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SPECTRAL THEORETIC CHARACTERIZATION OF THE
MASSLESS DIRAC ACTION

ROBERT J. DOWNES AND DMITRI VASSILIEV

Abstract. We consider an elliptic self-adjoint first-order differential operator
L acting on pairs (2-columns) of complex-valued half-densities over a connected
compact three-dimensional manifold without boundary. The principal symbol of the
operator L is assumed to be trace-free and the subprincipal symbol is assumed to
be zero. Given a positive scalar weight function, we study the weighted eigenvalue
problem for the operator L . The corresponding counting function (number of
eigenvalues between zero and a positive λ) is known to admit, under appropriate
assumptions on periodic trajectories, a two-term asymptotic expansion as λ →
+∞ and we have recently derived an explicit formula for the second asymptotic
coefficient. The purpose of this paper is to establish the geometric meaning of the
second asymptotic coefficient. To this end, we identify the geometric objects encoded
within our eigenvalue problem—metric, non-vanishing spinor field and topological
charge—and express our asymptotic coefficients in terms of these geometric objects.
We prove that the second asymptotic coefficient of the counting function has the
geometric meaning of the massless Dirac action.

§1. Main result. Consider a first-order differential operator L acting on 2-
columns v = (v1 v2)

T of complex-valued half-densities over a connected
compact three-dimensional manifold M without boundary. We assume the
coefficients of the operator L to be infinitely smooth. We also assume that the
operator L is formally self-adjoint (symmetric):

∫
M u∗Lv dx =

∫
M (Lu)∗v dx

for all infinitely smooth u, v : M→ C2. Here, and further on, the superscript ∗ in
matrices, rows and columns indicates Hermitian conjugation in C2 and dx :=
dx1dx2dx3, where x = (x1, x2, x3) are local coordinates on M .

Let Lprin(x, p) be the principal symbol of the operator L , that is, the matrix
obtained by leaving in L only the leading (first-order) derivatives and replacing
each ∂/∂xα by ipα , α = 1, 2, 3. Here p = (p1, p2, p3) is the variable dual to the
position variable x ; in physics literature the p would be referred to as momentum.
Our principal symbol Lprin(x, p) is a 2 × 2 Hermitian matrix-function on
the cotangent bundle T ∗M , linear in every fibre T ∗x M (that is, linear in p).
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We assume that det Lprin(x, p) 6= 0 for all (x, p) ∈ T ′M := T ∗M \ {p = 0}
(cotangent bundle with the zero section removed), which is a version of the
ellipticity condition.

Remark 1.1. The tradition in microlocal analysis is to denote momentum
by ξ . We choose to denote it by p instead because we will need the letter ξ
for the spinor.

We now make two additional assumptions:
• we assume the principal symbol to be trace-free; and
• we assume the subprincipal symbol of the operator L to be zero (see

Appendix A for the definition of the subprincipal symbol).
The latter condition implies that our differential operator L is completely

determined by its principal symbol. Namely, in local coordinates our operator
reads

L = −i[(Lprin)pα (x)]
∂

∂xα
−

i
2
(Lprin)xα pα (x),

where the subscripts indicate partial derivatives and the repeated index α

indicates summation over α = 1, 2, 3. Of course, the above formula is a special
case of formula (A.5).

We study the eigenvalue problem

Lv = λwv, (1.1)

where w(x) is a given infinitely smooth positive scalar weight function.
Obviously, the problem (1.1) has the same spectrum as the problem

w−1/2Lw−1/2v = λv, (1.2)

so it may appear that the weight function w(x) is redundant. We will, however,
work with the eigenvalue problem (1.1) rather than with (1.2) because we want
our problem to possess a gauge degree of freedom (5.1). This gauge degree
of freedom will eventually manifest itself as the conformal invariance of the
massless Dirac action (see §5 for details).

The problem (1.1) has a discrete spectrum accumulating to ±∞. We define
the counting function N (λ) :=

∑
0<λk<λ

1 as the number of eigenvalues λk of
the problem (1.1), taking account of multiplicities, between zero and a positive λ.
Ref. [3, Theorem 8.4] states that, under appropriate assumptions on periodic
trajectories, our counting function admits a two-term asymptotic expansion

N (λ) = aλ3
+ bλ2

+ o(λ2) (1.3)

as λ→ +∞. If one wishes to reformulate the asymptotic formula (1.3) in such
a way that it remains valid without assumptions on periodic trajectories, this can
easily be achieved, say, by taking a convolution with a function from Schwartz
space S(R); see [3, Theorem 7.2] for details.

Alternatively, one can look at the eta function η(s) :=
∑
|λ|−ssgn λ, where

summation is carried out over all non-zero eigenvalues λ and s ∈ C is the
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independent variable. The series converges absolutely for Re s > 3 and defines
a holomorphic function in this half-plane. Moreover, it is known [1] that the
eta function extends meromorphically to the whole s-plane with simple poles.
Formula (10.6) from [3] implies that the eta function does not have a pole at
s = 3 and that the residue at s = 2 is 4b, where b is the coefficient from (1.3).

There is an extensive bibliography devoted to the subject of two-term spectral
asymptotics for first-order systems. This bibliography spans a period of over
three decades. Unfortunately, all publications prior to [3] gave formulae for the
second asymptotic coefficient that were either incorrect or incomplete (that is, an
algorithm for the calculation of the second asymptotic coefficient rather than an
actual formula). The appropriate bibliographic review is presented in [3, §11].
The correct explicit formula for the coefficient b is given in [3, §1].

