiently close (with 464 

radius expressed as a percentage of the standard deviation of a normalized time series). 465 

Following Shockley (2005) and Shockley, Santana, and Fowler (2003), we selected 466 

parameter values by first conducting RQA on four randomly selected time series across 467 

multiple embedding dimensions, along a range of delay and radius parameter values. 468 

Using a surface plot, we plotted the recurrence rate (y-axis) from each analysis, for each 469 

embedding dimension, as a function of delay (x-axis) and radius (z-axis). This produces 470 

multiple three-dimensional landscapes of valleys and peaks corresponding to recurrence 471 

rates that rise or fall depending on parameter value combinations. The optimal parameters 472 

are those that are in the flat regions of each series landscape, thus ensuring that the values 473 

are stable and not reflecting idiosyncratic change (i.e., small increases or decreases in the 474 

selected embedding dimension, time delay, and radius would have little effect on 475 

recurrence rates). It is also typical to select values that produce an overall recurrence 476 

percentage around 5% and that avoid ceiling effects in determinism. As such, we settled 477 

on an embedding dimension of three, a delay of eight, and radius of 15% for all 478 

analyses.7  479 

For MSE, parameter selection is more straightforward. Here, we followed the 480 

precedent of Costa et al. (2005) in setting the parameters corresponding to sample 481 

entropy and coarse-graining. As described in the previous section, we began with two-482 

point sequences that were extended by a third point. We also used a threshold radius of 483 

15%, which like RQA, sets the boundary of whether time points are considered similar, 484 

and is expressed as a percentage of time series standard deviation. Coarse-grained 485 

versions of the original series, in which sample entropy was computed, were reduced by a 486 

factor of two to nine (retaining the original series with a factor of one). This is depicted in 487 

Figure 3.8  488 

 489 

4.5. Participants 490 

Data from 28 participants were analyzed in this study (18 females and 10 males, 491 

mean age 22.5 years old). Most participants were consistent in how they responded 492 

between the math-test and laptop-accident conditions, either lying in both or telling the 493 

truth in both. However, six participants split their responses between conditions, telling a 494 

lie in one and the truth in another. Also, due to some data loss with the Vicon motion 495 

tracking system, movements for six participants were unavailable in the accident 496 

condition and unavailable for one participant in the math-test condition. In the end, for all 497 
                                                             
7 The "max norm" method was also used to compute distance between vectors in the reconstructed phase 
space (Marwan, 2003). Shockley (2005) offers an excellent summary of these issues, and is available as an 
open access chapter online here: www.nsf.gov/sbe/bcs/pac/nmbs/chap4.pdf.   
8 In general, the setting of these specific parameters does not adversely affect the general pattern of results, 
which hold across a range of these values. 
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analyses, there were 26 deceptive time series (combined across the math-test and laptop-498 

accident conditions; 16 participants; 3 males and 13 females), and 21 truthful time series 499 

(combined across the math-test and laptop-accident conditions, 17 participants; 5 males 500 

and 12 females).  501 

  502 

4.6. Data preparation 503 

Responses in the math-test and laptop-accident conditions were combined for all 504 

analyses. This combination was done partly for purposes of generalizability, as the 505 

structure of movements associated with deception should be somewhat consistent across 506 

similar contexts, thus bolstering claims of detectability. The other reason is more 507 

pragmatic, as limitations in statistical power for the RQA and MSE analyses warranted 508 

combination. This is often a consequence of using previously collected datasets, 509 

particularly sets that involve naturalistic, and somewhat noisy, expressions of behavior. 510 

As such, our claims are somewhat limited (an issue we address in the Discussion), but 511 

nevertheless, the goals of introducing nonlinear measures to the deception literature and 512 

relating these measures to the underlying cognitive processes involved in deception are 513 

still intact.  It should be noted, however, that the pattern of results presented here in fact 514 

holds in each case of deception separately. 515 

 516 

4.7. Statistical approach 517 

For the displacement and RQA determinism results, differences between deception 518 

and truth, across neutral and critical questions, were analyzed using linear mixed effects 519 

models. Given that participants sometimes contributed to both or only one of the 520 

deceptive responses across conditions, participant and condition variables were entered as 521 

random factors in the model to control for associated random variance. Also, because the 522 

error term in this model class is not amenable to traditional F-test methods for computing 523 

a p-statistic, an MCMC method was instead used for estimating statistical significance 524 

