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Abstract

We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed
methodology combines a synchronization–based framework for parameter estimation in coupled chaotic systems with
some state–of–the–art computational inference methods borrowed from the field of computational statistics. The first
method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques
are based on approximate Bayesian computation. The latter is a general methodology for non–parametric inference that
can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a
Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization
error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The
second ABC–based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of ‘‘populations’’,
i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error
that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be
obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective
these methods are from a computational perspective. For the numerical simulations we have considered a network that
consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the
cell membranes.
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Introduction

Most dynamical systems studied in the physical, biological and

social sciences that exhibit a rich dynamical behavior can be

modeled by sets of nonlinear differential equations. These

mathematical models are a useful tool to predict complex

behaviors using numerical simulations. However, for the vast

majority of systems, and particularly for biological systems, we lack

a reliable description of the parameters of the model. In this paper

we are interested in parameter estimation for coupled intercellular

networks displaying chaotic behavior, since models of spontane-

ously active neural circuits typically exhibit chaotic dynamics (for

example, spiking models of spontaneous activity in cortical circuits

[1–3] and the analogous spontaneously active firing-rate model

networks [4,5]).

The problem of parameter estimation can be tackled in different

ways, e.g., using multiple shooting methods [6–8] or some

statistical procedures based on time discretizations and other

approximations [9–13]. These methods involve the solution of

high-dimensional minimization problems, since not only the

unknown parameters but also the initial values of the trajectory

segments between the sampling times need to be estimated [7,14].

This is specially difficult when working with chaotic systems since

very complicated error landscapes with many local minima can

appear. In particular, notice that chaotic systems have an

exponential sensitivity to initial conditions, that is, completely

different trajectories can be obtained for identical parameter

values and very similar initial conditions of the system variables.

On the other hand, several authors have suggested to take

advantage of synchronization techniques for coupled chaotic

systems and turn them into accurate parameter estimation

methods [14–29]. There is a variety of techniques that rely on

the synchronization properties of chaotic systems in order to tackle

the parameter estimation problem. For example, some authors

have proposed to handle the parameters as additional variables

whose dynamics is described by tailored differential equations

designed to have a fixed point at the true parameter values [14–

20]. Adaptive estimation techniques relying on the time discretiza-

tion of the state trajectories [22,23,30] and Monte Carlo methods

[29,31], including particle filters [32,33], have also been investi-

gated. All these techniques address the estimation of the system

parameters independently of the initial conditions of the dynamic

variables.
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In this paper we investigate techniques that combine a

synchronization–based framework for parameter estimation in

coupled chaotic systems with some state–of–the–art computational

inference methods borrowed from the recent literature in

computational statistics. In particular, we describe estimation

methods based on the accelerated random search (ARS) optimi-

zation algorithm [29,31,34] and two approximate Bayesian

computation (ABC) [35–39] schemes. ABC is a general method-

ology for non–parametric inference that can be applied to

practically any system of interest. We investigate two ABC–based

methods. The first one is a Markov Chain Monte Carlo (MCMC)

scheme [37] that generates a series of random parameter

realizations for which a low synchronization error is guaranteed.

We show that accurate parameter estimates can be obtained by

averaging over these realizations. The second ABC scheme is

termed Sequential Monte Carlo (SMC) ABC [38]. It generates a

sequence of ‘‘populations’’, i.e., sets of randomly generated

parameter values, where the members of the n{th population

attain a synchronization error that is lesser than the error attained

by members of the (n{1){th population. Again, we show how

very accurate estimates can be obtained by averaging over the

parameter values in the last population of the sequence. For the

numerical simulations we consider a network of two coupled

repressilators, since the repressilator is a paradigmatic gene

regulatory system.

Methods

Structure of the Model
The repressilator is a prototype of a synthetic genetic clock built

by three genes and the protein product of each gene represses the

expression of another in a cyclic manner [40]. It can be

constructed experimentally and produce near harmonic oscilla-

tions in protein levels. In the original repressilator design [40], the

gene lacI expresses protein LacI, which inhibits transcription of the

gene tetR. The product of the latter, TetR, inhibits transcription of

the gene cI . Finally, the protein product CI of the gene cI inhibits

expression of lacI and completes the cycle. (See left-hand module

in Fig. 1 of Ref. [41]).

