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Abstract

The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic
enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes
faecalis, which is thought to oxidise arsenite for detoxification, consists of a large a subunit (AioA) with bis-molybdopterin
guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small b subunit (AioB) which contains a Rieske 2Fe-2S
cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal
structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A.
faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate
explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-
directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure
and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in
the A. faecalis AioB explains a 220 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is
conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc1 complex is absent in
the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted
in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial
AioB subunit and the Rieske of the bc1 complex where removal of the disulphide bridge had no effect on the redox
potential of the former but a decrease in cluster stability was observed in the latter.
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Introduction

Aerobic arsenite oxidation in the Alphaproteobacterium Rhizo-

bium sp. NT-26 is an energy-generating process where the electron

donor, arsenite, is oxidized to the less toxic arsenate and this is

coupled to the reduction of oxygen to water [1]. NT-26 can

oxidize arsenite either autotrophically with carbon dioxide as the

sole carbon source or heterotrophically, where yeast extract is used

as the source of carbon [1]. Aerobic arsenite oxidation is catalysed

by arsenite oxidase (Aio) [2] which is thought to be an ancient

bioenergetic enzyme that was present in the last universal common

ancestor prior to the divergence of the Bacteria and Archaea [3,4].

Aio consists of two heterologous subunits, a large (93 kDa)

catalytic subunit (AioA) which contains the molybdenum cofactor

(Moco) at the active site and a 3Fe-4S cluster, and a small subunit

(14 kDa) subunit (AioB) which contains a Rieske 2Fe-2S cluster

[5]. The Aio belongs to the dimethylsulphoxide (DMSO)

reductase enzyme family of molybdoenzymes but is unusual in

that it’s the only member of this family to contain a 3Fe-4S cluster

and a Rieske subunit [6].

The X-ray crystal structure of the Aio from the distantly related

(i.e. a member of the betaproteobacteria) heterotrophic arsenite

oxidiser Alcaligenes faecalis has been determined as a heterodimer

(a1b1) [6]. Molybdenum (Mo) is located in a highly solvated

funnel-like cavity in the AioA subunit and is coordinated by two

antiparallel molybdopterin guanine dinucleotide cofactors (bis-

MGD), three water molecules and one oxo ligand. Several protein

residues coordinate the bis-MGD in an extensive network of

hydrogen bonds and salt bridges. The Mo atom is not coordinated

to the protein unlike what has been seen in other members of the

DMSO reductase family whose crystal structures have been

determined, and which have a Ser, Cys, Asp or SeCys,

contributing a ligand to the Mo atom [7]. Three water molecules

bind to H195, E203, R419 and H423, and make direct contact
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with the Mo = O group. A manual fit of the arsenite substrate

suggests that the three water molecules occupy the substrate-

binding site. The 3Fe-4S cluster in AioA (approximately 15 Å from

the Mo atom) is coordinated by the conserved motif (Cys21-X2-

Cys24-X3-Cys28-X70-Ser99 in AioA). Similar to other Rieske- and

Rieske-type proteins, the AioB subunit of A. faecalis contains a

sequence motif (Cys60-X-His62-X15-Cys78-X2-His81) which

binds the Rieske 2Fe-2S cluster. The arsenite is oxidized to

arsenate at the Mo-site in AioA, reducing the Mo from +VI to

+IV. Since the 3Fe-4S cluster is a one electron acceptor it is

assumed that it accepts one electron from the Mo-pterin and then

transfers an electron at a time to the Rieske 2Fe-2S cluster of the

AioB subunit. The electron is then transferred from the Rieske

centre to a physiological electron acceptor (e.g. cytochrome c) and

finally, in aerobes, to a cytochrome oxidase where oxygen is

reduced to water [8–11].

NT-26 Aio was purified as a heterotetramer (a2b2) with a native

molecular mass of 219 kDa [5]. The Aio subunits from A. faecalis

and NT-26 share 48% identity. Both the 3Fe-4S-binding motif

and the predicted arsenite-binding residues are conserved in the

NT-26 AioA and may play similar roles. The AioB subunits are

49% identical and the 2Fe-2S-binding motif is also conserved.

One of the most striking differences is that the A. faecalis AioB

possesses a disulphide bridge - C65–C80 - which connects the two

loops at the Rieske centre whereas the equivalent residues in the

NT-26 AioB are F108 and G123.

Both the A. faecalis and NT-26 arsenite oxidases share common

redox and spectral properties when studied by EPR. In both

enzymes, no Mo (V) signal has been detected suggesting that the

only stable redox states of this centre are Mo(IV) and Mo(VI), and

the redox potential of the 3Fe-4S cluster has been determined to

be +270 mV for both enzymes [5,12]. A significant difference

however has been observed between the redox potentials of the

AioB Rieske 2Fe-2S clusters, with +130/160 mV in A. faecalis and

+225 mV in NT-26 [12,13]. This compares to +300 mV for the

redox potential of the Rieske cluster of the Rhodobacter sphaeroides bc1
complex [12]. Several groups have suggested that the high redox

potentials of the bc1 complex Rieske clusters are due to the

cumulative effects of a disulphide bridge and hydrogen bonds from

Tyr and Ser residues [14–18].