(see Baayen, Davidson, & Bates, 2008; Pinheiro & Bates, 2000). Next, for MSE curves, 525 

differences between relevant groups were analyzed by generating intercept and slope 526 

coefficients for each participant's time series data, using a curve-fitting model with linear 527 

fit. The resulting coefficient terms were then compared across deceptive and true 528 

responses using a two-sample t-test.    529 

 530 

5. Results and interpretation 531 

 532 

In this section, we begin with the results of movement displacement, an aggregate 533 

measure of magnitude change that has traditionally been used in analytic approaches that 534 

average over time series. We then turn to our two nonlinear measures, RQA and MSE, 535 

that may be useful in capturing additional information about movement dynamics.       536 
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 537 

5.1. Displacement results 538 

Separate analyses were conducted on the arms, head, and upper face regions.9 In 539 

comparing deception with truth, the neutral questions showed no statistically significant 540 

differences across all three motion regions. However, for critical questions, the 541 

movements of the arms and head reveal significantly less displacement in deception than 542 

the truth; for arms, B = 0.264, p = .022; for head, B = 0.121, p = .038. There are no 543 

statistically significant differences in displacement for face movements. And for all 544 

regions, there were no significant differences between neutral and critical questions for 545 

deception or truth (see Figure 6).   546 

 547 

                                                             
9 For these and subsequent analyses, the total N for each comparison varied slightly between body regions 
due to dropped recordings with the Vicon motion tracking system. For arms, there were 26 deceptive and 
20 truth time series; for head, there were 23 deceptive and 21 truth time series; and for face, there were 25 
deceptive and 20 truth time series.    
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Figure 6. Mean Euclidean distance displacement (every 250ms) for motion regions 548 

corresponding to the arms, the head, and the upper face (combined for math-test and 549 

laptop-accident conditions). Standard error plotted for each bar. Dark bars are 550 

participants who lied during the critical phase; white bars are those who told the truth. 551 

Bars are grouped according to neutral question (“Did the math experiment run ok?”), 552 

and critical questions (math performance+laptop scenario).  553 

 554 

 555 

 556 
 557 

 558 

For critical questions, we replicated the basic effect found by Eapen et al. (2010), 559 

who found less movement for deception across all motion points. Here, using a slightly 560 

different operationalization of displacement, decreases were isolated to the arms and head. 561 

This finding may suggest that participants are seeking to minimize incriminating 562 
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behaviors by clamping down on their movements. Conversely, the null finding for the 563 

face suggests that the generated movements are much more subtle and spontaneous, and 564 

the same control exhibited over the arms and head is not possible. But this may be 565 

because the wrong level of movement has been examined, leaving open the possibility 566 

that nonlinear measures offer a more sensitive means of identifying differences between 567 

conditions.    568 

Another issue that is evident from Figure 6 is the lack of significant differences 569 

between the neutral and critical questions. Yet the direction of mean values for neutral 570 

questions is very similar to that of the critical. Given that the neutral questions always 571 

preceded the critical in the experimental setup, participants who cheated on the math test 572 

or who were witnesses to the experimenter dropping a computer, may anticipate that a 573 

follow-up question will be asked that requires deception (such as being asked about their 574 

performance or why the computer was broken). Thus, their response behavior during the 575 

neutral question may indicate a preparation to lie that is ultimately expressed when a 576 

deceptive response is required. Whether the behavioral system was poised to react in this 577 

way is difficult to interpret from movement magnitude alone. Again, nonlinear measures 578 

may prove useful in clarifying this issue.  579 

 580 

5.2. Recurrence quantification analysis results 581 

For each motion region of interest, measures of percentage recurrence and 582 

determinism were generated based on recurrence plots for deceptive and true responses 583 

(Figure 7). The recurrence rate for all analyses were within 4% to 8%, and did not differ 584 

between comparisons of deception versus truth, or neutral versus critical questions. 585 