Cell-to-cell communication was introduced to the repressilator

by Garcı́a-Ojalvo and coworkers [42] by introducing an additional

feedback loop to the network scheme that is based on the quorum

sensing mechanism. The additional genetic module, which might

be placed on a separate plasmid involves two other proteins [42–

44]: LuxI, which produces a small autoinducer (AI) molecule that

can diffuse through the cell membrane, and LuxR, which

responds to the autoinducer by activating transcription of a

second copy of the repressilator gene lacI. The additional quorum

sensing feedback loop can be connected to the basic repressilator

in such a way that it reinforces the oscillations of the repressilator

or competes with the overall negative feedback of the basic

repressilator. The first one leads to phase attractive coupling for a

robust synchronised oscillation [42] whereas the latter one evokes

phase-repulsive influence [45–47], which is the key to multi-

stability and a very rich dynamics including chaotic oscillations

[41,48,49]. Placing the gene luxI under inhibitory control of the

repressilator protein TetR (see Fig. 1 bottom in Ref. [41]) leads to

the desired repressive and phase-repulsive coupling. We term this

system modified repressilator. Phase repulsive coupling is common

in several biological systems, e.g. in neural activity in the brain of

songbirds [50], in the respiratory system [51], in the jamming

avoidance response in electrical fish [52] and in the morphogenesis

in Hydra regeneration and animal coat pattern formation [53].

In particular, in this work we are going to consider two modified

repressilators with identical parameters, coupled by the fast

diffusion of the autoinducer (AI) across the cell membranes. The

Figure 1. Bifurcation diagrams versus the different control parameters. (A) Q, (B) ba , (C ) bb , (D) n, (E) a, (F) k, (G) ks0 , (H) ks1 , (I) g.
doi:10.1371/journal.pone.0079892.g001
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mRNA dynamics is described by the following Hill-type kinetics

with Hill coefficient n:

_aai ~ {ai z
a

1zCn
i

, ð1Þ

_bbi ~ {bi z
a

1zAn
i

, ð2Þ

_cci ~ {ciz
a

1zBn
i

z
kSi

1zSi

, ð3Þ

where the subscript i~1,2 specifies the cell, and ai, bi, and ci

represent the concentrations of mRNA molecules transcribed from

the genes of tetR, cI, and lacI, respectively. The parameter a is the

dimensionless transcription rate in the absence of a repressor. The

parameter k is the maximum transcription rate of the LuxR

promoter.

The protein dynamics is given by

_AAi~ba(ai{Ai), ð4Þ

_BBi~bb(bi{Bi), ð5Þ

_CCi~bc(ci{Ci) ð6Þ

where variables Ai, Bi, and Ci denote the concentration of the

proteins TetR, CI, and LacI, respectively. The dynamics of the

proteins is linked to the amount of the responsible mRNA, and the

parameters ba,b,c describe the ratio between mRNA and the

protein lifetimes (inverse degradation rates). In what follows, we

are going to assume bb~bc. Thus, we can consider it as a single

parameter. The model is made dimensionless by measuring time

in units of the mRNA lifetime (assumed equal for all genes) and the

mRNA and protein levels in units of their Michaelis constant. The

mRNA concentrations are additionally rescaled by the ratio of

their protein degradation and translation rates [42].

The third term on the right-hand side of Eq. (3) represents

activated production of lacI by the AI molecule, whose concen-

tration inside cell i is denoted by Si. The dynamics of CI and LuxI

can be considered identical, assuming equal lifetimes of the two

proteins and given that their production is controlled by the same

protein (TetR). Hence, the synthesis of the AI Si can be considered

to be controlled by the concentration Bi of the protein CI. Taking

also into account the intracellular degradation of the AI and its

diffusion toward or from the intercellular space, the dynamics of Si

is given by

_SSi~{ks0Sizks1Bi{g(Si{Se), ð7Þ

where the diffusion coefficient g depends on the permeability of

the membrane to the AI. Because of the fast diffusion of the

extracellular AI (Se) compared to the repressilator period, we can

apply the quasi-steady-state approximation to the dynamics of the

external AI [42], which leads to

Se~Q�SS:Q
1

N

XN

i~1

Si: ð8Þ

The parameter Q is defined as

Q~(dN=Vext)=(ksezdN=Vext) ð9Þ

where N~2 is the number of cells, Vext is the total extracellular

volume, kse is the extracellular AI degradation rate, and d is the

product of the membrane permeability and the surface area.

We achieve chaotic behavior for the following parameter values

[41]: Q~0:85, n~2:6, a~216, ba~0:85, bb~0:1, g~2, k~25,

ks0~1, and ks1~0:01. In particular, these are the values we are

considering throughout this manuscript in order to assess the

parameter estimation algorithms.

To see how the system behaves around these values we have

plotted some bifurcation diagrams taking in each one a different

parameter as a control parameter, whereas the rest of the

parameters remain constant on the values mentioned above.