The objective of this paper is to establish the geometric meaning of the
coefficient b. The logic behind restricting our analysis to the case when the
manifold is three-dimensional and L is a 2 × 2 matrix differential operator
with trace-free principal symbol and zero subprincipal symbol is that this is
the simplest eigenvalue problem for a system of partial differential equations.
Hence, it is ideal for the purpose of establishing the geometric meaning of the
coefficient b.

In order to establish the geometric meaning of the coefficient b we first need
to identify the geometric objects encoded within our eigenvalue problem (1.1).

Geometric object 1: the metric. Observe that the determinant of the principal
symbol is a negative definite quadratic form in the dual variable (momentum) p,

det Lprin(x, p) = −gαβ pα pβ , (1.4)

and the coefficients gαβ(x) = gβα(x), α, β = 1, 2, 3, appearing in (1.4) can be
interpreted as the components of a (contravariant) Riemannian metric.

Geometric object 2: the non-vanishing spinor field. The determinant of the
principal symbol does not determine the principal symbol uniquely. In order
to identify a further geometric object encoded within the principal symbol
Lprin(x, p) we will now start varying this principal symbol, assuming the metric
g, defined by formula (1.4), to be fixed (prescribed).

Let us fix a reference principal symbol L̊prin(x, p) corresponding to the
prescribed metric g and look at all principal symbols Lprin(x, p) which
correspond to the same prescribed metric g and are sufficiently close to the
reference principal symbol. Restricting our analysis to principal symbols which
are close to the reference principal symbol allows us to avoid dealing with certain
topological issues; this restriction will be dropped in §4. It turns out (see §2) that
the principal symbols Lprin(x, p) and L̊prin(x, p) are related as

Lprin(x, p) = R(x) L̊prin(x, p) R∗(x), (1.5)

where

R : M → SU(2) (1.6)
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is a unique infinitely smooth special unitary matrix-function which is close
to the identity matrix. Thus, special unitary matrix-functions R(x) provide a
convenient parametrization of principal symbols with prescribed metric g.

Let L̊ be the differential operator with principal symbol L̊prin(x, p) and zero
subprincipal symbol. It is important to emphasize that for the operators L and
L̊ themselves, as opposed to their principal symbols, we have, in general, the
inequality

L 6= RL̊ R∗ (1.7)

because according to [3, formula (9.3)] the operator RL̊ R∗ has non-trivial
subprincipal symbol (i/2)(Rxα (L̊prin)pα R∗ − R(L̊prin)pα R∗xα ). Hence, the
transformation of operators L̊ 7→ L specified by formula (1.5) and the conditions
that the subprincipal symbols of L and L̊ are zero does, in general, change the
spectrum.

The choice of reference principal symbol L̊prin(x, p) in our construction is
arbitrary, as long as this principal symbol corresponds to the prescribed metric g:
that is, as long as we have det L̊prin(x, p)=−gαβ(x) pα pβ for all (x, p) ∈ T ∗M .
It is natural to ask the question: what happens if we choose a different reference
principal symbol L̊prin(x, p)? The freedom in choosing the reference principal
symbol L̊prin(x, p) is a gauge degree of freedom in our construction and our
results are invariant under changes of the reference principal symbol. This issue
will be addressed in §6.

In order to work effectively with special unitary matrices, we need to choose
coordinates on the three-dimensional Lie group SU(2). It is convenient to
describe a 2 × 2 special unitary matrix by means of a spinor ξ : that is, a pair
of complex numbers ξa , a = 1, 2. The relationship between a matrix R ∈ SU(2)
and a non-zero spinor ξ is given by the formula

R =
1
‖ξ‖

(
ξ1 ξ2

−ξ2 ξ1

)
, (1.8)

where the overline stands for complex conjugation and ‖ξ‖ :=
√
|ξ1|2 + |ξ2|2.

Formula (1.8) establishes a one-to-one correspondence between SU(2)
matrices and non-zero spinors, modulo a rescaling of the spinor by an arbitrary
positive real factor. We choose to specify the scaling of our spinor field ξ(x) in
accordance with

‖ξ(x)‖ = w(x). (1.9)

Remark 1.2. In [4], we chose to work with a teleparallel connection (metric
compatible affine connection with zero curvature) rather than with a spinor field.
These are closely related objects: locally a teleparallel connection is equivalent
to a normalized (‖ξ(x)‖ = 1) spinor field modulo rigid rotations (7.3) of the
latter.
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Geometric object 3: the topological charge. It is known, see [4, §3], that the
existence of a principal symbol implies that our manifold M is parallelizable.
Parallelizability, in turn, implies orientability. Having chosen a particular
orientation, we allow only changes of local coordinates xα , α = 1, 2, 3, which
preserve orientation.

We define the topological charge as

c := −
i
2

√
det gαβ tr((Lprin)p1(Lprin)p2(Lprin)p3), (1.10)

with the subscripts pα indicating partial derivatives. As explained in [4, §3],
the number c defined by formula (1.10) can take only two values, +1 or −1,
and describes the orientation of the principal symbol relative to the chosen
orientation of local coordinates.