In this study, we report the first heterologous expression and X-

ray crystal structure of the arsenite oxidase from the autotrophic

arsenite-oxidising bacterium NT-26. We have compared the

structure with that from A. faecalis and other bis-MGD-containing

enzymes. We have also used a combination of site-directed

mutagenesis and EPR to understand the role of residues

surrounding the Rieske cluster and the role of the disulphide

bridge on the redox potential of the cluster.

Materials and Methods

Bacterial Strains, Plasmid and Growth Conditions
E. coli strains DH5a [19], JM109lpir [20], RK4353 [21] and

C43 [22] were used for expression of the NT-26 Aio. The vector

pPROEX-HTb (Invitrogen) was used for expression. All expres-

sion conditions involved growing E. coli in Luria Bertani (LB) broth

containing 100 mg/ml ampicillin either aerobically (170 rpm with

1:5 ratio liquid to head space) or anaerobically with nitrate

(14 mM) or DMSO (14 mM) as electron acceptors and sodium

lactate (20 mM) as the electron donor.

Cloning and Expression
The NT-26 aioB and aioA (aioBA) genes were amplified without

the native twin-arginine translocation (Tat) leader sequence using

the following primers:

Forward 59-GCGAATTCAAGCTACCGCGGCGG-

CAGGGGTC-39 and Reverse 59-GCCTGCAGTCAAGCC-

GACTGGTATTCTTTCGA-39. The restriction enzymes EcoRI

and PstI (underlined above) were used for cloning into the

expression vector, pPROEX-HTb. The aioBA clone sequence was

confirmed. The pPROEX-HTb carrying the aioBA genes was

transformed into a variety of E. coli strains to determine which one

gave optimal expression. A variety of IPTG (isopropyl b-D-1-

thiogalactopyranoside) and sodium molybdate concentrations as

well as induction times were also tested. The final optimum

expression conditions used for purification of the Aio involved

growing DH5a aerobically at 21uC for 24 h in LB containing

40 mM IPTG and 1 mM sodium molybdate.

Site-directed Mutagenesis
The primers used to create point mutations in the aioB gene are

shown in Table S1. Mutants were generated using the Agilent

Quick Change II XL site-directed mutagenesis kit according to the

manufacturer’s instructions. Mutations were confirmed by se-

quencing. The double mutant was created by sequential single

mutations. Mutants were expressed and purified as described

below for the wild type enzyme.

Purification of the Recombinant Arsenite Oxidases
The recombinant arsenite oxidases were purified from DH5a

using a combination of affinity and size exclusion chromatogra-

phy. Cells were harvested by centrifugation at 9,700 g for 10 min.

The cell pellets were pooled and washed by suspending in binding

buffer (20 mM potassium phosphate, 500 mM sodium chloride,

20 mM imidazole, pH 7.3) at 10 ml/g wet weight cells and

centrifuged at 12,000 g for 15 minutes. The cell pellet was

resuspended in binding buffer (10 ml/g wet weight cells). The E.

coli cells were disrupted by a single passage through a French

pressure cell (12,000 psi) and the cell debris removed by

centrifugation at 30,000 g for 30 minutes. The supernatant was

loaded onto a 1 ml GraviTrap pre-packed Ni charged affinity

chromatography column (GE Healthcare) as per the manufactur-

er’s instructions except with one minor modification; the wash

volume used was 120 ml. The eluent was desalted in 50 mM MES

(pH 5.5) buffer resulting in the precipitation of protein(s) which

were removed by centrifugation at 10,000 g for 5 min. The

supernatant was filtered through a 0.22 mm filter (Millipore),

concentrated using a Vivaspin 20 (MWCO 100,000) (GE

Healthcare) centrifugal concentrator and loaded onto a Superdex

200 10/300 gel filtration column (GE Healthcare) pre-equilibrated

with 50 mM MES, 100 mM NaCl, pH 5.5 buffer. Chromatog-

raphy was carried out at a flow rate of 0.3 ml/min. The 0.25 ml

fractions containing Aio activity were pooled and concentrated

using a Vivaspin 20 centrifugal concentrator (MWCO 100,000).

For crystallization the His-tag encoded by the vector was removed

using rTEV.

Confirmation of the native molecular mass of the recombinant

Aio was done using a Superdex 200 10/300 gel filtration (GE

Healthcare) chromatography column with a calibration curve

created using a gel filtration HMW calibration kit (GE

Healthcare). Chromatography conditions used were as described

by the manufacturer with a flow rate of 0.3 ml/min.

Structural Studies of Arsenite Oxidase
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Enzyme Assays
Arsenite oxidase enzyme assays were done as described

previously [1] at 25uC using the artificial electron acceptor, 2,6-

dichlorophenolindophenol (DCPIP) in 50 mM MES (pH 5.5;

optimum buffer). The results of the kinetics of the wild type

enzyme are from at least two independent experiments with at

least two replicates for each arsenite concentration tested. The

specific activities calculated for the mutants with 2.5 mM arsenite

are an average of two independent experiments with at least two

replicates per experiment. An activity temperature profile was

conducted at a range of temperatures controlled with a Varian

Cary dual cell Peltier accessory as described previously [23]. Each

data point represents a minimum of three replicates. Protein

concentrations were determined using spectroscopic absorbance

readings at 280 nm using a NanoDrop 2000 spectrophotometer

(Thermo) and a predicted molar absorbance coefficient (ExPASy,

Swiss Institute of Bioinformatics) based on the calculated protein

extinction coefficient (280 nm) using the Edelhoch method [24],

with the extinction coefficients for Trp and Tyr determined by

Pace et al. [25].