Figure 1(A–I) represents the bifurcation diagrams versus the

different control parameters. In particular, in each plot we are

representing all maxima of the variable a1 for some fixed initial

Figure 2. Synchronization between the primary and secondary systems. (left) Synchronization error, D�aa1{a1D, between both systems for
D~20. (right) The first variable of the secondary system (y1~�aa1) versus the first variable of the primary system (x1~a1).
doi:10.1371/journal.pone.0079892.g002
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condition as a function of the corresponding control parameter.

We can observe how for some values of the control parameters the

behavior changes from periodic to chaotic and vice versa. The

vertical red dashed lines correspond to the values we are

considering to assess the parameter estimation algorithms. Notice

how for these values the system can display chaotic behavior.

Problem Statement
We first introduce the notation to be used in the description of

the parameter estimation methodologies. Let

_xx~f(x,p) ð10Þ

represent the chaotic intercellular network (consisting of two

coupled modified repressilators), with state variables

x~(x1, . . . ,x14)

~(a1,b1,c1,A1,B1,C1,S1,a2,b2,c2,A2,B2,C2,S2)
ð11Þ

and unknown parameters

p~(p1, . . . ,p9)

~(Q,ba,n,a,bb,k,ks0,ks1,g):
ð12Þ

The vector–valued function f can be explicitly written down by

comparing Eq. (10) with Eqs. (1)-(7). In the sequel we refer to the

system of Eq. (10) as primary system.

Since f in Eq. (10) is known, we can build a model with identical

functional form but adjustable parameters and a coupling term,

termed secondary system in the sequel, as

_yy~f(y,q)zDsi,j(x{y), ð13Þ

where

y~(y1, . . . ,y14)

~(�aa1,�bb1,�cc1,�AA1,�BB1, �CC1,�SS1,�aa2,�bb2,�cc2,�AA2,�BB2, �CC2,�SS2)
ð14Þ

is the time-varying vector that contains the model state variables,

q~(q1, . . . ,q9)

~( �QQ,�bba,�nn,�aa,�bbb,�kk,�kks0,�kks1,�gg)
ð15Þ

is the adjustable parameter vector, D is a coupling coefficient and

si,j : R14?R14 is a vector function that selects the i-th and the j-th

element of its argument, i.e.,

si,j(x{y) ~ (0,:::,0,xi{yi,0,:::,0,xj{yj ,0,:::,0): ð16Þ

The definition of the latter function implies that coupling is

performed only through two scalar time series, xi and xj , from the

primary system. In particular, the coupling scheme we have

chosen for the simulation setup in this paper is

_�aa�aai~{�aaiz
�aa

1z�CC�nn
i

zD(ai{�aai), ð17Þ

where i~1,2 denotes the cell number (i.e., the repressilator index).

Thus, the coupling only appears in two of the fourteen differential

equations we have in the secondary system.

Since we assume identical functional form for the primary and

secondary systems, when the secondary parameter vector, q,

coincides with the primary parameter vector, p, the state variables

y synchronize with x for DwDc, where Dc is a coupling threshold

[29]. On the contrary, if q=p then identical synchronization

cannot occur. However, the difference y{xk k is expected to be

small whenever the difference of the two parameter vectors is small

and D is sufficiently large. Therefore, the objective of a parameter

estimation method based on synchronization is to compute a value

q̂q such that y{xk k&0 over time, since the latter implies q̂q&p.

Figure 2(left) shows how the synchronization error D�aa1{a1D
evolves in time when considering D~20 and identical parameters

for the primary and the secondary systems. We can see how this

error can be very small, less that 10{10. We are going to fix D~20
in all simulations throughout the paper. In Fig. 2(right) we are

representing one variable of the secondary system (y1~�aa1) versus

the same variable of the primary system (x1~a1) and observing

the typical straight line, characteristic of the synchronization

phenomenon.

It has been verified by means of numerical simulations that in

order to obtain synchronization at least two coupling variables are

needed (excluding S1 or S2), one from each repressilator in the

primary system. Therefore, other combinations different from

(a1,a2) are also possible, as for example (b1,A2). Coupling via a

single variable is not sufficient to guarantee that the secondary

system synchronizes with the primary one.

Results

Parameter Estimation Methods
Here we introduce three parameter estimation methods that

combine the synchronization–based framework described above

with state–of–the–art computational methods. In particular, we

present results for the joint estimation of four parameters,

p~(p1,p2,p3,p4)~(Q,ba,n,a), ð18Þ

in the coupled modified repressilator network. In all simulations

shown in this manuscript we have assumed that just two scalar

signals from the primary system are observed, namely the coupling

variables (a1,a2), and we have numerically integrated the

secondary system using a second order Runge-Kutta method with

a time step Ts~0:005 time units (t.u.).