Formula (1.10) defines the topological charge in a purely analytic fashion.
However, later we will give an equivalent definition which is more geometrical
(see formula (2.11)). The frame e j

α appearing in formula (2.11) is related to
the metric as gαβ = δ jke j

αek
β , so it can be interpreted as the square root of

the contravariant metric tensor. Hence, the topological charge can be loosely
described as the sign of the determinant of the square root of the metric tensor.

We have identified three geometric objects encoded within the eigenvalue
problem (1.1)—metric, non-vanishing spinor field and topological charge—
defined in accordance with formulae (1.4)–(1.10). Consequently, one would
expect the coefficients a and b from formula (1.3) to be expressed via these
three geometric objects. This assertion is confirmed by the following theorem
which is the main result of our paper.

THEOREM 1.1. The coefficients in the two-term asymptotics (1.3) are given
by the formulae

a =
1

6π2

∫
M
‖ξ‖3

√
det gαβ dx, (1.11)

b =
S(ξ)
2π2 , (1.12)

where S(ξ) is the massless Dirac action (B.3) with Pauli matrices

σα := (L̊prin)pα , α = 1, 2, 3. (1.13)

Theorem 1.1 warrants the following remarks.
Firstly, recall that the L̊ appearing in Theorem 1.1 is our reference operator

which we need to describe all possible operators L with given metric g. What
happens if we take L = L̊? In this case formula (1.12) holds with spinor field
ξ1(x) = w(x), ξ2(x) = 0. This, on its own, is a non-trivial result.

Secondly, the topological charge c does not appear explicitly in Theorem 1.1.
Nevertheless, it is implicitly present in our Pauli matrices (1.13). Indeed, formula
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(1.5) implies that the integer quantity

−
i
2

√
det gαβ tr((L̊prin)p1(L̊prin)p2(L̊prin)p3)

has the same value as (1.10).
Thirdly, it is tempting to apply Theorem 1.1 in the case when the operator L

is itself a massless Dirac operator. This cannot be done because a massless Dirac
operator acts on spinors rather than on pairs of half-densities. This impediment
can be overcome by switching to a massless Dirac operator on half-densities
(see formula [4, (A.19)]). However, we cannot take L to be a massless Dirac
operator on half-densities either because, according to [4, Lemma 6.1], the latter
has a non-trivial subprincipal symbol. Furthermore, it is known [2, 4] that for the
massless Dirac operator the coefficient b is zero.

Finally, Theorem 1.1 provides a fresh perspective on the history of the
subject of two-term spectral asymptotics for first-order systems (see [3, §11]
for details). Namely, Theorem 1.1 shows that, even in the simplest case, the
second asymptotic coefficient for a first-order system has a highly non-trivial
geometric meaning. At a formal level, the application of microlocal techniques
does not require the use of advanced differential geometric concepts. However,
the calculations involved are so complicated that it is hard to avoid mistakes
without an understanding of the differential geometric content of the spectral
problem.

It is also worth noting that we use the term “Pauli matrices” in a more general
sense than in traditional quantum mechanics. The traditional definition is the
one from formula (2.8) and it corresponds to flat space, whereas our definition is
adapted to curved space. For us, Pauli matrices σα are trace-free Hermitian 2×2
matrices satisfying the identity (2.10). It might have been more appropriate to
call our matrices σα , α = 1, 2, 3, Pauli matrices of Riemannian metric gαβ , but,
as this expression is too long, we call them simply Pauli matrices.

The paper is organized as follows. In §2 we explain the origins of formula
(1.5) and, in §3, we give the proof of Theorem 1.1. In §4, we introduce the
concept of spin structure which allows us to drop the restriction that our principal
symbol Lprin(x, p) is sufficiently close to the reference principal symbol
L̊prin(x, p). Finally, in §§5–7, we show that our formula (1.12) is invariant
under the action of certain gauge transformations.

§2. Spinor representation of the principal symbol. Let Lprin(x, p) and
L̊prin(x, p) be a pair of trace-free Hermitian 2×2 principal symbols and let g be
a prescribed Riemannian metric. Both Lprin(x, p) and L̊prin(x, p) are assumed
to be linear in p: that is,

Lprin(x, p) = L(α)prin(x) pα, (2.1)

L̊prin(x, p) = L̊(α)prin(x) pα, (2.2)

where L(α)prin(x) and L̊(α)prin(x), α = 1, 2, 3, are some trace-free Hermitian 2 × 2
matrix-functions. The assumption that our principal symbols Lprin(x, p) and



CHARACTERIZATION OF THE MASSLESS DIRAC ACTION 707

L̊prin(x, p) are linear in p means, of course, that we are dealing with differential
operators as opposed to pseudodifferential operators. The principal symbols
Lprin(x, p) and L̊prin(x, p) are assumed to satisfy

det Lprin(x, p) = det L̊prin(x, p) = −gαβ(x) pα pβ (2.3)

for all (x, p) ∈ T ∗M , and are also assumed to be sufficiently close in terms
of the C∞(M) topology applied to the matrix-functions L(α)prin(x) and L̊(α)prin(x),
α = 1, 2, 3.

Our task in this section is to show that there exists a unique infinitely smooth
special unitary matrix-function (1.6) which is close to the identity matrix and
which relates the principal symbols Lprin(x, p) and L̊prin(x, p) in accordance
with formula (1.5).

