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Abstract 
 

Streptococcus pneumoniae is an important respiratory pathogen and a leading cause of community-

acquired pneumonia. As well as invasive disease S. pneumoniae also colonises the nasopharynx. 

Colonisation with S. pneumoniae is nearly universal in infants, dropping to 10% in adulthood. This 

frequent exposure has potential for developing and boosting natural adaptive immune responses.  

However naturally-acquired immune responses that protect against subsequent lung infection with 

S. pneumoniae are not fully understood. This thesis investigates the targets and function of 

naturally-acquired IgG to S. pneumoniae in humans and additionally the mechanisms of protection 

from lung infection following experimental colonisation in mice.  

The target and function of naturally-acquired IgG in human sera and pooled intravenous 

immunoglobulin (IVIG) preparations was assessed. IVIG, pooled from >1000 adult donors provides a 

tool to investigate the natural antibody responses to S. pneumoniae within a population. Data 

indicate that naturally-acquired human IgG predominantly binds to non-capsular antigens on the 

surface of S. pneumoniae and can target surface exposed protein antigens. In vitro assays indicate 

that antibodies to non-capsular targets may be functional, enhancing phagocytosis and killing of S. 

pneumoniae.  In vivo human IgG protected against lung infection. Cellular depletion demonstrated 

that protection within the lung required neutrophils and clearance of S. pneumoniae from the blood 

required macrophages.  

A model of lung infection in the absence of bacteraemia using S. pneumoniae strain EF3030 was 

developed. This model allowed assessment of the immune responses to S. pneumoniae colonisation 

of the nasopharynx that protect against re-infection specifically within the lung. Prior nasal 

colonisation with S. pneumoniae EF3030 was protective against subsequent lung infection. Cellular 

depletion strategies and challenge in antibody-deficient mice demonstrated that protection against 

lung infection required the development of both humoral and cell-mediated immunity. 
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1.1 Introduction to Streptococcus pneumoniae  

1.1.1 Basic microbiology of S. pneumoniae 

 

Streptococcus pneumoniae, also known as the pneumococcus, is a Gram-positive encapsulated 

bacteria, first described in 1881 as a pathogenic diploccoci.  It can be identified microbiologically on 

the basis of showing alpha-haemolysis on blood agar plates, optochin resistance and bile solubility 

(Garcia-Suarez Mdel et al., 2006). S. pneumoniae usually exists as a diplococcus, forming pairs of 

lancet-shaped cocci, but is also capable of forming small chains. It is a facultative anaerobe growing 

best in 5% CO2, at 37 C, in broth or as colonies on blood agar.  

As a Gram-positive bacteria S. pneumoniae has a single cytoplasmic membrane surrounded by a 

peptidoglycan cell wall, common to all serotypes. A number of Gram-positive bacteria including S. 

pneumoniae synthesise a large polysaccharide capsule that surrounds and is attached covalently to 

the cell wall. The pneumococcal capsular polysaccharide (CPS) was first described as a soluble 

carbohydrate in cultures of S. pneumoniae (Dochez and Avery, 1917, Heidelberger and Avery, 1923). 

It was subsequently determined that different S. pneumoniae isolates varied in the structure of 

polysaccharide they produced (Heidelberger et al., 1925). Distinct capsular polysaccharide structures 

form the basis of the 93 known serotypes of S. pneumoniae (Gladstone et al., 2011, Bentley et al., 

2006).  
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1.1.2 S. pneumoniae infection    

1.1.2.1 Colonisation  

 

S. pneumoniae, along with a number of other potential bacterial pathogens including Staphylococcus 

aureus and Haemophilus influenzae asymptomatically colonises the nasopharynx in healthy 

individuals. The acquisition and clearance of colonisation is a dynamic process and S. pneumoniae is 

transmitted via aerosol droplet spread from other colonised individuals (Hartzell et al., 2003). 

Nasopharyngeal colonisation with S. pneumoniae is almost universal in infants; in a longitudinal 

study in the UK mean carriage (colonisation) rates were highest between 0-2 years of life (52% of 

individuals colonised at any one time), with carriage occurring more than once in 86% of children in 

this age group (Hussain et al., 2005). The average duration of the first episode of colonisation has 

been estimated at 63 days (Turner et al., 2012).  Carriage prevalence reduces with age, with mean 

carriage rates dropping to below 10% in those over 18 years old (Hussain et al., 2005). Although 

largely asymptomatic in itself, it has been suggested that nasopharyngeal carriage is a necessary pre-

requisite for the development of invasive disease (Bogaert et al., 2004). Carriage of S. pneumoniae in 

the nasopharynx leads to a prolonged interaction with the immune system of the host. This 

interaction is likely to influence the adaptive immune response that assists prevention of future 

invasive pneumococcal disease (Cohen et al., 2011, McCool et al., 2002).   
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1.1.2.2 Symptomatic disease 

 

Although most S. pneumoniae infection episodes involve colonisation of the nasopharynx, S. 

pneumoniae is also one of the most important human bacterial pathogens, responsible for up to 1.6 

million deaths annually worldwide, including 1 million child deaths (Levine et al., 2006). S. 

pneumoniae infection can manifest as a number of different diseases (Figure 1.1). Aspiration of S. 

pneumoniae colonising the nasopharynx into the lungs may result in pneumonia. In the UK S. 

pneumoniae is the leading cause of community acquired pneumonia, with an annual incidence 

estimated at 36.5 per 100,000 people (Bewick et al., 2012). S. pneumoniae is also a leading cause of 

meningitis, an infection of the meninges surrounding the brain, and bacteraemia, the presence of 

bacteria in the blood. Both bacteraemia and meningitis have a case fatality rate of approximately 

25% in adults (Ludwig et al., 2012). Bacteraemia is a relatively common complication of S. 

pneumoniae pneumonia, occurring in approximately 20% of cases admitted to hospital. Pneumonia 

has an overall mortality of around 5 to 10%, but is much commoner than septicaemia and meningitis 

so accounts for the highest burden of pneumococcal disease, and worldwide approximately 90% of 

deaths as a result of S. pneumoniae infection are due to pneumonia (O'Brien et al., 2009, Fitzwater 

et al., 2012). As well as severe invasive disease, S. pneumoniae is also a common cause of middle ear 

infection and is the most frequent bacteria isolated from middle ear fluid of individuals suffering 

acute otitis media (Jacobs et al., 1998, Sommerfleck et al., 2012). In addition to primary disease, S. 

pneumoniae is an important cause of secondary bacterial infection following influenza infection. It is 

estimated that secondary infection with S. pneumoniae may be present in up to 40% of patients with 

influenza (Wang et al., 2011). The presence of S. pneumoniae in influenza patients is associated with 

increased mortality (Palacios et al., 2009), and in murine models previous Influenza infection 

exacerbated the severity of subsequent infection with S. pneumoniae (Li et al., 2012). 

The incidence of invasive pneumococcal disease is highest at the extremes of age, with significantly 

higher rates of disease in individuals under 2 or over 65 years of age (van der Poll and Opal, 2009).  
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Individuals with acquired immune deficiencies, including HIV infection, also have an increased risk of 

invasive pneumococcal disease, and S. pneumoniae is the leading cause of bacterial respiratory 

infection in adults and children with HIV (Janoff et al., 1992). There is also an increased incidence of 

invasive pneumococcal infection in individuals with chronic lung disease for example in patients 

diagnosed with Chronic obstructive pulmonary disease (COPD) (Chidiac, 2012).  

 

 

              

 

 

Figure 1.1: Types of disease caused by S. pneumoniae. 

Some of the common clinical manifestations of S. pneumoniae disease following nasopharyngeal 

colonisation and the potential interactions between each disease type (Bogaert et al., 2004). 
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1.1.2.3 S. pneumoniae serotypes and disease  

 

The prevalence of different pneumococcal serotypes varies widely, as does their ability to cause 

disease (Brueggemann et al., 2004). Between 2008 and 2010 the most common serotypes of S. 

pneumoniae detected in patients suffering community acquired pneumonia in a UK hospital were 

serotypes 14, 8 and 1 (Bewick et al., 2012).  

For individual serotypes the incidence of invasive disease relative to the number of colonisation 

events has been estimated for the most prevalent serotypes. These ratios can be expressed as a 

serotype-specific ‘attack rate’, calculated from the incidence of invasive pneumococcal disease per 

100,000 acquisitions for each serotype. This attack rate is a measure of a serotypes potential to 

cause invasive disease, often described as serotype ‘invasiveness’. In a UK study, highly invasive 

serotypes (>20 cases of invasive disease per 100,000 acquisitions) included 4, 14, 7F, 9V, and 18C 

(Sleeman et al., 2006). There is an inverse relationship between both carriage duration or prevalence 

and invasiveness for each serotype (Sleeman et al., 2006, Brueggemann et al., 2004); serotypes with 

a low attack rate appear to stably colonise the nasopharynx for longer durations, in comparison to 

highly invasive serotypes which colonise for relatively short periods of time.  Recent epidemiological 

observations in the UK indicate that with increasing age an increase in serotype-specific ‘attack rate’ 

occurs, across all serotypes. This age-related increase seems to be more pronounced in less-invasive 

compared to highly-invasive serotypes (Bewick et al., 2012). As well as relative invasiveness, 

pneumococcal serotypes also vary in the type and severity of invasive disease they cause. Serotypes 

1 and 5 are more commonly found in complicated pneumonias in children (Hausdorff, 2007). 

Serotypes 1 and 14 are more often isolated from the blood than serotypes 3, 19 and 23, which in 

turn are isolated more frequently from the cerebrospinal fluid (Hausdorff et al., 2000a).  
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1.1.2.4 Treatment of S. pneumoniae infection 

 

Prior to the discovery of penicillin, serum therapy was the main treatment for invasive 

pneumococcal disease.  Serum therapy involved the transfer to patients of type-specific serum, 

often from  horses or rabbits vaccinated with pneumococcal polysaccharide (Goodner and Horsfall, 

1937). Such therapy was reported to reduce death rates, and protect against bacteraemia in patients 

presenting with pneumococcal pneumonia (Bullowa and Wilcox, 1936), and also prevented 

bacteraemia in animal models of disease (Bull, 1915c). The toxicity of serum therapy and the 

emergence of effective antibiotics led to its abandonment. Currently β-lactam antibiotics are the 

first-line in the treatment of invasive pneumococcal disease (Feldman and Anderson, 2011). 

However S. pneumoniae has developed resistance to many major classes of antibiotics, including β-

lactams, macrolides and fluoroquinolones (Feldman and Anderson, 2011). Although the incidence of 

resistance varies widely with geography, it is estimated that overall 15-30% of S. pneumoniae 

isolates worldwide are multi-drug resistant (resistant to 3 or more classes of antibiotics) (Lynch and 

Zhanel, 2009). Though currently antibiotic resistance may not be a major clinical problem, the 

potential lack of available treatment options due to increasing antibiotic resistance could have major 

consequences for the future case-fatality rate of S. pneumoniae infections. Increasing antibiotic 

resistance has led to the suggestion that antibody based therapies may have a role to play in future 

treatment of S. pneumoniae infections (Casadevall et al., 2004, Casadevall and Scharff, 1995).   
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1.1.3 Global serotype distribution  

 

The global distribution of pneumococcal serotypes is not uniform. Serotypes responsible for both 

carriage and invasive disease vary with location. Serotypes 19F and 23F were the most common 

serotypes isolated from nasal washings in a longitudinal study of Thai children (Turner et al., 2012).  

In comparison the most common serotypes isolated form nasal washings of Italian children, over a 

similar time period, were 10A and 10F (Ansaldi et al., 2012).The S. pneumoniae serotypes 

responsible for invasive disease also vary depending on location. The most common serotypes 

responsible for invasive pneumococcal disease in Africa are serotypes 1, 5 and 6A whereas in Europe 

and North America serotypes 14 and 6B appear more commonly as causes of invasive disease 

(Figure 1.2) (Mehr and Wood, 2012, Donkor et al., 2013). In Latin America serotype 14 is dominant 

with 50% of isolates responsible for acute otitis media in Argentinian patients in 2009 being serotype 

14, whereas in the USA serotype 14 was detected in approximately 10% of isolates, over the same 

time period (Rodgers et al., 2009). Differences in global serotype distribution are reflected in 

different coverage rates of the 13-valent pneumococcal vaccine, which is lower in Africa than Europe 

or North America (Figure 1.2). Vaccine introduction itself may reduce the circulation of certain 

serotypes within a population (Fitzwater et al., 2012); therefore uneven vaccine uptake may 

contribute to global variations in serotype prevalence 
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Estimated prevalence of invasive pneumococcal disease in different geographical areas, for the 13 

serotypes included in the 13-valent conjugate vaccine, prior to the introduction of PCV-7 into 

national immunisation programmes. Bars indicate the mean percentage of different serotypes and 

line indicates the cumulative mean (McIntosh and Reinert, 2011). 

Europe 

Africa 

North America 

Figure 1.2: Global distribution of S. pneumoniae serotypes.  
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1.2 S. pneumoniae surface envelope and genetics 

1.2.1 S. pneumoniae capsule 

 

Based on the relatedness of their capsular polysaccharide structure the 93 serotypes of S. 

pneumoniae can be categorised into 46 serogroups. The pneumococcal capsule is a virulence factor 

that aids pneumococcal survival in the host, and unencapsulated S. pneumoniae do not cause 

invasive infections in animal models of disease (Watson and Musher, 1990).  The capsule may aid 

virulence via a number of mechanisms. Firstly, the presence of a polysaccharide capsule can inhibit 

phagocytosis by neutrophils (Hyams et al., 2010a).The composition of different polysaccharide 

serotypes also affects their susceptibility to neutrophil mediated phagocytosis. Highly encapsulated 

serotypes such as 19F and 23F display increased resistance to neutrophil mediated phagocytosis, 

which has been linked to a higher carriage prevalence (Weinberger et al., 2009, Hyams et al., 2010c). 

The capsule may also help S. pneumoniae evade host defence mechanisms by masking immunogenic 

surface molecules (Alugupalli and Gerstein, 2005). For example, the ability of pneumococcal surface 

protein C (PspC) to bind factor H, a negative regulator of the complement pathway is affected by 

capsular serotype (Yuste et al., 2010) and there is a positive correlation between serotype-

invasiveness and factor H binding (Hyams et al., 2013). The binding of antibodies to pneumococcal 

surface protein A (PspA) may also be affected by capsular serotype (Abeyta et al., 2003). 

Investigations using capsular-switched isogenic strains of S. pneumoniae have indicated that the 

capsule may alter the surface-exposure of the pneumococcal proteins CbpA and PsrP, which are 

adhesins,  thus affecting virulence (Sanchez et al., 2011). The metabolic demand of synthesising 

different pneumococcal polysaccharides varies between serotypes, and this may affect the ability of 

S. pneumoniae strains to colonise the nasopharynx (Hathaway et al., 2012). 

As well as serotype variation the degree of capsular polysaccharide expression by a particular strain 

can vary, causing phase variation. Transparent phase variants have lower levels of capsular 

polysaccharide (Kim and Weiser, 1998) , exercise increased adherence to host cells and can more 
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easily colonise the nasopharynx (Weiser et al., 1994). Opaque variants on the other hand display 

higher levels of capsular polysaccharide and exhibit greater resistance to phagocytosis, but 

decreased adherence to host cells.  
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Figure 1.3: Basic structure of S. pneumoniae cell surface. 

Basic schematic of S. pneumoniae surface structure including the lipid cell membrane, peptidoglycan 

cell wall, polysaccharide capsule and three classes of surface protein (Jedrzejas, 2004).  
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1.2.2 S. pneumoniae cell wall  

 

In common with other Gram-positive bacteria S. pneumoniae has a peptidoglycan cell wall that is 

essential for maintaining the structural integrity of the cell (Figure 1.3). Peptidoglycan in the S. 

pneumoniae cell wall is composed of chains of the glycan N-acetylmuramic acid and N-acetyl-D-

glucosamine (Bui et al., 2012), cross-linked by short peptides (Navarre and Schneewind, 1999). The 

cell wall of S. pneumoniae also contains accessory structures including teichoic acid and lipoteichoic 

acid (Navarre and Schneewind, 1999). Teichoic acids are covalently bound to cross-linked 

peptidoglycan via a phosphodiester bond. Lipoteichoic acids are anchored to the lipid cell membrane 

(Figure 1.3). Both teichoic acid lipoteichoic acids contain phosphorylcholine residues, to which one 

class of pneumococcal surface proteins (choline binding proteins) can bind. Peptidoglycan associated 

teichoic and lipoteichoic acids make up the pneumococcal cell wall polysaccharide (CWPS) antigen 

(Lu et al., 2009).     

1.2.3 S. pneumoniae surface proteins 

 

Surface proteins of S. pneumoniae are important for its interaction with its environment and 

therefore contribute to disease pathogenesis. Surface exposed proteins may also be targets for 

opsonizing antibody. Detection of genes with common motifs, suggestive of surface localisation, 

indicates that 4% of the pneumococcal genome may code for proteins that are surface located 

(Wizemann et al., 2001). A number of mechanisms of localisation and attachment of proteins to the 

bacterial surface have been described (Bergmann and Hammerschmidt, 2006). Table 1.1   shows an 

overview of some important surface proteins, grouped by their mechanism of attachment to the 

bacterial surface. 
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Table 1.1: Summary of some of the well-characterised surface proteins of S. pneumoniae grouped according to their mechanism of attachment to the 

bacterial surface (Bergmann and Hammerschmidt, 2006, Kadioglu et al., 2008).  

   

Lipoproteins   Roles 
PpmA Putative proteinase maturation protein 

A  
Adherence to epithelial cells 

SlrA Streptococcal lipoprotein rotamase A  Modulates virulence factors 
PsaA Pneumococcal surface adhesin A  Adhesion to host cells, Manganese transport 
PiaA Pneumococcal iron acquisition A Iron transport 
PiuA Pneumococcal iron uptake A Iron transport 
Choline binding proteins   
PspA Pneumococcal surface adhesin A  Binds apolactoferrin, Inhibits complement deposition 
PspC Pneumococcal surface protein C  Binds complement factor H, Role in adhesion to host -tissue 
CbpD Choline binding protein D  Role in competence-induced cell lysis, responds to CSP 
CbpE Choline binding protein E  Phosphorylcholine esterase, removes phosphorylcholine from cell wall 
LytA Autolysin A Cell wall hydrolysis role in autolysis 
LPxTG proteins   
NanA Neuraminidase Cleavage of terminal sialic acid residues on host cell glycolipids and 

glycoproteins 
IgA1ase IgA1 protease  Cleaves IgA1 
PrtA  Serine protease 
HtrA High-temperature requirement A Heat-shock induced serine proteases, resistance to oxidative stress 
Hyal Hyaluronidase Breakdown of host extracellular matrix  
Non-classical    
PhtD Pneumococcal histidine triad protein D   Zinc binding protein 
PhtE Pneumococcal histidine triad protein E Metal binding protein, adherence to host tissue  
PilusA Pneumococcal pilus Adhesion to host cells 
PavA Pneumococcal adhesion and virulence A Binds fibronectin 
Eno Enolase Binds to plasminogen, promotes degradation of extracellular matrix 
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1.2.3.1 Choline binding proteins 

 

The choline binding protein PspA was first identified as a protein that lacked the features of 

streptococcal LPxTG proteins, but instead bound to choline residues on cell wall lipoteichoic acid via 

its C-terminal region (Yother and Briles, 1992). The release of PspA from the bacterial surface can be 

induced by either incubation of bacteria in high concentrations of choline, or deletion of the C-

terminal region (Yother and Briles, 1992).This mechanism of attachment is shared by a number of 

other pneumococcal surface proteins, all sharing a common C-terminal choline binding domain, 

consisting of a repeating 20 amino acid sequence (Wren, 1991). The common C-terminal domain of 

these proteins binds choline residues attached to pneumococcal cell wall teichoic and lipoteichoic 

acid, resulting in their non-covalent attachment to the cell surface (Figure 1.3). Other well 

characterised CBPs of S. pneumoniae include autolysin (LytA) (Garcia 1986) and pneumococcal 

surface protein C (PspC) (Rosenow et al., 1997).  

1.2.3.2 LPxTG motif proteins  

 

Surface proteins with an LPxTG amino acid signal sequence represent a class of proteins common to 

Gram-positive cocci (Fischetti et al., 1990). The presence of an LPxTG signal sequence at the C-

terminus targets these proteins to the bacterial cell surface (Navarre and Schneewind, 1999).  This 

signal sequence is cleaved by sortase, a transpeptidase, and the resultant cleaved proteins are then 

covalently attached via sortases to peptidoglycan of the pneumococcal cell wall (Mitchell and 

Mitchell, 2010). Genome analysis indicates the presence of 19 LPxTG anchored surface proteins in 

the TIGR4 strain of S. pneumoniae (Bergmann and Hammerschmidt, 2006). Some pneumococci 

express pili, long appendages involved in adhesion that extend beyond the capsule (Barocchi et al., 

2006). The pneumococcal pilus is attached to the cell surface via a LPxTG signal sequence  (Lofling et 

al., 2011). 
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1.2.3.3 Lipoproteins 

 

Cell surface lipoproteins are covalently linked to phospholipids of the pneumococcal cell membrane 

(Figure 1.3). This mechanism of attachment to the cell surface is conserved among bacteria (Sutcliffe 

and Harrington, 2002). Lipoproteins are initially secreted as prolipoproteins, following secretion they 

are covalently attached to the membrane phospholipid diacylglyceryl via the enzyme diacylglyceryl 

transferase (Lgt) (Tokunaga et al., 1982). Following attachment to the phospholipid membrane, the 

N-terminal signal peptide is cleaved by the enzyme lipoprotein signal peptidase (Lsp), forming the 

mature lipoprotein. Some lipoproteins form important components of transmembrane ABC 

transporters, these include the iron-uptake transporters Piu, Pit and Pia (Brown et al., 2001) and the 

manganese uptake transporter PsaA (Dintilhac et al., 1997). Other lipoproteins are not components 

of ABC transporters, for example, PpmA is an adhesin involved in pneumococcal adherence to host 

tissues (Gor et al., 2005). 

1.2.3.4 Non-classical surface proteins  

 

There are a number of pneumococcal surface proteins that fall outside any of the three categories 

already described, and are attached to the cell surface by other novel and often poorly understood 

mechanisms that would not be detected by genome analysis. These proteins can be collectively 

grouped into ‘non-classical’ surface proteins and include, for example, the pneumococcal histadine 

triad (Pht) family of proteins (Adamou et al., 2001). As their name suggests the Pht proteins contain 

a repeated histadine triad motif and have been demonstrated as surface located by flow-cytometry. 

A pneumococcal serine rich repeat protein (PsrP) has also been described (Rose et al., 2008). This 

protein is a member of a family of serine rich repeat proteins (SRRP) found in numerous pathogenic 

bacteria and has a role in adhesion to host tissue and the development of invasive disease (Sanchez 

et al., 2010). Additional S. pneumoniae proteins have transmembrane insertions, which mean they 

are partially expressed on the cell surface. For example the pneumococcal serine/threonine kinase 

(Stk-P) has a transmembrane region anchoring it to the cell surface (Echenique et al., 2004).  
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1.3 Genetic diversity of S. pneumoniae  

1.3.1 Genome structure 

 

S. pneumoniae contains a single circular chromosome estimated at between 2,240 to 2,270 kilobase 

pairs (KBP) in length (Gasc et al., 1991). The first pneumococcal genome to be sequenced was the 

serotype 4 strain TIGR4, which contains approximately 2200 open reading frames (ORFs) (Tettelin et 

al., 2001). Subsequently the genomes of other pneumococcal strains have been sequenced, all 

containing approximately 2000 ORFs (Barocchi et al., 2007). Significant genomic diversity between 

strains of S. pneumoniae exists on a number of levels.  

1.3.1.1 Transformation 

 

S. pneumoniae is naturally competent. Competence refers to the ability of an organism to undergo 

genetic transformation, incorporating DNA into its genome via homologous recombination. 

Induction of competence in S. pneumoniae is controlled by the concentration of a secreted peptide 

competence stimulating peptide (CSP) (Steinmoen et al., 2002). The induction of a competent state 

is dependent upon the concentration of CSP, this allows populations of S. pneumoniae to respond to 

their own density, a process known as quorum sensing.  

Colonisation of the nasopharynx provides a site for the exchange of genetic information between 

bacteria (Leung et al., 2011). This exchange allows adaptation to environmental pressures, for 

example, the development of anti-microbial resistance (Zhu and Lau, 2011), or the acquisition of 

genes involved in virulence (Brown et al., 2001). Investigating the evolution over time of the PMEN1 

serotype 23F strain of pneumococcus has allowed the identification of recombination ‘hot spots’, 

where horizontal gene transfer events were detected at increased frequency. Recombination 

‘hotspot’ loci include genes encoding the pneumococcal surface proteins PspA, PspC PsrP and 

capsule biosynthesis. Selective pressures may have led to the removal or alteration of genes 

encoding the pneumococcal proteins PspA and PsrP in this isolate (Croucher et al., 2011). All the 
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genes required for type-specific polysaccharide production are located together in genetic ‘cassette’ 

(Dillard and Yother, 1994). This facilitates capsule switching during transformation.  Sequence typing 

indicates that S. pneumoniae of the same sequence type may have different capsular polysaccharide 

serotypes, probably as a result of capsule switching. Capsule switching has been demonstrated in 

response to the introduction of the pneumococcal conjugate vaccine, where serotype 19A isolates 

have emerged from a previously 23F expressing lineage (Croucher et al., 2011).  

1.3.2 Sequence type 

 

As well as by capsular serotype, S. pneumoniae may also be categorised based on its genetic 

sequence type. Multi-locus sequence typing (MLST) classifies S. pneumoniae based on the sequence 

of seven ‘core’ housekeeping gene fragments (Hanage et al., 2005), therefore allowing grouping into 

‘sequence type’. It has been demonstrated that a number of isolates responsible for invasive disease 

from different countries were of the same sequence type, but not necessarily the same serotype 

(Coffey et al., 1998). These isolates are probably from the same clone and have different capsular 

polysaccharides due to horizontal transfer of genes encoding the capsule. S. pneumoniae strains of 

different sequence type may therefore have distinct virulence phenotypes independent of 

differences in their capsular polysaccharide (Sjostrom et al., 2006). More recently it has been 

demonstrated that the isolates responsible for invasive disease in west Africa are more likely to be 

clonal (of the same sequence type) than the those identified as common in carriage (Donkor et al., 

2013).   
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1.3.3 Regions of difference  

 

As well as global differences in their genomes, genomic variation of S. pneumoniae can also occur at 

specific sites. Studies of the pneumococcal pathogenicity island (PPI-1) were amongst the first to 

indicate genetic variation at a particular site. PPI-1 is a collection of genes involved in virulence, the 

3’ region of which is highly variable between different strains. Some variations in PPI-1 have been 

associated with alterations in the virulence of S. pneumoniae (Brown et al., 2001, Harvey et al., 

2011). Later further S. pneumoniae genes were shown to vary substantially between strains and 

termed ‘regions of diversity’ (van der Poll and Opal, 2009).  Some regions of diversity are involved in 

virulence and can distinguish between invasive and non-invasive strains. Comparison of the genome 

sequence of highly invasive, compared to a non-invasive isolates of S. pneumoniae has identified 8 

regions of the genome specific only to highly invasive isolates, these include variable regions of the 

PPI-1, ABC transporters and metabolic enzymes (Harvey et al., 2011).  

Along with regions of diversity, single genes are present or absent in different strains. Overall 

analysis of seventeen pneumococcal genomes indicated that less than 50% of genes were conserved 

between all 17 pneumococcal strains examined (Hiller et al., 2007). This diversity has led to the 

‘supra-genome’ hypothesis being applied to S. pneumoniae, which states that all the genes available 

to a species exist in a hypothetical pool, with every strain deriving and contributing genes to this 

pool (Hiller et al., 2007). 

Genetic diversity means that certain pneumococcal proteins that may be protective antigens are not 

present in all serotypes. For example significant differences in the expression of the pneumococcal 

adhesin PsrP have been demonstrated between serotypes (Munoz-Almagro et al., 2010), and the 

pneumococcal pili are also only present on certain pneumococcal serotypes (Basset et al., 2007b). 

 



34 
 

1.3.4 Allelic variation 

  

Whilst many pneumococcal surface proteins are structurally conserved between serotypes and 

strains, some of these proteins display allelic variance, providing an additional level of genetic 

variation between strains. For example, the gene sequence for the choline binding protein PspC  is 

highly variable between strains, and based on sequence identity it has been classed into 11 different 

groups (Iannelli et al., 2002). Antibodies to one allele of PspC do not necessarily cross react with 

other alleles; mice immunised with recombinant PspC from a type 3 strain (HB565) were protected 

against homologous challenge, partially protected against infection with a serotype 2 S. pneumoniae 

(D39), but not protected against challenge with a serotype 4 strain (Ricci et al., 2011). These 

differences in protection were linked to the level of variation in the amino acid sequence of PspC 

between strains.  PspA is also structurally variable between serotypes, alleles of PspA are divided 

into two main families and further into different clades (Hollingshead et al., 2000). The development 

of antibodies to PspA may be family specific (Melin et al., 2008), and although antibodies raised 

against one PspA family can cross-react with PspA from both families (Nabors et al., 2000), the level 

of cross-reactivity varies between families (Nabors et al., 2000). Similar to PspC, comparisons have 

been made of the ability of polyclonal mouse sera raised against PspA fragments from different 

clades to bind to PspA, with the cross-reactivity of anti-PspA antibodies related to the level of 

similarity of PspA between strains (Darrieux et al., 2008). In contrast lipoproteins (for example, PsaA, 

PiuA and PiaA) are highly conserved between pneumococcal serotypes (Sampson et al., 1997, Jomaa 

et al., 2005), and antibodies raised against the lipoproteins Piu/Pia from S. pneumoniae D39 

(serotype 2), mediated increased phagocytosis of a number of other S. pneumoniae serotypes 

(Jomaa et al., 2005). 
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1.3.4.1 Gene expression  

 

Pneumococcal gene expression is a dynamic process. Analysis of gene expression by microarray 

indicated that expression of a number of genes can be altered when S. pneumoniae are exposed to 

altered environments, which may affect virulence (Orihuela et al., 2004). 17 out of 20 of the genes 

classified as ‘virulence genes’ were differentially expressed when exposed to different physiological 

niches (blood, cerebrospinal fluid, and cultured epithelial cells). Changes included, for example, 

enhanced expression of the pneumococcal surface protein PspC in the presence of cultured 

epithelial cells. An increased expression of PspA was observed in all three physiological 

environments and enhanced expression of the pneumococcal surface protein PhtD was 

demonstrated in CSF. Investigation of gene expression by RT-PCR confirmed alterations in gene 

expression in different organ compartments in vivo. In addition, PspC was more abundantly 

expressed in S. pneumoniae  isolates from the nasopharynx than the lungs and blood of mice 72hrs 

post intranasal (IN) infection with the D39 strain (LeMessurier et al., 2006). Microarray studies have 

also shown pronounced differences in gene expression between S. pneumoniae strains when 

exposed to the same physiological conditions (Ogunniyi et al., 2012). 
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1.4 Immunity to S. pneumoniae  

 

1.4.1 Immunodeficiency and S. pneumoniae  

 

There are a number of primary immune deficiencies that may result in reduced or absent 

immunoglobulin production. These diseases include X-linked agammaglobunemia, caused by a 

defect in B-cell differentiation and common variable immune deficiency (CVID), a heterogeneous 

group of primary immune deficiencies all associated with deficient immunoglobulin production. 

Patients with primary immunoglobulin deficiencies display increased susceptibility to a number of 

infections, including an increased incidence of pneumonia (Oksenhendler et al., 2008). S. 

pneumoniae and H. influenzae are the most common causative agents of pneumonia in these 

patients (Rosen et al., 1995). The incidence of respiratory tract infection in immunoglobulin deficient 

patients can be partially reversed by intravenous immunoglobulin (IVIG) replacement therapy 

(Quinti et al., 2011). IVIG is pooled, purified immunoglobulin (IgG) from over a thousand donors, 

administered intravenously (IV) (Schwab and Nimmerjahn, 2013). The ‘trough’ concentration of IgG 

in patients’ blood between infusions of IVIG has been used to assess treatment efficacy and some 

studies have indicated that higher trough levels of IVIG may be protective against pneumonia 

(Orange et al., 2010). It has also been noted that IVIG therapy may reduce the deterioration in 

pulmonary function in patients with CVID (measured by FEV1) (de Gracia et al., 2004), presumably 

due to prevention of recurrent lung infection. The increased incidence of pneumococcal lung 

infection in immunoglobulin deficient patients, and its partial reversal following replacement 

therapy with pooled IgG, suggests an important role for IgG in natural immunity to lung infection 

with S. pneumoniae.  

As well as antibody deficiencies, other immune deficiencies are associated with increased 

susceptibility to infection with S. pneumoniae. Patients with deficiencies in the classical pathway of 

complement activation have increased incidence of pneumococcal septicaemia, meningitis and 
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bacterial pneumonia (Jonsson et al., 2005). Phagocytosis of S. pneumoniae was reduced when 

opsonised in the sera of patients with a classical complement defect, compared to healthy controls 

(Yuste et al., 2008). Patients with cellular immune deficiencies are also more susceptible to 

pneumococcal disease, and the incidence of invasive S. pneumoniae  may be up to 30 times higher in 

HIV positive patients compared to healthy controls (Chidiac, 2012). Impaired CD4+ T-cell responses 

to S. pneumoniae have been demonstrated in Malawian adults with HIV (Glennie et al., 2011).  