Accelerated Random Search
We first focus on a parameter estimation method for chaotic

intercellular networks that takes advantage of chaos synchroniza-

tion and is based on an efficient Monte Carlo optimization

procedure, known as accelerated random search (ARS) method

[29,31]. In particular, the method we are going to describe consists

in a variation of the technique proposed in [31]. Assuming that the

variables (a1,a2) are observed during the time interval (0,To), the

value of the parameters in the secondary system can be calculated

as the solution to the optimization problem

q̂q~ arg min
q

J(q)f g, ð19Þ

where q~(q1, . . . ,q4)~( �QQ,�bba,�nn,�aa) and the cost function

Parameter Estimation for Chaotic Networks
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J(q)~
1

To

ðTo

0

�aa1{a1j j2z �aa2{a2j j2
� �

dt

&
1

N

XN{1

n~0

�aa1(nTs){a1(nTs)ð Þ2z �aa2(nTs){a2(nTs)ð Þ2
� � ð20Þ

is a quantitative representation of the synchronization error

between the primary and the secondary systems. Notice that

N~To=Ts, where To~105 t.u.

The method can be outlined as follows:

1. Initialization. Choose:

(a) initial parameter values

q̂q(0)~(q̂q1(0),q̂q2(0),:::,q̂qm(0)), ð21Þ

where m represents the number of parameters we want to

estimate;

(b) maximum and minumum ‘‘search variances’’ for each

parameter, s2
j,max and s2

j,min, respectively, where j~1, . . . ,m;

(c) a ‘‘contraction factor’’ for each parameter, cjw1,

j~1, . . . ,m.

Set s2
j (1)~s2

j,max for j~1, . . . ,m and, using the initial

parameter vector, q̂q(0), evaluate the associated cost J(q̂q(0)).

2. Iterative step. Let N(xDm,s2) denote the Gaussian probability

distribution of the variable x with mean m and variance s2.

Assume we have computed a vector of parameter estimates,

q̂q(n{1)~(q̂q1(n{1), . . . ,q̂qm(n{1)), with cost J(q̂q(n{1)).

Choose an index j[f1, . . . ,mg, define

Jj,n{1(~qq)~J(q̂q1(n{1), . . . ,q̂qj{1(n{1),

~qq,q̂qjz1(n{1), . . . ,q̂qm(n{1))
ð22Þ

and set s2
j (0)~s2

j,max and ~qqj(0)~q̂qj(n{1). Choose an integer L

(the number of iterations to be performed over each parameter)

and carry out the following computations:

For l~1, . . . ,L:

The method can be outlined as follows:

1. Initialization. Choose:

(a) initial parameter values

q̂q(0)~(q̂q1(0),q̂q2(0),:::,q̂qm(0)), ð21Þ

where m represents the number of parameters we want to

estimate;

(b) maximum and minumum ‘‘search variances’’ for each

parameter, s2
j,max and s2

j,min, respectively, where j~1, . . . ,m;

(c) a ‘‘contraction factor’’ for each parameter, cjw1,

j~1, . . . ,m.

(d) Set s2
j (1)~s2

j,max for j~1, . . . ,m and, using the initial

parameter vector, q̂q(0), evaluate the associated cost J(q̂q(0)).

2. Iterative step. Let N(xDm,s2) denote the Gaussian probability

distribution of the variable x with mean m and variance s2.

Assume we have computed a vector of parameter estimates,

q̂q(n{1)~(q̂q1(n{1), . . . ,q̂qm(n{1)), with cost J(q̂q(n{1)).

2. Choose an index j[f1, . . . ,mg, define

Jj,n{1(~qq)~

J(q̂q1(n{1), . . . ,q̂qj{1(n{1),~qq,q̂qjz1(n{1), . . . ,q̂qm(n{1))
ð22Þ

and set s2
j (0)~s2

j,max and ~qqj(0)~q̂qj(n{1). Choose an integer L

(the number of iterations to be performed over each parameter)

and carry out the following computations:

For l~1, . . . ,L:

(a) Draw �qq*N qD~qqj(l{1),s2
j (l{1)

� �
.

(b) Compute Jj,n{1(�qq).

(c) If Jj,n{1(�qq)vJj,n{1(~qqj(l{1)) then

~qqj(l)~�qq,

s2
j (l)~s2

j,max ð23Þ

else

~qqj(l)~q̂qj(l{1),

s2
j (l)~s2

j (l{1)=cj ð24Þ

(d) If s2
j (l)vs2

j,min, then

s2
j (l)~s2

j,max ð25Þ

Once the loop is completed, set q̂qj(n)~~qqj(L) and

q̂qk(n)~~qqk(n{1) for every k=j.