Cofactor Analysis
Metal analysis was performed using a PerkinElmer Life Sciences

Optima 2100DV inductively coupled plasma optical emission

(ICP-OES) spectrometer (Fremont, CA, USA). 500 mL of protein

samples (5 mM) were incubated overnight in a 1:1 mixture with

65% nitric acid (Suprapur, Merck, Darmstadt, Germany) at

100uC and diluted in a total volume of 5 ml with water. As

reference, the multi-element standard solution XVI (Merck) was

used. For nucleotide analysis, GMP was released from bis-MGD

by incubation in 5% (v/v) sulphuric acid for 15 min. GMP

released during the incubation was separated by HPLC using a

C18 reverse-phase column (4.66250 mm, ODS Hypersil column,

particle size of 5 mM; Thermo Scientific) equilibrated in 50 mM

diammonium phosphate (pH 2.5), 1% methanol at an isocratic

flow rate of 1 ml/min. AMP, GMP and CMP concentrations were

quantified by using AMP, GMP and CMP standard solutions.

Mass Spectrometry
For confirmation of the presence of the disulphide bridge the b

F108C/G123C mutant was buffer exchanged into 250 mM

ammonium acetate at pH 7.5, concentrated to 10 mM using

Amicon Ultra 0.5 ml centrifugal filters (Millipore UK Ltd,

Watford UK) and then diluted 2:1 in denaturing buffer (50:50

water:methanol). Mass spectrometry experiments were carried out

on a Synapt HDMS (Waters Ltd, Manchester, UK) QTOF mass

spectrometer [26] and 2.5 ml aliquots of protein samples were

delivered to the mass spectrometer by means of nanoESI using

gold-coated capillaries, prepared in house. Typical instrumental

parameters were as follows: source pressure 6 mbar, capillary

voltage 1.20 kV, cone voltage 40 V, trap energy 10 V, transfer

energy 8 V, and trap pressure 3.6610–2 mbar. Data acquisition

and processing were carried out using MassLynx (ver. 4.1)

software (Waters Corp., Milford, MA, USA). Mass deconvolution

was carried out using the Maximum Entropy algorithm available

as part of the MassLynx software.

Structural Biology
Crystals were obtained from sitting drop vapour diffusion

against a reservoir of 0.1 M Hepes sodium pH 7.5, 2%

polyethylene glycol (PEG) 400, 2.0 M ammonium sulphate. Data

were recorded at the ESRF ID23-1 to a resolution of 2.7 Å from a

single crystal bathed in crystallization mother liquor with 10%

glycerol, cooled to 100 K prior to data collection (Table S2). Data

were processed using MOSFLM/SCALA [27,28]. The structure

was solved by molecular replacement [with the starting model of

the A. faecalis high resolution structure (PDB 1 g8k – see RCSB

www.pdb.org)] with separate a chain and b chains (cut to

polyalanine where residues were not conserved) using the program

PHASER [29,30] as implemented in CCP4 [31]. The structure

was rebuilt to the correct sequence with a combination of the

program BUCCANEER [32] and manual intervention with

COOT [33]. The structure was refined with REFMAC5 [34]

with TLS parameters [35,36].

EPR
EPR spectroscopy was performed on wild type and mutant

enzymes obtained after the desalting step. Redox titrations were

performed with approximately 2 mg of enzymes, at 15uC, pH 8,

as described by Dutton [37] and adapted as described by Duval

[12] in the presence of the following redox mediators at 100 mM:

1,4 p-benzoquinone, DCPIP, 2,5-dimethyl-p-benzoquinone, 2-

hydroxy 1,2-naphthoquinone, 1,4-naphthoquinone. Reductive

titrations were carried out using sodium dithionite, and oxidative

titrations were carried out using ferricyanide. EPR spectra were

recorded on a Bruker ElexSys X-band spectrometer fitted with an

Oxford Instruments liquid-Helium cryostat and temperature

control system.

The results of the wild type and mutant enzyme redox data were

obtained with two separate enzyme preparations. Evaluation were

performed on the g= 1.88 signal. A two-way ANOVA without

replication showed significant variation among the four enzymes

(F 3, 3 = 26.51, P= 0.012).

Results

Characteristics of the Heterologously Expressed and
Purified Arsenite Oxidase

The aioB and aioA (designated aioBA) genes were cloned without

the aioB Tat leader sequence into pPROEX-HTb (Invitrogen)

under the control of the IPTG inducible trc promoter which allows

for expression in the E. coli cytoplasm. A combination of different

strains and growth conditions were tested to optimize Aio

expression (Figure 1). Although the highest specific activity was

detected when the enzyme was expressed under anaerobic

conditions with nitrate as the terminal electron acceptor, the

greater cell yield obtained from aerobic growth meant that aerobic

conditions were chosen for further expression studies with DH5a
as the host.