Asplenic patients have compromised immunity associated with increased susceptibility to infection, 

in particular sepsis, with encapsulated bacteria such as S. pneumoniae. It is estimated that 50-90% 

overwhelming infections post-splenectomy are down to S. pneumoniae (Davidson and Wall, 2001, 

Waghorn, 2001). In animal models of bacteraemia, experimental splenectomy significantly reduced 

the clearance of S. pneumoniae from the blood (Shinefield et al., 1966, Okinaga et al., 1981).   
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1.4.2 Innate Immunity to S. pneumoniae  

 

1.4.2.1 Host-recognition of S. pneumoniae  

 

The host response to invading bacteria requires cells to identify the bacterial pathogen. This is 

mediated by pattern recognition receptors (PRRs) on host cells, which recognise conserved pathogen 

associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are one well-described family of 

intra and extra-cellular pattern recognition receptors and a number of TLR’s may recognise different 

components of S. pneumoniae.  TLR2 recognises lipoteichoic acid and lipoproteins of Gram-positive 

bacteria including S. pneumoniae (Mogensen et al., 2006). TLR2 KO mice displayed impaired 

clearance of pneumococcal colonisation (van Rossum et al., 2005). In addition TLR4 recognises the 

pneumococcal toxin pneumolysin, and TLR9 recognises unmethylated CpG motifs on bacterial DNA 

(Paterson and Orihuela, 2010).  Another family of PRRs are the NOD-like receptors (NLRs) which 

identify PAMPs within the cell cytosol. NOD-2 recognises peptidoglycan, and detects internalised S. 

pneumoniae (Opitz et al., 2004). Certain NLRs can form intracellular signalling complexes called 

inflammasomes, which can be activated by the pneumococcal toxin pneumolysin (McNeela et al., 

2010). Other PRRs that may detect S. pneumoniae include scavenger receptors and SIGN-R1 on 

macrophages. The scavenger receptor MARCO is required for maximal TLR2 and NOD2 signalling, in 

response to colonisation with S. pneumoniae in mice (Dorrington et al., 2013). SIGN-R1 recognises 

the pneumococcal polysaccharide capsule (Paterson and Orihuela, 2010).    
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1.4.2.2 Role of complement in immunity to S. pneumoniae 

 

The complement system consists of a series of plasma and cell surface proteins involved in the 

opsonisation and killing of pathogens. Complement is an important component of innate immunity 

to S. pneumoniae, and individuals with an inherited deficiency in the central complement 

component C3, or the classical pathway component C2 are highly susceptible to pneumococcal 

infection (Paterson and Orihuela, 2010, Jonsson et al., 2005). There are three main pathways of 

complement activation, classical, lectin and alternative. The classical pathway is initiated by the 

binding of immunoglobulin, or acute phase proteins such as C reactive protein (CRP) and serum 

amyloid P (SAP) to phosphorylcholine of the pneumococcal cell wall (Casal and Tarrago, 2003). The 

lectin pathway is initiated by the binding of mannose binding lectin (MBL) to mannose on the 

pathogen surface (Eisen, 2010). The alternative pathway involves the deposition of complement 

component C3 directly on the bacterial surface.  In murine models of disease the classical pathway 

has been shown to be the dominant complement pathway in innate immunity to S. pneumoniae. 

(Brown et al., 2002b). The importance of complement in immunity to S. pneumoniae is highlighted 

by the complement-evasion strategies it employs. These include the binding of the complement 

regulator factor H by PspC (Yuste et al., 2010) and inhibition of complement deposition by the 

capsular polysaccharide (Hyams et al., 2010a).The pneumococcal surface protein PspA also inhibits 

complement activity by competing with CRP for binding to phosphocoholine residues on bacterial 

surface (Mukerji et al., 2012).  Opsonisation of S. pneumoniae by complement leads to phagocytosis 

and assists bacterial clearance. Complement is essential for effective clearance of S. pneumoniae 

from the blood (Yuste et al., 2005).  Studies of type 3 pneumococcus have shown that a number of 

complement proteins are present in the lungs of animals challenged with S. pneumoniae  (Coonrod 

and Yoneda, 1981), and complement depletion resulted in increased CFU in the lungs, in animal 

models of S. pneumoniae pneumonia (Yuste et al., 2005). 
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1.4.2.3 Innate immunity to colonisation with S. pneumoniae 

 

The primary clearance of S. pneumoniae from the nasopharynx depends upon neutrophils and 

macrophages (van Rossum et al., 2005, Zhang et al., 2009). In murine models of colonisation, 

neutrophils were recruited to the lumen of the nasopharynx and depletion of neutrophils resulted in 

normally asymptomatic colonisation becoming invasive (Matthias et al., 2008). Neutrophils may also 

facilitate the delivery of pneumococcal antigen to lymphoid tissue (Matthias et al., 2008). However  

alone neutrophils may not be sufficient to clear primary S. pneumoniae colonisation, as the decline 

in bacterial numbers in the nasopharynx of colonised mice failed to correlate with neutrophil influx 

(Matthias et al., 2008). Instead it appears clearance of primary colonisation depends upon the 

recruitment of monocytes and macrophages as depletion of these cells reduced pneumococcal 

clearance from the nasopharynx (Zhang et al., 2009). Neutrophils on the other hand appear to be 

important in the clearance of S. pneumoniae from the nasopharynx following secondary challenge, in 

previously colonised mice. Clearance of S. pneumoniae may be influenced by the presence of other 

bacterial species co-colonising the nasopharynx. In comparison to inoculation with S. pneumoniae 

alone, mixed inoculation of both H. influenzae and S. pneumoniae into the nasopharynx of mice 

resulted in a rapid clearance of S. pneumoniae, associated with a greater influx of neutrophils 

(Lysenko et al., 2005).    

1.4.2.4 Innate immunity to lung infection with S. pneumoniae 

 

The first line of immunity to S. pneumoniae reaching the lungs is the respiratory epithelium. S. 

pneumoniae may be cleared from the airways by the mucociliary clearance system of respiratory 

epithelial cells (Pittet et al., 2010). Epithelial cells secrete surfactant proteins which are capable of 

binding to and agglutinating pneumococci and appear to contribute to host defence (Jounblat et al., 

2005). Epithelial cells also secrete numerous anti-microbial peptides such as α and β-defensins and 

cathelecidin in response to bacterial infection (Schaller-Bals et al., 2002), which may also contribute 

to the clearance of S. pneumoniae from the lungs.   
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Alveolar macrophages are resident phagocytic cells of the lungs, and make up the majority (<95%) of 

cells in bronchoalveolar lavage fluid (BALF) under normal conditions (Gordon and Read, 2002). 

Bacterial inoculum into the lung are usually efficiently cleared by alveolar macrophages (Marriott 

and Dockrell, 2007). This clearance occurs without the recruitment of inflammatory cells and release 

of inflammatory mediators. However, if the resident alveolar macrophages are unable to initially 

clear this inoculum, inflammation associated with a recruitment of neutrophils occurs. Alveolar 

macrophages release inflammatory mediators including tumour necrosis factor alpha (TNF-α), 

interleukin-6 (IL-6) and interleukin-1 (IL-1). These cytokines can stimulate an inflammatory response. 

For example, IL-1β and TNF-α release by macrophages facilitates the release of the neutrophil 

attracting chemokine CXCL8 (IL-8) from epithelial cells (Standiford et al., 1990, Sun et al., 2007). 

Neutrophils are usually the first cells recruited following bacterial inoculum into the lungs (Yamada 

et al., 2011, Dallaire et al., 2001), where they control S. pneumoniae numbers by phagocytosis 

(Hyams et al., 2010a). In murine models of  pneumonia neutrophil influx appeared to peak by 12hrs 

post-infection with S. pneumoniae (Kadioglu et al., 2000).      

Neutrophil recruitment is promoted by chemokines released in response to infection. Neutrophils 

express two CXCR receptors (CXCR1 and CXCR2) which respond to CXC chemokines, resulting in 

neutrophil migration. CXCR1 responds to CXCL6 (granulocyte chemotactic protein-2) and CXCL8 (IL-

8) (Stillie et al., 2009). Additionally CXCR2 responds to a range of other chemokines including CXCL1 

(GRO-α), CXCL2 (GRO-β) and CXCL3 (GRO-γ).The CXC chemokine IL-8 appears to be particularly 

important in the migration of neutrophils into the lung following bacterial infection. Patients with 

bacterial pneumonia have been shown to have increased lung concentrations of IL-8 (Baggiolini et 

al., 1994), and antibody neutralisation of KC (Keratinocyte chemoattractant, CXCL1), considered the 

murine functional homologue of IL-8 (Singer and Sansonetti, 2004), reduces neutrophil influx in 

response to experimental bacterial pneumonia in mice (Craig et al., 2009). Bacterial products 

themselves may mediate neutrophil chemotaxis directly. N-formyl-peptides released by bacteria 

bind to formyl peptide receptors (FPRs) on neutrophils (Gauthier et al., 2007). Inhibition of FPRs by 
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cyclosporine H reduced neutrophil numbers in the alveolar space of mice 6hrs following high dose 

challenge with S. pneumoniae (Gauthier et al., 2007).  Neutrophils are recruited into the alveoli of 

infected lungs via the integrins MAC-1 and α4β1 (Kadioglu et al., 2011b).  

Phagocytosis of S. pneumoniae by neutrophils is enhanced by opsonisation with complement and 

Immunoglobulins. IgG bound to the surface of S. pneumoniae may enhance phagocytosis directly, by 

interaction with FCγ receptors, or indirectly by facilitating complement deposition (Mold et al., 

2002). Complement bound to S. pneumoniae is recognised by complement receptors on the surface 

of neutrophils (Williams et al., 2003). Once internalised, there are a number of mechanisms by which 

neutrophils can kill bacteria. Neutrophils can produce reactive oxygen species (ROS), including 

hydrogen peroxide and hydroxyl radicals via the enzyme NADPH oxidase (Segal, 2005). Neutrophils 

also contain anti-microbial peptides within cytoplasmic granules. In vitro experiments have indicated 

that human neutrophils kill S. pneumoniae primarily via antimicrobial serine proteases, rather than 

the generation of ROS (Standish and Weiser, 2009) as inhibition of theses peptides reduced 

intracellular killing of S. pneumoniae, but inhibition of NADPH oxidase did not.  

Neutrophil recruitment appears to be crucial to the resolution of pneumococcal pneumonia (Calbo 

and Garau, 2010), and a robust Influx of neutrophils into the lungs may clear S. pneumoniae; 

however excessive neutrophil influx may contribute to inflammation and lung damage characteristic 

of pneumonia (Dockrell et al., 2012). Antibody-depletion of neutrophils led to enhanced bacterial 

numbers in the alveolar space 24-hours post IN infection with S. pneumoniae (Sun and Metzger, 

2008). However the physical migration of neutrophils into the alveolar space may enhance bacterial 

invasion into the blood (Marks et al., 2007), and antibody depletion of neutrophils protected mice 

from bacteraemia post-challenge with a serotype 8 S. pneumoniae (Marks et al., 2007).    
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1.4.2.5 Innate immunity to S. pneumoniae bacteraemia  

 

As already discussed CRP binding to phosphorylcholine enhances the deposition of complement 

component C3 on the surface of S. pneumoniae (Horowitz et al., 1987), and is important for the 

clearance of S. pneumoniae from the blood, transfer of human CRP protected mice from 

experimental pneumococcal bacteraemia (Horowitz et al., 1987). The acute phase protein serum 

amyloid P (SAP) also improves complement deposition on the surface of S. pneumoniae and 

enhances its clearance from the blood (Yuste et al., 2007). Natural poly-reactive IgM is also 

important for the innate clearance of S. pneumoniae from the blood (Brown et al., 2002b, Baxendale 

et al., 2008). IgM produced in the absence of antigenic stimulation is considered natural IgM.  A 

particular subset of B-cells, B1a are responsible for the production of germ-line encoded poly-

specific natural antibody, primarily IgM (Baumgarth, 2011). Natural IgM is capable of binding to a 

range of pneumococcal polysaccharide serotypes and passive transfer of natural IgM protected mice 

in a model of pneumococcal sepsis (Baxendale et al., 2008). IgM appears to target bacteria in the 

blood to the marginal zone of the spleen, for removal (Zandvoort and Timens, 2002). The spleen is 

important for the removal of S. pneumoniae from the blood, splenectomised mice have impaired 

clearance of pneumococcal bacteraemia (Shinefield et al., 1966), and in humans S. pneumoniae is 

responsible for more than 50% of overwhelming infections post-splenectomy (Davidson and Wall, 

2001). Tracking radiolabelled bacteria following in vivo infection indicated that S. pneumoniae in the 

bloodstream is primarily cleared by phagocytic cells of the liver and spleen (Brown et al., 1983). 

Macrophages located in the marginal zone of the spleen express the C-type lectin SIGN-R1 which 

binds to pneumococcal capsular polysaccharide and therefore promotes phagocytosis and clearance 

of S. pneumoniae from the blood (Kang et al., 2004).                      
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1.4.3 Natural adaptive immune response to S. pneumoniae  

1.4.3.1 Development of humoral immunity  

 

A decrease in the incidence of pneumococcal disease with increasing age in children, following a 

period of high colonisation incidence, indicates the development of adaptive immunity. As 

previously discussed, individuals with acquired defects in humoral immunity are at greater risk of S. 

pneumoniae infection (Oksenhendler et al., 2008), demonstrating an important role for antibody in 

naturally-acquired immunity to S. pneumoniae. Purified capsular polysaccharide is an effective 

serotype-specific vaccine against S. pneumoniae through induction of anti-capsular polysaccharide 

antibody, and anti-polysaccharide immune serum can passively protect against serotype-specific 

pneumococcal disease (Casadevall and Scharff, 1994). It has therefore been assumed that the main 

mechanism of naturally-acquired immunity to S. pneumoniae is via the generation of antibodies to 

the pneumococcal polysaccharide (Musher et al., 1993). Longitudinal observational studies have 

indicated that nasopharyngeal colonisation does result in the development of anti-capsular 

antibodies (Goldblatt et al., 2005), and there is some epidemiological evidence this causes serotype-

specific immunity for at least some capsular serotypes (Weinberger et al., 2008). However, whilst 

anti-capsular antibodies may play a role in adaptive immunity there is also epidemiological evidence 

to suggest that other mechanisms are important in the development of naturally-acquired immunity 

to S. pneumoniae. A parallel reduction in the incidence of invasive disease occurs across all serotypes 

with increasing age in children (Figure 1.4) (Lipsitch et al., 2005) , which suggests the development of 

a common rather than serotype-specific mechanism of immunity. Furthermore, the age over which 

the reduction in invasive disease occurs does not necessarily coincide with the time at which an 

increase in anti-capsular antibodies is observed (Lipsitch et al., 2005). Longitudinal studies of S. 

pneumoniae colonisation in children have demonstrated that individuals acquire IgG to a number of 

S. pneumoniae protein antigens following periods of colonisation with S. pneumoniae (Prevaes et al., 

2012). Data from murine models of experimental colonisation suggest that colonisation with S. 
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pneumoniae induces high titres of IgG to S. pneumoniae, including antibody to specific 

pneumococcal protein antigens (Richards et al., 2010, Cohen et al., 2011).   

 

 

 

 

Figure 1.4: Incidence of invasive S. pneumoniae by age.  

Specific incidence of invasive S. pneumoniae disease per 100,000 person years in the United States 

by serogroup (in children of increasing age). ‘NVG’ indicates those serotypes not included in the 7-

valent vaccine combined (Lipsitch et al., 2005).   
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1.4.3.2 Role of IgM/IgA 

  

In addition to IgG, IgA and IgM may have some role in adaptive immunity to S. pneumoniae. IgM is 

also produced by B-cells in response to pathogens, and experimental infection with S. pneumoniae 

serotype 3 induced the production of anti-phosphorylcholine IgM in mice (Koppel et al., 2005). 

Following experimental colonisation of mice small rises in S. pneumoniae-specific IgM have been 

demonstrated (Cohen et al., 2012), associated with the development of IgM to the capsular 

polysaccharide. IgA is found in abundance at mucosal surfaces. There are two subclasses of IgA, IgA1 

and IgA2, the predominant subclass in the human airway is IgA1 (Kadioglu et al., 2008). Secretory IgA 

(sIgA) is formed of dimers of IgA1 or IgA2 connected by a J-chain. sIgA  is secreted across epithelial 

cells by the action of the polymeric Ig receptor (pIgR) (Pabst, 2012). IgA may have a role in protective 

immunity to S. pneumoniae, secretory IgA was produced following IN vaccination with the 

pneumococcal surface protein PspA. IgA was required for protection in this model as IgA deficient 

mice were not protected (Fukuyama et al., 2010) .  S. pneumoniae expresses an enzyme, IgA1ase, 

capable of cleaving human IgA1, therefore preventing opsonisation by IgA1in the nasopharynx (Wani 

et al., 1996).  The vast majority of patients with specific IgA deficiencies do not appear to have any 

clinical manifestations (Pabst, 2012). However, recent a study has suggested that individuals with a 

selective IgA deficiency may have an increased incidence of respiratory tract infection (Jorgensen et 

al., 2013). 
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1.4.3.3 Antigen targets for naturally-acquired antibody 

 

Experimental colonisation in mice can result in both the development of anti-CPS IgM and IgG 

against protein targets (Richards et al., 2010, Cohen et al., 2011), though the dominant antibody 

responses following murine colonisation appear to be against protein rather than polysaccharide 

antigens (Cohen et al., 2011). Reduced CFU of S. pneumoniae in the nasopharynx of previously 

colonised mice correlated with both anti-CPS IgM and IgG against the surface protein PspA (Richards 

et al., 2010). Importantly in mouse models of nasopharyngeal carriage experimental carriage with 

one serotype was protective against subsequent invasive disease caused by another serotype 

(Richards et al., 2010, Roche and Weiser, 2010), suggesting the development of serotype 

independent immunity. In experimental human colonisation models, protection from acquisition of 

S. pneumoniae was associated with pre-existing IgG to the pneumococcal surface protein PspA, but 

not with serotype specific anti-CPS antibody (McCool et al., 2002). Humans experimentally colonised 

with S. pneumoniae developed both serum IgG against the capsular polysaccharide and IgG against a 

number of pneumococcal surface proteins (Ferreira et al., 2013). Sera from these individuals, when 

passively transferred to mice was protective against challenge with a different serotype of S. 

pneumoniae (Ferreira et al., 2013). In unvaccinated human serum the concentration of IgG to the 

capsular polysaccharide does not necessarily correlate with binding of IgG to different S. 

pneumoniae serotypes (Hyams et al., 2011) (Figure 1.5), suggesting antigens other than the capsular 

polysaccharide may be important targets of naturally-acquired IgG. The S. pneumoniae capsule may 

also mask targets of IgG binding to sub-capsular antigens (Hyams et al., 2010a). 

 



48 
 

 

      

Figure 1.5: IgG binding to different S. pneumoniae serotypes.  

IgG binding to different S. pneumoniae clinical isolates following incubation in pooled human sera,  

and the concentration of capsular specific IgG  (μg/ml) in that sera (Hyams et al., 2011). 

 

Low levels of IgG to the pneumococcal surface proteins PhtD, PhtE, and Ply have been demonstrated 

in children prone to pneumococcal otitis media (Sharma et al., 2012). This was associated with a 

lower percentage of memory B-cells in otitis-prone children recognising these pneumococcal surface 

antigens (Sharma et al., 2012). Higher antibody levels to a range of pneumococcal proteins (NanA, 

PpmA, PsaA, SlrA, SP0189, and SP1003) correlated  with reduced risk of respiratory tract infection in 

14 month old children (Lebon et al., 2011) and to a reduced risk of otitis media (Kaur et al., 2011).  

Higher antibody responses to the pneumococcal proteins CbpA and pneumolysin (salivary and serum 

IgG) have also been demonstrated in children who are culture negative compared to those colonised 

with S. pneumoniae (Zhang et al., 2006b). However, recent epidemiological studies observing serum 

IgG responses to a range of pneumococcal proteins suggested that although nasopharyngeal 
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colonisation may elicit antibodies to a range of pneumococcal proteins, levels of IgG to 

pneumococcal surface proteins were not associated with a reduced risk of subsequent carriage in a 

population of children (Prevaes et al., 2012). Murine models indicate that whilst antibodies to 

pneumococcal protein antigens correlated with protection from future colonisation, they are not 

required for this protection (Trzcinski et al., 2005), and in mice acquired immunity to colonisation 

depends upon cellular responses, in particular the development of Th17 responses,  and antibody 

may be redundant for protection (Zhang et al., 2009).   

1.4.3.4 Mechanisms of antibody mediated protection  

 

1.4.3.4.1 Antibodies to S. pneumoniae CPS 

 

There are a number of mechanisms by which antibodies may protect against S. pneumoniae 

infection. Binding of antibodies to the polysaccharide capsule may facilitate complement deposition 

on the bacterial surface, enhancing phagocytosis (Brown et al., 1982), and capsular polysaccharide-

specific antibody can also facilitate phagocytosis by directly interacting with FC receptors on the 

surface of phagocytes, enhancing phagocytosis (Gordon et al., 2000). Antibody targeting the 

pneumococcal capsular polysaccharide may also protect by agglutination. For a number of years it 

has been known that factors in sera can lead to the agglutination of bacteria in vivo and the 

protective capacities of serotype specific anti-pneumococcal sera have been correlated with its 

capacity to cause pneumococcal agglutination (Bull, 1915c, Bull, 1915a). Serotype-specific anti-

capsular IgG can induce pneumococcal agglutination in vitro (Dalia and Weiser, 2011). Agglutination 

results in pneumococci more sensitive to complement deposition and complement dependent 

phagocytic killing correlates with the degree of antibody-mediated pneumococcal agglutination. A 

novel mechanism of protection by antibodies to the S. pneumoniae capsular polysaccharide has 

been described; binding of polysaccharide specific antibodies increased the transformation 

frequency of cultures of S. pneumoniae, resulting in competence induced bacterial killing (Yano et 

al., 2011).     
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1.4.3.4.2 Antibodies to S. pneumoniae proteins  

 

Antibodies to specific protein targets of S. pneumoniae can passively protect against invasive 

disease. Monoclonal antibodies to PspA mediate protection following IV or IP challenge with S. 

pneumoniae (Briles et al., 1989) and monoclonal antibodies raised against protease-sensitive 

antigens of S. pneumoniae protected mice from invasive disease (McDaniel et al., 1984). 

Immunisation of mice with recombinant pneumococcal proteins induces specific antibody responses 

(Jomaa et al., 2005, Green et al., 2005). Sera from mice immunised with a number of different S. 

pneumoniae surface proteins mediates enhanced opsonophagocytosis of S. pneumoniae in vitro 

(Jomaa et al., 2005, Harfouche et al., 2012).  Passive transfer of sera containing antibodies to a range 

of pneumococcal proteins induced by colonisation protected mice from invasive S. pneumoniae 

challenge (Cohen et al., 2011). Subcutaneous immunisation with purified S. pneumoniae PspA and 

PdB (a detoxified derivative of pneumolysin) protected against infection with an S. pneumoniae 19F 

strain (EF3030) that remained within lungs, and protection was associated with the induction of IgG 

against these protein antigens (Briles et al., 2003). Sera form older human subjects has reduced 

antibody  titres to both the S. pneumoniae capsular polysaccharide and the S. pneumoniae protein 

antigens CbpA, LytC, PhtD (Simell et al., 2008), and aged sera displays reduced opsonophagocytosis 

of S. pneumoniae in vitro (Simell et al., 2011). Plasma from diabetic patients may be deficient in anti-

PspA antibodies, compared to controls, and  sera from these patients demonstrated impaired 

phagocytosis of a ST14 S. pneumoniae associated with reduced complement deposition (Mathews et 

al., 2012). Antibodies may also neutralise the function of S. pneumoniae virulence proteins. 

Antibodies to the pneumococcal cytotoxin pneumolysin may inhibit its function and are protective in 

models of pneumococcal lung infection (Salha et al., 2012, Briles et al., 2003). Antibodies to the 

pneumococcal proteins PhtD, PhtE PcpA and PsaA can block the adherence of S. pneumoniae to 

epithelial cells in vitro (Khan and Pichichero, 2012, Khan et al., 2012, Romero-Steiner et al., 2003).   
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1.4.4 Development of cellular immunity to S. pneumoniae  

 

1.4.4.1 CD4+ T-cells  

 

Antigen specific T-cells have a role to play in adaptive immunity to S. pneumoniae. CD4+ ‘T-helper’ 

cells can differentiate into a number of subsets (Th1, Th2, Th17, iTregs), defined by the range of 

cytokines they produce (Zhu et al., 2010). Differentiation of T-cells into distinct lineages involves the 

up-regulation of specific ‘master regulators’ of transcription, with the transcription factors T-bet, 

GATA3, RORyt and FOXP3 being expressed by Th1, Th2, Th17 and iTregs respectively (Zhu et al., 

2010).  Th1 cells are characterised by the expression of IFN-γ. Peripheral blood mononuclear cells 

(PBMCs) from isolated from humans are capable of producing IFN-γ following stimulation with 

pneumococcal antigen (Mureithi et al., 2009), and human monocytes promoted Th1 responses by 

CD4 cells (IFN-γ production) in response to stimulation with live pneumococci in vitro (Olliver et al., 

2011). However, IFN-γ receptor KO mice or mice treated with an IFN-γ neutralising antibody were 

better able to control pneumococcal infection than WT mice (Rijneveld et al., 2002) , suggesting that 

IFN-γ is not necessarily protective during S. pneumoniae pneumonia. Furthermore, IFN-γ production 

is responsible for the inhibition of host defence during secondary bacterial pneumonia following 

influenza infection (Sun and Metzger, 2008) .   

Th2 cells are important for directing B-cell responses to pathogens. This can occur through physical 

contact, for example, through CD40-CD40L interactions (Moens et al., 2008) and via the production 

of Th2 cytokines (IL-4, IL-5, IL-13) (Mosmann et al., 1986). T-cell help improves B-cell activation, 

increasing the affinity of immunoglobulin via the processes of somatic hyper-mutation and class 

switching. B-cell production of antibodies against the pneumococcal proteins PspC and Ply, is 

dependent upon the presence of CD4+ T-cells in vitro (Zhang et al., 2006a).  

Th17 CD4+ T-cells are defined by the production of IL-17 and IL-22, IL-23 has a role in the 

differentiation of T-cells into a Th17 phenotype (Rudner et al., 2007). Th17 cells are important in 
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mucosal host defence against extracellular pathogens, including S. pneumoniae. In murine models of 

colonisation acquired immunity to colonisation depended upon the development of Th17 cells 

(Zhang et al., 2009). IL-17 is able to act on epithelial cells, activating the production of CXC cytokines 

involved in neutrophil recruitment. IL-17 can stimulate the production of IL-8 (CXCL8) in cultures of 

human bronchial epithelial cells (Laan et al., 1999), and treatment with recombinant IL-17 induced a 

neutrophil influx into the airways of rats (Laan et al., 1999). IL-17 may also act on epithelial cells 

directly to increase the production of antimicrobial peptides, for example IL-17 can augment the 

production of β-defensin in cultured human airway epithelial cells (Kao et al., 2004).  IL-17 may also 

directly stimulate killing of S. pneumoniae by alveolar macrophages (Wright et al., 2013).   

Regulatory T-cells (Tregs) are characterised by the production of the inhibitory cytokines IL-10 and 

TGF-β, and have an immunosuppressive function (Vignali et al., 2008). The increased susceptibility to 

S. pneumoniae infection in the CBA/Ca mouse strain compared to BALB/c is due to reduced numbers 

of TGF-β expressing Tregs (Neill et al., 2012). Inhibition of TGF-β impaired the ability of BALB/c mice 

to resist IN infection with S. pneumoniae, whereas adoptive transfer of Tregs prolonged the survival 

of previously susceptible CBA/Ca mice (Neill et al., 2012), indicating an important role for these cells 

in protection from S. pneumoniae infection. Conversely however, IL-10 may abrogate immune 

responses that can protect against S. pneumoniae infection, and IN administration of recombinant 

IL-10 resulted in increased lung bacterial counts 40hrs following S. pneumoniae challenge in C57/BL6 

mice (van der Poll et al., 1996).  

CD4+ T-cells may contribute to the pathogenesis of invasive pneumococcal disease. MHC II deficient 

mice, displaying reduced numbers of CD4+ T-cells showed increased survival following IN infection 

with S. pneumoniae D39, associated with a reduced inflammatory response (Lemessurier et al., 

2010).  Inhibition of T-cell function with cyclosporine or antibody depletion produced a similar 

protective effect in this model (Lemessurier et al., 2010). 
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1.4.4.2 Role of γδ T-cells 

 

T-cells expressing γδ T-cell receptors (γδ T-cells), may have a role in protection from lung infection 

with S. pneumoniae. Following S. pneumoniae infection in mice numbers of γδ T-cells increase in the 

lungs (Kirby et al., 2007). γδ T-cells expressing the T-cell receptor variable gene segment Vγ4+ are 

enriched within the lung. TCR-Vγ4 KO mice display increased susceptibility to S. pneumoniae 

infection and reduced inflammatory responses, including a reduced neutrophil influx in response to 

challenge (Nakasone et al., 2007). Additionally, TCR-y KO mice displayed reduced levels of IL-17 

following primary S. pneumoniae infection (Ma et al., 2010).  

1.4.4.3 Role of CD8+ T-cells 

 

CD8+ cytotoxic T-cells are thought to be important in immunity to intracellular pathogens. CD8+ cells 

may also have a role in protection from S. pneumoniae infection. CD8 KO mice are more susceptible 

to primary infection with ST3 S. pneumoniae than their WT controls (Weber et al., 2011). However it 

is not clear if CD8+ T-cells have any role in the development of adaptive immunity to S. pneumoniae 

infection.  
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1.4.4.4 Cellular immunity to carriage 

 

Acquired immunity to pneumococcal carriage in mice is dependent upon IL-17 expressing CD4+ T-

cells (Th17) (Zhang et al., 2009, Lu et al., 2008). CD4+ cell depletion or IL-17A neutralisation 

prevented pneumococcal clearance in mouse models of carriage (Zhang et al., 2009). Protection 

from colonisation was associated with enhanced neutrophil recruitment in previously colonised 

mice. Neutrophil depletion abrogated the protective effect of previous colonisation, and IL-17A 

depletion reduced neutrophil recruitment into the nasopharynx. (Zhang et al., 2009).  Importantly 

acquired protection from colonisation still occurred in antibody deficient mice (McCool and Weiser, 

2004, Basset et al., 2007a), indicating that cellular rather than humoral immunity may be the 

predominant mechanism mediating acquired immunity to colonisation in murine models. In humans 

stimulation of PBMCs and adenoidal mononuclear cells in vitro with the S. pneumoniae antigens 

pneumolysin and CbpA led to proliferation of CD4+ T-cells and the release of IFN-γ and TNF-α (Zhang 

et al., 2007). CD4+ T-cell proliferation and cytokine release was higher in mononuclear cells from 

children without detectable nasopharyngeal carriage of S. pneumoniae, than those who were culture 

positive for S. pneumoniae (Zhang et al., 2007), suggesting a potentially protective role for these 

responses against carriage. Th17 type cytokine responses were not investigated in this study 

however polymorphisms in the IL-17A gene have separately been associated with higher levels of S. 

pneumoniae carriage in patients with bronchiolitis (Chen et al., 2010).  
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1.4.4.5 Cellular immunity to invasive S. pneumoniae  

 

In murine models of disease, experimentally colonised mice were protected from subsequent lung 

infection (Cohen et al., 2011, Richards et al., 2010). As previously discussed, this protection has been 

shown to depend  on the development of antibody responses and does not require CD4+ cells at the 

time of challenge (Cohen et al., 2011).  However, these models use S. pneumoniae D39, which 

rapidly invades into the blood, and does not necessarily allow an assessment of the protective 

immune responses specifically within the lung, which may involve the development of cellular 

immunity. T-cells accumulate in the lung following S. pneumoniae challenge in mice, and the entry of 

T-cells corresponded temporally with reduced bacterial numbers in the lungs post-infection 

(Kadioglu et al., 2000). Experimentally colonised mice have increased numbers of CD4+ cells and IL-

17 in their lungs following S. pneumoniae challenge (Richards et al., 2010, Cohen et al., 2011). Mice 

deficient in IL-23 production displayed increased susceptibility to S. pneumoniae challenge (Kim et 

al., 2013). Isolated lung mononuclear cells from mice deficient in IL-23 demonstrated reduced IL-17A 

and IFN-γ responses to heat killed S. pneumoniae upon stimulation ex vivo (Kim et al., 2013). 

Furthermore, morphine treated mice displayed increased susceptibility to S. pneumoniae lung 

infection which could be partially reversed by administration of recombinant IL-17 (Ma et al., 2010). 

Overexpression of IL-17 in the lung also resulted in enhanced neutrophil recruitment and improved 

bacterial clearance from the lung following Klebsiella pneumoniae challenge in mice (Ye et al., 2001).  