We follow the convention of [4, 5] in denoting the elements of the matrices
L(α)prin and L̊(α)prin as (L(α)prin)ȧb and (L̊(α)prin)ȧb, respectively, where the dotted index,
running through the values 1̇, 2̇, enumerates the rows and the non-dotted index,
running through the values 1, 2, enumerates the columns.

Put

e1
α
:= Re(L(α)prin)1̇2, e2

α
:= −Im(L(α)prin)1̇2, e3

α
:= Re(L(α)prin)1̇1, (2.4)

e̊1
α
:= Re(L̊(α)prin)1̇2, e̊2

α
:= −Im(L̊(α)prin)1̇2, e̊3

α
:= Re(L̊(α)prin)1̇1. (2.5)

As explained in [4, §3], formula (2.4) defines a frame—a triple of infinitely
smooth real orthonormal vector fields e j (x), j = 1, 2, 3, on the manifold M—
and, moreover, the principal symbol Lprin(x, p) is equivalent to the frame e j
in the sense that the principal symbol uniquely determines the frame and the
frame uniquely determines the principal symbol. Similarly, formula (2.5) defines
a frame e̊ j which is equivalent to the principal symbol L̊prin(x, p).

Condition (2.3) implies that the frames e j and e̊ j are orthonormal with respect
to the same metric. Hence, the relationship between this pair of orthonormal
frames is

e j
α
= O j

k e̊k
α, (2.6)

where O(x) is a 3× 3 orthogonal matrix-function with elements

O j
k
= δkl gαβ e j

α e̊l
β .

As we assumed the principal symbols Lprin(x, p) and L̊prin(x, p) to be close, the
frames e j and e̊ j are also close. Consequently, the matrix-function O(x) is close
to the identity matrix and, hence, special orthogonal.

It is well known that the Lie group SO(3) is locally (in a neighbourhood of the
identity) isomorphic to the Lie group SU(2). According to [4, formulae (A.15)
and (A.2)], a 3× 3 special orthogonal matrix O is expressed via a 2× 2 special
unitary matrix R as

O j
k
=

1
2 tr(s j Rsk R∗), (2.7)
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where

s1
:=

(
0 1
1 0

)
= s1, s2

:=

(
0 −i
i 0

)
= s2, s3

:=

(
1 0
0 −1

)
= s3. (2.8)

Formula (2.7) tells us that a 3 × 3 special orthogonal matrix is, effectively,
the square of a 2 × 2 special unitary matrix. Formula (2.7) provides a local
diffeomorphism between neighbourhoods of the identity in SO(3) and in SU(2).

A straightforward calculation shows that formulae (2.1), (2.2) and (2.4)–(2.8)
imply formula (1.5).

Let us now define Pauli matrices σα in accordance with formula (1.13). Of
course,

σα(x) = L̊(α)prin(x), α = 1, 2, 3, (2.9)

where the L̊(α)prin are the matrix-functions from formula (2.2). We could stick with

the notation L̊(α)prin, but we choose to switch to σα because this is how Pauli
matrices are traditionally denoted in the subject.

It is easy to see that formula (2.3) implies

σασ β + σ βσα = 2Igαβ , (2.10)

where I is the 2 × 2 identity matrix. Formula (2.10) means that our σα satisfy
the defining relation for Pauli matrices.

Formulae (2.6)–(2.8), (1.8), (2.5) and (2.9) allow us to express the frame
e j via the spinor field ξ and Pauli matrices σα . We took great care to choose
coordinates on the Lie group SU(2) (that is, the structure of the matrix in the
right-hand side of formula (1.8)) so that the resulting expressions agree with
formulae [5, (B.3), (B.4) and (B.1)]. The only difference is in notation: the ϑ j in
[5, Appendix B] stands for ϑ j

α = δ
jk gαβ ek

β (compare with formula (3.4)).
The fact that our construction agrees with that in [5] will become important

in the next section when we will make use of a particular formula from [5].

Remark 2.1. As explained in [4, §3], the topological charge, initially defined
in accordance with formula (1.10), can be equivalently rewritten in terms of
frames as

c = sgn det e j
α
= sgn det e̊ j

α. (2.11)

The paper [5] was written under the assumption that

c = +1 (2.12)

(see formula [5, (A.1)]). This means that care is required when using the results
of [5]. Namely, in the next section we will first prove Theorem 1.1 for the
case (2.12) and then provide a separate argument explaining why formula (1.12)
remains true in the case

c = −1. (2.13)
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§3. Proof of Theorem 1.1. We prove Theorem 1.1 by examining the
equivalent spectral problem (1.2). Note that transition from (1.1) to (1.2) is a
special case of the gauge transformation (5.1) with ϕ = lnw. As explained
in the beginning of §5, the transformation (5.1) preserves the structure of our
eigenvalue problem: the principal symbol of the operator w−1/2Lw−1/2 is trace-
free and its subprincipal symbol is zero.

We now apply [4, Theorem 1.1] to the eigenvalue problem (1.2).
Our formula (1.11) is an immediate consequence of [4, formula (1.18)] and

our formulae (1.4) and (1.9). Here, of course, we use the fact that we are working
in dimension three.

