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The statistical analysis of repeated measures or longitudinal data always requires the accommoda-

tion of the covariance structure of the repeated measurements at some stage in the analysis. The

general linear mixed model is often used for such analyses, and allows for the specification of both

a mean model and a covariance structure. Often the covariance structure itself is not of direct

interest, but only a means to producing valid inferences about the response. Existing methods of

analysis are often inadequate where the sample size is small. More precisely, statistical measures of

goodness of fit are not necessarily the right measure of the appropriateness of a covariance struc-

ture and inferences based on conventional Wald type procedures do not approximate sufficiently

well their nominal properties when data are unbalanced or incomplete. This is shown to be the

case when adopting the Kenward-Roger adjustment where the sample size is very small. A gen-

eralization of an approach to Wald tests using a bias adjusted empirical sandwich estimator for

the covariance matrix of the fixed effects from generalized estimating equations is developed for

Gaussian repeated measurements. This is shown to attain the correct test size but has very low

power.
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1. Introduction

The purpose of this paper and the following companion paper [1] is to examine methods
of analysis which are appropriate for very small samples of repeated measurements. These
issues are highlighted in Brammer [2], who suggests using the general linear mixed model as
an appropriate modelling framework for ascending dose design studies, with reference to two
experiments involving isolated tissues and organs from guinea pigs and rats. In one of these
experiments, an attempt is made to estimate a covariance matrix for the seven repeated
measurements on an organ from data relating to just three subjects, and in the other a
covariance matrix from four repeated measurements from each of 12 subjects. Although
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the first of these examples may be thought of as an extreme case, this type of problem is
typical of many encountered in early stage drug development, where studies are routinely
undertaken using very small samples due to costs and the desire to minimize unnecessary
animal experimentation. A particular example is in the area of safety pharmacology, where
investigations are undertaken into the effects of test compounds on the vital functions of
the central nervous, cardiovascular and respiratory systems prior to trials involving human
subjects. Such experiments are carried out under ‘good laboratory practice’ to give an
indication of potentially adverse effects, but can also indicate possible clinical benefits. It is
not unusual to use four to eight subjects in longitudinal and cross-over experiments.

Repeated measurements are typically mutually correlated, and commonly have variances
that change over time. Such covariance structures need to be accommodated in the analysis
and there are several ways in which this may be done. The problem with very small samples
is that this structure will be poorly estimated and any aspects of the analysis that depend
on its estimation will be affected by this. Reducing the number of covariance parameters,
that is choosing a more parsimonious structure, would appear to provide one way of reducing
this problem, but to avoid invalidity of subsequent inference the chosen structure must be of
adequate fit. Unfortunately, assessment of fit of a covariance structure is also undermined
by the lack of information in such small samples. In this paper we show how these concerns
apply directly to conventional techniques for analyzing continuous repeated measurements
that are based on a full likelihood analysis with the multivariate linear model (see [3] for
example). In the light of these problems we consider, as an alternative, the use of ordinary
least squares that ignores the covariance structure in the estimation step, combined with
a sandwich estimator of error that corrects for the covariance structure. Our sandwich
estimator combines two different small sample adjustments for such estimators suggested by
Pan and Wall [4] and Mancl and DeRouen [5] respectively. It is shown that this estimator
leads to a test statistic with good nominal size, but unfortunately with extremely low power.

The paper is arranged as follows. In Section 2 we review existing methods for the analysis
of repeated measurements through the multivariate linear model, including the choice of
covariance model and small-sample inference. In Section 3 we develop the new adjustment
for the empirical sandwich estimator of the fixed effects for Gaussian data. The performance
of procedures based on these methods is assessed in Section 4 through a series of simulation
studies, and discussed in Section 5.

2. A review of existing methods

The multivariate Gaussian linear model is often adopted for the analysis of repeated mea-
surements [3]. Let yi (Ti × 1) be the response vector from the ith of n subjects, then the
model has the following general form

yi ∼ N (Xiβ; Σi) , i = 1, . . . , n, (1)
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for β, (p×1), the vector of fixed effect parameters, Xi, (Ti×p), the design/covariate matrix,
and Σi the (Ti×Ti) covariance matrix for this subject. Depending on the setting, the covari-
ance matrix can in principle take many forms, including those induced by a random effects
structure. Defining y = (y1, . . . ,yn)T , X = (X1, . . . ,Xn)T , setting Σ = block-diagonal {Σi}
we have the equivalent expression for the whole data set:

Y ∼ N (Xβ; Σ) . (2)

Usually restricted (or residual) maximum likelihood (REML) [6] is used to estimate the
parameters of this model, and is typically preferred to maximum likelihood in small samples
because it takes account of the loss of degrees of freedom from estimating the fixed effects.
Σ̂ is chosen to maximise the REML log-likelihood:

lR(Σ) ∝ −1

2
log|Σ| − 1

2
log|XTΣ−1X| − 1

2
yTHΣy (3)

where HΣ = Σ−1 −Σ−1X(XTΣ−1X)−1XTΣ−1, and the REML estimator of β is the gener-
alized least squares estimator

β̂ = (XT Σ̂−1X)−1XT Σ̂−1y. (4)