In models of experimental human carriage, experimental colonisation with S. pneumoniae 6B led to  

increased numbers of CD4+ T- cells expressing IL-17-A and TNF-α in BALF from colonised subjects 

(Wright et al., 2013). Additionally, the percentage of CD4+ T-cells expressing IL-17A or TNF-α when 

stimulated with pneumococci ex vivo, was increased in cells from BALF or blood of colonised 

individuals when compared to non-colonised controls (Wright et al., 2013).  In humans hospitalised 

with pneumococcal pneumonia higher numbers of IL-17A+ and IL-22A+ CD4 T-cells have been 

detected in lavage samples, compared to healthy controls (Paats et al., 2013), suggesting a role for 
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these cells in the immune responses to S. pneumoniae pneumonia.  These data indicate that Th17 

cells may have a role to play in protective immunity to S. pneumoniae within the lung. 
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1.5 Vaccines  

1.5.1 Serum therapy for S. pneumoniae 

 

In the late 19th century it was demonstrated that the serum from rabbits immunised with heat killed 

S. pneumoniae protected against subsequent infection with S. pneumoniae (Watson et al., 1993). 

Following this much work focussed on the development immune serum as a therapy for 

pneumococcal disease (Bull, 1915b, Young and Huntoon, 1926). A number of different preparation 

methods for anti-S. pneumoniae immune sera have been reported (Young and Huntoon, 1926, 

Bullowa and Wilcox, 1936), most involving the inoculation of live or dead pneumococci or 

pneumococcal polysaccharide into and animal, and collection of sera after the development of a 

humoral immune response. Treatment with immune sera resulted in the agglutination of S. 

pneumoniae both in vitro and in the blood of rabbits experimentally infected with S. pneumoniae 

(Bull, 1915a, Bull, 1915c). Such agglutination reactions were reported to only occur following 

treatment with type-specific (homologous) sera, failing to occur with heterologous sera raised 

against different S. pneumoniae serotypes. ‘Clumping’ of pneumococci in the sputum of pneumonia 

patients following serum therapy is reported to be related to their ability to recover from infection  

(Frisch, 1939). Serotype-specific pneumococcal antiserum was previously used in the treatment of 

lobar pneumonia. Treatment with immune sera reduced death rate of patients suffering from lobar 

pneumonia (Kyes, 1918), reduced the spread of S. pneumoniae within the lungs (Armstrong and 

Johnson, 1932), and improved survival of patients with bacteraemic pneumococcal pneumonia 

(Figure 1.6). Passive protection against S. pneumoniae with type-specific immune serum highlights 

the ability of antibodies against the pneumococcal polysaccharide capsule to protect against invasive 

disease. Demonstration that anti-CPS antibodies were induced following the administration of 

purified pneumococcal polysaccharide led to the development of purified polysaccharides as 

vaccines. (Felton et al., 1941, Finland and Ruegsegger, 1935). However due to the widespread use of 

antibiotics against S. pneumoniae it was not until the late 1970’s, following the work of R. Austrian, 
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that the first  polyvalent purified polysaccharide vaccines for S. pneumoniae were developed and 

licensed for widespread use (Austrian, 1977).  

 

 

Figure 1.6: Survival following antibiotic treatment and serum therapy for S. pneumoniae infection.  

Results from a 10-year study assessing survival of hospitalised patients with bacteraemic 

pneumococcal pneumonia treated with either; penicillin, pneumococcal antisera or untreated 

(Austrian and Gold, 1964). 
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1.5.2 Current vaccines  

 

There are currently two types of vaccine that offer protection against invasive pneumococcal 

disease; both are based on the polysaccharide capsule. A pneumococcal polysaccharide vaccine 

(PPV) consisting of the purified capsular polysaccharide of 23 serotypes has been in use since 1983. 

PPV is immunogenic and protective in immunocompetent adults (Cornu et al., 2001). Vaccines based 

on purified polysaccharides rely on the development of antibodies from B-cells without T-cell help 

(Defrance et al., 2011). Infants lack the ability to make T-independent antibody responses; therefore 

PPS is poorly immunogenic in this age group (Barrett, 1985). This lack of immunogenicity led to the 

development of pneumococcal conjugate vaccines (PCV). Pneumococcal conjugate vaccines consist 

of pneumococcal polysaccharide conjugated to a protein carrier. The first pneumococcal conjugate 

vaccine to be licensed for use in Europe, in 2001, was PCV-7 (Pebody et al., 2005). This vaccine 

consists of purified polysaccharide from 7 serotypes conjugated to a diphtheria toxoid carrier 

protein (Murray and Jackson, 2002). Conjugation to a carrier protein facilitates T-cell-B-cell 

interactions and subsequently the development of T-dependent antibodies against the capsular 

polysaccharide. Pneumococcal conjugate vaccines are immunogenic and protective in children 

against the serotypes included in the vaccine (Dominguez et al., 2011). 

Despite the success of both PPV and PCV in preventing pneumococcal disease, both vaccines have a 

number of limitations. Polysaccharide vaccines only protect against included serotypes. At the time 

of introduction PCV protected against serotypes responsible for up to 80% of invasive pneumococcal 

disease in the USA (Hausdorff et al., 2000b). However variation in the geographical distribution of 

serotypes means that the protection afforded by PCV-7 is not globally uniform, and the vaccine 

coverage is low in areas with a high burden of pneumococcal disease (Gordon et al., 2003). Another 

limitation of the current vaccines is the phenomenon of ‘serotype replacement’ (Guevara et al., 

2009), this term is used to describe the increase in the prevalence of non-vaccine serotypes 

following vaccine introduction. To help overcome the limitations of dissimilar serotype distribution 
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and serotype replacement, newer conjugate formulations containing polysaccharide of up to 13 

serotypes have been developed (Reinert et al., 2010). However, serotype replacement may also 

occur with serotypes not contained within these new vaccine formulations (Flasche et al., 2011). 

Pneumonia accounts for the highest burden of pneumococcal disease in adults, however PPV used in 

this age group is poorly protective against pneumonia without bacteraemia (Jackson et al., 2003, 

Dear et al., 2003).  As well as limitations in efficacy and serotype coverage, the cost of developing 

conjugate vaccines is high, limiting their use in developing countries. The limitations associated with 

capsular polysaccharide based vaccination have stimulated the investigation for vaccine strategies 

that may protect against all serotypes of S. pneumoniae. 

1.5.3 Prospective vaccines  

 

A number of new approaches to vaccination against S. pneumoniae have been considered, these 

include; killed whole cell, live recombinant and protein-subunit vaccines (Ferreira et al., 2011). Killed 

unencapsulated S. pneumoniae delivered IN is protective against invasive challenge with 

encapsulated S. pneumoniae in animal models (Malley et al., 2001). Attenuated Salmonella based 

vaccines expressing the pneumococcal protein PspA produce a serum antibody response and 

protected against pneumococcal challenge in mice (Kang et al., 2002).  Pneumococcal proteins or 

protein epitopes that are highly conserved across serotypes offer the possibility of developing cross-

protective vaccines. Since the protective immune response to S. pneumoniae is at least partly 

dependent upon the clearance of opsonised bacteria (Bogaert et al., 2004), the search for protein 

antigens has focussed on the identification of surface proteins, conserved across all pneumococcal 

serotypes. Antibodies to conserved surface antigens would be expected to opsonise all S. 

pneumoniae strains and thereby induce broadly protective responses.  Numerous pneumococcal 

proteins have been identified as possible vaccine candidates and shown to be protective in mouse 

models of disease. Antigens in development include, but are not limited to; the choline binding 

protein PspA, lipoproteins PsaA and Piu/Pia, histadine triad protein PhtD, detoxified pneumolysin 
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and the cell wall metabolism and cell signalling proteins PcsB and StkP (Ferreira et al., 2011). Phase I 

safety and immunogenicity trials in humans have demonstrated that the protein vaccine candidates 

PhtD and PlyD (a detoxified pneumolysin derivative) are safe and induce specific-IgG responses 

(Seiberling et al., 2012, Kamtchoua et al., 2012).  Although phase I trials are underway, none of these 

vaccine candidates have yet demonstrated protection against pneumococcal disease in humans. 

As well as vaccines aimed at developing protective antibody responses, vaccines capable of 

stimulating protective cellular responses to S. pneumoniae (in-particular Th17 responses) are also 

being developed. Screening an expression library of pneumococcal proteins has identified a number 

of antigens capable of inducing CD4+ T-cell dependent IL-17 responses that protected mice from 

experimental colonisation, and induced IL-17 production in isolated human in CD4+ T-cells (Moffitt 

et al., 2011). This approach has allowed the identification of a number of pneumococcal T-cell 

antigens (Moffitt et al., 2011). Interestingly the major S. pneumoniae protein antigens recognised by 

Th17 cells appear to differ from the major antigens associated with humoral immunity (Cohen et al., 

2011, Roche and Weiser, 2010, Richards et al., 2010).  
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1.6 Murine models of S. pneumoniae colonisation and lung infection 

 

Inoculation of S. pneumoniae into the nares of mice under light anaesthesia in a small volume (10μl) 

can result in nasopharyngeal colonisation without lung infection or bacteraemia (Wu et al., 1997, 

Cohen et al., 2011). In this model bacteria were not detectable in BALF of colonised mice 2 or 11 

days post-challenge with S. pneumoniae D39  (Cohen et al., 2011). Nasal colonisation with S. 

pneumoniae D39 in CBA/Ca can be cleared by 21 days post-inoculation (Cohen et al., 2011). IN 

inoculation of 1x105 CFU S. pneumoniae D39 into MF1 mice resulted in stable nasopharyngeal 

colonisation, detectable for up to 28 days post-inoculation (Richards et al., 2010). MF1 mice 

colonised with an isogenic pneumolysin deficient mutant of D39 (PLN-A) clear bacteria from the 

nasopharynx after 14 days (Richards et al., 2010). Both WT D39 and a D39 PLN-A strain induced 

polysaccharide-specific IgM responses and IgG to PspA, in the sera of colonised mice. Mice colonised 

with D39 PLN-A were protected against a subsequent IN lung infection with 1x106 CFU WT D39, 28 

days after initial colonisation (Richards et al., 2010). Mice colonised with WT D39 were protected 

from subsequent IN infection with 1x107 CFU of D39 (Cohen et al., 2011). In this challenge model S. 

pneumoniae was detectable in the blood by 9hrs post-infection, and previous colonisation 

completely protected against bacteraemia. Previously colonised mice also displayed reduced CFU in 

the lungs post-challenge with S. pneumoniae D39, although this effect was more modest. 

Importantly protection in this model of disease depended upon the development of antibody, as no 

protection was seen in B-cell deficient (μMT) mice (Cohen et al., 2011). An unencapsulated mutant 

of S. pneumoniae TIGR4 was detectable in the nares of mice 9 days following experimental 

colonisation and resulted in the development of S. pneumoniae specific antibody responses (Roche 

et al., 2007). Colonisation with an unencapsulated mutant of S. pneumoniae TIGR4 improved survival 

following subsequent IN infection with serotype 6A S. pneumoniae (Roche et al., 2007). In another 

model of lung infection, sera from humans experimentally colonised with S. pneumoniae 6B 

passively protected mice from IN challenge with 1x106 CFU of S. pneumoniae D39 (Ferreira et al., 
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2013). In this model bacterial numbers were significantly reduced in the blood of mice treated with 

sera from colonised individuals, with a more modest effect on bacterial numbers in the lungs. A 

number of different bacteria can inhabit the upper respiratory tract, and the nasopharyngeal 

microbiome may have an effect on immune responses to S. pneumoniae colonisation. For example,  

it has been demonstrated that Haemophilus influenzae can outcompete S. pneumonie within the 

murine nasopharynx (Lysenko et al., 2005). Additionally the nasopharynx of children colonised with 

S. pneumoniae is often co-colonised with Staphylococcus aureus, to which individuals develop 

antibody responses (Lebon et al., 2011). 

As previously discussed, current understanding of the mechanisms of protection from S. pneumoniae 

lung infection following colonisation are based on challenge with strains that rapidly invade into the 

blood following IN administration. S. pneumoniae D39 is detectable in the blood 9hrs following IN 

challenge with 1x107 CFU(Cohen et al., 2011). Due to this rapid invasion it is not easy to interrogate 

the immune responses that may protect specifically within the lung, independent of protection from 

bacteraemia. A number of strains of S. pneumoniae have been used in murine models of primary S. 

pneumoniae lung infection (Chiavolini et al., 2008). The relative invasiveness of strains following IN 

infection may vary depending on both strain background and capsular serotype (Kelly et al., 1994). S. 

pneumoniae EF3030 does not invade into the blood following IN challenge. Infection of CBA/N mice 

with 1x106.8 CFU of S. pneumoniae EF3030 (serotype 19F) resulted in established pneumococcal 

disease within the lung (Briles et al., 2003). Bacteria were detectable in the lungs and BALF of mice 5 

days following EF3030 challenge, but no bacteria are recovered from the blood. In this model of 

disease immunisation with purified pneumococcal proteins (PspA and PdB) induced an IgG response 

and protected against EF3030 lung challenge. Protection from lung infection in this model therefore 

appears to be as a result of direct protection within the lung, rather than indirectly thorough 

protection against bacteraemia.  Intratracheal infection of BALB/c mice with 3x107 CFU of S. 

pneumoniae EF3030 similarly led to established pneumococcal disease within the lung, with bacteria 

detectable 3 days following challenge and 60% mortality at this time point (Winter et al., 2007). It 
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may therefore be possible to use EF3030 as a model of non-invasive pneumonia, to interrogate the 

mechanisms of protective immunity in the lung following colonisation. Mice challenged IN with 

1x107 CFU EF3030 had detectable bacteria in nasal washes at least 20 days following challenge 

(Briles et al., 2003), and IN inoculation of CBA/N mice with 1x107 CFU of a serotype 19 strain of S. 

pneumoniae (L82013), resulted in colonisation that is detectable in the nares 7 days post-challenge 

(Wu et al., 1997). Therefore as well as causing non-invasive lung infection EF3030 may also be used 

to experimentally colonise mice. 
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1.7 Summary 

 

S. pneumoniae exists both as an asymptomatic commensal colonising the nasopharynx and as a 

cause of severe invasive disease. Nasopharyngeal colonisation with S. pneumoniae leads to a 

prolonged interaction with the immune system of the host. This interaction is likely to be important 

for the development of natural immunity that may protect the host from subsequent invasive 

disease. However, the mechanisms of naturally-acquired immunity to S. pneumoniae are not fully 

defined. Pooled human intravenous immunoglobulin (pooled IgG) preparations used to treat 

individuals with hypogammaglobunemia can partially reverse the risk of respiratory tract infections, 

suggesting an important role for IgG in protection from S. pneumoniae lung infection. However the 

target antigens of naturally-acquired IgG and the mechanisms by which it may protect against S. 

pneumoniae infection are not well described.  

There are some data that suggest individuals may acquire antibodies to either capsular 

polysaccharide or surface proteins of S. pneumoniae following nasopharyngeal colonisation. 

Epidemiological data demonstrate a parallel decrease in the incidence of invasive disease with 

increasing age in children across all S. pneumoniae serotypes. This suggests the development of a 

common rather than serotype-specific mechanism of immunity, contradicting the assumption that 

naturally-acquired immunity to S. pneumoniae is dependent upon the development of serotype-

specific antibody to the pneumococcal capsular polysaccharide. Further, murine models of 

colonisation indicate that the development of antibody to non-capsular targets may be important in 

protection from future invasive disease.  

There is therefore a need to understand the major targets of naturally-acquired IgG against S. 

pneumoniae in humans, and to investigate the relative importance of naturally-acquired antibody to 

the capsular polysaccharide or non-capsular targets in protection from invasive S. pneumoniae 

infection. Investigating the S. pneumoniae antibody targets in human sera may be important for the 

rational design of vaccines aimed at preventing lung infection with S. pneumoniae. Additionally, 
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insights into the mechanisms of naturally-acquired immunity to S. pneumoniae may help in 

understanding the increased risk of S. pneumoniae infection in certain patient groups. 

The anti-S. pneumoniae antibody repertoire in healthy adults will reflect the antibodies acquired 

during colonisation with S. pneumoniae. Similarly IVIG pooled from >1000 adult donors will reflect 

the naturally-acquired antibody responses within a population that may be protective against S. 

pneumoniae lung infection. Understanding the functionally important S. pneumoniae target antigens 

for IVIG and the mechanisms by which IgG may protect against lung infection will provide new 

insight into the natural development of protective immunity against S. pneumoniae lung infection. 

Additionally, exploring the major antigen targets in pooled and individual sera from different 

geographical locations would allow the effects of location and associated changes in pneumococcal 

ecology on the development of humoral immunity to S. pneumoniae to be investigated. 

In addition to the development of humoral immunity, colonisation with S. pneumoniae also induces 

a cell-mediated immune response, and cell-mediated Th17 responses are required for protection 

from re-colonisation. Models of lung infection following colonisation have used highly invasive 

strains of S. pneumoniae that rapidly progress to bacteraemia. In these models antibodies provide 

protection from the rapid onset of sepsis. However the mechanisms of acquired immunity that 

protect against S. pneumoniae infection within the lung in the absence of bacteraemia are not 

clearly defined. Developing a model of S. pneumoniae colonisation and lung challenge, with an S. 

pneumoniae serotype that does not invade into the blood would allow assessment the mechanisms 

of acquired immunity following colonisation which may be protective against S. pneumoniae 

pneumonia specifically within the lung. Non-bacteraemic pneumonia represents the largest burden 

of pneumococcal disease. It is therefore important to understand the mechanisms of naturally-

acquired immunity, in order to better develop vaccines that may protect against S. pneumoniae 

within the lung.   
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1.8 Aims of thesis  

 

1.8.1 General aim 

 

The aim of this thesis is to understand the naturally-acquired adaptive immune responses to S. 

pneumoniae, and to determine the mechanisms by which these immune responses are protective 

against S. pneumoniae lung infection.   

 

1.8.2 Specific aims 

 

1. To assess the immunodominant S. pneumoniae antigens targeted by naturally-acquired IgG in 

adult human sera and IVIG products.  

2. To assess the targets of naturally-acquired IgG across different populations and against different 

strains of S. pneumoniae.  

3. To investigate the functionally important antigen targets of naturally-acquired human IgG 

against S. pneumoniae. 

4. To determine the mechanism(s) by which naturally-acquired human IgG can protect against S. 

pneumoniae lung infection in a mouse model. 

5. To develop a murine model of non-bacteraemic pneumonia and colonisation. 

6. To assess the effect of prior colonisation on immune responses to non- bacteraemic lung 

infection with S. pneumoniae.  

7. To determine the mechanisms by which S. pneumoniae colonisation may protect against S. 

pneumoniae challenge within the lung.  
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2 Methods  
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2.1 Sources of sera and intravenous immunoglobulin  

2.1.1 Sera samples   

 

A number of different sources of sera were used in the experiments described.  Firstly, sera were 

obtained from the whole blood of healthy volunteers within the Centre for Inflammation and Tissue 

Repair at UCL who had not been vaccinated against S. pneumoniae. Whole blood (15ml) was allowed 

to coagulate for 1hr at room temperature, followed by centrifugation (4800rpm, 10min). The top 

layer of sera was removed and stored at -80 C until use.  

Sera, both pooled and individual were also obtained from a Malawian population through 

collaboration with Dr Stephen Gordon at the Liverpool School Tropical Medicine (LSTM). Sera were 

pooled from 20 HIV negative donors aged between 19 and 49 (mean: 29yrs, 16 male 4 female). 

Individual sera were obtained from 6 HIV negative donors aged between 21 and 36 (mean: 29yrs, 3 

male 3 female).  
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2.1.2 Intravenous immunoglobulin preparations 

 

 Five different commercially available IVIG preparations were used in this thesis and are summarised 

in Table 2.2. The IgG concentration in each of the products was calculated by nephelometry at the 

clinical pathology laboratory, Great Ormond Street Hospital. The distribution of IgG subclasses was 

available from the product data sheets.  Intratect from Biotest was used for in vivo experiments and 

functional studies, unless otherwise stated. The concentration of capsular polysaccharide specific 

IgG in Intratect was measured by multiplexed ELISA at Papworth Hospital, Cambridge (Table 2.1).The 

safety and efficacy in of Intratect in patients has been described previously (Kreuz et al., 2010).  

Table 2.1: Concentration of anti-polysaccharide IgG in IVIG (Intratect) used for in vitro and in vivo 

experiments in this thesis, measured by multiplexed ELISA.  

Serotype 1 4 5 6B 7F 9V 14 18C 19F 23F 

ng/ml  
IgG 

22.3 10.4 23.4 57.5 33.1 25.4 132.7 36.4 41 40.2 

 Manufacturer IgG g/L Sub-class distribution Geographical 
region sourced 
from 

Intratect  Biotest 46.6 IgG1    57%,           IgG2    37%,            
IgG3    3% ,           IgG4    3% 

Germany, 
Austria, 
Switzerland 

Pentaglobin  Biotest 41.2 IgG1     63%,         IgG2     26%,         
IgG3     4%,           IgG4      7% 

 

USA 

Vigam  BPL 51.2 IgG1      64%,            IgG2      29%,             
IgG3        6%,              IgG4        1% 
 

USA 

Gammaplex  BPL 43 IgG1       62%,       IgG2       31%,       
IgG3        6%,         IgG4        1% 
 

USA 

Flebogammadif  Grifols 58.1 IgG1      66.6%,     IgG2        28.5%,    
IgG3         2.7%,     IgG4          2.2% 

Germany 

Table 2.2: Summary of pooled IgG products (IVIG) used in this thesis, including the concentration of 

IgG in each and the population from which each product was sourced. 
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2.2 S. pneumoniae culture 

2.2.1 Bacterial strains and growth conditions   

 

S. pneumoniae was grown in Todd-Hewitt medium (THY, Oxoid, UK) containing 5% yeast extract, and 

on Colombia blood agar plates containing 5% defibrinated horse blood (TCS Biosciences, UK) at 37 C 

5% CO2. Growth in medium was assessed by measuring the Optical Density (OD) at 580nm with a 

spectrophotometer (Amersham Pharmacia). Bacterial stocks were grown to mid-log phase (OD580nm 

0.4-0.5) before freezing in 10% glycerol at -80 C. Table 2.3 summarises the bacterial strains used 

throughout this thesis. S. pneumoniae TIGR4 is a well characterised laboratory strain of S. 

pneumoniae  that has previously been used in models of invasive lung infection and colonisation 

(Cohen et al., 2013). This strain was therefore used for in vivo and in vitro experiments to assess the 

role of antibody in protection from S. pneumoniae infection. The S. pneumoniae 19F strain EF3030 

does not progress quickly to bacteraemia (Briles et al., 2003) and was consequently used in 

experiments assessing protection against non-invasive pneumonia. EF3030 was a kind gift from 

Professor David Briles (University of Alabama), the S. mitis strains were kind gifts from Dr Fernanda 

Peterson (University of Oslo). S. pneumoniae mutant strains were selected based on their resistance 

to the relevant antibiotic (Table 2.3). Before each experiment antibiotic resistant strains were grown 

on blood agar plates containing Erythromycin (0.2µg/ml), Kanamycin (500µg/ml) or Chloramphenicol 

(4 µg/ml), as appropriate.  The absence of capsular polysaccharide from unencapsulated strains was 

confirmed by their morphology as ‘pinprick’ colonies on blood agar. 

2.2.2 Fluorescent labelling of S. pneumoniae   

 

S. pneumoniae was grown to OD 580 0.6-0.7 in 15mls THY followed by washing in bicarbonate buffer 

(0.1M NaHCO3), and re-suspension in 1ml bicarbonate buffer. 50µl 6-carboxyfluorescein succinimidyl 

ester (FAM-SE, Molecular Probes)  solution (10mg/ml in DMSO) was added to the suspension, before 

incubation for 1hr at 37 C,  5% CO2.The suspension was then washed in phosphate buffered saline 
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(PBS) until no free dye remained in the supernatant. Labelled stocks were frozen at -80  C in PBS + 

10% glycerol.  
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 Strain Serotype Mutation Phenotype Antibiotic 
resistance 

References 

S. pneumoniae  wild-
type strains 

TIGR4 4     

 D39 2     

 EF3030 19F    (Briles et al., 2003) 

 23F 23F     

 0100093 ST3      

S. pneumoniae mutants  D39ΔPspC 2 pspC Deletion of surface protein PspC  Erythromycin (Yuste et al., 2010) 

 D39ΔPspA  pspA Deletion of surface protein PspA Erythromycin  

 ST3ΔPpmA 2 ppmA Deletion of surface protein PpmA Trimethoprim  
 D39Δlgt 2 lgt Deletion of lipoproteins Chloramphenicol (Cohen et al., 2012) 

 D39ΔPhtD 2 phtD Deletion of surface protein PhtD   

 D39ΔPly 2   Erythromycin  
 D39ΔPiaA 2 piaA  Chloramphenicol (Brown et al., 2002a) 

 TIGR4Δcps 
(P1672) 

4 cps locus Unencapsulated Kanamycin (Trzcinski et al., 
2003) 

 D39ΔD 2 cpsD Unencapsulated Erythromycin (Morona et al., 2004) 

 ST3Δcps 3 cps locus Unencapsulated Kanamycin  

 23FΔcps 23F cps locus Unencapsulated Kanamycin  

 TIGR4Δpab 4 pabB deletion of PABA synthase Kanamycin (Chimalapati et al., 
2011) 

S. mitis strains S. mitis       
 S. mitisΔcps   cps locus Unencapsulated Kanamycin (Rukke et al., 2012) 

 S.mitisT4cps  cps locus S. mitis expressing capsule from S. 
pneumoniae TIGR4  

Kanamycin (Rukke et al., 2012) 

Table 2.3: Summary of the bacterial strains used throughout this thesis. 
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2.3 Serological assays 

2.3.1 Whole cell ELISA   

 

S. pneumoniae was inoculated into 20ml THY and grown until OD580 0.4-5. Bacteria were then 

washed twice in PBS and re-suspended (in PBS) to an OD580 of 1.0. 50µl of bacterial suspension was 

added per well to a 96-well plate (Maxisorb, Nunc) and left to coat overnight at 4 C. Plates were 

washed 4 times (to remove unbound bacteria) with 200µl wash buffer (PBS+ 0.05% tween). 100µl 

blocking buffer (PBS+0.05% tween+ 1% BSA) was then added per well, plates were incubated for 1hr 

at 37 C.  Test sera or pooled Immunoglobulins were serially diluted in dilution buffer (PBS+0.05% 

tween+ 1% BSA) and added to wells in duplicates (50µl per dilution); plates were then incubated for 

two hours at room temperature. After this incubation plates were washed 4 times and secondary 

antibody diluted 1:10,000 (Table 2.4) was added in dilution buffer (100µl per well). The plate was 

then incubated for two hours at room temperature before being washed 4 times in 200µl wash 

buffer. For alkaline phosphatase (AP) conjugated secondary antibodies substrate para-

nitrophenylphosphate (pNPP) (Sigma) was prepared in substrate buffer (1mg/ml), 100µl substrate 

was added per well. The plates were then incubated in the dark for 20min, after which 100µl 3N 

sodium hydroxide (NaOH) was added to each well to terminate the reaction. The absorbance was 

read at 405nm, subtracting readings at 630nm (Versamax). For Horseradish Peroxidase (HRP) 

conjugated secondary antibodies 100µl TMB substrate was added per well and the reaction stopped 

by the addition of 1M hydrochloric acid (HCL). The absorbance was read at 450nm subtracting 

readings at 550nm. For some experiments serial dilutions of sample were analysed and ELISA titre 

calculated. ELISA titre represents the theoretical sample dilution that would result in an OD of 0.1. 
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Antibody Conjugate Manufacturer 

Anti-human IgG HRP Biosource Int.  

Anti-mouse IgG AP Sigma 
Anti-mouse IgM AP Sigma 
Anti-mouse IgA AP Sigma 

 

Table 2.4: Antibodies used in whole cell ELISAs, including the conjugate and the manufacturer. 

 

2.3.2 Competition ELISA (Cell Wall Polysaccharide) 

 

Cell Wall Polysaccharide (CWPS) competition ELISAs were performed with pooled sera (1:800) or 

IVIG (1:10,000) diluted in ELISA dilution buffer and incubated for 30 min at 37 C in purified CWPS 

(Staten’s Serum Institut), CPS (Staten’s Serum Institut) or whole cell lysate (S. pneumoniae T4), at the 

following concentrations; 100, 10, 1, 0.1 and 0.01 µg/ml. A whole cell ELISA against S. pneumoniae 

TIGR4 (as described above) was then developed with the pre-incubated sera.   

2.3.3 Competition ELISA (protease-treated lysates) 

 

20µl of S. pneumoniae TIGR4 whole cell lysate (1500 µg/ml) was treated with the addition of 10µl 

trypsin (2.5mg/ml, Gibco, Invitrogen). As controls 20µl T4 lysate was treated with 10µl PBS and 20µl 

PBS treated with 10µl trypsin. Lysates were incubated overnight, before the addition of 10µl 25X 

complete protease inhibitor (Roche). Pooled sera were diluted to a final concentration of 1:3000 in 

ELISA dilution buffer. Lysate (or trypsin-treated PBS) was added to pooled sera in serial 10-fold 

dilutions from 1x10-4 to 1x102µg/ml. A whole cell ELISA of IgG binding to T4 was then performed (as 

described above).     

2.3.4 Purified protein ELISA   

 

Purified PspC (TIGR 4), SP1633 and SP1651 were a kind gift from Professor Tim Mitchell, University 

of Birmingham.  Pneumococcal proteins were diluted to 5µg/ml in coating buffer (3.03gNa2CO3, 

6.0g NaHCO3 in IL ddH2O); 50µl protein suspension was added per well to 96-well microtitre plate 
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(Maxisorb, NUNC).  Plates were coated overnight at 4 C , then washed  4 times with 200µl wash 

buffer (PBS+ 0.05% tween) per well. Plates were then blocked with 100µl blocking buffer for 1hr at 

37 C. Test sera was serially diluted in dilution buffer (PBS+0.05% tween+ 1% BSA), and added to 

wells in duplicates (50µl per dilution) before  incubation for 2hrs at room temperature. Plates were 

then washed 4 times and secondary antibody (anti-human IgG-alkaline phosphatase conjugate or 

anti-human IgM-alkaline phosphatase conjugate -1:10,000) added in dilution buffer, followed by 

incubation for two hours at room temperature. After incubation plates were washed 4 times in 

200µl of wash buffer. Substrate (pNPP) was prepared in substrate buffer to 1mg/ml, 100µl substrate 

was added per well. The plate was then incubated in the dark for 20min, after which 100µl NaOH 

(3N) was added to each well to terminate the reaction. The absorbance was read at 405nm, 

subtracting reading at 630nm (Versamax).  

2.3.5 Preparing whole cell lysates of S. pneumoniae 

 

S. pneumoniae was grown to mid-log phase in THY, 6mls of culture were pelleted by centrifugation 

at 13,000 rpm for 5min. Bacterial pellets were washed twice in PBS and re-suspended in 400µl PBS. 

Bacterial suspensions were sonicated on ice at output level 2, 50% cycle, for 2mins (probe sonicator, 

Branson S250). Samples were centrifuged for 5min at 13,000rpm to remove cell debris and the 

clarified supernatant recovered. The protein concentration of lysates was measured with the 

bicinchoninic acid (BCA) assay (Thermo Scientific, US). Briefly, 100µl BCA working solution was added 

to 5µg lysate in duplicates, absorbance at 562nm was measured (Versamax plate reader) and 

compared to a bovine serum albumin (BSA) standard prepared in PBS. Lysates were normalised to a 

total protein concentration of 1mg/ml. 
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2.3.6 Immunoblotting  

 

10µl lysate was added to 2.5µl loading dye (10% 1M DTT + 1X Laemelli buffer: 3.125 ml 1M tris HCl, 

1g Sodium dodecyl sulphate (SDS), 2ml glycerol, bromophenol blue (trace), made up to 10ml ddH2O).  

Samples were heated to 95 C for 5min before loading into polyacrylamide gels (10%). Proteins were 

separated by SDS-PAGE at 120mv for 2hrs (Novex mini-cell, Invitrogen, USA).The protein was then 

transferred onto a nitrocellulose membrane (GE healthcare) by semi-dry blotting at 20 mv for 1hr 

(Invitrogen, USA). Nitrocellulose membranes were blocked overnight in TBS + 0.1% tween (TBST) + 

5% milk powder. Nitrocellulose membranes were probed with; human serum (1:1000), IVIG (1:3300) 

in 5mls TBST+ 5% milk for 1hr rolling incubation at room temperature, followed by three washes in 

TBST for 15min each. Membranes were then probed with the secondary antibody; anti-Human IgG-

HRP conjugate (1:5000), diluted in TBST+5% milk, for 1hr at room temperature. Blots were 

developed with HRP substrate (GE healthcare) and imaged in the dark using hyperfilm (GE 

healthcare).    

2.3.7 Multiplex binding assay (Luminex)  

 

Multiplex (Luminex) bead assay of pneumococcal proteins. 18 recombinant pneumococcal proteins 

from a range of strain backgrounds were conjugated to seroMAP beads (Table 2.5). The coupling 

reaction has been described previously (Verkaik et al., 2009). In brief, 25µg of each recombinant 

protein was covalently attached to 5x106 microspheres (xMAP). The Luminex panel was then 

validated by comparing binding on a singleplex basis to multiplexed binding. For relative 

quantification of antibody levels in serum samples, mixtures of equal numbers of each bead type 

were made (1.1µl of each bead per well), in a final volume of 55µl per well (diluted in PBS+1% BSA). 

Assays were performed in 96 well plates. Human serum samples were diluted 1:1000 in PBS+1% 

BSA. Murine sera and BALF samples were diluted 1:100 and 1:1 respectively.  50µl bead mix was 

added per well, followed by 50µl diluted serum. Plates were then covered and incubated at room 
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temperature for 35min shaking at 800rpm. The buffer was then aspirated by suction, after which 

beads were washed twice (PBS+1% BSA). After washing beads were re-suspended in 50µl buffer. 