The proof of formula (1.12) is more delicate, so we initially consider the case

w(x) = 1 for all x ∈ M. (3.1)

In this case, according to [4, formulae (1.19) and (8.1)],

b =
3c

8π2

∫
M
∗T ax√det gαβ dx, (3.2)

where

∗T ax
=
δkl

3

√
det gαβ [ek

1 ∂el
3/∂x2

+ ek
2 ∂el

1/∂x3
+ ek

3 ∂el
2/∂x1

− ek
1 ∂el

2/∂x3
− ek

2 ∂el
3/∂x1

− ek
3 ∂el

1/∂x2] , (3.3)

e j
α = δ

jk gαβ ek
β . (3.4)

The real scalar field ∗T ax(x) has the geometric meaning of the Hodge dual of
axial torsion of the teleparallel connection (see [4] for details).

Let us now drop the assumption (3.1).
The introduction of a weight function is equivalent to a scaling of the principal

symbol Lprin(x, p) 7→ (w(x))−1Lprin(x, p), which, in view of formulae (2.4)
and (1.4), leads to a scaling of the frame

e j 7→ w−1e j (3.5)

and corresponding scaling of the metric

gαβ 7→ w−2gαβ . (3.6)

Substituting (3.5) and (3.6) into (3.4) and (3.3) we see that the integrand in
formula (3.2) scales as

∗T ax√det gαβ 7→ w2
∗T ax√det gαβ . (3.7)

Here the remarkable fact is that we do not get derivatives of the weight function
because these cancel out due to the antisymmetric structure of the right-hand side
of formula (3.3). In other words, axial torsion, defined by [4, formulae (1.20) and



710 R. J. DOWNES AND D. VASSILIEV

(3.12)], has the remarkable property that it scales in a covariant manner under
scaling of the frame. Note that the full torsion tensor, defined by [4, formula
(3.12)], does not possess such a covariance property.

Formula (3.7) tells us that, in order to accommodate an arbitrary weight
function w(x), we need to multiply the integrand in formula (3.2) by (w(x))2,
which gives

b =
3c

8π2

∫
M
w2
∗T ax√det gαβ dx . (3.8)

Let us emphasize that the metric and torsion appearing in formula (3.8) are
the original, unscaled metric and torsion determined by the original, unscaled
principal symbol Lprin(x, p). The scaling argument has been incorporated into
the factor (w(x))2.

We now need to express the integrand in (3.8) in terms of the spinor field ξ .
We already have an expression for the weight function in terms of the spinor

field (see formula (1.9)). So we only need to express the Hodge dual of axial
torsion in terms of the spinor field. Formulae (2.4), (2.1), (2.2), (2.9), (1.5) and
(1.8) allow us to express the frame e j via the spinor field ξ and Pauli matrices
σα . Hence one needs to combine all these formulae to get explicit expressions
for the vector fields e j , j = 1, 2, 3, and substitute these into (3.4) and (3.3). This
is a massive calculation. Fortunately, for the case (2.12), this calculation was
carried out in [5, Appendix B]: [5, formula (B.5)] reads

∗T ax
=

4 Re(ξ∗W ξ)

3‖ξ‖2
, (3.9)

where W is the massless Dirac operator (B.1).
Formulae (3.8), (1.9), (3.9) and (B.3) imply formula (1.12). This completes

the proof of Theorem 1.1 for the case (2.12).
In order to prove formula (1.12) for the case (2.13), we invert coordinates

(xα 7→ −xα), which changes the sign of topological charge and allows us to use
formula (1.12). We then invert coordinates again and use the facts that:
• the integrand of the massless Dirac action (B.3) is invariant under inversion

of coordinates; and
• our spinor field ξ defined by formulae (1.5)–(1.9) is an anholonomic object,

that is, it does not depend on the choice of coordinates.

§4. Spin structure. In stating our results in §1 we assumed the principal
symbols Lprin(x, p) and L̊prin(x, p) to be sufficiently close. This was done in
order to ensure that equation (1.5) could be resolved with respect to the special
unitary matrix-function R(x). The restriction of closeness of principal symbols
can be overcome by means of the introduction of the concept of spin structure.

Definition 4.1. We say that the principal symbols Lprin(x, p) and L̊prin(x, p)
have the same spin structure if there exists an infinitely smooth special unitary
matrix-function (1.6) such that we have (1.5).
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Remark 4.1. Principal symbols with the same spin structure form an
equivalence class.

The closeness of the principal symbols Lprin(x, p) and L̊prin(x, p) was never
used in the proof of Theorem 1.1. All that is needed for Theorem 1.1 to be true
is for the principal symbols Lprin(x, p) and L̊prin(x, p) to have the same spin
structure, that is, belong to the same equivalence class.

Hence, it would have been more logical to identify the spin structure as a
separate geometric object from the very start, in §1, and avoid arguments relying
on the closeness of the principal symbols. We chose not to proceed along this
route in order to make the exposition in §1 as simple and clear as possible.

The only difference between the “local” setting (the principal symbols
Lprin(x, p) and L̊prin(x, p) are assumed to be close) and the “global” setting (the
principal symbols Lprin(x, p) and L̊prin(x, p) are assumed to have the same spin
structure) is that we can no longer claim that the special unitary matrix-function
R(x) appearing in formula (1.5) is unique. In the “local” setting, uniqueness was
achieved by requiring R(x) to be close to the identity matrix, whereas, in the
“global” setting, R(x) is defined modulo sign (not surprising as SU(2) is the
double cover of SO(3)). This sign indeterminacy does not affect formula (1.12)
because the massless Dirac action is quadratic in the spinor field.