This formulation is dependent on a choice of structure for Σi, but there is no universally
satisfactory approach to finding this. When sample sizes are not too small, and there is
a limited fixed set of measurement times, the unstructured matrix is usually a satisfactory
choice (see for example [7] Section 5.6). When times are not common among subjects or
samples sizes are small then an alternative approach is to impose a particular pattern on
the variances and correlations, either directly, or through a formulation with random effects.
Although some have suggested the use of stationary covariance structures, such as compound
symmetry and first-order autoregressive, the non-stationarity of repeated measurements,
which is common outside the cross-over setting, precludes such patterns and has led to
the introduction of non-stationary models such as antedependence (see, for example [8]).
Wolfinger [9] reviews a large number of such proposals and suggests the following strategy
based on Diggle [10] for model selection.

(1) Use graphical analysis to select an initial mean model.

(2) Select initial covariance structures by any relevant means.

(3) Use formal statistical techniques to compare and select an appropriate structure. As-
suming the chosen covariance structure, reduce the mean model if necessary.

A number of criteria can be used to compare the fit of such covariance structures. For
instance, (reduced) likelihood ratio tests can be used for nested models to test whether
the additional parameters of the more complicated covariance structure give a significant
improvement to the fit of the model. That is,

2{lR(Σ1)− lR(Σ2)} ∼ χ2
q1−q2 (5)
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where Σ2 is nested within Σ1 and qi are the corresponding number of covariance parameters
for each model. Also, Akaike’s information criterion (AIC, [11]) and Schwarz’s Bayesian
criterion (BIC, [12]) are both log-likelihood measures penalized by the number of parameters,
which can be used to make a direct comparison between models which fit the same fixed
effects. These can be expressed in terms of minus twice the maximized log REML (i.e.
smaller is better) as

AICR :− 2lR + 2q

BICR :− 2lR + qlog(n)
(6)

where q is the number of covariance parameters in the selected model, and n is the number
of effective subjects.

An alternative route to the development of covariance structures is to model directly the
behaviour of subjects through a random coefficients model, and to use the structure induced
by this. (See, for example, [13]). While attractive in principle the success of such an
approach is critically dependent on the appropriate choice of subject level model, and this
can be difficult in practice.

Graphical and descriptive methods such as the semi-variogram [10] can point to likely classes
of covariance structure, but comparison of the fit of a number of models is usually necessary
for any given problem. This can be time consuming, and commonly the choice of structure is
not consistent among similar types of data set and, most importantly in the current setting,
will not work well with very small samples.

Once an appropriate covariance structure has been estimated, the resulting fixed effects
parameters obtained from (4) are asymptotically distributed as β̂ ∼ N(β,Φ), where

Φ = (XTΣ−1X)−1. (7)

Inferences about the fixed effects made via the general linear hypothesis, H0 : Lβ = 0, where
L is an (l × p) fixed matrix whose rows are linearly independent, may be tested using the
approximate Wald statistic with Φ̂ = (XT Σ̂−1X)−1 replacing the true value:

W = (β̂ − β)TLT (LΦ̂LT )−1L(β̂ − β) ∼ χ2
l (8)

To accommodate the uncertainty in Φ̂ a Wald F -statistic is usually preferred:

F = l−1(β̂ − β)TLT (LΦ̂LT )−1L(β̂ − β) (9)

where F is assumed to have a null Fl,v distribution and the denominator degrees of freedom
v are estimated from the data. One simple choice is the residual degrees of freedom N −
rank(X), where N is the total number of observations, although there are a number of
alternatives which all attempt to accommodate for the finite sample behaviour of the Wald
statistic. In a very general approach to this, Kenward and Roger [14, 15] first replace Φ̂
in (9) by an adjusted covariance matrix for the fixed effects parameters that accommodates
the uncertainty in Σ̂, and then approximate a scaled F -statistic, F ∗ = λF , by an Fl,v
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distribution, with λ and v estimated from the data through matching the first two moments
of F ∗ and the approximating F-distribution. The approximation has the advantage that it
recovers the correct values of λ and v in those special cases in which the Wald statistic has
an exact F-distribution, namely of Hotelling’s T 2 and balanced random effects analysis of
variance. This approximation also recovers Satterthwaite’s adjusted degrees of freedom [16]
for the one degree of freedom Wald test (i.e. l = 1) for which λ is identically one. A number
of alternatives for calculating the denominator degrees of freedom for the Wald F -statistic
are reviewed by [17], who recommend the use of the Kenward-Roger method. They show
it outperforms the other options in a simulation study, but note that when the covariance
structure is complicated and the sample size is small this method can lead to inflated type
1 error rates.