Let j~(jz1) mod m, set s2
j (0)~s2

j,max and perform the loop

over (a)-(d) again.

The algorithm can be stopped when the synchronization error

J(q̂q(n)) reaches a certain threshold or after a prescribed number of

steps n (e.g., when n~no for some sufficiently large no). Notice that

the total number of iterations is noL and the time evolution of the

secondary system state, y, has to be integrated at each iteration,

since a new candidate parameter vector is drawn each time.

We have carried out numerical simulations where this Monte

Carlo optimization algorithm has been iterated a total of 8|104

times, with the number of consecutive iterations for each

parameter (iterations per loop) set to L~100, and the secondary

system has been integrated for each iteration during To~1|105

time units.

The initial values of the parameters are sampled from a uniform

distribution, namely

Q̂Q(0),b̂ba(0),n̂n(0)*U(0,2);

âa(0)*U(100,500), ð26Þ

(a)

(b)

(c)

(a)

(b)

(c)

(d)
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the maximum search variances for each parameter are

s2
Q,max~s2

ba,max~s2
n,max~2,

s2
a,max~500, ð27Þ

the minimum search variances are

s2
Q,min~s2

ba,min~s2
n,min~0:0001,

s2
a,min~0:01, ð28Þ

and the contraction factors are

cQ~cba~cn~2:5,

ca~25: ð29Þ

The normalized quadratic error for each parameter qi,

i~1, . . . ,4, is defined as,

Epi
(n)~ (pi{q̂qi(n))=pið Þ2: ð30Þ

Figure 3(A–D) shows the normalized quadratic errors for each

parameter as a function of the number of iterations (nL). We can

see how after 3|104 iterations all errors are very low for the

estimated parameters. The values of the normalized quadratic

errors in the 30,000-th iteration are:

EQ~2:7|10{8,Eba~8:7|10{7,

En~1:6|10{8,Ea~1:1|10{8: ð31Þ

Approximate Bayesian Computation
In Bayesian estimation theory the parameters are modeled as

random variables, rather than unknown but deterministic num-

bers. Consequently, ABC-based methods aim at approximating

the probability distribution of the parameters, vector q, conditional

on the observations from the primary system. The technique, to be

described next, is nonparametric, i.e., the distribution of q is

approximated by a set of random samples.

ABC methods have been conceived with the aim of inferring

posterior distributions without having to compute likelihood

functions [35–39]. The calculation of the likelihood is replaced

by a comparison between the observed and the simulated data. In

the setup of this paper, the comparison is carried out between the

data from the primary system (the observations) and the data

generated by the secondary system (the model with adjustable

parameters). The comparison between these data represents, in

our case, a measure of the synchronization error between these

two systems.

Let p denote the a priori probability density function (pdf) of the

random parameter vector q, let f (yDq) denote the probability

distribution of the data y generated by the secondary system

conditional on the realization of q and let d(x,y) be a distance

function that measures the synchronization error by comparing

the observed time series x from the primary system and the

generated time series y from the secondary one. Since the system

of interest is deterministic, f (yDq) collapses into a Dirac delta

measure when q is given. In the ABC framework, though, we are

not interested in evaluating f but rather in generating y using the

model conditional on q. This amounts to integrating the secondary

system with a given realization of the adjustable parameters q.

The simplest ABC algorithm is the ABC rejection sampler [35]. For

a given synchronization error threshold (often termed tolerance)

w0, the algorithm can be described as follows.

Figure 3. Normalized quadratic errors for each parameter as a function of the number of iterations for the ARS algorithm. (A) Q, (B)
ba , (C ) n and (D) a.
doi:10.1371/journal.pone.0079892.g003
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1. Sample ~qq from p(q).

2. Simulate a dataset ~yy from the conditional probability

distribution f (yD~qq).

3. If the distance function (synchronization error) is d(x,~yy)ƒE,
then accept ~qq, otherwise reject it.

4. Return to the first step.

The output of an ABC algorithm is a population of parameter

values randomly drawn from the distribution p(qDd(x,~yy)ƒ), i.e., a

distribution with density proportional to the prior but restricted to

the set of values of q for which the synchronization error is at most

.

The disadvantage of the ABC rejection sampler is that the

acceptance rate is very low when the set of values of q for which

the synchronization error is less than turns out to be relatively

small. Thus, instead of implementing this method we have decided

to implement two more sophisticated ABC algorithms. The first

one is a Markov chain Monte Carlo (ABC MCMC) technique and

the second one is a sequential Monte Carlo (ABC SMC) method.