Recombinant arsenite oxidase was purified from E. coli using a

combination of Ni-NTA and size exclusion chromatography. The

enzyme was enriched by about 20-fold (Table 1) with a yield of

about 0.25 mg per g (wet weight) of cells. Based on SDS

polyacrylamide gel electrophoresis, the enzyme was pure with

both known Aio subunits present, namely AioA (91.3 kDa) and

AioB with His tag (20 kDa) (Figure 2). Based on size exclusion

chromatography the native molecular mass of the enzyme was

223 kDa which is consistent with the a2b2 oligomeric state of the

native enzyme purified from NT-26 [5].

Kinetics of the recombinant Aio was determined with DCPIP as

the artificial electron acceptor as has been done previously for the

native enzyme [5]. The enzyme was found to have similar kinetic

properties to the native enzyme with a Vmax of

1.7360.01 mmol21 min21 mg21, Km of 6864.8 mM and kcat of

3.660.25 s21 compared with 2.4 mmol21 min21 mg21, 61 mM

and 4.3 s21 (incorrectly calculated in the original paper) for the

native enzyme [5].

Structural Studies of Arsenite Oxidase
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The Mo and Fe contents of the recombinant Aio were

quantified by ICP-OES and showed that the Aio was

83.161.3% saturated with Mo and 77.661.3% saturated with

Fe (with respect to the 3Fe-4S in AioA and the 2Fe-2S cluster in

AioB) (Table S3). The Moco in Aio was identified as the bis-MGD

cofactor, since two GMP molecules were identified in relation to

one Mo atom bound to the AioA catalytic unit. The GMP

concentration was calculated to be 89.364.5% and no other

nucleotides were found bound to AioBA (Table S2). In total,

heterologously expressed AioBA in E. coli was saturated to at least

83% with the bis-MGD cofactor.

Comparison of the NT-26 Arsenite Oxidase Structure to
that of A. Faecalis and Other Molybdenum-containing
Enzymes

The structure of the NT-26 Aio was solved to a resolution of

2.7 Å (Table S2). The asymmetric unit of arsenite oxidase contains

four a and four b chains. The a chain contains a 3Fe-4S cluster

and the bis-MGD cofactor, which contains a single Mo ion. This

chain is ordered from A2 to S844. The b chain (Rieske subunit)

contains a 2Fe-2S cluster and residues A44 to V175 are located in

the experimental electron density. The enzyme is expressed

without the Tat leader sequence from the b chain; however, an

additional eight amino acids are present after rTEV cleavage (i.e.

GAMGSGIQ). Each a chain has extensive interactions with a b
chain forming a heterodimer (Figure 3). The fold of the a chain

and of the b chain are both very similar to the corresponding

chains in the enzyme from A. faecalis [6] and the relative

arrangement of the domains with respect to each other is also

conserved (Figure S1). Briefly, the a chain can be divided into four

domains arranged in a pseudo tetrahedral arrangement with the

Mo ion at the centre as is the case for all members of the DMSO

family (Figure S2). The iron-sulphur cluster (in the case of Aio a

3Fe-4S cluster) is anchored to domain 1, a common feature of

catalytic subunits of the DMSO reductase family, but contacts

domain 3 (the helix T244 to R256). The Rieske domain has a six

stranded antiparallel b barrel and a four stranded antiparallel b
sheet which binds the 2Fe-2S cluster. The heterodimer of NT-26

(a and b subunits) superimposes with A. faecalis (1 g8j), 948

matching residues with an rmsd of 1.84 Å for ca atoms (the values

for the individual chains are around 1 Å). A search of the PDB

database reveals that the a subunit is closely related to the

periplasmic nitrate reductase (NapA) from Desulfovibrio desulfuricans

(PDB 2NAP, gives a superposition of the a subunit from NT-26 of

2.1 Å for 619 matching ca atoms), which has two pterin co-factors

ligated to Mo and a 4Fe-4S cluster (not the 3Fe-4S seen in AioA).

Other similar structures are all members of the DMSO reductase

family. Some periplasmic nitrate reductases do possess a small b
subunit but this is dissimilar to the typical Rieske fold of the AioB

subunit [6,38].

Analysis of protein-protein interactions using PISA (Protein

Interfaces, Surfaces and Assemblies) [39] shows that the a and b
subunits that come together to form the heterodimer bury 8000 Å2

of exposed surface area. The same analysis reveals that the four

heterodimers present in the asymmetric unit are arranged as two

stable heterotetramers, and each heterotetramer buries 22000 Å2

of surface area (meaning the tetramerisation buries a further 6000

Å2 of surface area) (Figure 4). The contacts that stabilize the

heterotetramer are between domains 2 of the a chain and to a

lesser extent domain 1. There are also contacts between the N-

termini of the b chains that contribute to the tetramer.

Although the primary iron and sulphur ligands are the same in

the Rieske cluster of A. faecalis and NT-26 AioB, there is a striking

difference in the amino acids surrounding the cluster (Figure 5). In

the homologous Rieske protein of the bc1 complex, the hydrogen

bond network around the Rieske cluster has been shown to be

responsible for the redox properties of the 2Fe-2S cluster (Figure 5).