In the likelihood based approach the estimated covariance matrix Σ̂ plays two roles: it
influences directly the estimator of β and it is used to calculate the precision of this, and its
great imprecision in very small samples can undermine either or both of these roles. For this
reason we may want to reduce or remove its impact on either of these. One route to this
is to ignore the estimated covariance structure entirely for the purposes of estimation and
subsequently obtain an appropriate estimate of precision. In doing this we have removed its
direct impact on estimation, but not from the estimate of precision. Such an approach is well
known and amounts to a linear model implementation of generalised estimating equations
(GEE’s) with the robust or empirical variance estimator, [18], also known as the ‘sandwich’
estimator. The estimator can be written

β̂W = (XTWX)−1XTWy

= (
n∑
i=1

XTWiXi)
−1

n∑
i=1

XiWiyi
(10)

for W−1 = block-diagonal{W−1
i } a fixed working covariance matrix. This is unbiased for

β. The corresponding empirical sandwich estimator of the covariance matrix of β̂W can be
written

VS = V̂(β̂W ) = (XTWX)−1

( n∑
i=1

XT
i WiΣ̂iWiXi

)
(XTWX)−1 (11)

for Σi = V(yi). VS will be a consistent estimator of V(β̂W ) provided Σ̂i is consistent
for V(yi) and the usual choice for this is Σ̂i = (yi − Xiβ̂)(yi − Xiβ̂)T The advantage of
this estimator is that a poor choice of W will not affect the validity of inferences about β.
However it should be noted that this approach causes the fixed effects variances to reflect
the observed variances and covariances rather than those of any imposed ‘structure’. In the
simple case of W = I, then we have the ordinary least squares estimate of β but with the
standard errors of the estimates adjusted to account for the observed covariance structure.
[19] suggest the use of this approach whenever the mean response is of primary interest in
an analysis and limited time is available to determine an appropriate covariance model, or
in pharmaceutical trials where statistical methods have to be specified in advance in the
protocol.
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A disadvantage of the ‘robust’ method outlined above is that the resulting tests based on
asymptotic null chi-squared distributions are known to be unreliable in small samples. That
is, the consistency provided by this estimator comes at the price of increased variability.
[20] suggest that the robust approach is suitable only when the data come from ‘many
experimental units’, although several authors have attempted to correct for this in certain
situations. (See, for example, [21]). One such approach is easily extended to the general
linear hypothesis for Gaussian repeated measurements, and is developed in the next section.

3. An adjusted sandwich estimator

Pan and Wall [4] propose an F -test for the Wald statistic which takes account of the vari-
ability in the sandwich estimator. They describe their approach as being analogous to that
of testing the mean of a normal distribution with unknown variance where a t-test is pre-
ferred over a z-test. Their approach is developed in the GEE setting in terms of the simple
hypothesis H0: β = 0, although they note the possibility for its extension to the general
linear hypothesis H0: Lβ = 0, which is presented below.

Consider the Wald statistic under the null hypothesis,

W = (Lβ̂)T (LVSLT )−1Lβ̂ = v(Lβ̂)T (vLVSLT )−1Lβ̂ (12)

where Lβ̂ ∼ N(0,LVSLT ). If we assume further that vLVSLT has a scaled Wishart distri-
bution, that is vLVSLT ∼Wl(v,LV(β̂)LT ), then it follows that W has the same distribution
as Hotelling T 2. That is,

v − l + 1

vl
W ∼ Fl,v−l+1 (13)

where v is chosen from the data to match V̂{vec(vLVSLT )} = v2V̂{vec(LVSLT )} from the
Wishart distribution with an empirically based estimator.

From the properties of the Wishart distribution, we have

V{vec(vLVSLT )} = v(Il2 + K)
[
{LV(β̂)LT} ⊗ {LV(β̂)LT}

]
(14)

where K is the ‘commutative’ matrix and ⊗ is the Kronecker product operator. Also, since
VS is a consistent estimator of the covariance matrix of the fixed effects parameters, vΩ̂ is
a consistent estimator of V{vec(vLVSLT )} where

Ω̂ = (Il2 + K){(LVSLT )⊗ (LVSLT )} (15)

Let Pi = vec(XT
i WiΣ̂iWiXi), where as before Σ̂i = (yi − Xiβ̂)(yi − Xiβ̂)T . Then the
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covariance matrix of the mean vector Q =
∑n

i=1 Pi/n is estimated empirically by

T̂ =
n∑
i=1

(Pi − P̄)(Pi − P̄)T/n(n− 1)

=
1

n2
V̂(Pi)

(16)

where P̄ =
∑n

i=1 Pi/n. This follows since
∑n

i=1 Pi/n is itself an unbiased estimator of Q.
Then, the covariance matrix of vec(LVSLT ),

V{vec(LVSLT )} = (LVM ⊗ LVM)
n∑
i=1

Pi

where VM = Φ̂ = (XT Σ̂
−1

X)−1 is the model-based estimator of the covariance matrix of β̂.
This quantity is given (empirically) by

Ψ̂ = V̂{vec(LVSLT )} = (LVM ⊗ LVM)V̂(Pi)(LVM ⊗ LVM)T

= n2(LVM ⊗ LVM)T̂(LVM ⊗ LVM)T
(17)

and v is chosen to match as closely as possible the quantities vΩ̂, the estimated covari-
ance matrix of vLVSLT under the Wishart assumption with v2Ψ̂, its empirically calculated
estimate.