Approximate Bayesian Computation Markov Chain
Monte Carlo

The Approximate Bayesian Computation Markov Chain

Monte Carlo (ABC MCMC) algorithm is a Metropolis-Hastings

[37] MCMC method that incorporates one additional test to

ensure that all parameters in the chain yield a synchronization

error below the threshold . It can be outlined as follows.

1. Initialize q(i), i~0.

2. Generate ~qq according to a proposal distribution g(qDq(i))

3. Simulate a dataset ~yy from the conditional probability

distribution f (yD~qq).

4. If the distance function (synchronization error) is d(x,~yy)ƒE, go

to the following step, otherwise set q(iz1)~q(i) and go to step

6.

5. Set q(iz1)~~qq with probability

j ~ min 1,
p(~qq)g(q(i)D~qq)

p(q(i))g(~qqDq(i))

� �
ð32Þ

and q(iz1)~q(i) with probability 1{j.

1. Set i~iz1, go to step 2.

The outcome of this algorithm is a Markov chain with the

stationary distribution p(qDd(x,~yy)ƒE) [37]. The parameters are

assumed independent a priori, hence

p(q) ~ P
j~1,:::,m

p(qi), ð33Þ

and we also choose independent proposals for simplicity. In

particular, the prior distributions for each parameter have been

chosen as

p(Q)~p(ba)~p(n)~U(0,5)

p(a)~U(0,500), ð34Þ

and the proposal distribution for each parameter is a Gaussian

distribution centered at the previous value of the corresponding

parameter and with a fixed standard deviation, different for each

parameter. In particular,

s(Q)~s(ba)~s(n)~1

Figure 4. Histograms of the approximate marginal posterior distributions for each parameter for the ABC MCMC algorithm when
considering E~0:001. (A) Q, (B) ba , (C ) n and (D) a.
doi:10.1371/journal.pone.0079892.g004
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s(a)~100 ð35Þ

and

g(qD~qq)~ P
m

j~1
N(qj Dq

0
j ,s(qj)): ð36Þ

Since the proposal distribution is symmetric, g(qi D~qq)~g(~qqDqi), and

the prior is uniform, the acceptance probability in Eq.(32) is j~1.

The distance function (synchronization error) has been chosen

as

d(y,x)~
1

To

ðTo

0

�aa1{a1j j2z �aa2{a2j j2
� �

dt

&
1

N

XN{1

n~0

�aa1(nTs){a1(nTs)ð Þ2z �aa2(nTs){a2(nTs)ð Þ2
� �ð37Þ

where To~105 t.u. and NTs~T0. This expression is equivalent to

the cost function in the ARS method. The tolerance (threshold for

the synchronization error) has been chosen as E~0:001.

A chain of 5|105 samples has been generated, what implies

that the secondary system has been integrated 5|105 times. The

initial point of the chain is selected to ensure that the associated

distance is less than 0:05. Figure 4(A–D) shows the histograms of

the approximate marginal posterior distributions for each param-

eter. In order to reduce the strong correlation between consecutive

samples in the Markov chain we have subsampled by a factor of

50. We have calculated the mean values of each histogram as well

as the normalized quadratic errors according to the following

expression

Epi
~ (pi{�qqi)=pið Þ2, ð38Þ

where �qqi, for i~1, . . . ,4, represents the mean value of the

histogram of the corresponding parameter. The values of the

normalized quadratic errors for the estimated parameters are

EQ~1:3|10{4,Eba~1:9|10{1,

En~5:9|10{5,Ea~5:7|10{5: ð39Þ

We can see how three parameters are accurately estimated

whereas for one of them, ba the error is significantly higher

compared to (31).

Approximate Bayesian Computation Sequential Monte
Carlo

A more sophisticated application of the ABC methodology is the

Approximate Bayesian Computation Sequential Monte Carlo

algorithm [39,54,55]. In ABC SMC, a number of sampled

parameter values (often termed particles), fq(1), . . . ,q(N)g, drawn

from the prior distribution p(q), are propagated through a

sequence of intermediate distributions p(qDd(x,~yy)ƒi),
i~1, . . . ,T{1, until they are converted into samples from the

target distribution p(qDd(x,~yy)ƒT ). The tolerances are chosen such

that 1w . . . wTw0, thus the empirical distributions gradually

evolve towards the target posterior. The ABC SMC algorithm

proceeds as follows [39].

1. Initialize E1w . . . wET . Set the population indicator t~0.

2. Set the particle indicator i~1.

3. If t~0, draw q? from the prior p(q).

Else, draw q? from

gt(q)~
XN

i~1

w(i)(t{1)Kt(qDq(i)(t{1)) ð40Þ

where Kt(:Dq’) is a symmetric kernel centred around q’ and

w(1)(t{1), . . . ,w(N)(t{1) are importance weights such thatPN
i~1 w(i)(t{1)~1.