50µl secondary antibody (anti-human or anti-mouse IgG, conjugated to PE, 1:50) was then added per 

well. Plates were incubated for 35min at room temperature, shaking at 800rpm. Following 

incubation the buffer was aspirated from wells and beads were washed once (PBS+1%BSA) prior to 

reading. The fluorescence of each antigen-couple bead was measured using a Bio-Plex machine (Bio-

Rad).  
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Pneumococcal protein  Location Notes   Strain 

PhtD Pneumococcal histadine triad 
protein D   

CW Zinc binding protein  TIGR4 

PspC Pneumococcal surface protein C  CW Binds factor H  TIGR4 

Ply Pneumolysin  EX Number of roles in virulence 
(adhesion and lysis of host 
immune cells) 

TIGR4 

PsaA Pneumococcal surface adhesin A  M Component of the ABC 
transport system, which is 
involved in resistance to 
oxidative stress and transport 
of Mn2+ 

TIGR4 

PspA Pneumococcal surface protein A CW Inhibition of complement 
deposition binding of 
apolactoferrin 

TIGR4 

Hyal Hyaluronidase  CW Breaks down ECM 
components  

TIGR4 

PhtE Pneumococcal histadine triad 
protein E 

CW Metal binding protein  TIGR4 

PpmA Putative proteinase maturation 
protein A  

M Role in colonisation, 
adherence to epithelial cells.  

D39 

SP0189 Hypothetical protein     TIGR4 

IgA1ase IgA1 protease  CW Cleaves human IgA1  TIGR4 

CbpD Choline binding protein D  CW Competence induced cell lysis 
(fratricide) 

TIGR4 

SP1633  I Response regulator  TIGR4 

NanA Neuraminidase  CW Biofilm formation, 
endothelial invasion 

TIGR4 

SlrA Streptococcal lipoprotein 
rotamase A  

M Modulates biological function 
of virulence factors  

D39 

Eno Enolase  CW Binds to plasminogen  D39 

SP1651  I Thiol peroxidase  TIGR4 

SP0376  I Response regulator  TIGR4 

PilusA Pneumococcal pilus   Role in adhesion  TIGR4 

 

Table 2.5: Pneumococcal proteins conjugated to xMAP beads for Luminex assay, including the strain 

of S. pneumoniae from which each purified protein was isolated and their cellular location (CW=cell 

wall, EX=extracellular, M=membrane, I=intracellular,  (Lebon et al., 2011). 
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2.4 S. pneumoniae growth and agglutination 

2.4.1 S. pneumoniae growth assay 

 

1x106 CFU of S. pneumoniae were inoculated into Todd-Hewitt medium (THY, Oxoid, UK) containing 

5% yeast extract (Oxoid, UK). Growth of S. pneumoniae was assessed by measuing the OD580 of 

cultures incubated at 37 C 5% CO2 over an 8 hour period, using a spectrophotometer. Growth in the 

presence of 10% IVIG  (Intratect, 40mg/ml IgG) or PBS was assessed. Following 8 hour growth, 

cultures were methanol-fixed on to polylysine slides (VWR), and stained with rapid romanowsky 

staining (Diff-Quick). Stained S. pneumoniae were immaged with a light microscope (Olympus, BX40) 

using Qcapture pro software.   

2.4.2 S. pneumoniae agglutination assay 

 

To directly assess agglutination, FAM-SE labelled S. pneumoniae were diluted in PBS to a 

concentration of 1x106 CFU/ml and incubated at 37°C for 1 hr with 0%, 1%, 5%, 10%, IVIG (Intratect) 

in a volume of 100µl. Following incubation bacteria were fixed by the addtion of 100µl neutral 

buffered formallin. Bacteria were identified as a fluorescent (FL-1) positive population by flow-

cytometrey and particle size was asessed as a change in forward-scatter (FSC). Analysis of cells was 

performed on a FACSCalibur flow-cytometer using CellQuest and FlowJo software (BD Bioscience, 

UK).  
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2.5 Surface targets of IgG 

 

2.5.1 IgG deposition on surface of S. pneumoniae 

 

IgG binding to the surface of S. pneumoniae was assessed by flow-cytometry. 5x105 CFU of S. 

pneumoniae were washed in PBS and incubated with varying concentrations of IVIG diluted in PBS, 

at room temperature for 30min. Bacteria were then washed twice in PBS and incubated with anti-

human IgG secondary antibody (1:200), conjugated to PE (Sigma-Aldrich) at 4 C for 20mins. Finally 

bacteria were washed twice in PBS to remove unbound secondary antibody and fixed in 4% PFA. 

FACS analysis of bacterial cells was performed on the FACSCalibur, CellQuest and FlowJo software 

(BD Bioscience, UK). Gating of bacteria was based on FSC and SSC, and fluorescent controls 

incubated with no primary antibody.   

2.5.2 Protease shaving of S. pneumoniae 

 

 S. pneumoniae TIGR4Δpab (1x107 CFU) were washed in PBS and re-suspended in 500µl PBS with or 

without 100μg/ml of pronase (Roche). Bacteria were incubated for 20min at 37 C, shaking at 

150rpm. Following incubation 20µl of complete-mini protease inhibitor (25X, Roche) was added to 

each tube. Bacteria were then washed twice in PBS and re-suspended in PBS+10% glycerol. IgG 

binding to pronase treated TIGR4Δpab incubated in 1% IVIG or 10% polyclonal anti-type 4 rabbit 

serum (Staten’s Serum Institute, Pool A) was assessed as described above.   
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2.5.3 Absorption of IVIG (depletion of CPS-specific IgG) 

 

S. mitis expressing a TIGR4 capsule (S. mitisT4cps) was grown to OD580 0.4 washed in PBS and re-

suspended to OD 1.0 in PBS. 4mls of suspension was pelleted by centrifugation and re-suspended in 

1.8mls of IVIG (Intratect). The suspension was incubated for 1hr at 37 C, shaking at 100rpm. 

Following incubation the bacteria were removed by centrifugation and IVIG recovered. This was 

repeated once. Mock absorbed IVIG was prepared by following the absorption steps without the 

addition of bacteria.   
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2.6 Phagocytosis and killing assays 

2.6.1 Culture of murine macrophages  

 

RAW 264.7 macrophages were grown in Roswell Park Memorial Institute medium (RPMI, Invitrogen 

UK) supplemented with L-glutamine, Pen-strep (Invitrogen) and fetal calf serum (FCS, Lonza) (RPMI 

+++). Cells were passaged at 80% confluence. Cells were passaged by washing in PBS, followed by 

gentle scraping to re-suspend the cells. The cell suspension was then centrifuged (300xg, 5min), and 

the pellet re-suspended in RPMI+++ and transferred to a cell culture flask (T175) in a final volume of 

25ml.    

2.6.2 Macrophage opsonophagocytosis assay  

 

RAW 264.7 cells were harvested by gentle scraping, then centrifuged at 300xg for 5mins and re-

suspended in RPMI without supplements (RPMI---). Cells were counted with trypan blue on a 

haemocytometer and diluted to 5x105cells/ml in RPMI (---). 400µl of the cell suspension was added 

per well to a 24 well plate, followed by 200µl RPMI --- per well. Cells were incubated for 1-3hrs at 

37 C, 5% CO2 to allow adherence.  1.4x107 FAM-SE labelled bacteria were opsonised with 25%  

pooled sera, 10% IVIG, or RPMI alone in a final volume of 400µl RPMI ---, for 30min at 37 C. 

Opsonised bacteria were then suspended in 1.4 ml RPMI (final volume) and 200µl added to each well 

as required (MOI 10). After addition of FAM-SE labelled bacteria, plates were centrifuged at 

1800rpm for 3mins before incubation at 37 C in 5% CO2. After 45mins the medium was removed 

and cells were washed twice in PBS. 300µl trypsin was then added per well, and plates incubated for 

7 min at 37 C. The cells were re-suspended by gentle scraping. 50µl FBS added to quench the 

trypsin, then 100µl 3% paraformaldehyde (PFA) added to each well to fix the cells. The plates were 

kept in the dark at 4 C before analysis using a FACSCalibur, and CellQuest and Flowjo software (BD 

Bioscience, UK). Gates were based on dot plots of uninfected controls. Fluorescence was detected in 

FL-1 and mean fluorescent intensity (MFI) of macrophages used as a measure of bacterial uptake.  
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2.6.3 Neutrophil Isolation 

 

Granulocytes were isolated from heparinised whole blood by dual layer Histopaque separation using 

Histopaque 1077 and 1119 (Sigma-Aldrich, UK). Briefly, 3ml histopaque 1077 was carefully layered 

on top of 3ml histopaque 1119 in a 15ml centrifuge tube. 6ml heparinised whole blood was carefully 

layered on top. Tubes were then centrifuged (25min 700xg, brakes off). The granulocytes were 

recovered from a layer above the red cell-debris, washed twice in PBS to remove platelets, and re-

suspended in RPMI ---. Cell numbers were counted on a standard haemocytometer following trypan 

blue staining to exclude dead cells.  

2.6.4 Neutrophil phagocytosis assays 

 

Isolated human neutrophils were washed in PBS and re-suspended in Hanks buffered salt solution 

with calcium and magnesium to a concentration of 1x106cells/ml, 100μl of this suspension was 

added to wells of a 96-well plate. FAM-SE labelled S. pneumoniae were opsonised for 30min at 37 C 

in different concentrations of IVIG. 2x106CFU of FAM-SE labelled S. pneumoniae were added per 

well, in a volume of 25μl (MOI 20). Neutrophils were co-incubated with bacteria for 30min at 37 C 

then fixed by the addition of 100μl PFA. Cells were analysed on a FACSCalibur, CellQuest and Flowjo 

software (BD Bioscience, UK), as described above for macrophage phagocytosis assays.  
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2.6.5 Neutrophil killing assays  

 

S. pneumoniae were opsonised in PBS with and without 10% IVIG, for 30min at 37 C, shaking at 

150rpm. 400 CFU were added per well to a 96 well plate, followed by the addition of 1x105 

neutrophils in 100µl of Hanks buffered salt solution (HBSS) with calcium and magnesium. The plates 

were incubated for 45mins at 37 C, 150rpm. After 45mins well contents were diluted and plated 

onto blood agar plates for CFU enumeration, after overnight incubation at 37 C and 5% CO2. 
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2.7 In vivo experiments 

2.7.1 Animals 

 

All in vivo experiments were performed in mice at the biological services unit, UCL. For adoptive 

transfer experiments (presented in chapter 5) for which no mutant mice were required, experiments 

were performed on outbred CD1 mice. For experiments assessing the protective immune response 

to colonisation (presented in chapter 6), experiments were performed on inbred C57/BL6 mice, to 

match the genetic background of antibody deficient (μMT) mice.   

Table 2.6 gives an overview of the different mouse strains used throughout this thesis. 

Table 2.6: Strains and suppliers of mice used for in vivo experiments throughout this thesis. 

 

2.7.2 Murine pneumonia challenge model  

 

C57/BL6 or CD1 mice were anesthetised with aerosolised halothane (Vet-Tech) (4%) and challenged 

via IN installation of S. pneumoniae, suspended in 50μl of PBS.  At designated time points post-

infection mice were anaesthetised with pentobarbitol and culled by severing the femoral artery. 

Blood was collected into heparinised tubes (Sigma-Aldrich) to prevent clotting. In some experiments 

blood was also collected into non-heparinised tubes and allowed to clot, to obtain sera by 

centrifugation for 5min at 13,000 rpm. To perform bronchoalveolar lavages (BAL) an incision in the 

diaphragm was made to allow lung expansion, followed by a small (1mm) incision in the trachea, 

Strain  Age (weeks) Source/Supplier Short Description 

CD1 6-8 Harlan Outbred  
C57/BL6 6-8 Harlan  Inbred  
μMT (C57/BL6)  8-10 Provided by Dr Clare Notley 

UCL. (JAX ) 
μMT mice contain a 
mutation in the IgM 
heavy chain; 
therefore do not 
produce mature B-
Cells or antibody.  
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into which a 20-gauge cannula was passed. 1ml PBS was injected through the cannula and aspirated 

repeatedly for a total of three times. Lungs or spleens were harvested into 500μl of sterile PBS and 

homogenised by passing through a 40µM filter in 3mls PBS. CFU in lung homogenates, BALF and 

blood were counted by serial dilution in PBS and plating on blood agar plates. Total cell numbers in 

BALF were enumerated with a standard haemocytometer after trypan blue staining (Sigma-Aldrich). 

100µl BALF was spun on to polysine microscope slides (Shandon Cytopsin) and stained by rapid 

Romanowsky staining (Diff-quick, Thermo Scientific), for differential cell counts under a light 

microscope (Zeiss).  Supernatants of lung homogenates, BALF and sera were stored at -80οC for 

cytokine measurement.     

2.7.3 Murine colonisation model 

 

C57/BL6 or CD1 mice were anesthetised with aerosolised isoflurane (4%) (MiniRad) and challenged 

via IN instillation of S. pneumoniae suspended in 10μl of PBS.  At designated time points post-

infection the nares were washed with 400µl PBS. S. pneumoniae CFU in nasal washings were 

enumerated by plating onto blood agar, and blood agar containing optochin (100μg/ml, Sigma-

Aldrich). S. pneumoniae was discriminated from other bacteria that may colonise the murine 

nasopharynx by alpha-haemolysis and optochin sensitivity.   

2.7.4 Pre-colonisation and pneumonia challenge  

 

Mice were colonised with 1x107 CFU S. pneumoniae or PBS as control. 30 days following colonisation 

mice were challenged with 1x107 CFU as described. At designated time points post-infection lungs, 

BALF, blood and sera were collected as described.  

2.7.5 IVIG treatment model 

 

Mice were pre-treated with IVIG prior to pneumonia challenge. 13mg IVIG (Intratect) was 

administered as two separate IP injections, 3hrs prior to and immediately before pneumonia 
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challenge or colonisation. Human IgG concentration in the sera, BALF and nasal washings of treated 

mice was quantified by ELISA (Cambridge Bioscience).  
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2.7.6 Passive transfer of immune sera 

 

CD1 mice were vaccinated by IP administration of 5x104 CFU of S. pneumoniae TIGR4Δpab, in a 

volume of 100µl. Mice were re-vaccinated after a week. 28 days following the first vaccination mice 

were culled with a lethal dose of pentobarbitol and blood collected from the femoral artery to 

obtain sera for measuring antibody responses. Immune serum from mice vaccinated with 

TIGR4Δpab was transferred into naïve CD1 mice by IP injection. 400µl of sera was administered as 

two separate IP inoculations 6hrs apart. 24hrs following transfer mice BALF was collected, nasal 

washes performed and serum collected.   
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2.7.7 Cellular and cytokine depletion  

 

To deplete ly6G+ neutrophils, 600µg anti-ly6G mAb (1A8, BioxCell) was administered by IP injection 

24hrs prior to challenge in a volume of 200µl. Neutrophil depletion was confirmed by counting cells 

in the BALF following challenge. To deplete CD4+ T-cells cells 250µg anti-CD4 mAb (GK 1.5, BioxCell) 

was administered by IP injection 48 and 24hrs prior to challenge. CD4+ T-cell depletion was 

confirmed by flow-cytometry as a reduction in CD4+ cells or a reduction in CD3+ CD8- cells in the 

spleens and lungs of mice. Depletion of splenic macrophages was achieved by  IV administration of 

100µl 5mg/ml liposomal clodronate (or PBS liposomes) as described previously (van Rooijen and van 

Nieuwmegen, 1984). Macrophage depletion was confirmed using flow-cytometry as a reduction in 

F4/80+ splenocytes. IL-17 was neutralised by IP administration of 100μg of anti-mouse IL-17A 

(BioXcell) 24hrs and immediately prior to challenge.  
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2.7.8 ELISAs on murine tissue 

 

The concentration of IL-17 in samples was measured using a Quantikine ELISA kit (R&D systems). 

50µl of sample or standard, diluted in 50µl assay diluent was added to wells pre-coated with capture 

antibody. Samples were incubated for 2hrs at room temperature, before wells were washed 4 times 

with wash buffer (PBS+0.01% tween). 100µl detection antibody, conjugated to HRP, was added to 

each well and incubated for 2hrs at room temperature. Plates were washed 4 times in washing 

buffer before the addition of TMB substrate. After 15min the reaction was stopped by the addition 

of Hydrochloric acid.  The colour change in each well was assessed by reading the OD at 450nm, with 

wavelength correction set at 550nm (Versamax). The cytokine concentration in samples was 

calculated from a standard curve plotting OD against standards of known concentration. 

Concentrations of TNF-α and IL-10 were assessed using a Duo Set ELISA (R&D systems). 96-well 

plates (Nunc, Maxisorb) were coated overnight with capture antibody. Wells were washed and 

blocked in PBS+1% BSA. After washing 100µl sample or and standard was added per well and the 

assay performed as described above for the Quantikine ELISA. IL-23 was measured using a CytoSet 

ELISA (Invitrogen), and KC using a KC ELISA set (Insight Biotechnology) following the same procedure.  

Albumin concentration was assessed using a murine albumin ELISA kit (Bethyl Laboratories). 96-well 

plates were coated overnight with capture antibody. Due to the sensitivity of the ELISA samples 

were diluted 1:10,000. 100µl of sample or standard was added per well and the assay performed as 

described above. The concentration of total human or mouse IgG in samples was also assessed by 

ELISA. Briefly, 96-well plates were coated overnight with the relevant capture antibody. Samples 

were diluted 1:100. 100µl of sample or standard was added per well and the assay performed as 

described above.  
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2.7.9 Histology of murine lung tissue 

 

Lungs from mice were collected into 4% PFA, in PBS and left to fix for 4hrs. Lungs were then 

incubated overnight in 15% sucrose then transferred to 70% ethanol for storage at 4 C until 

processing. Lungs were processed in paraffin wax overnight using an automated tissue-processor 

(Leica). Samples were then embedded into paraffin blocks. 3μm lung sections were prepared on a 

rotary microtome (Shandon), and mounted on to glass slides. Slides were stained with haematoxylin 

and eosin using a Tissue-Tek automated stainer (Sakura), then overlaid with a glass coverslip. Slides 

were imaged using a NanoZoomer digital pathology system (Hammatsu).   
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2.8 Analysis of murine cells by flow-cytometry 

2.8.1 Cell preparation and staining 

 

Murine lungs and spleens were collected into ice cold PBS and single cell preparations prepared by 

homogenisation though a 40μM filter. Red blood cells were lysed by re-suspension of cells in 5mls 

red blood cell lysis buffer for 5mins (Santa-Cruz Biotechnology). Cells were then washed in PBS and 

re-suspended in 1ml PBS. Cell numbers were determined by crystal violet staining and counting on a 

standard haemocytometer. 1x106 cells were added per wells to a 96-well plate. Plates were spun at 

1400rpm for 2min, to pellet and cells re-suspended in 50µl PBS+ 1% BSA. 50µl of specific antibodies 

(Table 2.7) diluted 1:50 in PBS+1% BSA were added to each well. For multiple antibody staining 

single stained controls and ‘fluorescent minus one’ (FMO) controls were included. Plates were 

incubated for 20min at 4C, and then washed twice in 200µl PBS, and the cells re-suspended in 100µl 

of 4% PFA. Plates were kept in the dark at 4C before analysis by flow-cytometry.         

2.8.2 Flow-cytometry lymphocytes (lungs) 

 

Lung or spleen cells were analysed on a FACSCalibur (BD) flow-cytometer, using CellQuest 

acquisition software and analysed using FlowJo software. At least 10,000 lymphocytes were acquired 

per sample on the basis of size (FSC) and granularity (SSC). Lymphocyte populations were identified 

by staining for CD4, CD8 and CD3 (Table 2.7). Gates were based on FMO controls of samples stained 

with all antibodies excluding the target of interest. Single stained controls were used to set 

compensation gates. Total lymphocyte numbers were calculated based on the percentage of each 

subset as a proportion of all cells in each sample.  
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2.8.3 Flow-cytometry macrophages (Spleen) 

 

Splenocytes were analysed on a FACSCalibur (BD) flow-cytometer, using CellQuest acquisition 

software and FlowJo analysis software. At least 10,000 individual cells were acquired per sample. 

Macrophages were identified by staining for F4/80 and gates based on unstained controls. Total 

macrophage numbers were calculated based on the percentage of F4/80 positive cells as a 

proportion of all splenocytes in each sample.    

 

 

Antibody Fluorochrome Supplier Clone FL channel 

Anti-mCD4 FITC BD Bioscience RM 4-5 1 

Anti-mCD3 PE E Bioscience 145-2c11 2 

Anti-mCD8 PerCP BD Bioscience 53-6.7 3 

Anti-F4/80 PE Caltag MF 48000 4 1 

 

Table 2.7: Antibodies used in this thesis for phenotyping of cells by flow-cytometry. 

  



95 
 

2.9 Statistics 

 

Data were presented as group means +/- standard deviation (SD). Student’s T-test was used to 

compare the mean of two groups, or analysis of variance (ANOVA) for comparison between multiple 

groups, with Bonferonni post-test to compare selected groups. Parametric tests were used for in 

vivo experiments due to their greater sensitivity; this reduces the number of animals required for 

experimentation which is preferred for ethical and practical reasons. For depletion studies, where 

the absence of a difference indicates a biological effect the greater sensitivity of parametric tests is 

also favourable, as any true differences between groups should be identified. F-tests were 

performed to assess if the slope of linear regression lines were statistically different from 0. All 

statistical tests were performed using Graph Pad Prism statistical software.  

 

2.10 Ethics 

 

All sera samples from individuals at the Centre for Respiratory Research at UCL were obtained with 

ethical consent from UCL Research Ethics Committee (Ref: 3076/001). All Malawian sera and 

bronchoalveolar lavage samples were obtained with ethical consent from Liverpool School of 

Tropical Medicine (Ref: 00.54) and the University of Malawi (Ref: P.99/00/102). All animal 

experiments were approved by the UCL Biological Services Ethical Committee and the Home Office 

(UK) under project licence (PPL70/6510).    
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Results  
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3 Results (1): Serology  
 

Nasopharyngeal colonisation with S. pneumoniae is an immunising event that results in a host 

antibody (IgG) response. However, there remains some controversy over which S. pneumoniae 

antigens are dominant targets for this naturally-acquired IgG. Host and bacterial variation may also 

alter which antigens are dominant in different individuals and across populations. A number of in 

vitro assays were therefore performed to assess the dominant antigen targets recognised by IgG in 

different sources of adult human sera and pooled IVIG products.   

3.1.1 IgG to whole S. pneumoniae and purified capsular polysaccharide  

 

To assess the levels of IgG in sera from different Malawian individuals to whole pneumococci, a 

whole cell ELISA of IgG binding to 4 different strains of S. pneumoniae (ST4, ST14, ST9V, and ST1) was 

used. All sera contained detectable levels of IgG to each strain of S. pneumoniae with some variation 

in the extent of binding to different strains (Figure 3.1). There was also some variation in the extent 

of IgG binding to each S. pneumoniae strain between sera from different individuals (Figure 3.1). For 

example, sera ‘B’ demonstrated considerably greater binding to S. pneumoniae TIGR4, whereas sera 

‘F’ displayed the greatest binding to S. pneumoniae ST9V.    

The concentration of serotype-specific IgG to different pneumococcal polysaccharides in these 

individual Malawian sera was determined by multiplexed ELISA. Results indicated varying levels of 

IgG to a range of pneumococcal polysaccharides and between sera from different individuals for 

each specific serotype (Figure 3.1). Overall the highest responses were to type-14 polysaccharide.    
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A 

 

 

B

 

 

Figure 3.1: IgG binding in different human sera. 

(A) Whole cell ELISA IgG binding titre to S. pneumoniae serotypes 4, 14, 9V and 1 in individual 

Malawian sera (A-F) (B) Concentration of IgG to 13 different S. pneumoniae polysaccharide types in 

different individual Malawian sera, as assessed by multiplexed ELISA. (Bars represent mean, error 

bars represent SD). Multiplexed polysaccharide ELISAs were kindly performed at the Institute of 

Child Health, UCL by Polly Burbidge. Results in figure A are representative of two independent 

experiments, antibody quantification presented in figure B was performed once, in duplicate.  
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3.1.2 Correlation of anti-CPS IgG concentration and whole cell ELISA titre 

 

Different individual Malawian sera varied both in their binding to different S. pneumoniae serotypes 

by ELISA and their concentration of serotype-specific anti-capsular polysaccharide (CPS) antibody. 

Linear regression was performed to correlate serotype-specific anti-CPS IgG levels in different 

individual sera to the level of IgG binding to different S. pneumoniae serotypes (as determined by 

ELISA). This allowed assessment as to whether the concentration of serotype specific anti-capsular 

IgG in individual sera was the dominant determinant of IgG binding (Figure 3.2). Levels of anti-

serotype 4 CPS IgG failed to correlate with binding of individual sera to whole type-4 pneumococci 

(Figure 3.2), this persisted for IgG to anti-serotype14 or anti-serotype 9V polysaccharide. In contrast 

levels of IgG to the type-1 polysaccharide did correlate with IgG binding to whole ST1 pneumococci 

(Figure 3.2). These data suggest that with the exception of ST1, levels of IgG to specific capsular 

polysaccharides do not accurately predict the ability of IgG in different individual sera to bind to S. 

pneumoniae, by whole cell ELISA.  
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Figure 3.2: Correlation of anti-polysaccharide IgG with IgG binding to whole S. pneumoniae.  

(A-D)Whole cell ELISA IgG binding titre to S. pneumoniae serotypes 14, 1, 4 and 9V, compared with 

specific anti-capsular IgG concentrations in individual Malawian sera by linear regression. ELISA titres 

are representative of two independent experiments. 
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3.1.3 IgG binding to TIGR4Δcps (ELISA) 

 

Since levels of anti-CPS IgG broadly failed to correlate with IgG binding to whole pneumococci, the 

ability of different individual sera to bind to S. pneumoniae TIGR4 lacking the polysaccharide capsule 

(TIGR4Δcps) was investigated to assess if individual adult sera contained IgG to non-capsular 

antigens. In the absence of the polysaccharide capsule binding of IgG in different individual human 

sera to S. pneumoniae was maintained (Figure 3.3), demonstrating that IgG to the capsular 

polysaccharide of S. pneumoniae was not necessarily required for IgG binding to whole 

pneumococci, at least if assessed by whole cell ELISA.  

 

 

 

Figure 3.3: IgG binding to TIGR4Δcps.  

Whole cell ELISA IgG binding titre to S. pneumoniae TIGR4 and TIGR4Δcps in different individual 

Malawian sera. (Columns represent mean, error bars represent SD). Results are representative of 

two independent experiments.     
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3.1.4 Correlation of whole cell ELISA and anti-CWPS IgG concentration 

 

Another antigen of S. pneumoniae that may be an important target for IgG binding is the cell wall 

polysaccharide (CWPS). However, the concentration of IgG to the pneumococcal CWPS (measured 

by ELISA) in individual sera, failed to correlate with IgG binding of each serum to S. pneumoniae 

TIGR4 by whole cell ELISA (Figure 3.4). This indicates that anti-CWPS IgG in not a major determinant 

of naturally-acquired human IgG in human sera binding to S. pneumoniae, by ELSA.  

 

 

 

 

Figure 3.4: Correlation of anti-CWPS IgG and binding to whole S. pneumoniae 

Whole cell ELISA IgG binding titre to S. pneumoniae TIGR4 compared with anti-CWPS IgG binding 

titre, in individual Malawian sera compared by linear regression. Results are representative of two 

independent experiments. 
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3.1.5 Competition ELISAs 

 

Pooled sera and IVIG contain IgG representative of the population from which they are pooled. To 

directly assess the targets of IgG binding to S. pneumonia, in pooled adult sera and IVIG competition 

ELISAs were performed. This involved pre-incubation of IVIG or pooled sera in different 

pneumococcal antigens including; capsular polysaccharide, cell wall polysaccharide and whole cell 

lysates of S. pneumoniae. Pre-incubation of pooled sera with increasing concentrations of CWPS, 

failed to reduce binding of IgG to S. pneumoniae TIGR4, as measured by ELISA (Figure 3.5). Similarly 

incubation of IVIG in increasing concentrations of CWPS or purified type-4 or 19F polysaccharide 

failed to inhibit binding to S. pneumoniae TIGR4 and a serotype 19F strain respectively. In 

comparison binding was inhibited by pre-incubation of sera or IVIG in whole cell lysates of the 

respective serotype (TIGR4 or ST19F) (Figure 3.5). These data indicate that the CWPS or capsular 

polysaccharide of S. pneumoniae is not necessarily important for the observed binding of IgG in 

human sera or IVIG to whole pneumococci, as measured by ELISA.     
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Figure 3.5: Competition ELISAs IgG binding to S. pneumoniae.  

(A) IgG binding in pooled human sera to S. pneumoniae TIGR4 following pre-incubation in increasing 

concentrations of S. pneumoniae lysate or purified S. pneumoniae CWPS. (B) IgG binding in IVIG 

(Intratect) to S. pneumoniae TIGR4 following pre-incubation in increasing concentrations of whole S. 

pneumoniae lysate, purified S. pneumoniae CWPS or type-4CPS. (C) IVIG binding to S. pneumoniae 

19F following pre-incubation in whole cell lysate or type-19F CPS. (***= P < 0.001 representative of 

two way ANOVAs comparing change in OD following incubation in whole lysate versus CPS or CWPS, 

error bars represent SD). Results are representative of two independent experiments. 
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To investigate if IgG to pneumococcal proteins could be responsible for the observed binding to S. 

pneumoniae by whole cell ELISA, competition ELISAs were repeated. Pooled sera and IVIG were pre-

incubated in either whole cell lysates of S. pneumoniae TIGR4 or lysates treated with trypsin to 

digest pneumococcal proteins. Pre-incubation of sera or IVIG in whole cell lysates reduced IgG 

binding to TIGR4. Prior trypsin treatment of these lysates partially diminished this effect (Figure 3.6), 

though didn’t fully restore IgG binding  

Overall these whole cell ELISA data suggest that protein targets, rather than anti-CWPS IgG or anti-

CPS specific IgG, are at least partially responsible for IgG binding to S. pneumoniae in adult human 

sera and IVIG.  
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Figure 3.6: Competition ELISAs protease treated lysate.  

(A) IgG binding in IVIG (Intratect) to S. pneumoniae TIGR4, by whole cell ELISA, following pre-

incubation in different concentrations of whole S. pneumoniae lysates, with and without pre-

treatment of lysates with trypsin. (B) IgG binding in pooled sera to S. pneumoniae TIGR4, by whole 

cell ELISA, following pre-incubation in different concentrations of whole S. pneumoniae lysates, with 

and without pre-treatment of lysates with trypsin. (P values represent two-way ANOVAs with 

Bonferonni post-test to compare columns, error bars represent SD). Results are representative of 

two independent experiments. 
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3.1.6 Luminex assay  

 

The above data indicated that non-capsular antigens, including pneumococcal proteins are likely to 

be major targets for naturally-acquired IgG binding to S. pneumoniae. To assess the range of anti-

protein IgG targets in human sera and pooled immunoglobulin preparations, multiplex (Luminex) 

bead assays were performed. This involved simultaneous detection of antibody binding to 

recombinant pneumococcal proteins coated on to fluorescent (xMAP) beads. Binding was quantified 

by an increase in fluorescence, using an anti-human IgG secondary conjugated to PE. Importantly, 

this allowed a semi-quantitative analysis of antibody levels to a range of pneumococcal proteins in 

different sources of sera and IVIG. 

To confirm that the Luminex assay allowed a quantitative assessment of antibody binding, and to 

determine appropriate dilutions for subsequent assays, IgG binding in serially-diluted IVIG was 

assessed (Figure 3.7).  Binding of IgG to all proteins was concentration dependent, with a reduction 

in fluorescence intensity at increasing dilutions of IVIG (Figure 3.7). A dilution of 1:1000 represented 

a point with a large dynamic range of IgG binding to different purified proteins; this dilution (1:1000) 

was therefore used in subsequent experiments.  
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Figure 3.7: Dilution series of IgG binding to pneumococcal proteins.  

MFI of anti-human IgG binding to xMAP beads coated with different purified pneumococcal proteins, 

following incubation in increasing dilutions of IVIG (Intratect). The dashed line indicates the dilution 

(1:1000) used in subsequent assays.     
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The Luminex assay was used to assess the major protein antigen targets for IgG in different pooled 

IVIG preparations. Levels of IgG to pneumococcal protein antigens, in different sources of IVIG, 

appeared to show a consistent pattern of responses (Figure 3.8), with high levels of anti-PhtD and 

anti-PspC antibodies, intermediate responses to the proteins PspA, PsaA and Ply, slightly inferior 

responses to PpmA, PhtE, Hyal and Sp0189 and low or absent responses to all other proteins.  

The targets of anti-protein IgG in individual human sera, both from Malawi and the UK, were also 

assessed by Luminex. A similar general pattern of dominance was seen to the results for IVIG (Table 

3.1) with strong responses to PhtD, PspC, PspA, PsaA and PpmA. However there was significant 

variation in the level of IgG to certain pneumococcal protein antigens between sera from different 

individuals (Figure 3.8).  For example, sera ‘B’ and ‘F’ from Malawian individuals demonstrated 

markedly higher binding to PspC than the remaining 4 individual Malawian sera, and sera ‘B’ and ‘C’ 

had poorer responses to purified PsaA (Figure 3.8). 
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Figure 3.8: IgG binding to purified pneumococcal proteins.   