The solution favoured by Pan and Wall is to find v to minimise the sum of squared errors
between vvec(Ψ̂) and vec(Ω̂). Writing, a = vec(Ψ̂) and b = vec(Ω̂), the least squares
estimate of v minimises (va− b)T (va− b), so that differentiating and setting equal to zero,
we find

2vaTa− 2aTb = 0

which leads to

v =
aTb

aTa
=

tr(Ψ̂Ω̂)

tr(Ψ̂
2
)

(18)

Pan and Wall compare their adjusted F -statistic for a Wald test using the sandwich estimator
with the usual χ2

l distribution, and show in the context of a logistic model for a binary
response that their adjusted test reduces the inflated test sizes achieved using a χ2 test to
nominal levels. They note further that it is possible to combine their approach with a bias
correction such as that of Mancl and DeRouen [5]. This is achieved by simply replacing
ri = (yi −Xiβ̂) with (I−Hi)

−1ri in Pi from (16), where

Hi = XiVMXT
i Wi (19)

and using the bias-adjusted estimator to determine v. This results in a Wald statistic that
accounts for both the bias and variability of the sandwich estimator. However, they find
in simulations that there is no need for such a combination as their adjusted statistic alone
is somewhat conservative for simple hypotheses in the GEE setting, giving type 1 error
rates below the nominal level. The simulations of the next section show that in the context
of general hypotheses concerning Gaussian observations, the bias correction is necessary in
addition to the Pan and Wall adjustment to adequately control the type 1 error rate.
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Table I. A cross-over design for five treatments (A)-(E).

Period
Subject 1 2 3 4 5
1 A B C D E
2 B D A E C
3 D E B C A
4 E C D A B
5 C A E B D
6 E D C B A
7 C E A D B
8 A C B E D
9 B A D C E
10 D B E A C

4. Simulation studies

Three study designs are considered to investigate the effects of missing values and model
design on choice of covariance model and inference for repeated measurements in a small
sample setting.

(A) A simple repeated measures experiment, with 10 subjects randomly allocated to two
treatment groups (of equal size), and a response recorded for each subject at each of
five time points.

(B) As design (A), but with missing values. One subject in each treatment group drops
out at some random time following the first observation.

(C) A five treatment-five period cross-over trial, with 10 subjects allocated randomly to
treatments according to Table I, using a pair of Williams’ squares.

Under each study design, 1000 data samples are independently generated from a Gaussian
distribution with zero mean and each of seven underlying covariance structures; identity,
compound symmetry, AR1 (low and high correlation), first order antedependence, and two
‘unstructured’ forms. These structures are shown in the Appendix. The two unstructured
forms are chosen to have patterns far removed from that usually fitted by the structured
forms, such as correlations which increase by lag. One of these is found by adoption of a
quadratic random effects model with unusual parameter values. The number of covariance
parameters to be estimated by each model are then 1 (identity), 2 (compound symmetry,
AR1), 9 (antedependence), and 15 (unstructured).

In designs (A) and (B) a saturated means model is fitted, but for the cross-over design (C) the
mean model comprises an intercept, treatment and period effects (9 parameters). REML
estimates of the mean models and covariance structures are used. In terms of inference,
interest in designs (A) and (B) centres on the treatment/time interaction, but in design (C)
the appropriate null hypothesis is that of no treatment effect.
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Table II compares the use of (reduced) likelihood ratio tests and AICR/BICR measures to
identify the correct covariance structure for the simulated data arising from the three study
designs. Table III assesses the effectiveness of Wald tests, in terms of type 1 error rate (size)
and power, to determine departures from the null hypothesis for the same data.

4.1. Choice of covariance structure

As the unstructured covariance form will always give the best fit to the data, the proportion
of significant tests from reduced likelihood ratio tests of the estimated ‘true’ covariance
structure against an unstructured form indicates the actual test size of the test for detecting
a more parsimonious structure where an appropriate one exists. This can be thought of as
a goodness-of-fit test for a given structure.

H0 : Σ = ΣS vs H1 : Σ = ΣUN

Table II shows that the reduced likelihood ratio tests of the ‘true’ structure against the
unstructured do not not have nominal size. That is, where the data are generated from
an underlying ‘true’ structure of few parameters, the likelihood ratio test is not effective at
discriminating between this and an unstructured model in these settings. The actual sizes
from the simulations are around 25% for design (A) and in excess of 40% for designs (B)
and (C) compared to a nominal size of 5%. These sizes are inflated further in the case of
the estimated antedependence structure, which shares variances and lag 1 correlations with
the unstructured model. Test sizes are inflated to an even greater extent where the nominal
size is 1%.

The measures AICR and BICR have no nominal properties against which to assess their
behaviour, so need to be assessed in an absolute sense. For design (A), the measures AICR

and BICR pick out the ‘true’ structure on the majority of occasions, but with a greater spread
towards structures which are close to the ‘true’ structure. For designs (B) and (C), the spread
is increased, indicating the reduced effectiveness of these measures in discriminating between
structures.

4.2. Testing of fixed effects

Table III shows greatly inflated type 1 error rates for the χ2 and F -Wald statistics in design
(A), but the Kenward-Roger (KR) adjustment is seen to correct the size at the nominal
level of 5% when either the unstructured or ‘true’ covariance estimate is adopted. If the
‘true’ structure with few parameters is estimated, then it is more powerful in detecting a
significant difference in the interaction. For design (B) we see that when data are missing,
the Kenward-Roger adjustment leads to inflated type 1 error rates of around 7.5% when the
unstructured or (‘true’) antedependence structure are used. When the estimate of the ‘true’
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Table II. Summary of results from 1000 simulations of study designs (A)-(C): Choice
of covariance structure.