Residues b T61 and b M63 in A. faecalis AioB are replaced by b
P104 and b K106 in the NT-26 AioB and these residues sit either

side of the conserved H which ligates to the iron of the 2Fe-2S

cluster. In the bc1 complex Rieske, these residues have been shown

to be important for reactivity of the complex with quinone but not

for the redox potential of the cluster [40]. These residues also don’t

appear to be important for Rieske cluster redox potential in AioB,

Figure 1. Comparison of arsenite oxidase activities in total cell
extracts of E. coli strains. DH5a and JM109lpir grown were grown
with oxygen, nitrate and DMSO as terminal electron acceptors. Error
bars represent the average of six individual experiments.
doi:10.1371/journal.pone.0072535.g001

Figure 2. SDS-polyacrylamide gel (12%) of purified recombi-
nant NT-26 Aio. M: Molecular weight marker: phosphorylase b
(97 kDa), albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase
(30 kDa), trypsin inhibitor (20.1 kDa), a-lactalbumin (14.4 kDa) (GE
Healthcare) 1: Purified recombinant AioBA, two subunits AioA
(91.3 kDa) AioB with N-terminal His-tag (20 kDa).
doi:10.1371/journal.pone.0072535.g002
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PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e72535



as the Ralstonia sp. S22 and NT-26 AioB subunits have similar

redox potentials but the former like the A. faecalis AioB contains the

T/M, instead of P/K, residues [12]. Another distinct feature of the

NT-26 AioB Rieske structure is the absence of the disulphide

bridge (C65–C80, A. faecalis numbering) shielding the cluster from

solvent exposure (Figure 5). In NT-26 the aromatic ring of b F108

closes over the cluster packing against b G123 (Figure 5), and

could thus play the role of the shield. In the bc1 complex Rieske

protein the disulphide bridge has been suggested to be essential for

the redox and catalytic properties of the 2Fe-2S cluster but its

replacement by a F/G pair has not been tested [16,18]. In NT-

26 AioB S126 hydrogen bonds to the sulphur atom of the cluster

as is the case in the R. sphaeroides bc1 complex whereas in A. faecalis

AioB T83 is in the equivalent position (Figure 5). In the R.

sphaeroides bc1 Rieske, substituting the S for the T decreased the

redox potential of the cluster [15]. We reasoned these changes

could account for the difference in the Em value of the AioB Rieske

clusters. The AioB proteins of NT-26 and A. faecalis have a F

residue in common (F128 in NT-26 numbering) which is replaced

with a Y in the R. sphaeroides bc1 Rieske. The substitution of the Y

for a F in the bc1 Rieske cluster resulted in a decreased redox

potential of the cluster and this could account for the difference in

redox potentials of the NT-26 AioB and bc1 complex Rieske

clusters. Site-directed mutagenesis experiments were performed to

determine whether the structural variation in the Rieske clusters

accounts for the observed differences in redox potentials previously

reported [12].

Effect of Mutations on the AioB Rieske Cluster on the
Redox Potential of the Cluster

To try and understand the specific role of certain amino acids

and the disulphide bridge in the AioB subunit three mutants were

created: 1) S126 was mutated to a T to resemble the low redox

Table 1. Purification table of NT-26 recombinant arsenite oxidase.

Purification step Total protein (mg)
Total activity
(mmol21 min21)

Specific activity
(mmol21 min21 mg21) Purification fold

Total cell extract 49.92 4.63 0.09 1.0

Ni-NTA 10.27 5.41 0.53 5.7

Buffer change/centrifugation 2.11 3.57 1.70 18.3

Superdex 200 1.19 2.18 1.85 19.9

doi:10.1371/journal.pone.0072535.t001

Figure 3. The heterodimeric structure of the Aio from NT-26. The Aio consists of an a (pale blue) and b chain (pale yellow). The pterin co-
factor, 3Fe-4S, 2Fe-2S clusters are shown as space filling spheres. Residues which ligate the clusters are shown as sticks, as are the two residues
surrounding the Rieske cluster (K106 and F108). Atoms are coloured iron orange, sulphur dark yellow, carbon bright yellow, molybdenum green,
phosphorus bright orange, oxygen red, nitrogen blue.
doi:10.1371/journal.pone.0072535.g003
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potential (i.e. +130/160 mV) cluster of the A. faecalis enzyme, 2)

F128 was mutated to a Y to resemble the bc1 complex Rieske with

a high redox potential (i.e. +300 mV) and 3) F108 and G123

residues were mutated to C to introduce a disulphide bridge into

the NT-26 Rieske cluster resembling the Rieske clusters of the A.

faecalis AioB and the bc1 complex. All purified mutant enzymes

were found to be heterotetramers. The theoretical mass of the b
F108C/G123C mutant was calculated to be 17865.76 Da from

amino acid sequence. The formation of a disulphide bond would

be accompanied by a loss of two protons (2 Da). The presence of

the disulphide was tested by analysing the intact b subunit in a

denaturing electrospray ionization mass spectrometry experiment

which determined the mass to be 17863.551 Da, thereby

confirming disulphide bond formation (Figure S3).