(A) Stacked bars representing MFI of IgG in five different IVIG preparations binding to purified S. 

pneumoniae proteins conjugated to fluorescent (xMAP) beads (Luminex).  (B) MFI of IgG in 6 

different individual sera (Malawi) binding to purified S. pneumoniae proteins (Luminex). (Error bars 

represent SD).  Results in Figure A and B are representative of one experiment, performed in 

duplicate. 
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        UK      Malawi    

 A B C D  A B C D E F 

PhtD 3 2 1 5  3 2 1 2 2 3 

PspC 6 3 4 1  1 1 2 3 3 2 

PspA 4 1 2 4  7 6 4 4 4 5 

PsaA 2 5 9 3  2 10 6 1 1 1 

Ply 8 4 3 7  6 5 3 5 5 4 

PpmA 1 7 10 2  5 3 13 7 7 6 

PhtE 7 8 6 6  4 4 5 8 8 8 

Hyal 5 10 5 11  9 8 7 6 6 7 

SP0189 11 11 8 12  12 11 8 13 13 10 

IgA1ase 14 6 7 9  8 7 11 9 9 9 

CbpD 9 9 13 8  11 9 14 10 10 13 

Eno 15 15 15 15  16 15 16 15 15 15 

SP1633 10 12 11 13  13 13 10 14 14 11 

SlrA 16 17 16 10  14 14 9 16 17 14 

NanA 12 13 12 14  10 12 12 11 12 12 

SP1651 16 17 14 17  18 17 17 18 18 18 

SP0376 13 16 16 16  17 18 15 17 16 17 

PilusA 16 14 16 17  15 16 18 12 11 16           

 

Table 3.1: Rank of IgG binding (MFI) to different purified protein antigens of S. pneumoniae (measured by Luminex) in individual sera from the UK or 

Malawi. The same ranking score was assigned if differences between proteins were less than blank controls.  
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3.1.7 Luminex assay validation  

 

To determine if the Luminex assay was reliable for the quantification of antibody responses to 

different pneumococcal proteins, antibody levels in individual Malawian sera to two of the purified 

pneumococcal proteins included on the Luminex panel (PspC, PsaA) were also assessed by ELISA. 

ELISA titres were then compared against MFI (Luminex) values for these proteins by linear regression 

(Figure 3.9). A strong correlation was seen between the two methods; where individual sera had a 

high MFI to PspC or PsaA by Luminex they also had a relatively high ELISA titre to that same protein 

(Figure 3.9). IgG binding in Malawian sera to the purified proteins SP1633 and SP1651 to which no 

antibody binding was detected by Luminex, was also assessed by ELISA, again low or absent IgG 

binding was detected to these proteins (Figure 3.9). In comparison IgG levels to PspC against which 

high responses were detected by Luminex, were also relatively high by ELISA (Figure 3.9). In addition 

to individual sera IgG binding in different IVIG preparations was also assessed by ELISA, and binding 

to PspC was higher than to PhtE when measured by both ELISA and Luminex (Figure 3.9). These data 

confirm that the Luminex assay appears as reliable as ELISAs for the quantification of antibody 

responses to different S. pneumoniae protein antigens.   
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Figure 3.9: Validation of Luminex assay.  

(A) Linear regression of IgG in different individual sera binding to purified PspC by ELISA (titre) 

compared to Luminex (MFI). (B) Linear regression of IgG in different individual sera binding to 

purified PsaA by ELISA (titre) compared to Luminex (MFI) (C). ELISA titre of IgG binding to purified 

pneumococcal proteins PspC, SP1633, SP1651 in different individual sera (Malawi). (D) Comparison 

of IgG binding in different IVIG products to purified PhtE and PspC by ELISA (OD 405-630) and 

Luminex (MFI). (P values represent F-test assessing difference of slope compared to zero, error bars 

represent SD).  Luminex and ELISA quantification was performed once, in duplicate. 
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3.1.8 Correlation between IgG to protein antigens and whole cell ELISA titre  

 

The Luminex assay provided a quantitative assessment of antibody responses to protein antigens in 

different individual sera. This allowed comparison between the quantity of IgG to pneumococcal 

protein antigens in different individual sera and IgG binding to whole S. pneumoniae as measured by 

whole cell ELISA. The IgG responses to all proteins on the Luminex system were summed for each 

individual Malawian serum sample; the cumulative anti-protein IgG response was then compared by 

linear regression to IgG binding to S. pneumoniae (as previously assessed by whole cell ELISA, Figure 

3.1). There was a good correlation between IgG levels to these pneumococcal proteins in a particular 

individuals sera and the level of IgG binding to S. pneumoniae TIGR4, ST14 and ST1 (Figure 3.10). 

ST9V demonstrated a similar trend, but this was not significant (Figure 3.10).  

These correlations could be due to differences in total IgG concentration between sera samples, 

rather than levels of pneumococcal-specific IgG. However, there was no correlation between 

Luminex measurements of IgG binding to S. pneumoniae protein antigens and total IgG 

concentration as measured by ELISA (Figure 3.10). Additionally, IgG binding to S. pneumoniae 

protein antigens did not correlate with binding to another streptococcus species S. pyogenes (Figure 

3.10).  

These data indicate that the quantity of IgG to specific   S. pneumoniae protein antigens may be 

important in determining IgG binding to whole S. pneumoniae, as measured by whole cell ELISA. 

Therefore S. pneumoniae proteins could be major targets of naturally-acquired IgG.  
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Figure 3.10: Correlation of anti-protein IgG with IgG binding to whole S. pneumoniae.  

(A-D) Linear regression of IgG binding to different serotypes of S. pneumoniae by whole cell ELISA 

compared to anti-protein IgG concentration in different individual sera (as assessed by Luminex). (E) 

Linear regression of total IgG concentration in each individual sera (quantified by ELISA) compared to 

cumulative anti-protein IgG (as assessed by Luminex). (F) Linear regression of IgG binding to S. 

pyogenes by whole cell ELISA compared to cumulative anti-protein IgG concentration in different 

individual sera (as assessed by Luminex). (P values represent F-test assessing difference of slope 

compared to zero). ELISA titres are representative of two independent experiments. 
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3.1.9 IgG protein targets in different geographical sources of sera and IVIG 

 

To determine if antibodies from distinct populations recognise a similar range of S. pneumoniae 

protein antigens, the range of pneumococcal protein targets for IgG binding in pooled sera or IVIG 

from 3 geographically distinct locations (Europe, USA, and Malawi) were compared. This was 

achieved by comparing the MFI for each protein obtained from the multiplex binding assays by 

linear regression (Figure3.11).  

There was a very strong correlation in the order of anti-protein antibody responses in IgG pooled 

from three populations (Figure3.11) with consistently high responses to PhtD, PspC and PsaA. 

Slightly more variation in the order of anti-protein antibody responses was seen when comparing 

pooled sera from Malawi, to IVIG products sourced from Europe or USA. This may be due to the 

greater number of donors that make up IVIG (N=>1000) which could reduce the variability of 

responses to protein antigens, compared to pooled Malawian sera, which was pooled from relatively 

few donors (N=20). 
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Figure3.11: IgG targets in different sources of pooled immunoglobulin.  

(A) Linear regression of IgG binding (MFI) to different purified S. pneumoniae protein antigens in IVIG 

pooled from a European population compared to IVIG pooled from USA. (B)  Linear regression of IgG 

binding (MFI) to different purified S. pneumoniae protein antigens in IVIG pooled from Europe or 

pooled Malawian sera (pooled from 20 donors). Luminex assays were performed once, in duplicate. 
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3.1.10 Identification of IgG protein targets by Western blot   

 

The Luminex assay assesses antibody responses to a pre-selected panel of protein antigens. 

Therefore Western blotting was used for an overall assessment of the potential number of protein 

targets for IgG in different sources of sera and IVIG. Probing lysates of the S. pneumoniae D39 strain 

with IVIG indicated responses to a number of different protein targets, identified as bands on 

immunoblots (Figure 3.12). Probing mutants S. pneumoniae D39 lacking known surface proteins 

allowed the identification of some of these protein targets, including PiaA, PspA, PspC and PhtD 

(Figure 3.12). Importantly (where included on the panel) the targets identified by Western blotting 

were also previously identified as immunodominant targets of IgG binding by Luminex.  

Immunoblots against lysates of different S. pneumoniae serotypes demonstrated a consistent 

pattern when probed with IVIG (Figure 3.12), though responses to certain protein were absent in 

some strains. This suggests, with some exceptions, the major protein targets of IVIG are generally 

conserved between strains of S. pneumoniae.  Immunoblots of S. pneumoniae TIGR4 probed with 

pooled IgG from different geographical locations (Europe, USA, and Malawi) demonstrated a similar 

pattern of responses (Figure 3.12). This supports data from the Luminex assay, indicating that IgG 

pooled from these different geographical locations recognises a consistent pattern of dominant 

pneumococcal protein antigens. 
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Figure 3.12: Targets of IgG in pooled sera binding by immunoblotting. 

(A) Immunoblots of deletion mutants of S. pneumoniae D39 lacking known surface proteins 

(indicated above lanes) probed with IVIG (Intratect). Red boxes highlight absent bands at correct 

molecular weight for deleted protein. (B)  Immunoblots of whole cell lysates of different S. 

pneumoniae serotypes probed with IVIG (red boxes indicate absent bands in certain serotypes). (C) 

Immunoblots of S. pneumoniae TIGR4 probed with different pooled sera (indicated above lanes). 

Western blots are representative of two independent experiments. 
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3.1.11 Pattern of IgG responses in individual sera by Western blot 

 

To comprehensively assess the range of protein antibody targets in different individual sera, 

immunoblots of lysates of S. pneumoniae D39 and TIGR4 were probed with sera from 6 individuals 

(from the UK). The pattern of responses was then compared.  There were broadly similar patterns of 

bands between different individual sera, probed against the same lysates (Figure 3.13), indicating 

that the dominant IgG responses to protein antigens were relatively consistent across different 

individual sera. However, for both D39 and TIGR4 there was some variation between individuals, 

with Western blots of sera from certain individuals having reduced intensity of bands at particular 

protein sizes. For example, against S. pneumoniae D39 sera ‘A’ and ‘B’ had low responses to a band 

at approximately 70KDa, and sera ‘C’ and ‘F’ had low responses to a band at approximately 35KDa in 

S. pneumoniae TIGR4. These data support the Luminex data for different individual sera, where the 

pattern of antigen dominance was broadly similar between all individuals, but selected sera 

demonstrated low or absent IgG responses to certain S. pneumoniae protein antigens.  
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Figure 3.13: Targets of IgG binding in individual sera by immunoblotting. 

(A) Immunoblots of whole cell lysates of S. pneumoniae D39 probed with different sera from UK 

individuals, developed with anti-human IgG. (B) Immunoblots of whole cell lysates of S. pneumoniae 

TIGR4 probed with different individual human sera, developed with anti-human IgG (Red boxes 

highlight areas of variation between individual sera).  Western blots are representative of two 

independent experiments. 
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3.1.12 Anti-S. pneumoniae IgG in human lavage samples 

 

Adult human sera contain IgG to whole S. pneumoniae, as well as to a range of pneumococcal 

surface proteins. To determine if anti-pneumococcal IgG is present within the lung of adult humans, 

IgG binding in BALF from different Malawian individuals was investigated. BALF was obtained from 

volunteers in Malawi through collaboration with Dr Stephen Gordon (Liverpool School of Tropical 

Medicine). IgG binding to whole S. pneumoniae was assessed by whole cell ELISA. Due to limitations 

with sample quantity, titres were not calculated; instead ELISA data is represented as an OD. BALF 

samples contained IgG binding to whole S. pneumoniae TIGR4 by ELISA, with variation in the amount 

of anti-pneumococcal IgG binding between different individuals (Figure 3.14). The highest responses 

were comparable to pooled sera from the same population diluted 1:1000. However, as the process 

of collecting lavage fluid involves considerable dilution of the epithelial lining fluid, it is difficult to 

directly estimate the concentration of anti-pneumococcal IgG within the human lung.   

Due to limited quantities of the multiplex beads Luminex assays were not performed on these 

samples, however BALF IgG levels to the purified pneumococcal proteins PspC and PhtE was 

assessed by ELISA. BALF fluid contained detectable IgG to each of these proteins (Figure 3.14). 

Binding of IgG to whole S. pneumoniae by ELISA correlated with levels of IgG to either PspC or PhtE 

in different lavage samples.  There was no significant correlation between total IgG concentration in 

BALF and binding to S. pneumoniaeTIGR4 by whole cell ELISA (Figure 3.14). These data demonstrate 

that human BALF contains IgG to S. pneumoniae including to purified pneumococcal proteins, and 

the concentration of IgG to specific antigens may determine the binding of IgG in BALF to whole S. 

pneumoniae. The concentration of IgG to pneumococcal capsular polysaccharide was not assessed in 

these BALF samples.  
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Figure 3.14: Anti-S. pneumoniae IgG in human bronchoalveolar lavage fluid.  

(A) IgG binding in different BALF samples from 10 Malawian individuals to S. pneumoniae TIGR4 by 

whole cell ELISA (OD 450-550), alongside IgG binding in  pooled sera (Malawi). (B) Linear regression 

of IgG binding in different individual BALF samples to TIGR4 by whole cell ELISA compared to binding 

to purified PspC by ELISA. (C) Linear regression of IgG binding in different individual lavage samples 

to TIGR4 by whole cell ELISA compared to binding to purified PhtE by ELISA. (D) Linear regression of 

IgG binding in individual lavage samples to TIGR4 by whole cell ELISA compared to the concentration 

of total IgG in each sample. (Error bars represent SD, P values represent F-test assessing difference 

of slope compared to zero).   ELISA titres are representative of two independent experiments. 
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3.1.13 Chapter Summary  

 

The pneumococcal antigen targets for IgG in adult human sera and IVIG are likely to reflect those 

acquired following natural exposure to S. pneumoniae. Data presented in this chapter indicate that 

there is a range of different S. pneumoniae antigens for IgG, including protein and capsular 

polysaccharide antigen. The whole cell ELISA results indicate that S. pneumoniae proteins were an 

important target for anti-pneumococcal IgG binding, as the titres in different adult sera correlated 

with IgG titres to different S. pneumoniae proteins but not anti-capsular IgG concentration. 

Additionally, competition ELISAs indicated that IgG binding to S. pneumoniae was not inhibited by 

pneumococcal capsular or cell wall polysaccharide, hence these antigens are not necessarily the 

major targets of naturally-acquired IgG binding to S. pneumoniae, when assessed by a whole cell 

ELISA assay.   

Luminex assays and Western blots were used to identify potential protein targets for IgG in human 

sera. The results indicated a small subset of S. pneumoniae protein antigens including PhtD, PspC, 

PspA and PsaA that are targets for IgG binding which appear to be conserved across geographical 

sources of pooled IgG, and between different strains of S. pneumoniae. The number of unidentified 

bands on Western blots indicates that antigen targets for IgG binding likely also include other 

proteins that were not assessed here. Different individual sera also had IgG responses to a similar 

range of protein antigens but with some variation, with certain individuals having low or absent 

responses to protein antigens that were otherwise dominant in pooled sera/IVIG.  

These data suggest that S. pneumoniae proteins may be targets for IgG binding. However, thus far 

the functional relevance of IgG to S. pneumoniae protein antigens remains unclear. Data presented 

in this chapter demonstrate IgG binding to purified S. pneumoniae proteins and lysates, or to S. 

pneumoniae by whole cell ELSIA. It has recently been demonstrated that whole cell ELISAs do not 
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necessarily provide an accurate assessment of antibody binding to the surface of S. pneumoniae  

(Cohen et al., 2013), and therefore are not necessarily a good measure of functional antibody 

responses.  
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4 Results (2): Functional targets of naturally-acquired IgG  
 

In the previous chapter protein antigens were shown to be an important target for naturally-

acquired IgG that recognises S. pneumoniae. However, the functional importance of anti-protein IgG 

is not known. IgG binding to the surface of S. pneumoniae is likely to be functional, promoting 

protective mechanisms including bacterial agglutination, opsonisation and fixation of complement. 

In this chapter the contribution of protein antigen targets for naturally-acquired IgG dependent 

immunity was assessed, using a range of in vitro functional assays. 
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4.1.1 IgG binding to S. pneumoniae and S. pneumoniaeΔcps 

 

To assess the relative contribution of the S. pneumoniae polysaccharide capsule or sub-capsular 

antigens as targets for naturally-acquired human IgG, flow-cytometry based surface binding assays 

to whole bacteria were performed. Binding to TIGR4 and an unencapsulated derivative of TIGR4 

(TIGR4Δcps) following incubation in 1% or 10% IVIG was assessed (Figure 4.1). Significant IgG bound 

to both strains with increased IgG binding to the surface of unencapsulated bacteria. IgG surface 

binding assays were repeated in 1% IVIG with the S. pneumoniae D39, ST3 and ST23F strains (Figure 

4.1), and their unencapsulated (Δcps) derivatives. Again there was increased binding of IgG to the 

surface of unencapsulated ST3 and ST23F S. pneumoniae but not the D39 strain. These results 

demonstrate that the pneumococcal capsular polysaccharide is not a very important antigen target 

for naturally-acquired IgG binding to the surface of these strains.  The presence of a capsule 

significantly decreased IgG binding for ¾ strains tested, suggesting sub-capsular antigens (proteins or 

CWPS) are the targets of naturally-acquired IgG, and the presence of a capsule can inhibit IgG 

binding to these targets.  
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Figure 4.1: Binding of IgG to the surface of S. pneumoniae.  

(A) Histogram of anti-human IgG-PE binding to S. pneumoniae TIGR4 and TIGR4Δcps following 

incubation in IVIG (Intratect) or PBS. (B) MFI of anti-human IgG-PE binding to S. pneumoniae TIGR4 

and TIGR4Δcps following incubation in 1% or 10% IVIG. (C-E) MFI of anti-human IgG-PE binding to S. 

pneumoniae D39, ST23F, ST3  and their unencapsulated derivatives following incubation in 1% IVIG.  

(P values represent Student’s unpaired T-test, error bars represent SD). Experiments presented in 

figures C-E were performed by Michal Barabas under my supervision, as part of a BSc project.    

Results are representative of two independent experiments. 
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4.1.2 IVIG binding to Streptococcus mitis  

 

To investigate the general effect the pneumococcal capsule had on binding of IgG to the bacterial 

surface a strain of S. mitis that was transformed to express a capsule from S. pneumoniae TIGR4 was 

utilised (S.mitisT4cps). Binding of IVIG to the surface of S.mitisT4cps was compared with binding to 

an unencapsulated strain of S. mitis. Instead of providing a target for IgG deposition, the binding of 

IgG to the surface of S.mitisT4cps was reduced following incubation in 1% IVIG, relative to 

unencapsulated S. mitis (Figure 4.2). These results further indicate that the S. pneumoniae capsule is 

not a major target for IgG binding to S. pneumoniae in IVIG, and encapsulation may instead prevent 

binding of naturally-acquired IgG to sub-capsular antigens. WT S. mitis like S. pneumoniae also 

produces a capsule-like structure(Rukke et al., 2012). WT encapsulated S. mitis also bound less IgG 

than its unencapsulated derivative following incubation in IVIG (Figure 4.2). This further suggests 

that encapsulation in general may mask targets for IgG deposition on the surface of bacteria.  
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Figure 4.2: IgG binding to S. mitis expressing a TIGR4 capsule 

MFI of anti-human IgG-PE binding to S. mitis, S. mitisΔcps and S.mitisT4cps, following incubation in 

1% IVIG (Intratect). (P value represents one way ANOVA and Tukey’s post-test to compare columns, 

error bars represent SD). This experiment was performed by Helina Marshall under my supervision, 

as part of a pre-PhD project.  Results are representative of two independent experiments. 
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4.1.3 Specific antibody absorbtion (depletion) of IVIG  

 

Assays of IgG binding to the surface of unencapsulated mutants of S. pneumoniae indicate that 

naturally-acquired IgG in IVIG can target non-capsular antigens. However these assays do not allow 

the relative contribution of IgG targeting the capsular polysaccharide or sub-capsular antigens to be 

assessed for encapsulated WT S. pneumoniae.  To assess the relative importance of IgG to the 

capsular polysaccharide for IgG binding to WT S. pneumoniae TIGR4, IVIG was depleted of antibodies 

to the type-4 capsular polysaccharide. This was achieved by absorption of IVIG with S. mitis 

expressing a type-4 capsule. IVIG absorbed against S. mitisT4cps displayed a 6-fold reduction in IgG 

binding titre to purified type-4 polysaccharide (Figure 4.3), with no effect on antibody binding to S. 

pneumoniae proteins when as assessed by Western blot or quantitatively by ELISA to purified PsaA 

or PhtE (Figure 4.3). 

  



132 
 

  

                                                       

         

             

 

Figure 4.3: Absorbtion of anti-capsular IgG from IVIG.  

(A) ELISA titre of anti-serotype 4 IgG in IVIG pre-absorbed by incubation with S. mitis expressing a 

TIGR4 capsule or mock absorbed. (B) Western blot of S. pneumoniae TIGR4 lysate probed with 

absorbed or mock absorbed IVIG, developed with anti-human IgG. (C) ELISA titre of IgG binding to 

purified PsaA in absorbed and mock-absorbed IVIG. (D) ELISA titre of IgG binding to purified PhtE in 

absorbed and mock-absorbed IVIG. (P values represent Student’s unpaired T-test, error bars 

represent SD). 
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The effect of specific depletion of anti-capsular IgG on the ability of IVIG to bind to the bacterial 

surface was assessed by flow-cytometry. Specific depletion of anti-serotype 4 IgG from IVIG had no 

significant effect on IgG binding to the surface of S. pneumoniae TIGR4 following incubation in both 

1% and 10% IVIG (Figure 4.4). These data therefore indicate that naturally-acquired IgG in IVIG 

predominantly targets non-capsular antigens on the surface of intact S. pneumoniae. 
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Figure 4.4: Surface binding of absorbed IVIG.   

(A) Histogram of anti-human IgG-PE binding to S. pneumoniae TIGR4 following incubation in 1% IVIG 

depleted of anti-CPS IgG by in absorbtion against  S. mitis+TIGR4, or mock depleted IVIG. (B) MFI of 

anti-human IgG-PE binding to S. pneumoniae TIGR4 following incubation in 1% and 10% depleted or 

mock depleted IVIG. (P values represent Student’s unpaired T-test, error bars represent SD). 
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4.1.4 Protease shaving of S. pneumoniae 

 

Depletion of anti-capsular IgG from IVIG, and IVIG binding to unencapsulated mutants, 

demonstrated a role for IgG to non-capsular targets in determining binding of naturally-acquired IgG 

to the surface of S. pneumoniae.  To assess if these non-capsular targets could be proteins, S. 

pneumoniae was incubated with a protease (pronase) to digest surface-exposed proteins. Pronase 

treatment of S. pneumoniae has previously been used to confirm the surface localisation of 

pneumococcal proteins (Hammerschmidt et al., 1997). To ensure pronase treated S. pneumoniae 

didn’t re-express surface proteins upon division a strain of S. pneumoniae TIGR4 lacking PABA 

synthetase (TIGR4Δpab) was used, which is unable to replicate in sera (Chimalapati et al., 2011).  

There was no reduction in bacterial CFU following incubation of TIGR4Δpab with pronase, compared 

to PBS alone. The effect of pronase incubation on the binding of IVIG to the surface of S. 

pneumoniae was assessed by flow-cytometry. Pronase treatment of S. pneumoniae reduced the 

ability of IVIG to bind to the surface of S. pneumoniaeΔpab (Figure 4.5).  To confirm that pronase 

treatment didn’t affect the binding of IgG to the S. pneumoniae capsule the binding of anti-serotype 

4 PPS antisera to pronase treated and untreated S. pneumoniaeΔpab was assessed. Pronase 

treatment had no effect on IgG binding to the surface of S. pneumoniae Δpab following incubation in 

10% type-4 CPS antisera (Figure 4.5).  Incubation of WT S. pneumoniae and S. pneumoniaeΔpab in 

type-4 antisera also confirmed that the Δpab mutation did not affect IgG binding to the S. 

pneumoniae TIGR4 capsule (Figure 4.5).  These data indicate that some of the S. pneumoniae targets 

of IVIG binding to encapsulated S. pneumoniae, and therefore targets of naturally-acquired IgG are 

pneumococcal surface proteins, sensitive to digestion by pronase.  
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Figure 4.5: IgG binding to pronase-treated S. pneumoniae.  

(A) Histogram of anti-human IgG-PE binding to S. pneumoniae TIGR4Δpab pre-treated with 100µg/ml 

pronase or PBS, incubated in 1% IVIG (Intratect).(B) MFI of anti-human IgG-PE binding to S. 

pneumoniae TIGR4Δpab pre-treated with 100μg/ml pronase or PBS, incubated in 1% IVIG. (C) MFI of 

anti-rabbit IgG-PE binding to S. pneumoniae TIGR4 and TIGR4Δpab following incubation in 10% anti-

serotype 4 polyclonal rabbit sera. (D) MFI of anti-rabbit IgG-PE binding to S. pneumoniae TIGR4Δpab 

pre-treated with 100µg/ml pronase or PBS, incubated in 10% anti-serotype 4 polyclonal rabbit sera. 

(P values represent Student’s unpaired T-test, error bars represent SD). Results are representative of 

two independent experiments. 
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4.1.5 Effect of IgG on in vitro growth of S. pneumoniae  

 

Surface binding assays utilising unencapsulated strains of S. pneumoniae indicated a potentially 

important role for opsonisation with IgG to sub-capsular protein antigens in IVIG.  To evaluate if 

naturally-acquired IgG to non-capsular targets could be functional the effect of IVIG on in vitro 

growth of WT and unencapsulated S. pneumoniae was investigated.  The addition of 10% IVIG to the 

growth medium (THY) impaired S. pneumoniae TIGR4 growth (Figure 4.6) as assessed by a change in 

OD580 over 8hrs. Repeating this assay with the TIGR4Δcps strain indicated that the inhibitory effect of 

IVIG was greater when the polysaccharide capsule was removed (Figure 4.6). The enhanced effect of 

IVIG on growth inhibition of unencapsulated S. pneumoniae was also demonstrated when repeating 

assays with unencapsulated derivatives of S. pneumoniae D39, ST3 and ST23F (Figure 4.6). This 

indicates that naturally-acquired IgG to non-capsular targets is capable of mediating the observed 

reduction in OD580
 following the addition of IVIG. Light microscopy of 8 hour cultures demonstrated 

that the addition of 10% IVIG to the growth medium facilitated bacterial agglutination (Figure 4.7). 

This phenotype was maintained for unencapsulated S. pneumoniae TIGR4 following growth in IVIG, 

indicating that antibodies to the capsular polysaccharide are not necessarily required for bacterial 

agglutination (Figure 4.7).  
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Figure 4.6: Effect of IVIG on S. pneumoniae growth.  

(A-D) 8 hour growth (OD580nm) of WT S. pneumoniae strains TIGR4, D39, ST23F, ST3 and their 

unencapsulated (Δcps) derivatives in THY supplemented with 10% IVIG (Intratect) or PBS. (Error bars 

represent SD). Experiments presented in figures B-D were performed by Michal Barabas under my 

supervision, as part of a BSc project. (Curves were compared by two-way ANOVA*= P<0.001 

compared to PBS controls). Results are representative of two independent experiments. 
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Figure 4.7: Microscopy of S. pneumoniae grown in the presence of IVIG.  

Light microscopy of S. pneumoniae TIGR4 and TIGR4Δcps after 8hrs growth in THY supplemented 

with 10% IVIG (Intratect) or PBS. 10μl of culture was air-dried on to glass slides and stained by rapid-

Romanowsky staining (Diff-quick). Results are representative of two independent experiments. 
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4.1.6 Effect of IgG on S. pneumoniae agglutination  

 

IgG recognition of S. pneumoniae may inhibit growth when measured by a change in OD via 

inhibition of surface protein function (e.g. cation uptake) or by promoting bacterial agglutination. 

Light microscopy of 8 hour cultures demonstrated that the addition of 10% IVIG to the growth 

medium did facilitate bacterial agglutination (Figure 4.7). This phenotype was maintained for 

unencapsulated S. pneumoniae TIGR4 following growth in IVIG, indicating that antibodies to the 

capsular polysaccharide are not necessarily required for this effect (Figure 4.7).To assess the targets 

of naturally-acquired IgG that may mediate agglutination independently of growth, a flow-cytometry 

based approach was used. Forward scatter (FSC) of light indicates the relative size of particles by 

flow-cytometry. An increase in particle size by FSC was therefore used as a measure of increased 

bacterial agglutination (Figure 4.8). The addition of increasing concentrations of IVIG to a suspension 

of either 1x106 CFU/ml FAM-SE labelled S. pneumoniae TIGR4 or TIGR4Δcps led to an increase in 

particle size for both strains, indicative of agglutination (Figure 4.8). This further suggests the target 

antigen of naturally-acquired IgG mediating agglutination is not necessarily the polysaccharide 

capsule and sub-capsular antigens can be functional targets.  
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Figure 4.8: IVIG mediated agglutination of S. pneumoniae.  

Mean forward scatter (flow-cytometry) of suspensions of S. pneumoniae TIGR4 and TIGR4Δcps pre-

incubated in increasing concentrations of IVIG (Intratect). (P values represent one-way ANOVA, error 

bars represent SD). Results are representative of two independent experiments. 
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4.1.7 IgG mediated phagocytosis and killing of S. pneumoniae  

 

Enhancing opsonophagocytosis is a primary mechanism by which IgG may be protective against S. 

pneumoniae. Therefore the functional targets of naturally-acquired IgG in vitro that could facilitate 

opsonophagocytosis of S. pneumoniae by macrophages and neutrophils were assessed. This was 

achieved by measuring the association of fluorescently labelled S. pneumoniae TIGR4 and TIGR4Δcps 

with phagocytes by flow-cytometry. Prior opsonisation of S. pneumoniae in 10% IVIG facilitated 

increased association of FAM-SE labelled S. pneumoniae with a murine macrophage cell line (RAW 

264.7) when co-incubated at an MOI of 10 (Figure 4.9). This effect compared to unopsonised 

bacteria was stronger against unencapsulated S. pneumoniae (Figure 4.9), indicating that naturally-

acquired IgG to non-capsular targets may be functional mediating phagocytosis of S. pneumoniae. 

Prior opsonisation in IVIG also increased the association of FAM-SE labelled S. pneumoniae TIGR4 

with human neutrophils (MOI 20), in a dose-dependent manner (Figure 4.9). Again the effect of 

increasing concentrations of IVIG was greater for the TIGR4Δcps strain, indicating IgG to sub-capsular 

targets is functional and mediates enhanced phagocytosis by both a RAW macrophage cell line and 

isolated human neutrophils. The lower association of encapsulated S. pneumoniae with phagocytes 

indicates that the polysaccharide capsule of S. pneumoniae may partially abrogate the opsonic 

effects of IgG binding to non-capsular targets following incubation in IVIG.   

The effect of opsonisation in IVIG on neutrophil killing of S. pneumoniae was also assessed. Isolated 

human neutrophils were incubated with S. pneumoniae (MOI 1/250) and bacterial survival assessed 

by counting CFU.  Prior opsonisation in IVIG enhanced the killing of both S. pneumoniae TIGR4 and 

TIGR4Δcps by human neutrophils in vitro, relative to unopsonised controls (Figure 4.9). This further 

supports the hypothesis that non-capsular antigens can be functional targets of naturally-acquired 

IgG in IVIG.   
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Figure 4.9: Effect of IVIG on S. pneumoniae phagocytosis and killing.  

(A) Histograms showing fluorescence intensity (FL-1) of RAW macrophages, detected by flow-

cytometry, following incubation with FAM-SE labelled S. pneumoniae TIGR4  and TIGR4Δcps, 

opsonised in 10% IVIG or PBS. (B) MFI (FL-1) of RAW macrophages incubated with FAM-SE S. 

pneumoniae TIGR4 and TIGR4Δcps opsonised in 10% IVIG or PBS. (C) MFI (FL-1) of human 

neutrophils incubated with FAM-SE labelled S. pneumoniae TIGR4 and TIGR4Δcps opsonised with 

increasing concentrations of IVIG. (D) Percentage survival of S. pneumoniae TIGR4 and TIGR4Δcps 

opsonised in 10% IVIG, incubated with neutrophils (MOI 1/250), compared to controls opsonised in 

PBS. (P values represent Student’s unpaired T-test (B,D) or one-way ANOVA (C), error bars represent 

SD). All results are representative of two independent experiments.  
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4.1.8 Chapter summary 

  

As previously discussed the pneumococcal targets in IVIG pooled from >1000 donors are likely to 

reflect the targets of naturally-acquired IgG within a population. IgG binding to unencapsulated S. 

pneumoniae indicated that naturally-acquired IgG in IVIG can opsonise S. pneumoniae by binding to 

non-capsular antigens on the surface of intact bacteria. Specific depletion of anti-capsular IgG in IVIG 

suggested that IgG to the S. pneumoniae capsular polysaccharide may be redundant for IgG binding 

to the surface of wild-type encapsulated S. pneumoniae TIGR4. Furthermore protease treatment of 

S. pneumoniae reduced IgG binding, indicating that surface proteins may be major targets of 

naturally-acquired IgG binding to S. pneumoniae.  

Assays of growth and agglutination using unencapsulated mutants of S. pneumoniae demonstrated 

that IgG recognition of protein antigens has a functional effect. Additionally, assays using TIGR4Δcps 

indicated that antibodies to these targets may be functional, enhancing both macrophage and 

neutrophil phagocytosis of S. pneumoniae and killing by neutrophils. The effect of opsonisation in 

IVIG was greater for unencapsulated strains of S. pneumoniae, both in terms of increased deposition 

of IgG on the bacterial surface, growth inhibition and enhanced phagocytosis and killing. This 

suggests that the bacterial effects of naturally-acquired IgG to S. pneumoniae are not necessarily 

mediated by anti-capsular antibody, but are mediated by anti-protein antibody, and that the S. 

pneumoniae capsule protects the bacteria from opsonisation by naturally-acquired IgG to non-

capsular antigens.   
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5 Results (3): In vivo effects of naturally-acquired IgG 
 

In vitro assays indicated that naturally-acquired IgG to S. pneumoniae may be protective facilitating 

agglutination of S. pneumoniae and enhancing phagocytosis.  To determine if naturally-acquired IgG 

could be protective against lung infection in vivo a mouse model of experimental S. pneumoniae 

challenge following IVIG treatment was used.  The effect of IVIG treatment on IN lung infection, 

experimental colonisation and IV challenge with S. pneumoniae TIGR4 was assessed. The S. 

pneumoniae TIGR4 strain was used for these experiments as it causes invasive, but not rapidly 

overwhelming infection in mice (Cohen et al., 2013), thereby allowing protection in different tissue 

compartments to be assessed. Cellular depletion strategies in vivo were used to assess the 

mechanisms by which naturally-acquired IgG mediated protection.  
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5.1.1 IgG distribution following IVIG treatment  

 

CD1 mice were passively vaccinated with human IgG (IVIG) via intraperitoneal inoculation 3hrs prior 

to challenge. To assess the distribution of IgG at different time points post-challenge the 

concentration of human IgG in sera, BALF and nasal washings was quantified by ELISA (Figure 5.1). 