4. If p(q?)~0, return to step 3.

5. Simulate a candidate dataset ~yy~ff (yDq?).
6. If d(x,~yy)§Et return to step 3.

7. Set q(i)(t)~q? and calculate the weight,

w
ið Þ

t ~

1,if t~0

p q
ið Þ

t

� �
P N

j~1
w(j)(t{1)Kt q(i)(t{1))ð ,q(j)(t)Þ

tw0

8>>>><
>>>>:

ð41Þ

8. If ivN, set i~iz1 and go to step 3.

9. Normalize the weights.

10. If tvT , set t~tz1 and go to step 2. Otherwise stop.

The prior distributions we have considered for each parameter

are p(Q)~p(ba)~p(n)~U(0,5) and p(a)~U(0,500), the same

as for the ABC MCMC algorithm. The perturbation kernel Kt is

Gaussian, namely

Kt(q
?Dq(i)(t{1))~ P

m

j~1
N (q?j Dq

(i)
j (t{1),s(qj)), ð42Þ

with standard deviations s(Q)~s(ba)~s(n)~0:1 and s(a)~10.

The distance function (synchronization error) is the same as for the

ABC MCMC and ARS algorithms with the same To value. To

ensure the gradual transition between populations, the ABC SMC

algorithm is run for T~12 populations with ~f1,0:5,0:1,0:05,
0:025,0:01,0:005,0:0025,0:001,0:0005,0:00025,0:0001g and we

have considered N~400 particles per population.

Figure 5(A–D) shows the histograms of the approximate

marginal posterior distributions for each parameter where the

different weights of the different particles have been taken into

account for the representation. We have calculated the mean

values of each histogram (that match the actual values) as well as

the normalized quadratic errors using Eq. (38), that is, the same

expression as for the ABC MCMC algorithm. The values of the

normalized quadratic errors for the estimated parameters with the

ABC SMC method are
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EQ~5:1|10{7,Eba~9:4|10{4,

En~2:5|10{7,Ea~3:2|10{7:
ð43Þ

Figure 6(A–D) shows the output (i.e. the accepted particles) of

the ABC SMC algorithm as scatterplots of some of the two-

dimensional parameter combinations, where we have information

of different populations in the same plot. As we iterate the

algorithm we obtain populations that are more dense around the

desired values, as shown in these plots, where the particles from

the prior are represented in blue, particles from population 2 in

green, particles from population 4 in light blue, population 6 in

Figure 5. Histograms of the approximate marginal posterior distributions for each parameter for the ABC SMC algorithm when
considering E~0:0001. (A) Q, (B) ba, (C ) n and (D) a.
doi:10.1371/journal.pone.0079892.g005

Figure 6. Two-dimensional scatterplots for the accepted particles of the ABC SMC of each population. The particles from the prior are
represented in blue, particles from population 2 in green, particles from population 4 in cyan, population 6 in pink, 8 in yellow, 10 in red and particles
from the posterior (population 12) in black color.
doi:10.1371/journal.pone.0079892.g006

Parameter Estimation for Chaotic Networks

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79892



pink, 8 in yellow, 10 in red and particles from the posterior

(population 12) in black color. We can see how for the last

population the particles are tightly clustered around the desired

value.

In order to gain insight of how the parameters are estimated

during the evolution of the algorithm, we have represented some

box–plot diagrams, one for each parameter to be estimated, as

seen in fig. 7(A–D). In each diagram, we have information about

the corresponding parameter as a function of the population

index. In particular, the central mark of each box is the median of

the population, the edges of the box are the 25-th and 75-th

percentiles, the whiskers extend to the most extreme data points

not considered as outliers, and the outliers are plotted individually

using the plus symbols in red. The horizontal lines in red represent

the actual values of the parameters we have used in our simulation.

We can see from these plots how for a high enough population

index the median values of the four parameters perfectly match

the actual values.

We have also studied the computational cost of the algorithm.

In fig. 8 we can see the number of samples or particles we have

generated in order to have N~400 accepted particles for each

population. We can see how the number of particles increases with

the population index, being significantly high for the last

population index, since it corresponds to a very small value of

the synchronization error. Notice that the vertical axis of this

figure is in a logarithmic scale.

Comparison of the Methods
Here we compare not only the accuracy but also the

computational complexity of all three Monte Carlo methods for

the joint estimation of the four parameters, Q, ba, n and a, of the

chaotic intercellular network. To do that, we have calculated for

the ABC SMC algorithm the computational load up to each

population. Specifically, the computational complexity of gener-

ating a sequence of m populations is given by the number of

samples or particles that have to be generated before completing

the m{th population. Note that the computational load for the

m{th population also includes all samples needed to generate the

m{1 previous populations.