The number of different spin structures (that is, the number of equivalence
classes of principal symbols) depends on the topology of the manifold. Say, the
torus T3 admits eight different spin structures, whereas the sphere S3 admits a
unique spin structure. See [4, Appendices A and B] and further bibliographic
references therein for more details.

It may seem that our Definition 4.1 is different from the definition of spin
structure in differential geometric literature. Indeed, differential geometers do
not operate with concepts such as the principal symbol, using frames instead.
However, it has been shown in [4, §3] that a principal symbol is equivalent to
a frame, so our “microlocal” definition of spin structure can be easily recast
in terms of frames, bringing it into agreement with the traditional differential
geometric one.

Here it is important to emphasize that we do not claim to have redefined the
notion of spin structure for the most general case. We work in the very specific
setting of dimension three.

§5. Conformal invariance. Let us transform the differential operator L and
weight w(x) as

L 7→ e−ϕ/2Le−ϕ/2, w 7→ e−ϕw, (5.1)

where ϕ : M → R is an arbitrary infinitely smooth real-valued scalar function.
The transformation (5.1) does not change the spectrum of our eigenvalue
problem (1.1) and, moreover, preserves its structure: the principal symbol
remains trace-free and the subprincipal symbol remains zero. The fact that the
subprincipal symbol remains zero is established by using formula [3, (9.3)].
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Here, of course, it is important that we are conjugating the operator by a real-
valued scalar function e−ϕ/2 rather than a complex-valued matrix-function R.

In this section we examine how the gauge transformation (5.1) works its way
into scalings of the metric, Pauli matrices and spinor field.

Formulae (1.4) and (5.1) imply that the metric transforms as

gαβ 7→ e−2ϕgαβ , (5.2)

which means that we are looking at a conformal scaling of the metric.
We scale the reference principal symbol L̊prin(x, p) in the same way as the

principal symbol Lprin(x, p): that is, as

L̊prin 7→ e−ϕ L̊prin, (5.3)

because, this way, we maintain the condition (2.3). Formulae (1.13) and (5.3)
imply that the Pauli matrices scale as

σα 7→ e−ϕσα. (5.4)

Of course, the scaling of Pauli matrices (5.4) agrees with the scaling of the
metric (5.2) in the sense that the scaled Pauli matrices and metric satisfy the
identity (2.10).

Formulae (1.9) and (5.1) imply that the spinor field scales as

ξ 7→ e−ϕξ. (5.5)

Let us now examine what happens to the massless Dirac action (B.3) under
the transformations (5.2), (5.4) and (5.5).

We first look at the expression W ξ . Examination of formulae (B.1) and (B.2)
shows that the expression W ξ transforms as

W ξ 7→ e−2ϕW ξ. (5.6)

We see that the expression W ξ scales in a covariant way, with “covariant”
meaning that the derivatives of ϕ do not appear in the right-hand side of (5.6). Of
course, the covariance of the massless Dirac operator under conformal scaling of
the metric is a known differential geometric fact (see [7, Theorem 4.3]).

Formulae (5.5) and (5.6) imply that

Re(ξ∗W ξ) 7→ e−3ϕ Re(ξ∗W ξ). (5.7)

Formula (5.2) implies that gαβ 7→ e2ϕgαβ and, as we are working in dimension
three, this, in turn, implies that the Riemannian density scales as√

det gαβ 7→ e3ϕ √det gαβ . (5.8)

Substituting formulae (5.7) and (5.8) into formula (B.3), we see that our massless
Dirac action is invariant under the transformations (5.2), (5.4) and (5.5). This is,
of course, in agreement with Theorem 1.1: as the gauge transformation (5.1) does
not change the spectrum of our eigenvalue problem (1.1), it does not change the
second asymptotic coefficient (1.12) of the counting function.
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§6. SU(2) invariance. Let us transform the reference principal symbol
L̊prin(x, p) as

L̊prin 7→ QL̊prin Q∗, (6.1)

where Q : M → SU(2) is an arbitrary infinitely smooth special unitary matrix-
function. Formulae (1.13) and (6.1) imply that

σα 7→ QσαQ∗. (6.2)

Also, formulae (1.5) and (6.1) imply that R 7→ RQ∗, which can be, equivalently,
rewritten as

R∗ 7→ Q R∗. (6.3)

Examining the structure of the matrix R (see formula (1.8)), we conclude that
formula (6.3) is equivalent to the linear transformation of the spinor field

ξ 7→ Qξ. (6.4)

Formulae (6.2), (6.4) and Property 4 from Appendix A of [4] tell us that our
massless Dirac action is invariant under the transformation (6.1). This is, of
course, in agreement with Theorem 1.1: the choice of reference principal symbol
does not affect the spectrum of our eigenvalue problem (1.1), and hence it does
not affect the second asymptotic coefficient (1.12) of the counting function.

§7. Invariance under rigid rotations. Let us transform the differential
operator L as

L 7→ QLQ∗, (7.1)

where Q =
(

Q11 Q12
Q21 Q22

)
is a constant special unitary matrix. The transformation

(7.1) does not change the spectrum of our eigenvalue problem (1.1) and,
moreover, preserves its structure: the principal symbol remains trace-free and
the subprincipal symbol remains zero. We refer to the transformation (7.1) as a
rigid rotation because it describes a rotation of the frame (2.4), with this rotation
being the same at all points of the manifold M .