Underlying Proportion of significant Proportion chosen by AICR (BICR)
‘true’ tests: reduced LRTs (No. of covariance parameters)
covariance ‘true’ model v’s unstr. UN ID CS AR1 ANTE
structure df at 5% at 1% (15) (1) (2) (2) (9)
Study design (A)
Identity 14 0.240 0.099 0.101 0.654 0.117 0.092 0.036

(0.047) (0.748) (0.105) (0.085) (0.015)
Compound 13 0.229 0.097 0.110 0.046 0.705 0.116 0.023
symmetry (0.042) (0.060) (0.751) (0.134) (0.013)
AR1 (ρ=0.2) 13 0.254 0.108 0.108 0.435 0.142 0.265 0.050

(0.043) (0.547) (0.131) (0.254) (0.025)
AR1 (ρ=0.8) 13 0.249 0.122 0.131 0.000 0.071 0.734 0.064

(0.064) (0.000) (0.078) (0.819) (0.039)
Antedependence 6 0.277 0.142 0.319 0.000 0.000 0.001 0.680

(0.220) (0.000) (0.000) (0.002) (0.778)
Unstructured —– —– —– 0.985 0.000 0.006 0.003 0.006

(0.962) (0.003) (0.019) (0.008) (0.008)
Unstr. (QRE) —– —– —– 0.528 0.000 0.000 0.000 0.472

(0.415) (0.000) (0.000) (0.000) (0.585)
Study design (B)
Identity 14 0.393 0.202 0.197 0.567 0.102 0.095 0.039

(0.117) (0.671) (0.092) (0.099) (0.021)
Compound 13 0.403 0.211 0.241 0.054 0.564 0.118 0.023
symmetry (0.142) (0.081) (0.629) (0.134) (0.014)
AR1 (ρ=0.2) 13 0.398 0.204 0.204 0.436 0.125 0.200 0.035

(0.110) (0.531) (0.127) (0.207) (0.025)
AR1 (ρ=0.8) 13 0.379 0.186 0.207 0.000 0.077 0.655 0.061

(0.124) (0.001) (0.093) (0.747) (0.035)
Antedependence 6 0.476 0.275 0.505 0.000 0.001 0.001 0.493

(0.419) (0.004) (0.002) (0.004) (0.571)
Unstructured —– —– —– 0.971 0.003 0.014 0.003 0.009

(0.924) (0.010) (0.042) (0.010) (0.014)
Unstr. (QRE) —– —– —– 0.628 0.000 0.000 0.000 0.372

(0.533) (0.000) (0.000) (0.000) (0.467)
Study design (C)
Identity 14 0.410 0.262 0.255 0.531 0.081 0.096 0.037

(0.173) (0.634) (0.074) (0.092) (0.027)
Compound 13 0.468 0.287 0.315 0.014 0.542 0.105 0.024
symmetry (0.228) (0.022) (0.619) (0.120) (0.011)
AR1 (ρ=0.2) 13 0.468 0.289 0.300 0.379 0.091 0.183 0.047

(0.201) (0.477) (0.092) (0.201) (0.029)
AR1 (ρ=0.8) 13 0.485 0.289 0.317 0.000 0.054 0.568 0.061

(0.221) (0.001) (0.061) (0.679) (0.038)
Antedependence 6 0.534 0.371 0.557 0.000 0.004 0.001 0.438

(0.472) (0.000) (0.005) (0.005) (0.518)
Unstructured —– —– —– 0.986 0.000 0.009 0.003 0.002

(0.968) (0.001) (0.021) (0.005) (0.005)
Unstr. (QRE) —– —– —– 0.662 0.000 0.000 0.000 0.338

(0.591) (0.000) (0.000) (0.000) (0.409)

Designs (A) and (B) are simple repeated measures designs of 10 subjects in two equally sized treatment groups measured
at 5 time points, (one subject in each group may drop out at some random time following the first observation in Design
(B)). Design (C) is a 5 treatment-5 period cross-over experiment of 10 subjects allocated to treatment sequence according
to a Williams square. Table gives proportion of significant reduced likelihood ratio tests (RLRTs) for goodness-of-fit for the
covariance structure at the fixed levels of α = 0.05 and α = 0.01. Also, the proportion of structures selected by Akaike’s
Information criterion (AICR) and Schwarz’s Bayesian criterion (BICR).
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Table III. Summary of results from 1000 simulations of study designs (A)-(C): Wald
tests using χ2 and F distributions, and the Kenward-Roger adjustment.