3hrs following treatment human IgG was readily detectable in the sera of IVIG treated mice, but not 

the BALF or nasal washings (Figure 5.1 A,B). Following experimental colonisation of the nasopharynx 

with TIGR4 S. pneumoniae human IgG remained absent from nasal washes, 5 days post-inoculation 

(Figure 5.1 B). IP injection of IVIG followed by experimental lung infection 3hrs later resulted in 

detecdable levels of human IgG in BALF (Figure 5.1 C). There was a much greater accumulation of 

human IgG in the BALF 24hrs following infection with 1x107 CFU S. pneumoniae TIGR4 compared to 

2.5hrs after inoculation of 5x105 CFU (Figure 5.1). These data indicate that in this model human IgG 

was only detectable in the alveolar space post-infection following IVIG treatment. Bronchoalveolar 

lavages were performed 24hrs following IVIG adminisaration to assess if a longer time period post-

treatment would allow human IgG accumulation in BALF. 24hrs following treament human IgG 

remained absent from the BALF of IVIG treated mice without infection.  
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Figure 5.1: Distribution of human IgG in vivo following IVIG treatment.  

 

(A) Concentration of human IgG measured by ELISA, in sera of IVIG treated mice pre-challenge. (B) 

Human IgG concentration in nasal washings of IVIG treated mice pre and 5 days post IN colonisation 

with 1x107 CFU S. pneumoniae TIGR4. (C) Human IgG concentration in BALF 0, 2.5 (low dose) and 

24hrs (high dose) post IN challenge with S. pneumoniae TIGR4. (D) Human IgG concentration in BALF 

24hrs following IVIG treatment without challenge (Lines represent mean). Results are from one 

experiment at each time-point, except 24hrs which was performed twice.   
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To evaluate whether the absence of human IgG from the alveolar space in uninfected mice could be 

due to a species difference affecting the transit of human IgG across the murine alveolar epithelium, 

hyperimmune anti-S. pneumoniae mouse serum was passively transferred into mice by IP 

inoculation. A hyperimmune serum was obtained from mice 28 days after vaccination with the 

replication deficient TIGR4Δpab strain. 24hrs following passive vaccination with murine 

hyperimmune sera there was an increase in S. pneumoniae specific IgG compared to non-vaccinated 

controls was detected in BALF (Figure 5.2), suggesting that murine IgG can enter the alveolar space 

in the absence of inflammation. From these samples the relative concentration of S. pneumoniae 

specific IgG in the sera compared to BALF of passively vaccinated mice could be calculated. Using this 

ratio the concentration of human IgG that would be expected in BALF of mice 3hrs following IVIG 

treatment was estimated, based on the concentration in the sera (Figure 5.2).The BALF 

concentration of human IgG 24hrs following challenge in IVIG treated mice was significantly greater 

than the estimated concentration, based on the concentration of IgG in the sera at this time point 

post infection (Figure 5.2). This suggests that challenge with S. pneumoniae TIGR4 and associated 

inflammation may facilitate human IgG leak into the alveolar space.  To assess the potential 

contribution of alveolar permeability to IgG accumulation in the BALF following challenge with S. 

pneumoniae, albumin concentration in BALF from infected mice was measured as marker of 

epithelial permeability. Human IgG concentration in lavage samples of individual mice following 

challenge closely correlated with the albumin concentration in the same samples (Figure 5.2). These 

data suggest that in this murine model human IgG accumulates in the alveolar space following S. 

pneumoniae challenge In line with increased alveolar permeability.   
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Figure 5.2: Distribution of IgG following passive transfer of murine immune sera.  

(A) Whole cell ELISA titre of anti-TIGR4 IgG in sera of mice 3hrs following IP administration of 

hyperimmune anti-pneumococcal sera. (B) ELISA titre of anti-TIGR4 IgG in BALF of mice 3hrs 

following IP administration of hyperimmune anti-pneumococcal sera. (C) Estimated concentration of 

human IgG in BALF based on the concentration of IgG in the sera and actual IgG concentration 

detected in BALF 24hrs post-challenge with S. pneumoniae TIGR4. (D) Linear regression of human 

IgG concentration in BALF and albumin concentration in BALF, measured by ELISA 24hrs following IN 

infection with S. pneumoniae TIGR4. (P value represents F-test assessing difference of slope 

compared to zero, error bars represent standard error). Results are from one experiment.  
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5.1.2 Protective effect of IVIG  

 

To assess at what level passively transferred human IgG (IVIG) may protect against S. pneumoniae 

infection, mice were challenged with different models of infection 3hrs post- IVIG treatment. Passive 

transfer of human IgG failed to protect against experimental colonisation with S. pneumoniae TIGR4; 

CFU in nasal washes were not reduced 5 days post-experimental colonisation in IVIG treated mice 

compared to controls (Figure 5.3). Similarly, IVIG treatment failed to reduce CFU in the lungs or BALF 

at an early time point (2.5hrs) following challenge with 5x105 CFU S. pneumoniae TIGR4 (Figure 5.3). 

This lack of protection in the nasopharynx and early in the lungs perhaps reflects the low distribution 

of human IgG at these body compartments and time points post-infection. At 24hrs following IN 

infection with 1x107 CFU prior IVIG treatment improved clearance of S. pneumoniae from the lung, 

and was powerfully protective against septicaemia compared to PBS treated controls (Figure 5.3). 

IVIG treatment had no effect on bacterial numbers in the BALF of mice 24hrs following challenge 

(Figure 5.3). The ability of human IgG to clear S. pneumoniae from the blood following challenge was 

assessed by IV challenge with S. pneumoniae TIGR4. 4hrs following IV challenge with 5x106CFU S. 

pneumoniae, 80% of mice treated with IVIG had cleared S. pneumoniae from the blood, whereas S. 

pneumoniae bacteraemia was detectable in all PBS treated controls (Figure 5.3).These data indicate 

that naturally-acquired human IgG can protect mice from lung infection with S. pneumoniae, 

reducing bacterial numbers in the lung and also strongly inhibits the development of bacteraemia. 
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Figure 5.3: Bacterial CFU in S. pneumoniae infected mice, following IVIG treatment. 

                                                                                                 

(A) CFU in nasal washes 5-days post IN colonisation with 1x107 CFU S. pneumoniae TIGR4 in mice 

treated with IVIG or PBS. (B) CFU in lungs and BALF 2.5hrs post IN challenge with 5x105 CFU S. 

pneumoniae TIGR4. (C) CFU in lungs, blood and BALF of PBS and IVIG treated mice 24hrs post IN 

challenge with 1x107CFU S. pneumoniae TIGR4. (D) CFU in blood 4hrs post IV challenge with 5x106 

CFU S. pneumoniae TIGR4 in IVIG or PBS treated mice. (P values represent Student’s unpaired T-test, 

lines represent mean). Results are from one experiment at except those presented in Figure C which 

were performed twice.   
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5.1.3 Inflammatory responses to infection in IVIG treated mice 

  

There are a number of mechanisms by which IVIG may mediate in vivo protective effects against S. 

pneumoniae lung infection. IVIG has been demonstrated to have immunomodulatory capacities 

which may mediate protection from infection separately to improved bacterial opsonisation 

(Hagiwara et al., 2008). However, in this model of infection IVIG treatment didn’t appear to 

significantly affect the inflammatory response to S. pneumoniae lung infection. Cell numbers in the 

BALF of IVIG treated mice were unchanged compared to PBS controls (Figure 5.4), as were levels of 

the pro-inflammatory cytokine TNF-α in lung tissue 24hrs post-infection with S. pneumoniae TIGR4 

(Figure 5.4). These data therefore suggest that the protective effects of IVIG in this model were 

probably not due to modulation of the inflammatory response within the lung. 
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Figure 5.4: Inflammatory responses to S. pneumoniae in IVIG treated mice. 

(A) Total cell counts in BALF 24hrs following IN challenge with 1x107 CFU S. pneumoniae TIGR4 in PBS 

and IVIG treated mice. (B) Concentration of TNF-α in BALF, measured by ELISA, 24hrs following 

challenge with 1x107 CFU S. pneumoniae TIGR4 in PBS and IVIG treated mice. (P values represent 

Student’s unpaired T-test, error bars represent SD). 
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5.1.4 Role of neutrophils in IVIG mediated protection  

 

Neutrophils were the main cell type in the alveolar space 24hrs following IN infection with S. 

pneumoniae TIGR4 (Figure 5.4). To determine if they were important for the protective effect of 

human IgG neutrophils were depleted prior to challenge in IVIG or PBS treated mice.  Administration 

of a monoclonal antibody against the neutrophil surface-marker Ly-6G, 24hrs prior to challenge, led 

to a 20-fold reduction in neutrophil numbers in the BALF 24hrs post-infection (Figure 5.5).  

Neutrophil depletion abolished the protective effect of IVIG treatment on S. pneumoniae CFU within 

the lung (Figure 5.5), suggesting an important role for neutrophils in protection from lung infection 

mediated by naturally-acquired human IgG. Interestingly neutrophil depletion also protected control 

mice from the development of bacteraemia following S. pneumoniae TIGR4 challenge (Figure 5.5), 

suggesting that neutrophils may contribute to the invasion of S. pneumoniae into the blood which in 

the absence of human IgG is not cleared in this model. 
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Figure 5.5: Effect of IVIG in vivo following neutrophil depletion.  

(A) Neutrophil numbers in BALF of mice treated with 1A8 anti-Ly6G neutrophil-depleting antibody or 

PBS, 24hrs after challenge with 1x107 CFU S. pneumoniae TIGR4. (B) CFU in lungs of neutrophil 

depleted mice treated with PBS or IVIG, 24hrs after challenge with 1x107 CFU S. pneumoniae TIGR4, 

compared to untreated controls. (C) CFU in blood of neutrophil depleted mice treated with PBS or 

IVIG, 24hrs after challenge with 1x107 CFU S. pneumoniae TIGR4. (D) CFU in BALF of neutrophil 

depleted mice treated with PBS or IVIG, 24hrs after challenge with 1x107 CFU S. pneumoniae TIGR4. 

(P values represent Student’s unpaired T-test (A) or one way ANOVAs with Tukey’s post-test to 

compare columns (B-D)). Results are representative of two independent experiments.  
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5.1.5 Mechanisms of clearance from blood 

 

Splenic macrophages play an important role in the clearance of bacteria from the blood (Kang et al., 

2004, Aichele et al., 2003). Therefore the role of these cells in the enhanced clearance of S. 

pneumoniae TIGR4 from the blood observed in mice treated with IVIG was investigated. IV 

administration of liposomal clodronate was used to specifically deplete splenic macrophages (van 

Rooijen and van Nieuwmegen, 1984), reducing the number of F4/80+ve macrophages in the spleen 

of CD1 mice by 50%, as assessed by flow-cytometry (Figure 5.6). Depletion of splenic macrophages 

by IV administration of liposomal clodronate impaired the ability of IVIG treated mice to clear S. 

pneumoniae TIGR4 from the blood following IV challenge with 5x105 CFU (Figure 5.6). IVIG treated 

mice that received liposomes containing PBS had no detectable bacteria in the blood; whereas 66% 

of IVIG treated mice that received liposomal clodronate had detectable bacteraemia. These data 

indicate that naturally-acquired IgG requires intact splenic macrophages for full clearance of S. 

pneumoniae from the blood. 
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Figure 5.6: Clearance of S. pneumoniae following clodronate depletion of macrophages. 

(A) Percentage of F4/80+ macrophages in the spleens of mice treated IV with liposomal clodronate 

or liposomal PBS. (B) CFU 4hrs following IV challenge with 5x105 S. pneumoniae TIGR4 in the blood of 

IVIG treated mice, treated with liposomal clodronate or liposomal PBS. (P values represent Student’s 

unpaired T-test, error bars represent SD). Results are representative of two independent 

experiments. 
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5.1.6 Effect of specific antibody depletion on protection 

 

Previous data (Figure 4.3) indicate that incubation of IVIG with S. mitis expressing a type-4 capsule 

(S.mitisT4cps) can deplete IVIG of anti-capsular antibody.  To assess if IVIG depleted of IgG specific 

for the serotype 4 capsular polysaccharide was still protective in vivo, mice were treated with 

depleted IVIG or PBS.  3hrs following administration of IVIG mice were challenged IN with 1x107 CFU 

S. pneumoniae TIGR4. The numbers of neutrophils or macrophages in the BALF of mice 24hrs 

following challenge were not significantly altered by anti-CPS ST4 depleted IVIG treatment (Figure 

5.7). IVIG depleted of anti-type-4 CPS IgG was still able to significantly enhance bacterial clearance 

from the blood 24hrs following IN challenge (Figure 5.7), and there was also a trend towards 

reduced S. pneumoniae CFU in the lungs post-infection (Figure 5.7). These data indicate that 

naturally-acquired IgG to the polysaccharide capsule is not required for the protective effect of IVIG, 

at least in the blood, and strongly supports the hypothesis that naturally-acquired IgG to non-

capsular targets is protective against S. pneumoniae infection.   
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Figure 5.7: IVIG depleted of anti-CPS IgG in vivo.   

(A)Total cell counts in BALF 24hrs following IN challenge with 1x107 CFU S. pneumoniae TIGR4 in 

mice treated with PBS or S.mitisT4cps absorbed IVIG. (B) CFU in blood24hrs following IN infection 

with 1x107 CFU S. pneumoniae TIGR4 in mice treated with PBS or absorbed IVIG.  CFU in lungs 24hrs 

following IN infection with 1x107 CFU S. pneumoniae TIGR4 in mice treated with PBS or absorbed 

IVIG. (P values represent Student’s unpaired T-test, error bars represent SD). Results are from one 

experiment. 
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5.1.7 Chapter summary 

 

Passive transfer of IVIG into mice allowed assessment of the protective effect of naturally-acquired 

human IgG against S. pneumoniae infection in vivo. In this model human IgG was not detectable in 

the alveolar space without infection. There may therefore be an additional role for pre-existing IgG 

in the alveolar space in the initial clearance of S. pneumoniae from the lung. IVIG treatment partially 

protected mice from S. pneumoniae lung infection and very strongly against bacteraemia, lung 

protection required neutrophils and blood protection macrophages. Since protection in this model 

appeared to be dependent upon phagocytes these data indicate that in vitro assays of phagocytosis 

(used in the previous chapter) are relevant for assessing the protective effects of IVIG. 

Importantly passive administration of IVIG depleted of IgG to the type-4 polysaccharide was still 

protective against S. pneumoniae TIGR4 infection, suggesting the protective effects of naturally-

acquired IgG may target non-capsular antigen. This is in agreement with data presented in chapter 4, 

demonstrating IVIG depleted of type-4 capsular polysaccharide still bound to the surface of S. 

pneumoniae TIGR4. Although these data do not confirm that the non-capsular antigens targeted by 

IVIG in vivo are pneumococcal surface proteins, the in vitro data presented in chapter 3 and 4 

strongly support that they are important targets for naturally-acquired anti-S. pneumoniae IgG.  
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6 Results (4): Acquired immunity to non-bacteraemic 

pneumonia 
 

Passive transfer of IVIG to mice pre-challenge with S. pneumoniae TIGR4 demonstrated that IgG has 

a role to play in protection from experimental lung infection. Previous data using murine models has 

established that antibody is the dominant mechanism preventing systemic infection after prior 

colonisation. However humoral immunity represents only one mechanism of naturally-acquired 

immunity that may be responsible for protection within the lung. An aim was therefore to develop a 

model of murine colonisation followed by challenge using a 19F strain of S. pneumoniae (EF3030) 

that causes lung infection without causing bacteraemia (Briles et al., 2003). This would allow 

interrogation of the immune mechanisms induced by colonisation that may be protective against 

subsequent lung infection independently of the mechanisms required for prevention of 

bacteraemia.   
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6.1.1 Assessment of EF3030 as model of non-bacteraemic pneumonia 

 

To assess if IN infection with S. pneumoniae EF3030 was an appropriate model of non-invasive S. 

pneumoniae pneumonia, mice were challenged IN with EF3030 or PBS in a volume of 50µl. Mice 

challenged with EF3030 had neutrophil infiltration into the alveolar space on histology (Figure 6.1), 

and a large increase in neutrophil numbers in BALF 24hrs post-infection (Figure 6.2). CFU counts 

confirmed that EF3030 was detectable in lung tissue and BALF samples (Figure 6.2), but importantly 

no bacteria were detectable in the blood 24hrs after challenge.  These data indicate that challenge 

with S. pneumoniae EF3030 recapitulates the import features of non-bacteraemic pneumonia, 

including cellular infiltration into the lungs and the absence of bacteria from the blood.     
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Figure 6.1: Lung histology following EF3030 challenge. 

Histological lung sections stained with Haematoxylin and Eosin, from mice 24hrs following IN 

challenge with (A) PBS or (B) 2x107 CFU of S. pneumoniae EF3030. (Arrow indicates cellular 

infiltration in to the alveolar space). Images are representative of the lungs from  two uninfected 

mice (Figure A)  and four mice infected with EF3030 (Figure B). 
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Figure 6.2: Non-invasive lung infection with S. pneumoniae EF3030.   

(A) CFU in lungs of C57/BL6 mice 24hrs following IN challenge with 2x107 CFU of S. pneumoniae 

EF3030 or PBS. (B) CFU in BALF of mice 24hrs following challenge with S. pneumoniae EF3030 or PBS. 

(C) CFU in blood of mice 24hrs following challenge with S. pneumoniae EF3030 or PBS. (D) Neutrophil 

numbers in BALF of mice 24hrs following IN challenge with S. pneumoniae EF3030 or PBS. (Lines 

represent mean). Results are from one experiment. 
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6.1.2 Nasopharyngeal colonisation with EF3030 

 

To assess if S. pneumoniae EF3030 could colonise the nasopharynx, C57/BL6 mice were 

experimentally colonised by IN inoculation of 1x107 CFU in 10μl of PBS, and culled at days 5, 13 and 

30 post-infection. EF3030 was detectable in nasal washes at 5 days and 13 days post-inoculation 

(Figure 6.3) and had been cleared by 30 days, demonstrating that EF3030 can colonise the nares of 

C57/BL6 mice for up to 13 days. Other models of murine colonisation with S. pneumoniae that 

induce an adaptive immune response have demonstrated colonisation for similar lengths of time 

(Cohen et al., 2011), suggesting that this model of colonisation with S. pneumoniae EF3030 is 

appropriate for assessing potentially protective immune responses.     
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Figure 6.3: S. pneumoniae in nares of mice post-colonisation.  

CFU in nasal washes of C57/BL6 mice at 5, 13, and 30 days following IN inoculation with 1x107 CFU S. 

pneumoniae EF3030 in 10μl PBS. (Lines represent mean).  Results are from one experiment at each 

time-point. 
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6.1.3 Protective effect of colonisation  

 

To assess if colonisation with S. pneumoniae EF3030 is protective against subsequent lung infection, 

mice were either experimentally colonised with EF3030 or sham colonised with PBS. 30 days 

following colonisation mice were challenged IN with EF3030 and culled at 4, 24 and 72hrs post-

infection. CFU were enumerated in the lungs and BALF of mice at each time point post-infection. 

4hrs following colonisation there was no difference in bacterial numbers in colonised or control mice 

(Figure 6.4). At 24hrs post-infection there was a significant reduction in bacterial numbers in the 

BALF and lungs of previously colonised mice (Figure 6.4). At 72hrs following S. pneumoniae challenge 

a significant reduction in bacterial burden remained in the lungs, but not BALF of colonised mice 

(Figure 6.4). Together these data demonstrate that colonisation with EF3030 is partially protective 

against subsequent S. pneumoniae lung infection, significantly reducing bacterial burden in BALF and 

lungs at 24hrs and lungs 72hrs post-infection.  
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Figure 6.4: CFU following lung infection in colonised mice.  

(A,B) CFU in BALF and lungs of mice colonised with EF3030 or PBS, 4hrs following challenge with 

2x107 CFU S. pneumoniae EF3030. (C,D) CFU in BALF and lungs of mice colonised with EF3030 or PBS, 

24hrs following challenge with 2x107 CFU S. pneumoniae. (E,F) ) CFU in BALF and lungs of mice 

colonised with EF3030 or PBS, 72hrs following challenge with S. pneumoniae. (P values represent 

Student’s unpaired T-test, lines represent mean). Results are from one experiment at each time-

point, except 24hrs which was repeated twice. 
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6.1.4 Antibody responses to colonisation  

 

In previous models of highly invasive lung-infection the development of antibodies following 

colonisation was essential for protection.  To explore the potential role for antibodies in the 

protection seen in this model, anti-pneumococcal antibody responses to colonisation were assessed. 

There was a significant increase in the binding titre of anti-EF3030 IgG in the sera of mice following 

colonisation (Figure 6.5) as assessed by whole cell ELISA. In colonised mice there was not a 

significant rise in IgG specific for the type-19F (EF3030) capsular polysaccharide as measured by 

ELISA (Figure 6.5). The concentration of IgM in sera recognising EF3030 by whole cell ELISA was also 

unchanged following colonisation (Figure 6.5). In these assays anti-EF3030 IgA was not detected in 

the sera or BALF of colonised or control mice by whole cell ELISA.  
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Figure 6.5: Serological responses to EF3030 colonisation.  

(A) Anti-EF3030 IgG in the sera (diluted 1:100) of mice 13 and 30 days post-colonisation with 1x107 

CFU S. pneumoniae EF3030 by whole cell ELISA compared to uncolonised controls, represented as 

OD405-630. (B) Anti-19F polysaccharide IgG in the sera (diluted 1:100) of mice 30 days post-

colonisation with S. pneumoniae EF3030 or PBS by ELISA represented as OD405-630. (C) Anti-EF3030 

IgM in the sera (diluted 1:150) of mice 30 days post-colonisation with S. pneumoniae EF3030 or PBS 

by whole cell ELISA represented as OD405-630. (P values represent Student’s unpaired T-test). Results 

are from one experiment at each time-point, ELISAs were repeated twice. 
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To assess if IgG responses could be responsible for the protection against infection within the lung, 

EF3030 specific and total murine IgG was measured in BALF following challenge. In the absence of 

infection EF3030 colonised mice had significantly greater EF3030-specific IgG detected in BALF 

(Figure 6.6). 4hrs post-challenge the concentration of EF3030-specific IgG remained significantly 

higher in colonised mice compared to non-colonised controls (Figure 6.6), and was significantly 

higher than in colonised mice pre-challenge (Figure 6.6). From 4 to 24hrs following infection the 

concentration of EF3030-specific IgG in the BALF fell (Figure 6.6). The concentration total murine IgG 

in the BALF was also measured by ELISA. In colonised mice there was an early increase in total IgG at 

4hrs that was not seen in uncolonised controls (Figure 6.6). By 24hrs post infection the total IgG 

concentration in the BALF of both groups was similar (Figure 6.6). Measurement of total IgG 

indicates that the reduction in pathogen specific IgG observed between 4 and 24hrs was not driven 

by global reduction in IgG concentration and may therefore be due to the adsorption of specific IgG 

onto S. pneumoniae. The increase in total IgG at 4hrs post-challenge may be responsible for the 

observed increase in EF3030-specific IgG in colonised mice at this time point. To assess if this 

increase in total IgG may be related to alveolar epithelial permeability albumin levels in the BALF 

were measured post-infection by ELISA. There was a strong correlation between the concentration 

of total IgG and albumin concentration in the BALF of colonised mice (Figure 6.6), indicating that IgG 

may accumulate in the BALF of mice in line with increased alveolar permeability following challenge.  
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Figure 6.6: Antibody dynamics in bronchoalveolar lavage fluid following challenge. 

(A) Anti-EF3030 IgG in BALF of mice colonised with EF3030 or PBS 0, 4 and 24hrs post- IN challenge 

with 2x107 CFU S. pneumoniae EF3030, by whole cell ELISA. (B) Total murine IgG in BALF of mice 

colonised with EF3030 or PBS 0, 4 and 24hrs post- IN challenge with 2x107 CFU S. pneumoniae 

EF3030, by whole cell ELISA. (C) Linear regression of total IgG concentration compared to albumin 

concentration in the BALF of EF3030 colonised mice 4hrs following EF3030 challenge. (P values 

represent one-way ANOVAs and Tukey’s post-test to compare columns, error bars represent SD). 

Results are from one experiment at each time-point, ELISAs were repeated twice. 
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6.1.5 Identification of S. pneumoniae target antigens 

 

Increased IgG levels in the BALF of colonised mice following challenge suggest a potential role for IgG 

in mediating the protection from lung infection observed in previously colonised mice. To investigate 

the potential targets of EF3030 specific IgG in colonised mice responses to purified pneumococcal 

polysaccharide (type 19F) and pneumococcal proteins were assessed. Very low levels of IgG to type 

19F CPS were detectable in the sera of sham colonised mice (Figure 6.5). Though there was a trend 

towards increased anti-CPS-specific IgG in the sera of EF3030 colonised mice, this was not 

significant, and levels of anti-CPS IgG remained low following colonisation (Figure 6.5). Responses to 

pneumococcal proteins following colonisation were initially assessed by Western blot. Probing 

lysates of EF3030 with sera from sham colonised or EF3030 colonised mice indicated the 

development of IgG to specific S. pneumoniae protein targets following colonisation with EF3030 

(Figure 6.7). Sera from sham colonised mice reacted with a single band at approximately 65KDa, 

whereas sera from different individual mice colonised with EF3030 gave a number of bands including 

at approximately 70, 55, 40, 35 and 25KDa (Figure 6.7). The pattern of responses in sera from 

colonised mice displayed some differences, with certain bands weaker or absent for sera from 

individual mice but present in others (Figure 6.7). To quantify antibody responses to different 

proteins and to identify some of the specific protein targets for post-colonisation IgG, the Luminex 

assay was used. Both sera and BALF from sham colonised mice displayed minimal IgG binding to all 

proteins (Figure 6.7). Sera and BALF from EF3030 colonised mice had significant IgG responses to the 

pneumococcal proteins PhtD, PsaA and PpmA (Figure 6.7).  

These data demonstrate that following colonisation with EF3030 mice develop IgG responses to a 

limited number of protein antigens, including the surface proteins PhtD, PsaA and PpmA. Western 

blotting indicated IgG responses to more than 3 proteins following EF3030 colonisation (Figure 6.7). 

These responses may be to proteins not included on the Luminex assay or to proteins that show 
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allelic variation between EF3030 and the strains from which the Luminex proteins were purified 

from (Table 2.5).  
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Figure 6.7: S. pneumoniae protein targets of IgG in colonised mice. 

 (A,B) Western blots of IgG binding to whole cell lysates of S. pneumoniae EF3030 probed with sera 

from individual mice colonised with PBS or EF3030 pre-infection. (C,D) Luminex assay of IgG binding 

to recombinant pneumococcal proteins in the sera (1:100) and BALF (1:1) of different individual mice 

colonised with PBS or EF3030 pre-infection, MFI represents binding of anti-mouse IgG-PE secondary 

antibody. (Columns represent mean of 5 mice per group, error bars represent SD). Results are from 

one experiment, Luminex assays were performed in duplicate.  
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6.1.6 Effect of colonisation on cellular responses in lungs of challenged mice 

 

To assess if colonisation also affected cellular responses to subsequent lung infection cell numbers in 

BALF were quantified by differential cell counting, under light microscopy. Colonisation had no effect 

on baseline numbers of neutrophils or macrophages in BALF prior to challenge (Figure 6.8). At 4hrs 

following lung challenge the numbers of neutrophils in the BALF of mice previously colonised with 

EF3030 was significantly higher than PBS colonised controls (Figure 6.8). By 24hrs post-challenge 

neutrophil numbers in colonised and control mice were similar and both significantly enhanced 

compared to 4hrs post-challenge (Figure 6.8). There were no significant differences in macrophage 

numbers at any time point post-challenge in previously colonised or control mice (Figure 6.8). These 

changes in cell numbers indicate that colonisation may affect the neutrophil response to subsequent 

challenge, with more neutrophils appearing in the alveolar space early (4hrs) post-challenge in 

colonised mice.   

 

 

  



177 
 

 

 

 

 

Figure 6.8: Cell numbers in bronchoalveolar lavage fluid of colonised mice following challenge. 

(A) Neutrophil numbers in BALF of mice colonised with PBS or EF3030 0, 4 and 24hrs following IN 

infection with 2x107 CFU S. pneumoniae EF3030. (B) Macrophage numbers in BALF of mice colonised 

with PBS or EF3030 0, 4 and 24hrs following IN infection with 2x107 CFU S. pneumoniae EF3030. (P 

value represent Student’s unpaired T-test, error bars represent SD). Results are from one 

experiment at each time point, except 24hrs which was repeated twice.  
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6.1.7 Effect of colonisation on cytokine responses in the lung    

 

A number of different cytokines may have a role to play in immunity to pneumococcal lung infection, 

and may therefore mediate the improved protection from lung infection demonstrated following 

nasopharyngeal colonisation of mice. As previously colonised mice displayed an enhanced neutrophil 

response to challenge, the concentration of the neutrophil chemoattractant KC, (the murine 

functional homologue of IL-8) was measured in lung tissue homogenates. 4hrs post-challenge there 

were significantly higher levels of KC in the lungs of EF3030 colonised mice compared to controls 

(Figure 6.9). By 24hrs following challenge the concentration of KC in lung tissue was lower than at 

4hrs for both groups and there was no significant difference in KC concentration between EF3030 

colonised mice and controls (Figure 6.9). The pro-inflammatory cytokine TNF-α has an important 

role in the initial immune response to S. pneumoniae lung infection and may affect the release of 

chemokines including KC from epithelial cells (Sun et al., 2007). Colonised mice demonstrated 

significantly higher levels of TNF-α in lung homogenates both at 4 and 24hrs following challenge with 

S. pneumoniae EF3030 compared to controls (Figure 6.9).  

Th17 responses and IL-17 in-particular have been demonstrated to be important for acquired 

immunity to S. pneumoniae within the nasopharynx (Zhang et al., 2009). IL-17 was therefore 

measured in the lungs of colonised and control mice following challenge with S. pneumoniae EF3030. 

4hrs post-infection IL-17 was detectable in lung homogenates of colonised mice but not in controls 

(Figure 6.10). Similarly IL-17 was only detectable in the lungs of colonised mice at 24hrs post-

infection (Figure 6.10). 3 days following challenge IL-17 was measureable in sham colonised mice, 

but remained significantly increased in EF3030 colonised mice (Figure 6.10). The cytokine IL-23 has a 

role in Th17 cell differentiation and initiation of IL-17 production (Ma et al., 2010). Levels of IL-23 in 

lung homogenates 4hrs following S. pneumoniae challenge were significantly increased in previously 

colonised mice, by 24hrs post-infection IL-23 concentrations in the lungs of both groups were similar 

(Figure 6.10).       
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Figure 6.9: KC and TNF-α responses in colonised mice following challenge. 

 (A,B) Concentration (pg/ml)  of TNF-α in the lung homogenates of mice colonised with EF3030 or 

PBS 4 and 24hrs following challenge with 2x107 CFU S. pneumoniae EF3030, measured by ELISA. (C,D) 

Concentration (pg/ml) of KC in the lung homogenates of mice colonised with EF3030 or PBS, 4 and 

24hrs following challenge with 2x107 CFU S. pneumoniae EF3030, measured by ELISA. (P values 

represent Student’s unpaired T-test). ELISA titres are representative of two independent 

experiments on the same samples. 
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Figure 6.10: IL-23 and IL-17 responses in colonised mice following challenge. 

(A,B) Concentration (pg/ml) of IL-23 in the lung homogenates of mice colonised with EF3030 or PBS, 

4 and 24hrs following challenge with 2x107 CFU S. pneumoniae EF3030, by ELISA. (C-E) Concentration 

(pg/ml) of IL-17 in the lung homogenates of mice colonised with EF3030 or PBS, 4, 24 and 72hrs 

following challenge with 2x107 CFU S. pneumoniae EF3030, measured by ELISA. (P values represent 

Student’s unpaired T-test). ELISA titres are representative of two independent experiments. 
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Differences in the regulatory cytokine IL-10 have previously been demonstrated as important in 

mediating susceptibility to experimental S. pneumoniae infection in mice (Neill et al., 2012). 

Therefore IL-10 concentration in lung homogenates at different time points post EF3030 infection 

was assessed. 4hrs post-infection there were significant increases in IL-10 in the lungs of mice 

previously colonised with EF3030, compared to PBS controls (Figure 6.11). However, at 24hrs post-

infection there was no difference in lung IL-10 concentrations between EF3030 colonised or control 

mice.  In colonised mice IL-10 levels remained significantly higher 3 days post S. pneumoniae 

infection, compared to controls (Figure 6.11). These data indicate that EF3030 colonisation appears 

to facilitate an early IL-10 response 4hrs following challenge, prior colonisation may also allow mice 

to maintain increased IL-10 responses for up to 72hrs post-challenge. These responses could be 

significant for the contribution to protection from S. pneumoniae EF3030 pneumonia, afforded by 

prior colonisation.   