A summary of enzyme activities and redox potentials are shown

in Table 2. When DCPIP was used as the artificial electron

acceptor only the S126T mutant showed a large reduction in

specific activity which compares well with the reduced activity of

the S/T mutant of the R. sphaeroides bc1 complex Rieske cluster

[15]. Early reports [16,41] suggested that one of the roles of the

Rieske disulphide bridge is cluster stability. No effect on cluster

stability as determined by specific activity over time or a

comparison of the temperature profiles of the wild-type and the

b F108C/G123C mutant were detected (Figure S4). The

temperature profiles also compare well with that of the heterol-

ogously expressed Aio from A. faecalis that contains the disulphide

bridge [23], with all three enzymes displaying a maximum activity

at 65uC.

The redox potentials of the Rieske 2Fe-2S clusters have been

evaluated on the EPR gy = 1.88 signal (Figure 5). EPR character-

ization of the wild type and mutant enzymes revealed a decrease in

the redox potential of the Rieske cluster of the b S126T and b
F108C/G123C mutants when compared to the wild type AioB

and the b F128Y mutant (Table 2; redox titrations are shown in

Figure S5). The b S126T mutant showed a similar Em value

decrease to the corresponding S/T mutation in the bc1 complex

Rieske protein (Table 2). The Em values of the b F108C/G123C

and the b F128Y however are not comparable to those obtained

for the equivalent mutants of the bc1 complex Rieske protein. The

introduction of a disulphide bridge in the NT-26 AioB had a

decreased Em value rather than an increased one as would be

expected for the bc1 complex Rieske. Previously, the presence or

Figure 4. The heterotetrameric structure of the Aio from NT-26. The Aio consists of two ab heterodimers. In the second heterodimer the a
chain is coloured salmon, and the b chain grey.
doi:10.1371/journal.pone.0072535.g004
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absence of the disulphide bridge in AioB has had no correlation to

the Em value [12]. The removal of this bridge in an AioB naturally

harbouring it had no effect on the Em value which suggested the

absence of any role for this bridge in the redox properties of this

cluster [42]. The result obtained with the NT-26 AioB F108C/

G123C mutant suggests a specific role for the F108/G123 pair of

residues in this protein and in other homologues also containing

this F/G change (i.e. those from other arsenite-oxidising

Alphaproteobacteria). The disulphide bridge is also absent in the

putative arsenite oxidases from the hyperthermopilic Archaea (e.g.

Aeropyrum pernix and Pyrobaculum calidifontis) which instead contain

the residues glycine and leucine. The b F128Y mutation which we

predicted would increase the redox potential of the 2Fe-2S cluster

in the NT-26 AioB showed the same Em as the wild type.

Discussion

Rhizobium sp. NT-26, unlike A. faecalis, can oxidize arsenite

autotrophically or heterotrophically obtaining energy from its

oxidation [1]. In NT-26 the Aio is involved in this respiratory

process where arsenite oxidation is coupled to the reduction of

oxygen to water in an electron transport chain that involves a

soluble c-type cytochrome [10].

Here we describe the expression of the Aio from NT-26 in the

host E. coli. The expression of the enzyme compares well to the

expression of other bis-MGD enzymes in E. coli, for example the R.

sphaeroides DMSO or biotin sulphoxide (BSO) reductases [43,44].

We have purified the Aio with a yield of 1.1 mg L21 of E. coli

culture with a bis-MGD saturation of approximately 83%. The

yields of the DMSO and BSO reductases were 0.5 mg L21 and

1.15 mg L21, respectively with 90% and 88% bis-MGD satura-

tion, respectively. In these studies, JM109 or BL21 cells were used

as expression hosts and expression was performed under anaerobic

conditions in a minimal medium. In contrast to other groups, we

have used DH5a as the expression host, which when grown

aerobically in a rich medium gave the highest enzyme yield. The

Km of the recombinant enzyme was similar to that of the native

enzyme but the Vmax was about 1.4-fold lower. Since EPR signals

and redox potentials of the 3Fe-4S [42] and 2Fe-2S clusters show

these centres to be correctly incorporated in the recombinant

enzyme, the decreased Vmax may be in part explained by a

proportion of the enzyme not containing the redox clusters as

indicated by the metal analyses (Table S3).

The A. faecalis Aio was crystallized under two different

conditions each with multiple heterodimers [6], the heterodimeric

arrangement is identical to that of NT-26 (Figure S1). One crystal

form (pH 6.4 1 g8k) when examined with PISA shows that the

four heterodimers are arranged as two stable heterotetramers. The

arrangement of the heterotetramer is very close to that of the NT-

26 Aio and buries a similar amount of surface area. The other

crystal form of A. faecalis Aio (pH 8.5, 1 g8j) has two heterodimers

but analysis by PISA shows no stable heterotetramer. In fact, if one

re-examines the crystal structure a similar heterotetrameric

arrangement is seen as a result of crystal packing but the two

dimers are separated and slightly rotated (in essence less tightly

packed). Examining this arrangement in PISA suggests that this

heterotetramer buries almost 3000 Å2 less surface area as a result

of the separation. Consequently PISA analysis does not identify in

this crystal the heterotetramer as stable. For the NT-26 Aio,

biochemical data suggests that the heterotetramer is stable in

solution and the functional unit. The data for the A. faecalis Aio are

less clear cut with a heterodimer being regarded as the functional

unit. However, the conservation of the tetrameric arrangement in

three different crystals, with two crystal forms showing stable

arrangements with extensive buried surface area, argues that the

heterotetramer is most likely to be the functional unit for the Aio.