Underlying Proportion of significant test results
‘true’ covariance Covariance Size Power
structure estimate χ2 F KR (KR)
Study design (A)
Identity Unstructured 0.329 0.290 0.053 0.735

Identity 0.064 0.048 0.048 0.980
Compound symmetry Unstructured 0.350 0.306 0.045 0.747

Comp. sym. 0.069 0.051 0.046 0.985
AR1 (ρ=0.2) Unstructured 0.352 0.319 0.050 0.735

AR1 0.095 0.070 0.052 0.978
AR1 (ρ=0.8) Unstructured 0.344 0.318 0.056 0.775

AR1 0.074 0.058 0.033 0.984
Antedependence Unstructured 0.332 0.300 0.058 0.760

Antedependence 0.208 0.179 0.069 0.945
Unstructured Unstructured 0.348 0.316 0.045 0.768

Unstr. (QRE) Unstructured 0.333 0.300 0.048 0.740

Study design (B)
Identity Unstructured 0.468 0.432 0.073 0.633

Identity 0.062 0.044 0.044 0.958
Compound symmetry Unstructured 0.437 0.411 0.074 0.632

Comp. sym. 0.080 0.050 0.047 0.950
AR1 (ρ=0.2) Unstructured 0.461 0.419 0.089 0.637

AR1 0.094 0.063 0.050 0.976
AR1 (ρ=0.8) Unstructured 0.463 0.412 0.078 0.637

AR1 0.075 0.051 0.031 0.966
Antedependence Unstructured 0.487 0.454 0.084 0.645

Antedependence 0.261 0.220 0.079 0.858
Unstructured Unstructured 0.432 0.399 0.077 0.640

Unstr. (QRE) Unstructured 0.360 0.338 0.046 0.516

Study design (C)
Identity Unstructured 0.913 0.900 0.654 —–

Identity 0.065 0.048 0.048 —–
Compound symmetry Unstructured 0.921 0.912 0.690 —–

Comp. sym. 0.077 0.058 0.054 —–
AR1 (ρ=0.2) Unstructured 0.910 0.900 0.660 —–

AR1 0.085 0.061 0.041 —–
AR1 (ρ=0.8) Unstructured 0.914 0.901 0.672 —–

AR1 0.062 0.042 0.024 —–
Antedependence Unstructured 0.943 0.938 0.712 —–

Antedependence 0.410 0.382 0.137 —–
Unstructured Unstructured 0.919 0.910 0.677 —–

Unstr. (QRE) Unstructured 0.926 0.913 0.698 —–

Table gives proportion of type 1 errors (Size) and Power using a fixed level of α = 0.05. Power is calculated by adding a linear
effect in time to one treatment group to achieve approximately 75% using a Kenward-Roger adjustment with the covariance
model indicated in Designs (A) and (B) with no missing values. KR - Kenward-Roger adjusted test. Power is not assessed
where the test size is not fixed at the nominal level (—).
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structure is based on few parameters however, the adjustment still generally corrects the
test size to the nominal value.

The loss of nominal properties in these tests when using an unstructured covariance model
for data with missing values is marked, although when only two subjects drop out, the loss in
data is at most 8 observations out of a possible 50. Allowing a third subject to drop out (from
either treatment group) is found to inflate this test size further, to around 15%, although as
the amount of missing data increases so do the problems of convergence in finding the REML
estimates. With the introduction of missing data, these small sample adjustments no longer
lead to exact tests. That is, the Kenward-Roger adjustment for all models is now based on
an approximate Taylor series expansion, which may not be appropriate where there are a
large number of parameters to be estimated from such small data sets. Also, the covariance
structure of the data now directly effects the estimates of the mean parameters as well as
their standard errors.

Once the size of the test has been fixed at the nominal level, it is appropriate to consider
power. Here this is achieved by adding terms which are linearly increasing in time to the
responses of one of the treatment groups. The terms were chosen to set the power using the
unstructured model at around 75%. Table III shows that if the ‘true’ covariance structure
can be determined, then the resulting Wald statistics will be more powerful than if the
unstructured model is adopted. This is perhaps unsurprising, but the reduction in power of
up to 15% from adopting the unstructured model is non-negligible.

Inflation of the type 1 error rates using the Kenward-Roger adjustment is even more pro-
nounced in design (C) where the actual test sizes found when using the unstructured covari-
ance matrix are very far from the nominal level for the test of no treatment effect. However,
it is noted again how the tests which rely on an estimate of the ‘true’ structure (where this
has few parameters) appear to be reasonably robust, with actual sizes close to the nominal
level. It is not appropriate to compare power here, as the actual test sizes have not all
attained the nominal level.

To test the approach using an adjusted sandwich estimator we again consider simulations
of study designs (A), (B) and (C). Results from 1000 simulations are shown in Table IV
for the unadjusted χ2 and F -Wald statistics using the sandwich estimator both with and
without the bias adjustment proposed by Mancl and DeRouen. Also shown are the results
obtained when the Pan and Wall (PW) adjusted statistic is adopted in each case. The
working covariance matrix W is assumed to be the identity, so that ordinary least squares
mean estimates are adopted.

Looking at the table it is clear in testing the (multiple parameter) hypotheses of no treat-
ment/time interaction in the simple repeated measures studies of designs (A) and (B), and no
treatment effect in the cross-over study of design (C) that adjusted tests using the Pan and
Wall approach without bias adjustment are still somewhat inflated, but that the combined
adjustment (accounting for both bias and variability) comes close to achieving nominal levels
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Table IV. Summary of results from 1000 simulations of study designs (A)-(C): Wald
tests using χ2 and F distributions with an adjusted sandwich estimator.