However, determinism rate did show statistically significant differences between groups, 586 

most notably in upper face movements, with less determinism in deception than in the 587 

truth, B = 0.126, p < .05 (Figure 8). There was also marginally less determinism in 588 

deception with arm movements, B = 0.135, p = .09; but for head movements, no 589 

statistically significant differences were found. There were also no significant differences 590 

within neutral questions, and in comparison with the critical questions.   591 

 592 
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Figure 7. For upper face movements, mosaic of recurrence plots for randomly selected 593 

subset of deceptive and truthful responses for critical questions. Deception is shown in 594 

the lower panel and truth in the upper panel. For truth, there is overall higher 595 

determinism than deception, as indicated by the greater percentage of recurrent diagonal 596 

lines. Each plot shown in this array is a reflection of the "recurrences" of face movements 597 

over time; the more points there are, the more the time series of movements exhibits 598 

similar fluctuations. Glancing at the plots does reveal that Truth plots seems to have 599 

more dense appearance of recurrence structures (for details on method, see Fig. 1). This 600 

is quantified using the Determinism percentage shown in Fig. 8.  601 

 602 

 603 
 604 

Truth

Deception
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Figure 8. Mean percentage of determinism for RQA. Standard error plotted for each bar.  605 

 606 

 607 
 608 

 609 

The trend for all regions is for less determinism for the critical questions during 610 

deception. This is most safely concluded for the upper face, with some cautious support 611 

for arm movements. Even so, this is suggestive that stability, as assessed by determinism, 612 

decreases in deception. Although it may be tempting to draw the conclusion that less 613 

movement causes a drop in determinism, the results of the upper face indicate otherwise, 614 

as no differences were found with displacement (based on the previous analysis). In other 615 

words, movement displacement appears to be independent of the influences driving 616 

determinism. That is, the nonlinear dynamics of the motion reveals new detail about the 617 

act of deception that is unavailable to the oft-used frequency counts of more or less 618 

movement in prior research. 619 
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As with displacement, the pattern of determinism between deceptive and truthful 620 

responses was also similar for neutral and critical questions. That is, there were lowered 621 

levels of determinism when participants both anticipated and expressed a lie. However, 622 

although there is decreased determinism/stability, it is not necessarily characterized by 623 

meaningful complexity. Before considering what a decrease in stability might mean in a 624 

deceptive context, we interpret the results alongside the MSE analysis.  625 

 626 

5.3. Multiscale entropy analysis  627 

As a reminder, MSE relies on sample entropy, a measure that evaluates the repetition 628 

of consecutive sequences in a time series (as opposed to variance). Sample entropy is 629 

then plotted over multiple time scales increasing in length, with time scales derived from 630 

the original movement time series. For each deceptive and truthful response, within each 631 

motion region, an MSE curve is generated and fitted with a linear model. To compare the 632 

relative complexity between groups, the resulting intercept coefficients for deceptive and 633 

truthful responses are evaluated using two-sample t-tests. In this way, differences across 634 

all scales can be evaluated in one statistic. The slope terms are also examined to compare 635 

differences in the rate by which complexity increases over scales. Composite slopes are 636 

shown in Figure 9. 637 

 638 
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Figure 9. For critical questions, sample entropy plotted across increasing scale lengths, 639 

i.e., lower frequencies (solid lines). Curve fitting to individual participant data was 640 

conducted using linear fit models for the three motion regions. The average intercept and 641 

slope shown here (dashed lines). Points represent mean values of sample entropy for 642 

each region, with standard error also plotted. The inset plots in each subfigure 643 

correspond to movements generated while responding to the neutral question. There are 644 

no significant differences between conditions.  645 

 646 

 647 
 648 

For the intercept coefficients, we found statistically significant differences with the 649 

movements of the upper face, t(41) = 1.976, p < .05; and once again marginal statistical 650 

significance for the arms, t(44) = 1.654, p = .09. There are no statistically significant 651 

differences for the head. Thus, the pattern for the upper face and the arms is for greater 652 

relative complexity with deception compared to the truth. Next, turning to the rate in 653 
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which complexity increases for both deception and truth, there is equivalent gain for all 654 

regions except the head, where the complexity in the truth rises at a faster rate than 655 

deception, t(42) = 2.27, p < .05. Here, truth and deception converge at the larger 656 

timescales, and may account for the failure in finding significant differences between 657 

deception and truth. Finally, for neutral questions, complexity was present in the neutral 658 

responses, but as has been evident in the previous analyses, there were no differences 659 

with critical questions.   660 

The findings of greater complexity in deception for the upper face (and somewhat for 661 

the arms), is further qualified when one examines what happens when the time series for 662 

each response is randomly shuffled while preserving local temporal interdependencies. 663 