  



182 
 

     

  

 

Figure 6.11: IL-10 responses in colonised mice following challenge.  

(A-C) Concentration of IL-10 in the lung homogenates of mice colonised with EF3030 or PBS, 4  24hrs 

and 72hrs following challenge with 2x107 CFU S. pneumoniae EF3030, measured by ELISA. (P values 

represent Student’s unpaired T-test). ELISA titres are representative of two independent 

experiments on the same samples. 
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Prior colonisation appears to have an effect on a number of different cytokine responses during 

subsequent challenge. Responses in previously colonised mice compared to uncolonised controls are 

summarised in Table 6.1, and include increases in TNF-α, KC, IL-23, IL-17 and IL-10. Enhanced in Th17 

type immune responses (IL-17 and IL-23) in the lung are of particular interest as they have been 

shown to be protective against S. pneumoniae in the nasopharynx following experimental 

colonisation. IL-17 was not detected in the lungs of colonised or control mice prior to EF3030 lung 

infection, suggesting that the observed responses are to subsequent infection rather than increased 

baseline cytokine levels following colonisation.    

 

 

Cytokine 4hrs 24hrs 72hrs 

KC ↑ → ND 

TNF-α ↑ ↑ ND 

IL-23 ↑  ND 

IL-17 ↑ ↑ ↑ 
IL-10 ↑ → ↑ 

 

 

Table 6.1: Summary of cytokine responses in lung tissue of previously colonised mice at different 

time points post IN infection with 2x107 CFU S. pneumoniae EF3030, relative to uncolonised controls 

(↑= increase,→ = no change, ND= not done).  

  



184 
 

6.1.8 Relevance of antibody, neutrophils, CD4 cells and IL-17 for protection  

 

A number of arms of the protective immune response to lung infection are enhanced by prior 

colonisation with S. pneumoniae EF3030. It is not clear thus far which of these may be important in 

mediating the protective effect of colonisation against subsequent lung infection. EF3030 

colonisation and challenge experiments were therefore repeated in mice that had undergone 

cellular or cytokine depletion strategies prior to challenge, or in μMT (B-cell deficient) mice.    

6.1.8.1 Absence of antibody 

 

Colonisation with S. pneumoniae EF3030 resulted in the development of a specific IgG response.  To 

assess if this response was required for protection from lung infection, μMT (B-cell deficient) mice 

were colonised with EF3030. Whole cell ELISAs on sera from colonised mice demonstrated the 

absence of a specific IgG response to colonisation in these mice (Figure 6.12). 24hrs following 

EF3030 challenge there was no difference in bacterial numbers in the BALF or lungs of previously 

colonised or sham colonised μMT mice (Figure 6.12). This suggests that anti-pneumococcal IgG 

responses are required for protection from lung infection with S. pneumoniae EF3030, following 

colonisation.  
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Figure 6.12: CFU in antibody deficient mice following challenge.  

(A,B,C) CFU in BALF, lungs and blood of μMT (B-cell deficient) mice colonised with EF3030 or PBS 

24hrs following challenge with 2x107 CFU S. pneumoniae. (D) Concentration of anti-EF3030 IgG in the 

sera of WT or μMT (B-cell deficient) mice colonised with 1x107 CFU EF3030 measured by whole cell 

ELISA.  (P values represent Student’s unpaired T-test). Results are from one experiment. 

  

PBS colonised EF3030 colonised 
0

1

2

3

4

5

6

7

P = 0.9429

L
o

g
1
0
 C

F
U

/m
l 
B

A
L

F

PBS colonised EF3030 colonised 
0

1

2

3

4

5

P = 0.4682

L
o

g
1
0
 C

F
U

 L
u

n
g

s

PBS colonised EF3030 colonised 
0

1

L
o

g
1
0
 C

F
U

/m
l 
B

lo
o

d

Sera

Colonised WT Colonised MT
0

1000

2000

3000

4000

5000

6000

7000

A
n

ti
-E

F
3

0
3

0
 I

g
G

 t
it
re

 (
O

D
 0

.1
)

A B 

C D 



186 
 

6.1.8.2 Absence of neutrophils 

 

Neutrophils were the most abundant cell type in the BALF following EF3030 challenge. Colonised 

mice also displayed significantly greater neutrophil numbers in the BALF at 4hrs post-infection. To 

assess if neutrophils were important in the observed protection from lung infection mice previously 

colonised with EF3030 or PBS were depleted of neutrophils prior to challenge. Administration of 

anti-Ly6G monoclonal antibody via IP inoculation 24hrs prior to challenge led to an 8-fold reduction 

in neutrophils in the BALF of mice 24hrs post S. pneumoniae infection, as assessed by differential cell 

counting under light microscopy (Figure 6.13). Neutrophil depletion abrogated the protective effect 

of colonisation, with no significant difference in bacterial numbers in the BALF and lungs of colonised 

compared to control mice (Figure 6.13). A few of these neutrophil depleted mice had S. pneumoniae 

EF3030 in the blood; however the vast majority remained free of detectable bacteraemia.  
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Figure 6.13: CFU in neutrophil depleted mice following challenge. 

(A-C) CFU in BALF, lungs and blood of colonised or control mice treated with neutrophil-depleting 

antibody (1A8, anti-Ly6G) 24hrs following challenge with 2x107 CFU S. pneumoniae. (D) Neutrophils 

in the BALF 24hrs following challenge with 2x107 CFU S. pneumoniae EF3030 in EF3030 colonised 

mice treated with 1A8 (anti-Ly6G) neutrophil depleting antibody or PBS 24hrs prior to infection. (P 

values represent Student’s unpaired T-test, lines represent mean, error bars represent SD (D)). 

Results are from one experiment.  
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6.1.8.3 Absence of CD4+ cells 

 

As previously discussed Th17 cells have been implicated in immunity to secondary pneumococcal 

colonisation. To assess if CD4+ T-cells were important in this model of protection from lung infection 

these cells were depleted prior to EF3030 challenge by administration of an anti-CD4 monoclonal 

antibody (GK 1.5), given as two does 48 and 24hrs prior to challenge. The efficacy of CD4+ T-cell 

depletion was assessed by flow-cytometry analysis of lung homogenates post-infection. Antibody 

depletion led to a 6 fold reduction in the number of CD4+ cells in the lung, compared to undepleted 

controls (Figure 6.14). This reduction could reflect antibody masking of CD4 cells rather than 

reduction in numbers of CD4+ cells, so depletion of CD4+ cells was confirmed by flow-cytometry to 

show a reduction in CD3+ CD8- cells (Figure 6.14).  

S. pneumoniae EF3030 CFU in the BALF and lungs of mice 24hrs following IN challenge were not 

significantly different in previously colonised or control mice following CD4+ T-cell depletion (Figure 

6.15), indicating that CD4+ cells are important in mediating protection from lung infection following 

EF3030 colonisation. CD4+ T-cell depletion also abrogated the IL-17 response to challenge 24hrs 

following challenge in colonised mice, indicating that CD4+ T-cells are likely the cellular source of IL-

17 in the lungs of colonised mice, at least at this time point following EF3030 challenge (Figure 6.15). 

The effects of CD4+ T-cell depletion on cytokine or cellular responses 4hrs following S. pneumoniae 

infection were not assessed.       
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Figure 6.14: CD4+ T-cells following depletion. 

 (A,B) Representative flow-cytometry dot-plots of splenocytes showing gating on CD3+ CD4+ 

splenocytes from mice treated with anti-CD4 depleting antibody (GK1.5) or PBS. (C,D) 

Representative flow-cytometry dot-plots of splenocytes showing gating on CD3+ CD8- splenocytes 

from mice treated with anti-CD4 depleting antibody (GK1.5) or PBS. (E) Total CD4+ cells in the lungs 

of mice treated with GK1.5 (anti-CD4) antibody. (F) Total CD3+ CD8- cells in the lungs of mice treated 

with GK1.5 (anti-CD4 antibody). (P values represent Student’s unpaired T-test, error bars represent 

SD). Results are from one experiment. 
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Figure 6.15: CFU in CD4+ T-cell depleted mice following challenge.  

(A-C) CFU 24hrs following challenge with 2x107 CFU S. pneumoniae EF3030 in BALF, lungs and blood 

of mice colonised with EF3030 or PBS treated IP with anti-CD4 antibody GK1.5 24 and 48hrs prior to 

infection. (D) Concentration of IL-17 in the lung homogenates of mice colonised with EF3030 or PBS, 

24hrs following challenge with 2x107 CFU EF3030, in mice treated IP with GK1.5 (CD4 depleting 

antibody) 24 and 48hrs prior to infection. (P values represent Student’s unpaired T-test, lines 

represent mean). Results are from one experiment. 
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6.1.8.4 Absence of IL-17 

 

The concentration of IL-17 was markedly reduced following antibody depletion of CD4+ cells, and 

depletion of CD4+ T-cells cells abrogated the protective effect of prior colonisation. To confirm If IL-

17 itself had a role in colonisation-induced protection from infection, mice were treated with an IL-

17 neutralising antibody (anti-IL-17A). Again there was no difference in bacterial numbers 24hrs 

post-infection in the BALF or lungs of EF3030 or sham colonised mice, following IL-17 neutralisation 

(Figure 6.16). This suggests that IL-17 is a key cytokine required for protection from EF3030 lung 

infection induced by prior colonisation in this murine model of non-invasive disease.  

            

 

Figure 6.16: CFU in IL-17 depleted mice following challenge.  

(A,B) CFU 24hrs following challenge with 2x107 CFU S. pneumoniae EF3030 in BALF and lungs of mice 

colonised with EF3030 or PBS treated IP with IL-17 neutralising antibody (anti-mouse IL-17A) 24hrs 

prior to infection. (P values represent Student’s unpaired T-test, lines represent mean). Results are 

from one experiment. 
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6.1.9 Chapter summary  

 

S. pneumoniae EF3030 is able to colonise the nares of C57/BL6 mice. Colonised mice developed a 

specific antibody response, associated with the development of IgG to protein antigens of S. 

pneumoniae.  Additionally colonised mice displayed altered cellular responses to S. pneumoniae lung 

infection, including an early influx of neutrophils into the alveolar space and enhanced cytokine 

responses. Challenge experiments indicated that these immune responses to colonisation protected 

against lung infection. Repeat challenge in B-cell deficient and neutrophil depleted mice indicated 

that the protective effect of colonisation required both antibodies and neutrophils, suggesting that 

enhanced phagocytosis of bacteria opsonised with specific antibody is the main mechanism by which 

colonisation protects against subsequent lung infection. However, enhanced IL-17 and IL-23 

responses in the lungs of colonised mice suggested a potential additional role for Th17 cell-mediated 

immunity in protection from lung infection following colonisation. Depletion of CD4+ cells confirmed 

that these cells were the likely source of IL-17 and important for the protective effect of colonisation 

against subsequent pneumonia. Furthermore, neutralisation of IL-17 confirmed that this cytokine 

was required for the protective effect of colonisation. These data suggest early T-cell responses in 

colonised mice may facilitate the early influx of neutrophils into the lung that can clear opsonised 

bacteria. 

Combined these data indicate that both humoral and cellular immune responses to nasal 

colonisation are required for subsequent protection in a mouse model of non-invasive pneumonia. 

Whilst these data confirm the importance of IL-17 and CD4+ cells for protection, they do not 

necessarily rule out important roles for other cytokines including IL-10 and TNF-α that were both 

elevated in the lungs of previously colonised mice after challenge with S. pneumoniae EF3030.  
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Summary of findings  
 

o The S. pneumoniae polysaccharide capsule is not a major target of naturally-acquired IgG 

binding to the surface of S. pneumoniae. 

o Naturally-acquired IgG targets proteins on the surface of S. pneumoniae.  

o The major S. pneumoniae protein targets appear conserved in pooled IgG from different 

populations, and between different S. pneumoniae strains.  

o IgG to non-capsular antigens facilitates agglutination, phagocytosis and killing of S. 

pneumoniae. 

o Naturally-acquired human IgG mediates protection from lung infection and bacteraemia in 

vivo. This requires neutrophils and macrophages respectively. 

o Experimental S. pneumoniae colonisation in mice protects against subsequent pneumonia, 

using a non-invasive model of infection with S. pneumoniae EF3030 (19F).  

o S. pneumoniae EF3030 colonisation enhances cytokine (KC, TNF-α, IL-10, IL-23, IL-17), 

cellular, and antibody (IgG) responses in the lung to subsequent pneumonia challenge. 

o Protection from lung infection with EF3030 following colonisation requires both humoral 

(IgG) and cellular (neutrophils, CD4+ T-cells) immune responses.   
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7 Discussion 
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7.1 S. pneumoniae targets of naturally-acquired IgG  

7.1.1 Anti-polysaccharide IgG  

 

Vaccine induced antibodies against the pneumococcal polysaccharide capsule clearly protect against 

S. pneumoniae, and can rapidly clear pneumococci from the blood (Alonso De Velasco et al., 1995). 

However, epidemiological evidence suggests anti-capsular antibodies may be redundant for the 

natural development of immunity to S. pneumoniae (Lipsitch et al., 2005), and the antigen targets 

for naturally-acquired IgG are not well understood. This thesis has investigated the naturally-

acquired antibody response to S. pneumoniae.  

Experimental colonisation of mice with S. pneumoniae EF3030 led to a rise in S. pneumoniae-specific 

IgG, but no detectable rise in IgG targeting the type 19F capsular polysaccharide, suggesting that 

following exposure in the nasopharynx the S. pneumoniae capsule is not a major target for the 

development of protective IgG. In other models of murine colonisation with S. pneumoniae D39 

(serotype 2), there was also no detectable rise in IgG targeting the type-2 polysaccharide in the sera 

of colonised mice (Cohen et al., 2012). Furthermore, colonisation of mice with unencapsulated 

mutants induced protective IgG responses to S. pneumoniae (Malley et al., 2001, Cohen et al., 2012). 

In contrast anti-capsular IgG (against a number of different S. pneumoniae serotypes including 19F) 

was detectable in both human sera and pooled human IVIG products. The differences in mouse and 

human antibody responses may reflect recurrent exposure of humans to S. pneumoniae compared 

to a single experimental colonisation event in mice. The duration of colonisation events in humans is 

also longer than the two week colonisation period in mouse models (Turner et al., 2012). However, 

whilst human sera do contain IgG to the polysaccharide capsule, it is not necessarily the major S. 

pneumoniae antigen target of naturally-acquired IgG in humans. Multiple data obtained using IVIG 

suggest that capsular antigen does not mediate acquired immunity. Purified capsular polysaccharide 

was unable to inhibit IVIG or pooled human sera binding to S. pneumoniae TIGR4 by whole cell ELISA 

and binding of IVIG to the surface of a number of different S. pneumoniae strains was increased, not 
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reduced by removal of the polysaccharide capsule. Additionally, depletion of IgG targeting the type-

4 polysaccharide capsule had no effect on IVIG binding to the surface of S. pneumoniae TIGR4 by 

flow-cytometry, and mice treated with depleted IVIG were still protected against experimental S. 

pneumoniae infection. Human sera also contained detectable IgG to S. pneumoniae CWPS. However, 

levels of CWPS-specific IgG in individual sera did not correlate with binding to S. pneumoniae, and 

purified CWPS was not able to inhibit IVIG binding to S. pneumoniae by whole cell ELISA, indicating it 

is not a major target of naturally-acquired IgG. These data are supported by previous  investigations 

that demonstrated antibodies raised against the pneumococcal CWPS antigen did not protect mice 

from lethal S. pneumoniae challenge (Szu et al., 1986).  

These data appear to contradict previous studies suggesting that opsonisation of S. pneumoniae may 

be exclusively dependent upon anti-polysaccharide IgG (Vitharsson et al., 1994, Vernacchio et al., 

2000). These conclusions were made from data comparing opsonic activity of sera pre and post-

polysaccharide vaccination, and not from assessing the naturally-acquired IgG targets in 

unvaccinated sera. Data presented here from both experimental colonisation and human sera/IVIG 

indicate that anti-capsular antibody may be dispensable for the protective effect of naturally-

acquired IgG. With this in mind, assessing titres of anti-capsular antibodies in unvaccinated 

individuals may not be a good correlate of protection. In patients receiving IVIG therapy increased 

serotype-specific anti-capsular antibody levels did not provide additional benefit (reduced incidence 

of respiratory infection), compared to increasing the total IgG concentration alone (Chua et al., 

2011).  

Specific antibody deficiency (SAD) is a clinical condition described in both adults and children 

associated with impaired antibody responses to polysaccharide vaccination, and increased incidence 

of respiratory tract infection (Boyle et al., 2006). The assumption in these patients is that the 

increased incidence of recurrent respiratory tract infections is due to the lack of development of 

protective anti-capsular IgG. Perhaps this assumption requires re-examination in the context of data 



197 
 

presented here which indicate that anti-capsular IgG may not be required for the development of 

protective humoral immunity to S. pneumoniae. In support of this notion it has recently been 

suggested that in patients with SAD, the concentration of antibodies to purified polysaccharide by 

ELISA does not necessarily correlate with the functional (opsonophagocytic) activity of patient sera 

(Gelfand et al., 2013). The concentration of antibodies to pneumococcal proteins in this patient 

population has not been assessed. SAD may be a marker for more general immune defects and 

these rather than anti-CPS antibody could underpin the susceptibility to respiratory tract infection. 

For example, in a recent controlled study of SAD it has been demonstrated that many children 

diagnosed with SAD may have other underlying immunological defects including phagocytic 

disorders, (Ruuskanen et al., 2013).        

  



198 
 

7.1.2 Anti-protein IgG 

 

Previous studies have demonstrated the acquisition of IgG to surface proteins following naturally-

acquired and experimental S. pneumoniae carriage (Lebon et al., 2011, Ferreira et al., 2013). 

Experimental colonisation of humans with S. pneumoniae 6B increased serum IgG to a number of 

pneumococcal proteins including PspC, PspA, PcsB and PiuA, that was detectable 2 weeks following 

inoculation (Ferreira et al., 2013). Hence colonisation results in anti-protein antibody responses, and 

this is likely to be why Western blotting and Luminex assays indicated that adult sera and IVIG 

contain IgG to a range of pneumococcal surface proteins.  Furthermore, data presented here 

demonstrate that colonisation of mice with S. pneumoniae EF3030 led to an increase in IgG against a 

limited number of specific S. pneumoniae protein antigens, including PhtD, PsaA and PpmA. Previous 

models of colonisation in mice with S. pneumoniae D39 also demonstrated increases in IgG to the 

pneumococcal proteins PspA, PsaA and PpmA but not to PhtD post-colonisation (Cohen et al., 2012). 

In comparison to individual human sera, mice colonised with S. pneumoniae EF3030 demonstrated 

antibody responses to relatively few protein targets. This perhaps reflects that humans are likely to 

have been colonised multiple times by different S. pneumoniae serotypes and therefore acquire 

significant antibody responses to a wider range of pneumococcal proteins. The effect on antibody 

responses of multiple colonisation events with different S. pneumoniae strains in mice has not been 

investigated.    

The relative functional importance of pneumococcal proteins as targets for naturally-acquired IgG to 

S. pneumoniae has previously been unclear and was investigated in this thesis. With the exception of 

serotype 1 S. pneumoniae whole cell ELISA titres in different sera correlated with the concentration 

of IgG to different protein targets, and not to anti-capsular IgG.  The structure of the type-1 

polysaccharide is distinct from other serotypes in that it is zwitterionic and can be presented on 

MHC class II (Mertens et al., 2009). Therefore the development of IgG to the type-1 capsule may be 

T-cell dependent. Protease treatment of pneumococcal lysates impaired their ability to compete out 
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IgG in pooled human sera binding to S. pneumoniae TIGR4, indicating that the whole cell ELISA 

measured IgG binding to protease-sensitive proteins of S. pneumoniae. Trypsin treatment of lysates 

did not fully restore whole cell ELISA titres of IgG binding to S. pneumoniae,  suggesting either that 

not all antigen targets for IgG are proteins or that trypsin treatment only partially denatured 

pneumococcal proteins, allowing some inhibition of IgG binding to be maintained. A limitation of 

whole cell ELISAs is that they are biased towards detecting antibodies to proteins as these are 

exposed by bacterial lysis (Cohen et al., 2013). However, flow-cytometry analysis to whole S. 

pneumoniae also indicated that IVIG binding to the surface of intact encapsulated S. pneumoniae 

was reduced by pre-incubation of S. pneumoniae with a protease (pronase). These data together 

therefore indicate that surface proteins are important pneumococcal antigen targets for naturally-

acquired IgG present in IVIG preparations 

Assessment of the potential target proteins for IgG by Luminex revealed well described vaccine 

candidates including PhtD, PspC and PspA as IgG targets in different IVIG preparations and adult 

sera.  Multiplex assays do not provide a comprehensive assessment of antibody responses against all 

proteins of S. pneumoniae. Instead they allow the strength of antibody responses to a pre-selected 

panel of antigens to be determined semi-quantitatively. This allows comparison of the pattern of 

responses to previously characterised important surface-protein antigens in different sources of 

sera. This approach does mean responses to potentially-important antigens not included on the 

panel are missed. Targets of naturally-acquired IgG identified in this thesis have previously been 

identified as strong IgG targets in human sera by screening an expression library of pneumococcal 

proteins (Giefing et al., 2008), generated by randomly fragmenting the genome and expressing 

proteins on the surface of E. coli. This screen also identified proteins absent from the Luminex panel 

(for example PcsB) as dominant targets of IgG binding in human sera. The Luminex assay should 

therefore be considered as providing a ‘snapshot’ of responses to a range of pneumococcal protein 

targets. Screening of expression libraries although not biased by pre-selection of protein antigens 
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also has limitations and may be biased by the ability of the expression system to display different 

proteins.  

It is possible that the Luminex assay does not provide an accurate quantification of antibody levels to 

each of the proteins included on the panel. However the ability of the Luminex assay to measure 

responses to PspC and PhtE was confirmed by ELISA, and the proteins PspA, PspC, and PhtD to which 

strong responses were detected by Luminex could also be detected as absent bands in Western blots 

of knockout strains probed with pooled IgG. Western blots of pneumococcal whole cell lysates in 

contrast to the multiplex assay allow a comprehensive assessment of antibody targets, but not 

necessarily the identification of antigens, except those for which mutant strains are available. 1-

dimensional (1-D) Western blotting also suffers from the problem of poor resolution, and proteins of 

a similar molecular weight may not always be distinguishable from each other as separate bands. 

Due to these limitations the assessment of antibody responses to S. pneumoniae lysates separated 

by 2-dimensional (2-D) electrophoresis may be warranted. This involves the separation of proteins 

first by their isoelectric point and then by size (Choi et al., 2012). The better separation achieved by 

2-D electrophoresis should allow responses to pneumococcal antigens in different sera and to 

different S. pneumoniae strains to be more completely compared. 2-D separation also facilitates the 

identification of antibody targets by mass-spectrometry. This would allow a comprehensive non-

biased identification of the range of immunogenic protein antigen targets for IgG in different sera.   

7.1.3 Surface-accessibility of S. pneumoniae protein antigens 

 

Multiplexed assays and immunoblotting demonstrated that S. pneumoniae proteins are targets of 

naturally-acquired IgG in IVIG preparations and adult sera. For IgG to be relevant for protective 

immunity it will have to bind the bacterial surface to facilitate functional effects including 

opsonophagocytosis and bacterial agglutination. Flow-cytometry based binding assays allow 

assessment of IgG binding to the surface of whole bacteria (Cohen et al., 2013). Binding of IVIG to 

unencapsulated mutants of S. pneumoniae demonstrated that removal of the polysaccharide 
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capsule enhanced IgG deposition for most strains, further indicating the target for the binding of 

naturally-acquired IgG to the bacterial surface are sub-capsular antigens such as proteins. The major 

targets of IgG binding to unencapsulated mutant of S. pneumoniae may well be different to the WT 

parent strain, as the presence of a polysaccharide capsule can mask immunogenic surface proteins 

(Abeyta et al., 2003, Gor et al., 2005). To overcome this problem the surface binding assay was 

repeated using protease treated encapsulated S. pneumoniae TIGR4. Protease treatment reduced 

the binding of IVIG to the bacterial surface, indicating that protease-sensitive proteins are targets for 

naturally-acquired IgG even in the presence of the type-4 capsule. My data suggests that whilst the 

capsule may reduce IgG binding to some surface proteins, they are still potential targets for 

opsonisation with IgG. Antibodies raised against a number of purified pneumococcal surface 

proteins, including PspA and PspC, were still able to bind to the surface of WT (encapsulated) S. 

pneumoniae (Ren et al., 2003, Ricci et al., 2011) supporting this observation. The presence of a 

capsule does not therefore necessarily prevent antibody binding to proteins that appear to be major 

targets of naturally-acquired IgG, and antibodies to S. pneumoniae surface proteins could thus be 

functional for protection.   

Protease treatment of S. pneumoniae as well as other Gram-positive bacteria including 

Streptococcus pyogenes has been used to screen for surface proteins that could be potential vaccine 

candidates (Olaya-Abril et al., 2012, Rodriguez-Ortega et al., 2006). In these studies the ‘shaved’ 

proteins have been separated by 2D gel electrophoresis and identified by mass spectrometry. This 

approach could be used to identify the surface proteins removed from S. pneumoniae by protease 

(pronase) treatment and allow a specific assessment of the targets of naturally-acquired IgG that are 

recognised on the surface of intact S. pneumoniae, and therefore are likely to be protective. 

Incubation with whole bacteria has also been used to deplete immune sera of antibodies to surface 

proteins, so allowing proteomic identification of antibody targets accessible on the surface of S. 

pneumoniae (Zhang et al., 2011). Hence incubation of S. pneumoniae in IVIG could be used to 

deplete antibodies to pneumococcal surface antigens, in order to investigate their function or 
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facilitate the comprehensive identification of surface-accessible protein targets of naturally-acquired 

IgG.    

7.1.4 Consistency of IgG responses to S. pneumoniae in different sera/IVIG 

 

Luminex data indicated that the protein targets of IgG binding in human sera and pooled 

immunoglobulin preparations appear conserved between populations. These assays demonstrated 

consistently high levels of anti- PhtD, PspA, PspC PsaA and Ply in geographically distinct sources of 

immunoglobulin, with weaker responses to PpmA, PhtE, Hyal, Sp0189, IgA1ase, and absent 

responses to several antigens including Eno, SlrA and NanA. Similarly, immunoblots demonstrated a 

similar pattern of bands with lysates of TIGR4 probed with pooled IgG from Europe, USA or Malawi. 

There is a surprising amount of genetic diversity between strains of S. pneumoniae, occurring on a 

number of levels. Firstly there is variation in gene content between different pneumococcal 

serotypes, and it has been suggested that as little as 50% of the pneumococcal genome may be 

‘core’ (conserved across all strains) (Hiller et al., 2007). Hence the accessory genome is very large 

and could readily contain important antigens that are specific only for a subset of strains such as 

PsrP and the pilus proteins (Munoz-Almagro et al., 2010, Basset et al., 2007b). Secondly, numerous 

single-nucleotide polymorphisms have been detected amongst even closely related strains (Pandya 

et al., 2011, Croucher et al., 2011). Finally, allelic variants of a number of surface proteins have been 

well described especially the choline binding proteins like PspA and PspC (Iannelli et al., 2002, 

Hollingshead et al., 2000). Because of the uneven global distribution of S. pneumoniae serotypes 

(Gordon et al., 2003, Hausdorff et al., 2000b) different populations will have been colonised with 

different strains, which are likely to express different allelic variants of the variable surface proteins 

and have novel antigens encoded by the accessory genome. Despite this, our data indicate that 

immunoglobulin preparations and sera pooled from geographically distinct populations contain IgG 

that recognised a remarkably consistent pattern of protein antigens. Interestingly, the pooled 

immunoglobulin and sera tested all contained high levels of IgG that recognised PspA and PspC 
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isolated from a serotype 4 (TIGR4) strain of S. pneumoniae (as measured by Luminex). Therefore 

despite allelic variation, IgG pooled from different populations is able to recognise PspA and PspC 

from one particular genetic background. Studies by other investigators have indicated that children 

develop antibody specific to the PspA type they have been exposed to (Melin et al., 2008). In the 

same study adult sera contained significant levels of antibody to both PspA families.  It could 

therefore be the case that as an individual’s cumulative exposure to different strains of S. 

pneumoniae increases, so does their level of cross-reactive antibody to structurally-variant proteins 

such as PspA. This may be down to allelic variants sharing similar immunogenic epitopes that can 

induce cross-reactive antibodies, as has been demonstrated for PspA (Darrieux et al., 2008). 

Alternatively in a population different individuals are likely to be colonised with strains expressing 

different allelic variants and therefore pooled sera and IVIG preparations will contain IgG that react 

to most of the common allelic variants.    

Pooled serum is by its nature not representative of every individual within a population. Instead it 

gives an ‘average’ response of those individuals that make up the pool. This is supported by the 

pattern of antibody targets in sera from different individuals to (as measured by Luminex) broadly 

reflecting those of pooled sera, with dominant responses to the same sub-set of pneumococcal 

antigens (PhtD, PspA, PspC and PsaA). Despite this, the relative response of each individual to a 

particular protein varied, with some individuals having lower responses to antigens to which most 

other sera had strong IgG responses. This variation is reflected both in Luminex assays of individual 

sera and Western blots against whole cell lysates probed with different individual sera, where for 

some individuals seemingly immunodominant bands were absent. Variation in responses to specific 

antigens in individual sera was seen both in volunteers from Malawi and the UK. This variation in 

individual responses to particular pneumococcal protein antigens may occur due to genetic variation 

of the host or due to differences in the strains that have colonised each individual (as discussed 

above). Different HLA alleles have been implicated in variant responses to protein antigens (Kruskall 

et al., 1992), and HLA variation may result in some individuals failing to mount antibody responses to 
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certain pneumococcal proteins. Host responses to pneumococcal proteins may also be affected by 

restriction in the range of peptides that can be presented by host MHC II (Brodsky et al., 1996), a 

requirement for the development of T-dependent IgG responses. Certain haplotypes of IL-4 and IL-

4Rα have been associated with lower antibody responses following pneumococcal polysaccharide 

vaccination (Wiertsema et al., 2007), and these polymorphisms may also affect individual’s antibody 

levels to specific pneumococcal proteins. Interestingly Western blotting against whole cell lysates 

indicated that sera from inbred mice all colonised with S. pneumoniae EF3030 displayed some 

variation in the intensity of IgG responses, acquired following colonisation. The reasons for this are 

unclear but could for example be as a result of varied expression of pneumococcal proteins; the 

potential impact of bacterial protein expression on the development of protective immunity is 

discussed later.  On-going experimental colonisation models in mice and humans may help elucidate 

the important factors influencing an individual’s immune response to different protein antigens 

following exposure to S. pneumoniae. 
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7.1.5 Consistency of IgG responses to different S. pneumoniae strains 

 

Individual sera demonstrated whole cell ELISA IgG titres against several S. pneumoniae strains. The 

similar pattern of immunogenic bands on immunoblots against the different S. pneumoniae 

serotypes indicated that the protein antigens recognised by IgG are generally conserved across 

different S. pneumoniae serotypes. This suggests that genetic variation of S. pneumoniae does not 

necessarily prevent the natural development of antibodies to common protein targets, and 

furthermore also suggests that perhaps with some exceptions dominant antigens are not usually 

part of the accessory genome. There was for example no appreciable antibody response observed in 

any of the sera or pooled IgG preparations tested to one of the pilus proteins (PilusA),  a protein 

present in only a minority of pneumococcal strains  (Basset et al., 2007b). Whilst this may reflect 

poor immunogenicity of this particular protein it may also indicate a relative lack of exposure to the 

human immune system (on a population level) compared to proteins common to all strains of S. 

pneumoniae.  

7.1.6 Antibody Isotypes and IgG sub-classes  

 

This thesis focussed on the role of naturally-acquired IgG in the context of protection from lung 

infection, based on the observation that purified IgG protects against S. pneumoniae when passively 

transferred to patients with immunoglobulin deficiency (Quinti et al., 2011).  IgG has previously been 

shown to be the main sub-class induced following experimental S. pneumoniae colonisation in mice 

(Cohen et al., 2011). Other antibody isotypes may possibly have a role to play in naturally-acquired 

immunity to pneumococcal lung infection, however in the murine model of colonisation there was 

no significant rise in anti-S. pneumoniae IgA or IgM detected by whole cell ELISA.  Small rises in anti-

S. pneumoniae IgA have previously been demonstrated in the lavage fluid of colonised mice (Cohen 

et al., 2011). These studies assessed IgA concentration in neat lavage fluid; whereas a dilution of 1:5 

was used here (due to limitations in quantity). Therefore small increases in IgA post-colonisation 
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may have been missed. Other murine models have also demonstrated a modest rise in anti-S. 

pneumoniae IgM in the sera of mice post-colonisation (Cohen et al., 2011) and a rise in specific anti-

capsular IgM (Cohen et al., 2011). However, no significant rise in anti-S. pneumoniae IgM post-

colonisation by whole cell ELISA was detected in this thesis.          

Each of the subclasses of human IgG (IgG 1-4) exhibit different effector functions. For example IgG1 

and IgG4 can activate the complement protein C1 more than IgG2 (Jefferis and Kumararatne, 1990). 

Different antigens may also  preferentially stimulate production of certain IgG sub-classes (Jefferis 

and Kumararatne, 1990).  Studies investigating subclass responses to vaccination have indicated that 

the concentration of IgG1 following vaccination most closely correlated with enhanced opsonic 

activity of human sera following immunisation with the 23-valent polysaccharide vaccine 

(Bardardottir et al., 1990). This thesis has not specifically examined the natural acquisition of anti-

pneumococcal IgG of different sub-classes, instead focussing on the functional targets of total IgG. 