Underlying Proportion of significant test results
‘true’ covariance Method of Size Power
structure inference χ2 F PW (PW)
Study design (A)
Identity Sandwich 0.426 0.388 0.115 —–

Bias-adj. 0.248 0.207 0.055 0.629
Compound Symmetry Sandwich 0.419 0.394 0.119 —–

Bias-adj. 0.254 0.223 0.057 0.660
AR1 (ρ = 0.2) Sandwich 0.428 0.391 0.142 —–

Bias-adj. 0.275 0.249 0.068 0.659
AR1 (ρ = 0.8) Sandwich 0.416 0.383 0.166 —–

Bias-adj. 0.275 0.249 0.083 0.793
Antedependence Sandwich 0.422 0.385 0.109 —–

Bias-adj. 0.257 0.225 0.047 0.593
Unstructured Sandwich 0.423 0.390 0.109 —–

Bias-adj. 0.269 0.230 0.051 0.607
Unstr. (QRE) Sandwich 0.430 0.386 0.206 —–

Bias-adj. 0.257 0.228 0.100 0.824
Study design (B)
Identity Sandwich 0.482 0.449 0.135 —–

Bias-adj. 0.293 0.252 0.056 0.569
Compound symmetry Sandwich 0.444 0.396 0.130 —–

Bias-adj. 0.272 0.229 0.051 0.523
AR1 (ρ = 0.2) Sandwich 0.485 0.444 0.152 —–

Bias-adj. 0.290 0.264 0.068 0.592
AR1 (ρ = 0.8) Sandwich 0.452 0.399 0.160 —–

Bias-adj. 0.253 0.221 0.064 0.677
Antedependence Sandwich 0.494 0.459 0.132 —–

Bias-adj. 0.292 0.259 0.055 0.514
Unstructured Sandwich 0.459 0.411 0.088 —–

Bias-adj. 0.247 0.211 0.042 0.392
Unstr. (QRE) Sandwich 0.397 0.349 0.136 —–

Bias-adj. 0.210 0.189 0.063 0.546
Study design (C)
Identity Sandwich 0.388 0.339 0.094 —–

Bias-adj. 0.225 0.196 0.039
Compound symmetry Sandwich 0.397 0.364 0.081 —–

Bias-adj. 0.225 0.198 0.034
AR1 (ρ = 0.2) Sandwich 0.384 0.345 0.098 —–

Bias-adj. 0.214 0.185 0.037
AR1 (ρ = 0.8) Sandwich 0.380 0.349 0.073 —–

Bias-adj. 0.215 0.188 0.034
Antedependence Sandwich 0.372 0.336 0.051 —–

Bias-adj. 0.208 0.178 0.018
Unstructured Sandwich 0.378 0.337 0.067 —–

Bias-adj. 0.209 0.184 0.025
Unstr. (QRE) Sandwich 0.335 0.294 0.027 —–

Bias-adj. 0.132 0.106 0.009

Table gives proportion of type 1 errors (Size) and Power assessed using a fixed level of α = 0.05. Power is calculated in Designs
(A) and (B) by adding a linear effect in time to one treatment group to achieve approximately 75% using the Kenward-Roger
adjustment assuming the given covariance model - see Table III. PW - Wald test using a sandwich estimator adjusted using
the method of Pan and Wall with bias-adjustment as indicated. Power is not assessed where the test size is not fixed at the
nominal level (—).
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in each of these designs. It would appear that the Pan and Wall approach, of an adjusted
F -test using the sandwich estimator combined with a suitable bias adjustment, leads to an
appropriate test based on the general linear hypothesis for small sample repeated measures
which are normally distributed.

The final column of Table IV shows comparable power levels from study designs (A) and
(B) when adopting the Pan and Wall adjusted Wald tests using a bias adjusted sandwich
estimator for the covariance estimator of the fixed effects. These are directly comparable with
the Kenward-Roger adjusted Wald tests of Table III and show the relative poor performance
of the adjusted sandwich estimator approach with regards power to detect departures from
the null hypothesis, where both tests have fixed the size of the test. No comparison is possible
for study design (C), although it should be noted that the bias-adjusted sandwich estimator
has resulted in a test with nominal properties for this setting whereas the Kenward-Roger
adjusted Wald test has not.

5. Discussion

The simulation studies of the previous section show that, in general, as the sample size
decreases or the model becomes complex, either by design or due to missing values:

(1) REML based likelihood ratio tests of goodness of fit (and AICR/BICR) increasingly
favour the unstructured covariance model in preference to the ‘true’ structure, so are
not necessarily appropriate means of determining fit.

(2) The power of (small sample adjusted) tests of fixed effects using the unstructured
covariance estimate is diminished in detecting departures from the null hypothesis.

(3) Where an exact small sample test of the fixed effects using the unstructured model
is not possible, the approximate test is unlikely to have nominal properties. That is
the actual size of the test may not be fixed at the nominal level, making inferences
uncertain.