The transformation (7.1) is equivalent to the following transformation of the
special unitary matrix-function R(x) appearing in formula (1.5): that is,

R 7→ QR. (7.2)

Formulae (1.8) and (1.9) give us a one-to-one correspondence between
special unitary matrix-functions and weight functions on the one hand and
non-vanishing spinor fields on the other. In terms of the spinor field, the
transformation (7.2) reads(

ξ1

ξ2

)
7→

(
Q21ξ2 +Q22ξ

1

−Q21ξ1 +Q22ξ
2

)
. (7.3)
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Note that, unlike (6.4), this transformation is not linear because of the complex
conjugation. The transformation (7.3) can be written as a sum of linear and
antilinear transformations: that is,

ξ 7→ Q22ξ −Q21C(ξ) (7.4)

where
(
ξ1

ξ2

)
7→ C(ξ) :=

(
−ξ2

ξ1

)
is the charge conjugation operator (see formula

[4, (A.9)]).
Let us show, by performing explicit calculations, that the massless Dirac

action (B.3) is invariant under the transformation (7.4). Using the fact that the
massless Dirac operator commutes with the charge conjugation operator (see
Property 3 in [4, Appendix A]),

(Q22ξ −Q21C(ξ))∗W (Q22ξ −Q21C(ξ))
= |Q22|

2 ξ∗W ξ + |Q21|
2 (C(ξ))∗C(W ξ)

−Q22Q21ξ
∗C(W ξ)−Q22Q21(C(ξ))∗W ξ

= |Q22|
2 ξ∗W ξ + |Q21|

2 ξ∗W ξ

+{Q22Q21(C(ξ))T W ξ −Q22Q21(C(ξ))∗W ξ}.

But the expression in the curly brackets is purely imaginary, so

Re[(Q22ξ −Q21C(ξ))∗W (Q22ξ −Q21C(ξ))]
= |Q22|

2 Re[ξ∗W ξ ] + |Q21|
2 Re[ ξ∗W ξ ]

= (|Q22|
2
+ |Q21|

2)Re[ξ∗W ξ ] = Re[ξ∗W ξ ].

A. Appendix. Invariant analytic description of a first-order differential operator.
Let L be a formally self-adjoint first-order linear differential operator acting on
m-columns v =

(
v1 . . . vm

)T of complex-valued half-densities over a connected
n-dimensional manifold M without boundary.

In local coordinates x = (x1, . . . , xn) our operator reads

L = Pα(x)
∂

∂xα
+ Q(x), (A.1)

where Pα(x) and Q(x) are some m × m matrix-functions and summation is
carried out over α = 1, . . . , n. The full symbol of the operator L is the matrix-
function

L(x, p) := iPα(x) pα + Q(x), (A.2)

where p = (p1, . . . , pn) is the dual variable (momentum).
The problem with the full symbol (A.2) is that it is not invariant under changes

of local coordinates. The standard analytic way of overcoming this problem is by
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introducing the principal and subprincipal symbols in accordance with formulae

Lprin(x, p) := iPα(x) pα, (A.3)

Lsub(x) := Q(x)+
i
2
(Lprin)xα pα (x), (A.4)

where the subscripts indicate partial derivatives. It is known that Lprin and Lsub
are invariantly defined matrix-functions on T ∗M and M , respectively (see [9,
§2.1.3] for details). As we assumed our operator L to be formally self-adjoint,
the matrix-functions Lprin and Lsub are Hermitian.

The definition of the subprincipal symbol (A.4) originates from the classical
paper Duistermaat and Hörmander [6] (see formula (5.2.8) in that paper). Unlike
[6], we work with matrix-valued symbols, but this does not affect the formal
definition of the subprincipal symbol.

A peculiar feature of first-order differential operators, as opposed to
pseudodifferential operators and higher-order differential operators, is that the
principal and subprincipal symbols uniquely determine the operator. Namely,
examination of formulae (A.1), (A.3) and (A.4) gives, in local coordinates, the
following expression for the operator in terms of its principal and subprincipal
symbols: that is,

L = −i[(Lprin)pα (x)]
∂

∂xα
−

i
2
(Lprin)xα pα (x)+ Lsub(x). (A.5)

B. Appendix. Massless Dirac action. In this appendix, we define, in a concise
manner, the massless Dirac action. For more details see [4, Appendix A].

In order to write down the massless Dirac action we need Pauli matrices,
that is, a triple of trace-free Hermitian 2×2 matrix-functions σα(x), α = 1, 2, 3,
satisfying the condition (2.10). In our case, we have Pauli matrices σα(x) readily
available: these are defined in accordance with formula (1.13), or, equivalently,
in accordance with formulae (2.9) and (2.2). Covariant Pauli matrices are defined
as σα := gαβσ β .

The massless Dirac operator is the matrix operator

W := −iσα
(
∂

∂xα
+

1
4
σβ

(
∂σ β

∂xα
+

{
β

αγ

}
σ γ
))
, (B.1)

where summation is carried out over α, β, γ = 1, 2, 3, and{
β

αγ

}
:=

1
2

gβδ
(
∂gγ δ
∂xα
+
∂gαδ
∂xγ
−
∂gαγ
∂xδ

)
(B.2)

are the Christoffel symbols. The operator (B.1) acts on a 2-component complex-
valued spinor field ξ , which we write as a 2-column, ξ =

(
ξ1 ξ2)T .