In fact, we have recently demonstrated that the recombinant

version of the A. faecalis Aio expressed in E. coli is a heterotetramer

as determined by gel filtration chromatography (Heath & Santini,

unpublished data). The multiple arrangement and apparent

variability in heterotetramer strength (as judged by PISA) in A.

faecalis Aio indicates that the heterodimer-heterodimer interface is

flexible. The Mo metal sits in a five coordinate environment; four

ligands come from the two dithiolene moieties, each of which

Figure 5. EPR properties of the WT and mutated Aio Rieske
centres from NT-26. All spectra were recorded during titration on
entirely reduced isolated complex under non-saturating conditions.
Instrument settings: microwave frequency, 9,48 GHz; modulation
amplitude 1.6 mT, temperature 15 K; microwave power, 6.3 mT.
doi:10.1371/journal.pone.0072535.g005

Table 2. Summary of specific activities and redox potentials of the Rieske clusters of the NT-26 wild type and mutant enzymes.

Enzyme Specific activity (mmol21 min21 mg21)a Em
b (mV) DEm (mV) DEm expected in bc1 complex Rieske [15,16]

WT 1.7 225610

S126T 0.6 205610 220 226/228

F128Y 1.5 225610 0 +45/+70

F108C/G123C 1.5 190610 235 +54/+139c

aAverage activity of at least two assays from two independent enzyme purifications.
bData presented from one representative experiment. The results were the same in a separate experiment with independent enzyme preparations.
cThe equivalent of this specific mutation has not been tested in the bc1 complex Rieske but all mutations removing the disulphide bridge result in a redox potential
decrease [16,18].
doi:10.1371/journal.pone.0072535.t002
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comes from a pterin molecule. These four sulphur atoms sit in a

plane with the Mo at the centre but slightly displaced out of the

plane. The fifth site is occupied by an oxygen (presumably an oxo

group) giving rise to a square pyramidal arrangement of the five

ligands. The oxidation state of the Mo atom is not known although

five coordinate Mo usually favours a +IV oxidation state, which

has been identified in related enzymes. If correct then this would

give an overall charge of 22. Reduction from the +VI state may

have occurred during data collection (as proposed for the A. faecalis

enzyme) or the enzyme may have a five coordinate +VI oxidation

state. There is no evidence in the NT-26 Aio for a sixth ligand to

the Mo centre. In the A. faecalis Aio Ellis et al. [6] proposed the

presence of a hydroxide in the +VI state, although this gave an

unusual geometry which would require some re-arrangement of

the protein. The second coordination sphere around the Mo is

identical in both the A. faecalis and NT-26 AioA subunits,

comprising H199, N200, R201, E207, K385, R447 and H451

(NT-26 numbering). These residues are predicted to control the

recognition and orientation of the incoming arsenite.

Several residues surrounding the 3Fe-4S centre are different

between the A. faecalis and NT-26 enzymes. One of them, S98 (in

A. faecalis) is not conserved between alpha- and betaproteobacterial

AioA. In NT-26, and all the alphaproteobacterial AioA, this

residue is replaced by a G [42]. The A. faecalis structure features a

hydrogen bond between the Rieske and the 3Fe-4S cluster

mediated by this S98 together with the adjacent conserved S99.

There is no such hydrogen bond between G and S in the NT-26

Aio structure. The presence of this hydrogen bond could have an

effect on redox interactions between both Fe-S clusters as

proposed previously [42].

The redox potentials of the Rieske 2Fe-2S clusters of the native

NT-26 and A. faecalis AioB subunits differ significantly (+225 mV

vs. +130/160 mV, respectively). As shown in Figure S1, variation

in overall fold does not account for this difference but several

residues are distinct in the two enzymes (Figure 6). In place of the

b S126 in NT-26, the A. faecalis AioB contains a T. The Em value

decrease of 20 mV, observed with the NT-26 b S126T mutant is

similar to the measured decrease in the bc1 complex Rieske

mutants of R. sphaeroides (i.e. S154T) [15,17] or Saccharomyces

cerevisiae (i.e. S163T) [45]. The superimposed structures of the

Rieske subunits show that the S or T are overlapping in the AioB

of A. faecalis and NT-26 with that of the R. sphaeroides bc1 complex

(Figure 6). The remaining difference between the Em value of the

NT-26 and A. faecalis AioB could be due to specific replacement of

the disulphide bridge by the F/G pair. In fact, this difference in Em

value is in good agreement with the observed decrease of Em value

when mutating F/G to C/C in the NT-26 AioB. The bulky F

residue, could shield the cluster more from the water better than

the small C which is supported by the observation that the

replacement of the C by a small A doesn’t affect the redox

potential of the Ralstonia sp. S22 AioB Rieske cluster [42]. The

absence of any effect of the F128Y mutation on the NT-26 AioB

was surprising. This mutation had been extensively studied in the

Rieske of the bc1 complex [14–17,45] and has been proposed to

account for the difference in Em value between AioB in general

and the high redox potential of the bc1 complex Rieske clusters

[12]. A detailed examination of the superimposed structures

highlights a distinct torsion of the beta sheet surrounding the

Rieske cluster in AioB compared to the bc1 complex Rieske. This

torsion results in an increased distance of 1 Å between the F128

residue and the sulphur atom of the cluster-ligating C residue

(C103, NT-26 numbering) compared to the R. sphaeroides bc1
complex Rieske Y156F mutant. This explains why the introduc-

tion of a Y in the NT-26 AioB had no effect on the redox potential

of the cluster as the distance is too great from C103 for the

formation of a hydrogen bond.