These simulations point to a dilemma in the use of likelihood based methods in such small
samples. We have seen that where the covariance structure plays a part in the estimation
of the fixed effects, poor nominal behaviour of inferences will follow unless there exists a
parsimonious covariance structure that can be identified. However, the very small sample
means that such identification is difficult if not impossible from the data alone. Simply
guessing a parsimonious structure to use is not an appropriate solution as any lack of fit
will have potentially serious consequences for validity of the subsequent inferences. This
raises questions about the role of the covariance structure in making inferences in a repeated
measures context where the sample size is very small and there is no external justification
for a simple covariance structure.
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We have seen that attempts to circumvent this problem through the use of GEE’s with
a small sample adjusted empirical sandwich estimator and Wald test can be successful in
achieving a test size of nominal level. However, this test lacks power relative to the Kenward-
Roger adjusted test, where comparisons are possible. The main problem with this approach
is again due to the imprecision of the estimated covariance matrix of the data. Although
eliminated from the estimation step, this is still central to the estimation of precision, and
it can be observed from the simulation results (not shown) that the distribution of the
resulting sandwich estimates of variance, while located in the right place, have very large
dispersion. This in turn affects the power of the tests (and length of confidence intervals) that
are derived from these variance estimates. A natural extension to this approach then is to
consider removing the estimated covariance structure both from the estimates of precision
and from the estimates of variability. That is, to develop a method which ignores the
covariance structure completely when calculating the test statistic, using ordinary regression
or ANOVA, and then corrects the null distribution for the observed dependency in the
repeated measurements. This will be the focus of the following companion paper, where
further consideration of the performance of the adjusted sandwich estimator will also be
presented.

Appendix A

The following (5 × 5) symmetric matrices are used as the underlying covariance structures
for the data generated in the simulations of Designs (A), (B) and (C) reported in Section 4.

A.1. Identity

σ2


1
0 1
0 0 1
0 0 0 1
0 0 0 0 1


with σ2 = 1.

A.2 Compound Symmetry


σ2

1 + σ2

σ2
1 σ2

1 + σ2

σ2
1 σ2

1 σ2
1 + σ2

σ2
1 σ2

1 σ2
1 σ2

1 + σ2

σ2
1 σ2

1 σ2
1 σ2

1 σ2
1 + σ2

 =


2
1 2
1 1 2
1 1 1 2
1 1 1 1 2
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with σ2
1 = 1 and σ2 = 1. Equivalently, the Compound Symmetry form can be considered as

the ’Uniform Correlation’ model, with σ2 = 2 and ρ = 0.5,

σ2


1
ρ 1
ρ ρ 1
ρ ρ ρ 1
ρ ρ ρ ρ 1



A.3. AR1

σ2


1
ρ 1
ρ2 ρ 1
ρ3 ρ2 ρ 1
ρ4 ρ3 ρ2 ρ 1


Two forms of AR1 are used, both with σ2 = 1, and with ρ = 0.2 and ρ = 0.8 respectively.

1
0.2 1
0.04 0.2 1
0.008 0.04 0.2 1
0.0016 0.008 0.04 0.2 1

 and


1

0.8 1
0.64 0.8 1
0.512 0.64 0.8 1
0.4096 0.512 0.64 0.8 1



A.4. Antedependence


σ2

1

σ1σ2ρ1 σ2
2

σ1σ3ρ1ρ2 σ2σ3ρ2 σ2
3

σ1σ4ρ1ρ2ρ3 σ2σ4ρ2ρ3 σ3σ4ρ3 σ2
4

σ1σ5ρ1ρ2ρ3ρ4 σ2σ5ρ2ρ3ρ4 σ3σ5ρ3ρ4 σ4σ5ρ4 σ2
5

 =


1

1.6 4
1.44 3.6 9
0.768 1.92 4.8 16
0.192 0.48 1.2 4 25


i.e. with σ2

1 = 1, σ2
2 = 4, σ2

3 = 9, σ2
4 = 16, σ2

5 = 25, ρ1 = 0.8, ρ2 = 0.6, ρ3 = 0.4, and ρ4 = 0.2.

A.5. Unstructured
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σ2

1

σ21 σ2
2

σ31 σ32 σ2
3

σ41 σ42 σ43 σ2
4

σ51 σ52 σ53 σ54 σ2
5

 =


1

0.28 2
1.04 1.96 3
0.80 0.56 2.08 4
1.79 1.89 3.10 1.79 5


which has variance/correlation matrix,(variances on the diagonal, correlations below)

1
0.2 2
0.6 0.8 3
0.4 0.2 0.6 4
0.8 0.6 0.8 0.4 5



A.6. Unstructured (QRE)


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


σ2

1

σ21 σ2
2

σ31 σ32 σ2
3




1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


T

+ σ2


1
0 1
0 0 1
0 0 0 1
0 0 0 0 1

 =


2
3 10
7 21 50
13 39 91 170
21 63 147 273 442


i.e. with σ2 = 1 and σ2

1 = σ21 = σ2
2 = σ31 = σ32 = σ2

3 = 1. This has variance/correlation
matrix 

2
0.67 10
0.70 0.94 50
0.71 0.95 0.99 170
0.71 0.95 0.99 1.00 442
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