We chose the letter “W ” to denote the massless Dirac operator because in
theoretical physics literature it is often referred to as the Weyl operator. Note that
one should really be referring here to the static Weyl operator because we have
excluded time, which is natural in the setting of spectral theory.
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We define the massless Dirac action as

S(ξ) :=
∫

M
Re(ξ∗W ξ)

√
det gαβ dx, (B.3)

where the star indicates Hermitian conjugation. This is the variational functional
corresponding to the operator (B.1). Here, of course, we use the fact that, in view
of the self-adjointness of the operator W ,∫

M
ξ∗(W ξ)

√
det gαβ dx=

∫
M
(W ξ)∗ξ

√
det gαβ dx

=

∫
M

Re(ξ∗W ξ)
√

det gαβ dx .

C. Appendix. Example. In this appendix we consider an explicit example
illustrating the use of Theorem 1.1.

Consider the unit torus T3 parameterized by cyclic coordinates xα , α = 1, 2,
3, of period 2π . Let L be the differential operator with principal symbol

Lprin(x, p) =

(
p3 e2ix3

(p1 − ip2)

e−2ix3
(p1 + ip2) −p3

)
(C.1)

and zero subprincipal symbol. Below, we examine the eigenvalue problem (1.1)
for this particular operator L and trivial weight function (3.1).

Substituting (C.1) into (1.4) we see that the above principal symbol generates
the Euclidean metric

gαβ(x) = δαβ . (C.2)

Hence, as the reference principal symbol, it is natural to take

L̊prin(x, p) =
(

p3 p1 − ip2
p1 + ip2 −p3

)
. (C.3)

Substituting (C.3) into (1.13), we get standard Pauli matrices

σ 1
=

(
0 1
1 0

)
, σ 2

=

(
0 −i
i 0

)
, σ 3

=

(
1 0
0 −1

)
. (C.4)

It is not a priori obvious that the principal symbols Lprin(x, p) and L̊prin(x, p)
have the same spin structure. The only way to establish that they do indeed have
the same spin structure is to resolve equation (1.5) with respect to the special
unitary matrix-function R(x). Straightforward calculations give

R(x) = ±

(
eix3

0
0 e−ix3

)
. (C.5)

Of course, the underlying reasons why, in this particular case, we do not
encounter topological obstructions are that both principal symbols have the same
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(positive) topological charge and that the frame encoded in (C.1) makes an even
number of turns (two turns) as x3 runs from zero to 2π . See [4, Appendix A] for
more details.

Formulae (1.8), (1.9), (3.1) and (C.5) give the expression for the spinor field
as

ξ(x) = ±
(

e−ix3

0

)
. (C.6)

Substituting formulae (C.2), (C.4) and (C.6) into (B.1)–(B.3) we conclude that
S(ξ) = −(2π)3. Hence, Theorem 1.1 tells us that, in our example, the two-term
asymptotics (1.3) takes the form

N (λ) = 4
3πλ

3
− 4πλ2

+ o(λ2) (C.7)

as λ→+∞. Note that the non-periodicity condition (see [3, Definitions 8.3 and
8.4]) is fulfilled in our example, so, according to [3, Theorem 8.4], the asymptotic
formula (C.7) holds as it is, without mollification.

Now observe that, in our example, the spectrum of the operator L can be
evaluated explicitly. Indeed, let L̊ be the differential operator with principal
symbol (C.3) and zero subprincipal symbol. In other words, let L̊ = L̊prin(x,
−i∂/∂x). Then consider the operator RL̊ R∗, where R is the matrix-function
(C.5). It is easy to check that the subprincipal symbol of the operator RL̊ R∗

is −I , where I is the 2× 2 identity matrix. Hence,

L = RL̊ R∗ + I (C.8)

(compare with formula (1.7)). But the operator RL̊ R∗ is unitarily equivalent to
the operator L̊ and the spectrum of L̊ is known (see [4, Appendix B]). Using
(C.8), we conclude that the eigenvalues of our operator L are as follows.
• The number 1 is an eigenvalue of multiplicity two.
• For each m ∈ Z3

\{0} we have the eigenvalue 1 + ‖m‖ and a unique (up to
rescaling) eigenfunction, with eigenfunctions corresponding to different m
being linearly independent.

• For each m ∈ Z3
\{0} we have the eigenvalue 1 − ‖m‖ and a unique (up to

rescaling) eigenfunction, with eigenfunctions corresponding to different m
being linearly independent.

Thus, N (λ) − 1 is the number of integer lattice points inside a 2-sphere of
radius λ− 1 in R3 centred at the origin. Applying the result from [8] we get

N (λ) = 4
3πλ

3
− 4πλ2

+ Oε(λ21/16+ε) (C.9)

as λ → +∞, with ε being an arbitrary positive number. The more advanced
number theoretic result (C.9) agrees with our asymptotic formula (C.7).

Note that the calculations presented in this section remain unchanged if we
replace everywhere p1∓ ip2 by p1± ip2. This is in agreement with the fact that
the topological charge c does not appear in our formula (1.12).
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