Binned sequences of 2000 ms sequences were randomly shuffled, effectively removing 664 

the time-dependent complexity hypothesized to be present in each series. Based on 665 

Figure 10, the monotonic downward slope indicates that the number of new structures 666 

drops as the length of the window for coarse-graining increases; thus, there is no new 667 

information to be found.  668 

 669 

Figure 10. For shuffled time series (randomized across bins of 2000 ms), mean sample 670 

entropy and standard error is plotted across increasing scale lengths (1 to 10). 671 

  672 

 673 
 674 

6. Discussion 675 

 676 

Despite a long tradition in seeking out bodily cues of deception, temporal 677 

dependencies in how movement is organized across time have largely been overlooked. 678 

In the current paper, we captured these dependencies as emergent properties of a complex 679 
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system, characterized by structural properties of stability and complexity. Using two 680 

nonlinear measures, recurrence quantification analysis (RQA) and multiscale entropy 681 

(MSE), we found that the movements about the upper face, and somewhat in the arms, 682 

tend to have lower determinism/stability (based on RQA) and higher complexity (based 683 

on MSE). These patterns suggest greater flexibility in movement responsiveness that 684 

would have remained hidden with a measure of movement displacement alone, as 685 

deceptive and truthful facial movements were shown to have similar summary statistics 686 

(mean and standard error). Though suggestive, it is important to note that these results are 687 

indeed statistically subtle, based on a convenience sample, and also show that the neutral 688 

and critical contexts are about the same in most measures within each subject. However, 689 

if we take these results for granted, here we consider some potential theoretical 690 

implications of these dynamical methods. 691 

These results challenge the notion that the demands introduced by deception 692 

exclusively deplete attentional resources and negatively affect the control of movement. 693 

That is, rather than only a breakdown in processing, the dynamic signatures of movement 694 

are structured in such a way to permit rapid adjustments to emerging demands unique to 695 

deceptive, social contexts. To support this claim, we have drawn from a dynamical 696 

systems framework for understanding how nonlinear systems come to exhibit structured 697 

behavior. Human motor behavior is often held up as a primary example, in that patterns 698 

of movement are rapidly formed, maintained, and transformed by the release or 699 

restriction of system-wide degrees of freedom (Newell, 1998; Turvey, 1990; 2007). What 700 

results is increased complexity that speaks to the ability of the motor system to flexibly 701 

adjust and adapt to ever-changing situational demands, much like the behaviors of a 702 

skilled athlete or a child mastering the ability walk. Such behavior may be necessary in 703 

handling the challenges inherent to deception.  704 

 Greater flexibility also appears to be present during the neutral questions prior to the 705 

actual deception. This finding may point to participants who anticipate that they will need 706 

to lie. Although they did not know that they would be put on the spot about their own 707 

guilty behaviors (assuming they cheated on the math test), or the guilty actions of another 708 

(witnessing a confederate drop a laptop), the possibility of investigative questioning by 709 

the experimenter, as well as the experimenter's possible suspicion, was always present. 710 

Such a situation would support an increased need for heightened responsiveness (i.e., 711 

adaptiveness, see Eapen et al., 2010). One reviewer remarked that this may instead be a 712 

sign of a sluggish system, that is incapable of rapidly adapting to a more local context. 713 

Holding up the results from another perspective, this is a viable interpretation. But one 714 

timescale's sluggishness may be another timescale's adaptiveness. The way in which the 715 

dynamic signatures seem to be present (i.e., in both neutral and critical questions) 716 

suggests adaptiveness at a longer timescale; while this adaptiveness may force more local 717 

moments to be under the control of these longer timescales. In other words, the system 718 
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could be adapting for a future potential event; and before it happens the situation at hand 719 

is subject to this structure. 720 

It is also revealing that responsiveness was most apparent in the subtle movements of 721 

the upper face. The face has largely been implicated as a "dynamic canvas" for expressive 722 

behavior, where intentional and unintentional information about mental states are 723 

optimally conveyed (DePaulo, 1992; Rozin & Cohen, 2003). Given that accurate 724 

assessments of these states are easily and rapidly seized upon by outside observers 725 