The proportion of anti-pneumococcal IgG of different subclasses in IVIG represent those in human 

sera, acquired through natural exposure to S. pneumoniae.  Therefore using IVIG as a surrogate of 

naturally-acquired IgG is not biased by over or under-representation of certain subclasses. Further 

understanding of the specific IgG sub-class responses required for naturally-acquired immunity to S. 

pneumoniae may however be important for the development of prospective vaccines.     

7.1.7 Immunogenicity of S. pneumoniae proteins  

 

The dominant protein targets of IgG in humans appear consistent irrespective of location and 

population. The proteins identified as being major targets of naturally-acquired IgG fall into a 

number of different classes. They include choline binding proteins (PspA, PspC), lipoproteins (PsaA), 

and non-classical surface proteins (PhtD). The reason for the immunogenicity of certain proteins 

over others in the development of an antibody response is not clear. It could be related to their 

abundance on the bacterial cell surface, an inherent ability to activate innate immune receptors, or 

preferential trafficking to local lymph nodes. The site of development of immune response to 
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pneumococcal proteins is also not well understood. Adenoidal mononuclear cells appear to be 

capable of producing IgG to protein antigens upon stimulation in vitro (Zhang et al., 2006b). Capsular 

polysaccharide antigen is deposited in the nasal associated lymphoid tissue following colonisation, in 

a process that requires neutrophils and the virulence factor pneumolysin (Zhang et al., 2006b). T-cell 

help is required for the development of IgG to pneumococcal proteins and IgG levels to a number of 

pneumococcal proteins including PspA and PspC are reduced in the sera of children with HIV 

infection (Ditse et al., 2013). It is possible that protein presentation to T-cells on MHC II may 

determine the immunogenicity of certain pneumococcal proteins.  Following antigen exposure B-

cells differentiate into either memory plasma cells that secrete immunoglobulin, or into memory B-

cells which respond to subsequent antigenic stimulation (Yoshida et al., 2010). It is not entirely clear 

which population of cells is most important for the long term maintenance of serum antibody levels 

to pathogenic proteins (Amanna et al., 2007). Further understanding of the B-cell response to S. 

pneumoniae, including its site of development and the way in which B-cell memory persists may help 

to determine why antibodies to certain protein targets are maintained in adult sera.  

7.1.8  S. pneumoniae gene expression and IgG responses 

 

A number of studies have investigated the up-regulation of pneumococcal virulence genes during 

invasive disease (Mahdi et al., 2008, Orihuela et al., 2004). More recently the relative expression of 

genes between pneumococci isolated from the nasopharynx and lungs of challenged mice has been 

compared, and there is varied expression of certain pneumococcal proteins between these body 

compartments which may affect virulence (Ogunniyi et al., 2012). For example, 

maltose/maltodextrin-binding protein (MalX) was up-regulated in the lungs compared to 

nasopharynx.  It could be that genes up-regulated specifically during bacterial invasion into the lungs 

(or blood) may be important functionally as targets for protective IgG responses. Furthermore, 

antibodies induced following colonisation to proteins highly expressed in the nasopharynx may not 

be protective against lung infection if there is reduced expression of these proteins when the 
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bacteria enter the lungs. However, naturally-acquired IgG (acquired through colonisation) was 

protective against subsequent pneumococcal lung infection, both in a mouse model of colonisation 

or by passive transfer of human IVIG in to mice. Therefore despite variation in bacterial gene 

expression between these body compartments, antibodies induced following colonisation are still 

protective in the lung. Additionally, cell-mediated immunity acquired during colonisation still 

appears to be effective against subsequent pneumonia challenge, despite differences in expression 

of potentially immunogenic proteins of S. pneumoniae.   

As well as pneumococcal gene expression potentially affecting the development of antibody 

responses, IgG responses to specific protein antigens may affect the molecular ecology of S. 

pneumoniae. Sequencing of the PMEN1 isolate of S. pneumoniae over time has identified the genes 

encoding the surface proteins PspA and PspC as ‘recombination hotspots’, where horizontal gene 

transfer events occur at higher frequency (Croucher et al., 2011).  These gene transfer events may 

alter antigen expression and suggest that these surface proteins are under selective pressure. This 

selective pressure may be due to the development of naturally-acquired IgG to these proteins, high 

levels of IgG to PspC and PspA were detected in all sera samples assessed in this thesis.    
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7.2 Functional effects of naturally-acquired IgG  

 

7.2.1 Protective effects of IgG 

 

Passive transfer of IVIG protected mice from lung infection with S. pneumoniae TIGR4, reducing CFU 

in the lungs and clearing S. pneumoniae from the blood 24hrs post-challenge. Following EF3030 

colonisation mice were protected from re-challenge and had reduced CFU in the lungs and BALF 

24hrs post-challenge. This protective effect was lost in μMT (antibody deficient) mice. Together 

these data indicated an important role for IgG in naturally-acquired immunity to S. pneumoniae.  In 

vitro assays and cellular depletion experiment in vivo were used to assess the mechanisms by which 

antibodies could be protective against S. pneumoniae infection.   

7.2.2 IgG mediated bacterial agglutination  

 

Bacterial agglutination has been described as a mechanism by which antibodies may mediate 

protection. In 1915 it was noted that pneumococcal antisera when injected into rabbits with 

pneumococcal bacteraemia, induced clumping of S. pneumoniae in vivo and facilitated the clearance 

of bacteria from the blood (Bull, 1915b). More recently it has been demonstrated that anti-capsular 

antibody can mediate bacterial agglutination, which can promote complement dependent killing of 

S. pneumoniae (Dalia and Weiser, 2011). The targets of naturally-acquired IgG that may facilitate S. 

pneumoniae agglutination have not previously been investigated. Data in this thesis demonstrated 

that incubation in IVIG results in agglutination of both encapsulated and unencapsulated S. 

pneumoniae TIGR4. This indicates that naturally-acquired IgG can target non-capsular antigens to 

mediate bacterial agglutination. Addition of 10% IVIG to the culture medium inhibited growth of a 

number of S. pneumoniae strains and their unencapsulated derivatives, as assessed by a change in 

OD. As well as agglutination, naturally-acquired IgG may have additional effects on in vitro growth of 

S. pneumoniae, for example binding to and inhibiting the function of pneumococcal proteins 

involved in nutrient acquisition. 
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7.2.3 IgG mediated phagocytosis and killing  

 

Ingestion and killing of opsonised bacteria by phagocytes including macrophages and neutrophils is 

essential for host defence against S. pneumoniae (Standish and Weiser, 2009, Marriott and Dockrell, 

2007).  Serotype-specific IgG enhances phagocytosis of S. pneumoniae (Burton and Nahm, 2006) and 

improved opsonophagocytosis is a major readout for the effectiveness of current polysaccharide-

based vaccines (Song et al., 2013). Antibodies to S. pneumoniae surface proteins can also facilitate 

enhanced phagocytosis (Jomaa et al., 2005, Arulanandam et al., 2001). In this thesis opsonisation 

with IVIG increased the association of S. pneumoniae with both neutrophils and macrophages. The 

opsonising effect of IVIG was enhanced upon removal of the S. pneumoniae capsule, indicating that 

naturally-acquired IgG in IVIG may facilitate phagocytosis, targeting non-capsular antigens. 

Opsonisation in IVIG also improved the killing of both unencapsulated and WT S. pneumoniae by 

human neutrophils, further demonstrating that naturally-acquired IgG against non-capsular targets 

is functional. Phagocytic assays were performed in the absence of complement, therefore enhanced 

uptake of unencapsulated S. pneumoniae was independent of any effects of complement deposition, 

and directly due to opsonisation of IgG. Cellular depletion studies demonstrated that both 

neutrophils and macrophages were important for the protective effect of IgG in vivo, indicating in 

vitro assays of phagocyte function are relevant for assessing the potential protective effect of 

naturally-acquired IgG. 

7.2.4  IgG accumulation in the lungs post-challenge 

 

The low level of IgG in airway lining fluid prior to infection indicates that prevention of infection by 

IVIG is unlikely. Indeed in the model of passive IgG transfer and lung infection presented in this 

thesis, adoptive transfer of naturally-acquired human IgG failed to protect against early lung 

infection or colonisation. IgG may accumulate in the lungs by active transport (Kim et al., 2004), local 

production in response to antigen (Bice and Muggenburg, 1996), or passive leak (Renegar et al., 

2004). In mice treated with IVIG the accumulation of human IgG correlated with albumin 
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concentration in the BALF. IgG accumulation post-infection in the BALF of EF3030 colonised mice 

also correlated with albumin concentration, and enhanced accumulation of total IgG in the lavage 

fluid of EF3030 colonised mice was temporally associated with a neutrophil influx. Combined these 

data indicate that much of the IgG in the lung post-infection may be due to passive leak as a 

consequence of inflammation.  

The IVIG challenge model used in this thesis involved adoptive transfer of human IVIG into mice. 

Unlike when transferring murine IgG, human IgG was undetectable in the alveolar space in the 

absence of infection, demonstrating IgG accessibility to the lung in the absence of inflammation may 

be species dependent.  Therefore mouse models cannot be used to fully evaluate the role for human 

IgG in lung immunity to S. pneumoniae. For example, this model does not properly assess the 

relevance of IgG for bacterial interactions with alveolar macrophages prior to established lung 

infection, which may be important for early clearance of S. pneumoniae (Gordon et al., 2000). Pre-

existing IgG in the lungs of EF3030 colonised mice led to reduced CFU in the BALF 24hrs post-

challenge. In contrast, mice treated with IVIG had no human IgG detectable in the BALF prior to 

challenge and no reduction in CFU in BALF 24hrs post-challenge with S. pneumoniae TIGR4. The 

potential role of pre-existing IgG in protection from pneumococcal lung infection in humans is 

highlighted by the detection of anti-S. pneumoniae IgG in the lavage fluid of healthy volunteers. 

Though compared to sera low levels of IgG were detected in human BALF samples, obtaining these 

samples involves significant dilution of the epithelial lining fluid, and hence IgG concentration in neat 

epithelial lining fluid is likely substantial. Despite limitations with this model, passive transfer of 

human IgG to mice provided an important tool to study the mechanisms of protection post-infection 

with S. pneumoniae by naturally-acquired human IgG in vivo, using cellular depletion strategies that 

clearly could not be performed in humans.  
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7.2.5 Effect of IVIG on inflammatory responses to S. pneumoniae infection  

 

IVIG may have immunomodulatory effects and has been used in the treatment of a number of 

autoimmune and inflammatory conditions (Schwab and Nimmerjahn, 2013).  In a caecal-ligation and 

puncture (CLP) model of sepsis high dose IVIG (1000mg/kg) delivered intravenously to rats improved 

survival, and this was associated with reduced TNF-α levels in the sera 3hrs post-CLP and reduced IL-

6 6hrs post-CLP (Hagiwara et al., 2008). IVIG treatment also reduces inflammatory cell infiltration 

into the lungs 12hrs following CLP (Hagiwara et al., 2008). The effect of this IVIG therapy on bacterial 

numbers in the blood post-CLP was not assessed, and the effect on inflammation may have been 

related to IgG mediated clearance of bacteria following IVIG treatment. Cytokine concentrations in 

the sera of mice challenged with S. pneumoniae TIGR4 were not measured, however both TNF-α 

concentration in lung homogenates and neutrophil infiltration into the alveolar space were 

unaffected by IVIG treatment 24hrs post-infection. This indicates that changes in the inflammatory 

response were not necessarily responsible for the observed protective effect of adoptively 

transferred IVIG 24hrs post-lung infection. In this IVIG doses of approximately 500mg/kg were 

administered and delivered via the IP route, therefore the concentration of IgG achieved in the sera 

was approximately 1.5mg/ml. Normal doses for humans on IVIG replacement therapy are between 

400-600mg/kg IgG administered monthly (Gelfand et al., 2013).   
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7.3 Cell-mediated immunity  

7.3.1 Cellular effectors mediating naturally-acquired immunity 

 

The importance of neutrophils in host defence against bacterial respiratory infection is highlighted 

by the higher incidence of pneumonia in patients with neutropenia (Lanoix et al., 2012). Neutrophils 

were required for the protective effect of prior colonisation against EF3030 pneumonia. Previously 

colonised mice demonstrated a heightened early influx of neutrophils (4hrs post-challenge) 

compared to controls. Although differences in bacterial numbers in the lungs of mice were only 

observed by 24hrs post-infection, it is likely that this early neutrophil response contributed to the 

control of S. pneumoniae infection in colonised mice. In the nasopharynx, immunity to re-

colonisation has been demonstrated to depend on neutrophil influx into the nasal cavity following 

challenge (Zhang et al., 2009). Significant increases in KC (CXCL1-the murine functional homologue of 

human IL-8) were observed 4hrs following challenge in the lungs of colonised compared to control 

mice. KC has been well described as a neutrophil chemoattractant and it is possible that this increase 

in KC contributes to the early influx of neutrophils into the alveolar space of colonised mice. CXCL1(-

/-) mice infected with Klebsiella pneumoniae demonstrate a reduced neutrophil influx into the lungs, 

as well as reduced production of the inflammatory mediator leukotriene B4 (LTB4). In these studies 

exogenous LTB4 treatment restored neutrophil migration to the lungs (Batra et al., 2012). The 

potential role of LTB4 in the enhanced neutrophil responses to lung infection following experimental 

colonisation has not been assessed in this thesis. 

In addition to neutrophils the protective effect of prior colonisation on lung infection also required 

antibodies. It is therefore likely that neutrophils phagocytose EF3030 opsonised by specific antibody 

induced following colonisation. It has been demonstrated in the nasopharynx that neutrophils are 

important for the clearance of secondary but not primary S. pneumoniae colonisation, and 

neutrophils may be functional against secondary challenge due to the presence of opsonising 

antibody (Zhang et al., 2009). In  other models of murine colonisation with S. pneumoniae D39 
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opsonisation in sera from colonised mice improved S. pneumoniae uptake by human neutrophils in 

vitro, compared to sera from uncolonised controls (Cohen et al., 2011). 

Enhancement of neutrophil mediated phagocytosis is one mechanism by which naturally-acquired 

human IgG can prevent S. pneumoniae lung infection. Other mechanisms of neutrophil mediated 

protection against extracellular bacteria have also been described. Neutrophils may contribute to 

the killing of extracellular pathogens including S. pneumoniae by the formation of neutrophil 

extracellular traps (NETs) (Brinkmann et al., 2004, Yamada et al., 2011). These NETs consist of 

released chromatin and anti-microbial granule proteins. NET formation has been associated with 

IFN-γ production by neutrophils in response to S. pneumoniae infection (Yamada et al., 2011). 

However, S. pneumoniae expresses an endonuclease (endA) that may allow it to escape from NETs 

(Beiter et al., 2006). The contribution of NET formation to S. pneumoniae killing in vivo, and the 

potential relevance of antibody in this process remains unclear.  

Although neutrophils were required for the protective effect of naturally-acquired IgG, the data 

suggest they may also contribute to the pathogenesis of disease. Neutrophil depletion significantly 

reduced the number of bacteria in the blood of untreated mice following S. pneumoniae lung 

challenge, indicating that neutrophils may contribute to the development of bacteraemia. In other 

models of pulmonary S. pneumoniae infection mice depleted of neutrophils are protected from 

bacteraemia, and demonstrate enhanced survival following challenge with 5x103 CFU serotype 8 S. 

pneumoniae (Marks et al., 2007). Results presented here demonstrate that neutrophil depletion also 

significantly increases S. pneumoniae TIGR4 CFU in BALF 24hrs post-challenge. Therefore although 

neutrophil influx may facilitate bacterial invasion into the blood, neutrophils are required for the 

control of infection within the lung. Hence a regulated early influx of neutrophils may achieve 

clearance of S. pneumoniae from the lungs without contributing to bacteraemia. The enhanced 

susceptibility of male mice to pneumococcal disease may be in part due to neutrophil kinetics 

(Kadioglu et al., 2011a). Female mice demonstrate an earlier neutrophil influx post-infection, but 
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significantly reduced neutrophil numbers compared to male mice 24hrs following infection. Data in 

this thesis indicate the increased development of sepsis in male mice may be in part due to this 

enhanced late neutrophil influx and associated inflammation, perhaps by increasing pulmonary 

epithelial barrier breakdown.  

Macrophages appear to be important for the increased clearance of S. pneumoniae from the blood 

mediated by human IgG. Systemic clodronate treatment of mice was associated with depletion of 

splenic macrophages and impaired clearance of S. pneumoniae from the blood following IVIG 

treatment.  IVIG treatment may also reduce (though not completely clear) S. pneumoniae in the 

blood of splenectomised mice, via phagocytosis in the liver (Nakamura et al., 2013). The effect of 

clodronate treatment on cells of the liver was not assessed in this thesis, though Kupffer cells of the 

liver can be depleted by IV administration of liposomal clodronate (Meijer et al., 2000). However, 

the importance of the spleen in the clearance of blood-borne S. pneumoniae can be seen in the 

higher incidence of S. pneumoniae bacteraemia in patients with asplenia (Schutze et al., 2002).  In a 

model of sepsis with group B streptococci specific antibodies required the complement protein C3 to 

effectively clear S. pneumoniae from the blood (Wessels et al., 1995). It is likely that complement, in 

addition to macrophages is required for the protective effect of naturally-acquired IgG against 

sepsis, and IgG in human sera can facilitate C3b deposition on encapsulated and unencapsulated 

strains of S. pneumoniae (Hyams et al., 2010a). IgG could mediate protection from sepsis following 

lung infection by preventing invasion of bacteria into the blood from the lungs, rather than 

facilitating clearance of S. pneumoniae from the blood. However,  in  a study of IVIG treatment alone 

and in combination with ampicillin Intranasal administration of IVIG failed to prevent sepsis 

following lung infection with S. pneumoniae pn4241, whereas intravenous administration did (De 

Hennezel et al., 2001). Additionally, in data presented here human IgG treatment led to direct 

clearance from the blood following IV challenge with S. pneumoniae.  
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7.3.2 Cytokine responses to colonisation  

 

A number of cytokines were increased in the lungs of EF3030 colonised mice following challenge. Of 

particular interest was an increase in Th17-type cytokines (IL-23, IL-17). Th17-type responses are 

important for acquired immunity to S. pneumoniae colonisation in mouse models (Zhang et al., 

2009). In particular IL-17A responses in the nasopharynx are important for protection from re-

colonisation and IL-17A depletion abrogates the protective effect of prior colonisation (Zhang et al., 

2009). In models of invasive D39 pneumonia, prior colonisation lead to enhanced IL-17 and IL-22 

responses in the lavage fluid 18hrs post-challenge. However these responses appeared dispensable 

for protection against lung challenge with this highly invasive strain, in which lethality is largely due 

to the development of septicaemia.  

Protective immunity to non-invasive pneumonia challenge with EF3030 developed as a result of 

previous colonisation was abrogated by IL-17A depletion. IL-17A has a role in the recruitment of 

neutrophils and can induce the release of the neutrophil chemoattractant KC from other cell types 

including epithelial and endothelial cells (Swaidani et al., 2009). An early increase in IL-17 

concentration following EF3030 challenge was temporally associated with increased KC 

concentration in colonised mice. This suggests that IL-17 release post-infection may facilitate KC 

production, though it was not assessed if IL-17 was directly responsible for the enhanced KC 

response 4hrs post-challenge in the lungs of colonised mice. IL-23 contributes to the differentiation 

of naive CD4+ T-cells into Th17 cells (Silverpil et al., 2013). IL-23 is released from alveolar 

macrophages, mice lacking the IL-23 subunit alpha gene (IL-23p19) have impaired lung defence 

against the fungal pathogen Pneumocystis carinii, associated with reduced IL-17 and CD4+ T-cell 

responses to infection. IL-23 was increased in the lungs of EF3030 colonised mice at 4 but not 24hrs 

following S. pneumoniae challenge. This early increase in IL-23 perhaps reflects its role in the 

initiation of IL-17 responses that were maintained for up to 72hrs post-challenge in the lungs of 

colonised mice.  
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As well as Th17-type cytokine responses, previous EF3030 colonisation led to an increase in levels of 

TNF-α and IL-10 in the lungs of mice following infection.  TNF-α was also elevated 4hrs post-

challenge in models of S. pneumoniae D39 colonisation and challenge (Cohen et al., 2011). TNF-α is 

important for innate immunity to S. pneumoniae infection and TNF-α can stimulate the production 

of the neutrophil chemoattractant KC from murine lung cells (Sun et al., 2007). IL-10 is a regulatory 

cytokine produced by regulatory T-cells (Tregs). IL-10 production occurs in human adenoidal 

mononuclear cell in response to S. pneumoniae stimulation (Zhang et al., 2006a). IL-10 producing 

Tregs have been implicated in protection from primary S. pneumoniae lung infection, in particular 

protection from bacteraemia following challenge with S. pneumoniae D39 (Neill et al., 2012). This 

protection has been associated with reduced inflammation, preventing translocation of bacteria 

from the lungs to the blood. On the contrary other investigators have advocated that IL-10 may be 

negative for the outcome of primary pneumonia challenge in mice. Following lung-infection with S. 

pneumoniae ST3 IL-10 depletion reduced bacterial burden in the lungs of mice, which was associated 

with increased TNF-α production (van der Poll et al., 1996). The role of IL-10 may depend upon the 

pneumonia model used, including the invasiveness of the strain and the host genetic background. 

For example, CBA/Ca mice have a heightened susceptibility to infection due to reduced regulatory 

responses compared to BALB/c mice (Neill et al., 2012).   The significance of IL-10 in protection from 

lung infection induced by colonisation in this model is not clear; however the presence of IL-10 did 

not prevent a rise in TNF-α, or clearance of lung infection in colonised mice. Depletion of IL-10 in 

colonised mice would help to determine its functional relevance for protection in this model. Other 

cytokines that could have a role in protection from pneumococcal lung infection including IFN-γ 

were not measured in colonised mice following challenge. Assessing a wider range of cytokines 

(perhaps utilising a multiplex platform) would provide a more complete picture of the different 

responses to lung infection following prior colonisation.     
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7.3.3 T-cell responses acquired following colonisation  

 

In the model of non-bacteraemic pneumonia presented here CD4+ T-cells were required for the 

protective effect of prior colonisation. The absence of IL-17A in the lungs of challenged mice 

depleted of CD4+ cells indicates that these cells are the cellular source of the enhanced IL-17 

detected in the lungs of colonised mice. Previous studies of sub-lethal infection with S. pneumoniae 

ST1, followed 7 days later by challenge, have demonstrated (by intracellular cytokine staining) that 

CD4+ T-cells from the lungs of  protected mice produce high levels of IL-17A (Marques et al., 2012).   

γδ T-cells may be an important T-cell type required for IL-17 production in response to primary 

infection of the lungs (Ma et al., 2010). TCRδ(-/-) mice display significantly reduced IL-17 production 

4hrs  post-challenge with S. pneumoniae ST3, and reduced clearance of S. pneumoniae ST3 from the 

lungs 24hrs post-challenge (Ma et al., 2010). However, most gamma-delta T-cells lack CD4 

expression (Lockhart et al., 2006), and thus would not have been depleted by anti-CD4 antibody 

treatment. Therefore the cells responsible for IL-17 production in this model are either a subset of 

γδT-cells expressing CD4 or αβ T-cells. A process of antigen presentation by γδT-cells, to CD4+ αβT-

cells has been described (Collins et al., 1998). It is therefore possible that via this mechanism both 

cell types are required for the enhanced IL-17 production in response to lung infection in mice 

previously colonised with EF3030. 

In models of S. pneumoniae colonisation, protection from re-colonisation mediated by CD4+ IL-17+ 

cells occurs over the course of 5 days (Zhang et al., 2009). In contrast protection from re-infection in 

this model of pneumonia is seen as early as 24hrs post-challenge, but still required CD4+ T-cell 

responses. Although 24hrs seems very quick for the development of a protective T-cell response, T-

cells isolated from mice colonised with S. pneumoniae have demonstrated high levels of intracellular 

IL-17 after only 6hrs of stimulation with heat killed S. pneumoniae ex vivo (Zhang et al., 2009).   
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Experimental pneumococcal carriage in humans can lead to an increase the percentage of CD4+ cells 

expressing IL-17 in BALF samples, following stimulation with S. pneumoniae ex vivo (Wright et al., 

2013). Data from EF3030 colonised mice indicate that these Th17-type responses in humans may be 

relevant for protection from subsequent pneumonia. The higher incidence of pneumococcal disease 

in patients with HIV and associated reduction in CD4+ cell numbers further suggests an important 

role for T-cells in immunity to S. pneumoniae in humans (Hyams et al., 2010b, Dworkin et al., 2001). 

Impaired Th17 cell differentiation occurs in individuals with hyper-IgE syndrome, which is associated 

with an increased risk of bacterial lung infection (Milner et al., 2008). Patients with T-cell 

immunodeficiency may be at a higher risk of pneumonia due to a lack of naturally-acquired Th17-

type immunity to S. pneumoniae.   

Some S. pneumoniae antigens that can elicit of Th17-type immunity have been identified. Proteins of 

S. pneumoniae have been screened based on their ability to stimulate IL-17 secretion from the 

splenocytes of mice immunised intranasaly with a killed whole cell pneumococcal vaccine. Proteins 

identified in this manner include a ribosomal protein SP0862 and SP1534 a pyrophosphatase. 

Intranasal immunisation with these proteins is protective against nasal colonisation (Moffitt et al., 

2012). Separately, human CD4+ T-cells co-cultured with dendritic cells may produce IL-17 in 

response to stimulation with pneumococcal peptidoglycan, following secondary exposure in vitro 

(Olliver et al., 2013).  

  



220 
 

7.4 Schematic of naturally-acquired immunity to S. pneumoniae lung infection 

 

Data presented in this thesis demonstrate that exposure to S. pneumoniae in the nasopharynx 

results in the development of immunity that is protective against future lung infection. In-particular 

data implicate an important role for both Th17 and humoral immunity. However, as discussed, 

additional arms of the immune response that are potentially protective against lung infection are 

enhanced following nasopharyngeal colonisation with S. pneumoniae. Figure 7.1 summarises 

responses to colonisation that enhance or may enhance immunity to subsequent S. pneumoniae 

infection within the lung, and the potential interactions between each.  
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Schematic demonstrating the potential effects of nasopharyngeal colonisation on immunity to 

subsequent lung infection with S. pneumoniae.  Solid arrows indicate mechanisms of acquired 

immunity directly supported by data in this thesis, dashed arrows represent other potential 

mechanisms of acquired immunity and their possible interactions.   

Figure 7.1: Mechanisms of acquired immunity to S. pneumoniae lung infection.  
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7.5 Relevance for vaccine development 

 

Polysaccharide-based vaccines for S. pneumoniae suffer from a number of limitations including poor 

coverage and serotype replacement. Current purified polysaccharide vaccines used in adults are 

poorly protective against pneumonia (Dear et al., 2003), though the use of conjugate vaccines in 

adults may provide improved protection within the lung (Paradiso, 2012). Any new pneumococcal 

vaccines should have protection against pneumonia as an aim, since it represents the highest burden 

of disease caused by S. pneumoniae (O'Brien et al., 2009).    

Several vaccines based on conserved S. pneumoniae protein antigens are in development (Darrieux 

et al., 2013). These vaccines aim to induce protective antibodies to surface proteins of S. 

pneumoniae.  A number of protein based vaccines have demonstrated protection in animal models 

of disease, and  some including PhtD and PspA are immunogenic in adult humans (Darrieux et al., 

2013).  Based on data demonstrating that a Th17 based immunity is required for immunity to 

colonisation, vaccines aimed at stimulating cell-mediated immunity to S. pneumoniae are also in 

development (Moffitt et al., 2011). 

Data presented in this thesis demonstrate the need for both humoral and cell-mediated immunity in 

full protection from non-invasive pneumonia following colonisation. Any new vaccine that aims to 

provide protection from infection within lung may need to recapitulate both arms of this protective 

immune response. The proteins that induce protective antibody responses following colonisation in 

mice or humans include (but are not limited to) PhtD, PspA, PspC and PsaA. These appear distinct 

from the pneumococcal protein antigens that may stimulate cell-mediated immunity to S. 

pneumoniae (Moffitt et al., 2012). Vaccines against pneumonia may therefore be most effective if 

they contain combinations of antigens that stimulate both cell-mediated and humoral immunity. 

This could be either as a whole cell vaccine or as combination protein based vaccines.   
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A number of protein antigens that are in development as pneumococcal vaccines are also targets of 

naturally-acquired IgG in adult human sera. This raises the question of how effective vaccines 

inducing antibodies against these proteins may be, if such antibodies are already present and 

functional in normal sera. It may be that boosting antibodies to antigens that are also targets of 

naturally-acquired IgG may only be effective in subjects with reduced levels of naturally-acquired IgG 

to those antigens. Interestingly IgG to S. pneumoniae protein antigens including PspC, PhtD and PspA 

are reduced in sera from older individuals (>65) compared to younger controls (Simell et al., 2008); 

potentially this may be one reason why the elderly are at more risk of S. pneumoniae infection. It is 

therefore possible that boosting antibodies to these proteins may help reduce the increased risk of 

S. pneumoniae pneumonia in this population. 

The phagocytic function of human sera has been correlated with polysaccharide-specific IgG 

responses post-vaccination (Bardardottir et al., 1990). Current vaccination boosts phagocytosis by 

inducing capsule-specific IgG. If vaccines against common protein antigens of S. pneumoniae are to 

be successful they would have to boost the function of sera at least as much as current 

polysaccharide vaccines, but on the background of non-capsular (protein) antigens already being 

mediators of naturally-acquired protection. There is therefore the potential for the failure of 

functional improvement in antibody responses following vaccination with protein antigens, due to 

the presence of pre-existing antibody acquired through colonisation.  

Both data from EF3030 colonised mice and human sera indicate that colonisation has an immunising 

effect that protects against subsequent lung infection. One key aim of pneumococcal vaccination 

could be the elimination of carriage (Bogaert et al., 2004), so removing the reservoir for transmission 

of S. pneumoniae for the development of invasive disease (Bogaert et al., 2004). However, removal 

of carriage is likely to reduce the opportunity for the acquisition of natural immunity to S. 

pneumoniae, which can protect against invasive disease.  A recent rise in the adult incidence of 

whooping cough has been attributed to a lack of natural exposure to Bordatella pertussis during 
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childhood, as a consequence of vaccination (Lavine et al., 2011). It is possible that a similar increase 

in pneumococcal pneumonia could occur following a vaccine-induced reduction in pneumococcal 

carriage.  
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7.6 Future directions 

 

These data demonstrate the function for naturally-acquired IgG to pneumococcal protein antigens in 

human sera. However, a number of different factors are likely to influence an individual’s risk of 

pneumococcal pneumonia. Therefore in order to assess if levels of naturally-acquired IgG may be 

clinically relevant, a more thorough assessment of antibody levels to S. pneumoniae proteins in 

patient groups at risk of pneumonia is warranted. This should include detailed assessment of 

serological responses in the elderly. Any serological assessment of antibody responses in these 

patient groups should include assays of surface binding and phagocytosis to ensure potential 

differences can be correlated to function. Assessment of cellular immunity in patients at risk of S. 

pneumoniae infection may also we warranted. As discussed, a more comprehensive assessment of 

the targets of naturally-acquired IgG would be useful to fully understand the antibody targets that 

may be required for protection. This could involve assessment of antibody responses by 2D gel 

electrophoresis. Full understanding of the reasons for the immunogenicity of certain proteins 

following carriage also remains elusive, and understanding this would aid the development of new 

vaccines.       

In mice it appears that Th17-type responses are required for protection from S. pneumoniae 

pneumonia following colonisation. Identification and phenotyping of an IL-17 producing population 

of cells in the lungs of colonised mice (by flow-cytometry), may be important for understanding the 

precise cellular responses required for protection. The mechanism of enhanced neutrophil 

recruitment to the lungs of colonised mice, and the precise contribution of Th17 responses and KC 

require additional clarification. This could involve cellular depletion at early time points post-

infection. A more comprehensive assessment of cytokine responses to lung infection could be 

achieved using a multiplexed assay. Additionally, the role of other cytokines including IL-10 on the 

colonisation induced protection from non-invasive lung infection seen in this model requires further 
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investigation. Depletion of these cytokines in colonised mice prior to challenge could help elucidate 

their function.  

The need for both cell-mediated and humoral immunity for colonisation-induced protection from 

lung infection requires further assessment in the context of vaccine development. Protection 

following experimental vaccination of mice with antigens that elicit either cell-mediated or humoral 

immunity, alone and in combination would be informative. This vaccination approach in different 

models of lung infection would allow the rational design of vaccines aimed at protecting against 

different forms of pneumococcal disease.   
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7.6.1 Recommendations for future experiments 

 

1. Assessment of antibody levels to S. pneumoniae proteins in patient groups at risk of 

pneumonia.   

2. A comprehensive assessment of the S. pneumoniae protein targets of naturally-acquired 

human IgG by 2D gel electrophoresis and mass-spectrometry.   

3. Phenotyping of the IL-17 producing population of cells in the lungs of previously colonised 

mice by flow-cytometry. 

4. A more comprehensive assessment of cytokine responses enhanced by previous 

colonisation, using a multiplexed platform. 

5. Assessment of immune responses following CD4+ T-cell depletion at early time points (4hrs) 

post-challenge, in previously colonised mice. 

6. Investigation of the protective effect of experimental vaccination with antigens that elicit 

either cell-mediated or humoral immunity, in different murine models of S. pneumoniae 

infection.   
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