Conclusions

In this study we have determined the optimal conditions for the

heterologous expression of the first Aio from an autotrophic

arsenite-oxidising. Structural studies have demonstrated a high

degree of similarity to the Aio from A. faecalis which is thought to

oxidise arsenite for detoxification [8]. There are also some striking

differences in the Aio structures particularly in the region

surrounding the AioB 2Fe-2S cluster. By using a combination of

site-directed mutagenesis and EPR we have explained why the

differences observed in the redox potentials of the Rieske subunit

of the Aio and bc1 complex exist.

Supporting Information

Figure S1 The heterodimeric structure of NT-26 Aio superim-

posed on that of A. faecalis. The folding of the NT-26 Aio is

essentially identical to that of A. faecalis [a chain (marine blue) and

b chain (pale cyan)]. The A. faecalis coordinates are taken from

1G8K.

(TIF)

Figure S2 The four domains of the large catalytic arsenite

oxidase subunit, AioA. Domain 1 is coloured in dark blue, domain

2 in red, with the additional small domain in salmon, domain 3 in

cyan and domain 4 in green. The structure has a pseudo

tetrahedral arrangement. Domains 2 and 3 can be superimposed

as they share a similar fold.

(TIF)

Figure S3 [Main figure] denatured spectrum of b F108C/

G123C mutant. [Inset] MaxEnt deconvolution showing the

masses found. The calculated mass of AioB with a disulphide

bond is 17863.76 Da, which is indicated by the peak at 17863.551

Da. The 18039.301 Da peak is the AioB subunit bound to the 2Fe-

2S cluster, and the 17928.150 Da peak is co-purified protein.

(TIF)

Figure 6. Close up view of the Aio Rieske 2Fe-2S cluster. A wall
eye stereo superposition of NT-26 (yellow cartoon, with sticks having
yellow coloured carbon atoms), A. faecalis (teal cartoon, with sticks
having white coloured carbon atoms) and R. sphaeroides (2qjk) bc1

complex (salmon cartoon, with sticks having cyan coloured carbon
atoms). Nitrogen atoms are coloured blue, oxygen atoms coloured red
and sulphur atoms green when shown in stick in all structures. The
Rieske cluster from the NT-26 structure is shown with iron atoms as
brown spheres and sulphur atoms as dull yellow spheres. The residues
in the NT-26 are labelled and the corresponding atoms in the other
structures are discussed in the text. The superposition was generated
by using all backbone atoms from residue 104 to residue 110 in the NT-
26 Aio structure as the template. This provides a more meaningful view
of changes at the Rieske cluster than a simple all atom superposition.
doi:10.1371/journal.pone.0072535.g006
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Figure S4 Temperature-activity profiles of the NT-26 wild-type

and b F108C/G123C mutant arsenite oxidases. Percentage of

maximum activity is plotted as a function of temperature of WT (N)
and b F108C/G123C (#) Aio. Data points and error bars

represent mean and standard deviation of at least three assays,

respectively.

(TIF)

Figure S5 Potentiometric titrations of the Rieske iron-sulphur

cluster of the wild-type and mutant NT-26 arsenite oxidases.

Potentiometric titrations were performed at pH 8 following the

g= 1.88 signal. The data for the titration of the wild-type enzyme

are represented with solid squares. The related fit is in a straight

line. The data for the titration of the F128Y mutant are

represented with open triangles. The related fit is shown as a

dotted line. The data for the titration of the S126T enzyme are

represented with solid circles. The related fit is shown as a straight

line. The data for the titration of the F108C/G123C mutant are

represented with solid inverted triangles. The related fit is shown

as a straight line.

(TIF)

Table S1 Primers used for site-directed mutagenesis of aioB.

(TIF)

Table S2 Crystallographic data.

(TIF)

Table S3 Determination of the molybdenum, iron and nucle-

otide content of the recombinant NT-26 arsenite oxidase.
aMolybdenum (mM molybdenum/mM Aio) and iron (mM iron in

relation to 16[3Fe-4S] and 16[2Fe2S]/mM Aio) content were

determined by ICP-OES (PerkinElmer Optima 2100DV, Fre-

mont, CA, USA). Results are related to one catalytic subunit (i.e.

ab AioBA heterodimer). bNucleotide content (mM CMP or AMP

or GMP/mM Aio) was analysed after release of nucleotide from

the molybdenum cofactor by heat treatment under acidic

conditions. AMP, CMP and GMP were quantified relative to

AMP, CMP and GMP standard solutions. cNo nucleotide

detected.

(TIF)
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