(Ambady, Bernieri, & Richeson, 2000), it is sensible to hypothesize that these 726 

movements need to be particularly flexible in deceptive contexts. Also, unlike the 727 

movements of the body and head, the control of the musculature around the eyes may 728 

also produce a signal that is most appropriate for the nonlinear analyses employed here. 729 

Both factors may explain why the reported results were statistically significant for the 730 

face alone.  731 

The rapid and small-scale movements in the face are also thought to be susceptible to 732 

the inadvertent "leakage" of hidden emotional states (Ekman & Friesen, 2003; Hill & 733 

Craig, 2002). Such leakage forms the basis for the inhibition hypothesis, whereby 734 

attempts to conceal true emotions are revealed in "micro-expressions" of the face that last 735 

only tenths of a second (Ekman, 2003; 1992). Of the few empirical studies that directly 736 

examine this claim, evidence suggests that masked negative emotions may elicit the 737 

greatest leakage; and that transitory patterns of emotional states, particularly from 738 

negative to positive emotions, may also be a predictor of deception (Porter & ten Brinke, 739 

2008; ten Brinke, MacDonald, Porter, & O'Connor, 2011). For the current study, this 740 

raises the interesting possibility that the transitional nature of momentary emotional states 741 

can account for the current results. However, such transitions are much too coarse-742 

grained to drive the moment-by-moment millisecond fluctuations that were analyzed. 743 

Also, given the short duration of participants' interactions with the experimenter, a wide 744 

array of changing emotional states is unlikely. Nevertheless, the role of emotions in the 745 

current study cannot be discounted. The need to adapt emotional displays to changing 746 

circumstances may very well contribute to the increased movement complexity found 747 

during deception. Such questions pave a way for future work.   748 

We were limited by certain characteristics of the data, such as participants that 749 

unevenly self-selected into deceptive and truthful response groups, and who sometimes 750 

lied in both or only one of the math-test and laptop-accident conditions. Statistical power 751 

concerns were also limiting, and required us to combine the math-test and laptop-accident 752 

conditions. There is also the inescapable fact that statistical effects were somewhat weak. 753 

Nevertheless, the upside of the current dataset is that we could draw conclusions from 754 

behavior that possesses defining characteristics of deception; that is, participants who 755 

deliberately attempted to mislead unsuspecting recipients (a rarity in laboratory-based 756 

studies). The dataset also allowed us to examine continuously sampled movements as 757 
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fluctuations over time. Such data are quite rare in the deception literature, with the 758 

exception of a promising line of research that extracts continuous body movements from 759 

video recordings (Jensen et al., 2010; Meservy et al., 2005). Although this research uses 760 

participants who were instructed to lie and analyses were based on movement 761 

displacement alone, a number of these variables have proved to be highly effective in 762 

detecting deception. When entered into machine learning models, the classification 763 

algorithms produced surprisingly high accuracy rates. Given that we show dynamical 764 

measures provide information above and beyond movement displacement, these 765 

additional variables could further improve the accuracy of classification.   766 

Lastly, the current approach addresses an important debate in the deception literature 767 
concerning the tendency for deceivers to move less. It is unclear whether fewer 768 
movements are caused by excessive strategic management to the point that deceivers 769 
ironically overcompensate (DePaulo, Kirkendol, Tang, & O'Brien, 1988; see also Wegner, 770 
2009) or a strategic move to prevent leakage cues (Burgoon, 2005). This is an important 771 
distinction for the lie detector. After all, if the behavior is strategic then its diagnosticity 772 
cannot be relied upon. An important facet of accurate lie detection, then, is not only 773 
discovering those behaviors that give liars away, but also determining if those behaviors 774 
are strategic in an attempt to minimize irrepressible "tells." Accordingly, dynamical 775 
measures of stability and complexity might have a great deal of relevance here. Although 776 
people may strategically minimize the overall magnitude of their movements, the 777 
dynamical structure of these movements are certainly outside of conscious control. And 778 
where a minimization of movement might be considered unintentional, it does not 779 
necessarily have to reflect impairment on part of the cognitive system. According to a 780 
main hypothesis, when the dynamical properties of movements are examined, what may 781 
be expressed are complex patterns of adaptation that emerge in task-specific ways. There 782 
are new and exciting ways to spot a liar.    783 
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