Fig. 9 provides a graphical depiction of the complexity of the

three methods, that we have investigated (ARS, ABC MCMC and

ABC SMC algorithms). The line in red represents the complexity

for the ARS method and the line in blue indicates the complexity

for the ABC MCMC technique.

The parameter estimation errors attained with the ARS method

are of the same order as the errors of the parameter estimates

computed from the 12{th population of the ABC SMC

algorithm. However, the number of samples generated to run

the ARS procedure is &3|104 while the ABC SMC technique

demands the generation of &4|105 random samples up to the

12{th population. The ABC MCMC method achieves the

poorest performance, as it requires the generation of the highest

number of samples (&5|105) and produces the largest errors (up

to three orders of magnitude worse than the ARS or ABC SMC

estimates).

Figure 7. Box plots diagrams for the different populations for
each parameter. (A) Q, (B) ba, (C ) n and (D) a.
doi:10.1371/journal.pone.0079892.g007

Figure 8. Computational cost for each population using the
ABC SMC algorithm.
doi:10.1371/journal.pone.0079892.g008

Figure 9. Computational complexity measured by the number
of random samples generated by the algorithms. The solid blue
line is the complexity of the ABC MCMC algorithm (with ~ 0:001). The
solid red line is the complexity of the ARS method. The black dots
indicate the complexity of the ABC SMC algorithm, for each population
up to the 12{th one.
doi:10.1371/journal.pone.0079892.g009
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Discussion

We have investigated three computational inference techniques

for parameter estimation in a chaotic intercellular network that

consists of two coupled modified repressilators. The proposed

methodology combines a synchronization–based framework for

parameter estimation in coupled chaotic systems with some state–

of–the–art computational inference methods borrowed from

computational statistics. In particular, we have focussed on an

accelerated random search algorithm and two approximate

Bayesian computation schemes (ABC MCMC and ABC SMC).

The three methods exploit the synchronization property of chaotic

systems. Therefore, it is not necessary to estimate the initial

conditions of the variables, which is an important advantage from

a computational point of view.

We have carried out the numerical study in this paper assuming

that only two variables from the primary system can be observed.

This is the minimum number of observed variables in order to

guarantee the synchronization of the secondary system. If

additional variables can be observed it is possible to easily

incorporate them into the proposal methodology. For example, if

the variables x1, . . . ,x8 are observed (this is the full state of the first

repressilator and the first variable, x8, of the second repressilator)

we can redefine the distance function of Eq. (38) as

d(y,x)&
1

N

XN{1

n~0

X8

i~1

xi(nTs){yi(nTs)ð Þ2: ð44Þ

It can be verified (numerically) that using the distance in (44)

(which intuitively provides ‘‘more information’’ about the primary

system) leads to more accurate parameter estimates (or, alterna-

tively, a greater number of parameters can be estimated if

necessary). Note, however, that this comes at the expense of an

additional computational effort and, moreover, it is unclear that all

these variables can be accurately measured in practice.

The proposed methods can be applied when the observed time

series are contaminated with additive noise of moderate variance.

For example, if the observations have the form

~aa1(nTs)~a1(nTs)zu1(n) and ~aa2(nTs)~a2(nTs)zu2(n), where

u1(n) and u2(n) are sequences of independent and identically

distributed Gaussian noise variables with zero mean and variance

s2
u, then the distance function of Eq. (30) is lower-bounded by the

noise variance. Specifically, if q̂q&p and, hence, we assume that

�aai(nTs)&ai(nTs), it turns out that the distance d(y,x) is an

estimator of (twice) the noise variance

d(y,x)

&
1

N

XN{1

n~0

(�aa1(nTs){~aa1(nTs))
2z(�aa2(nTs){~aa2(nTs))

2
� �

&2s2
u:

ð45Þ

This indicates that the synchronization error cannot go below

the (approximate) bound of 2s2
u and, therefore, the ABC-based

methods can work as long as the tolerances (t, t~1, . . . ,T , in the

ABC SMC method, or E in the ABC MCMC technique) are

chosen to be greater than 2s2
u. This means that the ABC SMC

algorithm with T~12 populations and T~10{4 can still provide

accurate parameter estimates when the observation noise variance

is s2
uvT=2. In order to handle larger noise variances, one needs to

relax the coupling (i.e., choose a smaller coupling factor D) and

increase the observation period To. This makes the distance

function more sensitive to the discrepancy between q and p, which

in practice means that we can choose a larger tolerance (e.g, T in

the ABC SMC algorithm) and preserve the accuracy of the

resulting estimate q̂q.
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