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Abstract

The homeobox-encoding gene Prox1 and its Drosophila homologue prospero are key regulators of cell fate-specification. In
the developing rodent cortex a sparse population of cells thought to correspond to late-generated cortical pyramidal
neuron precursors expresses PROX1. Using a series of transgenic mice that mark cell lineages in the subcortical
telencephalon and, more specifically, different populations of cortical interneurons, we demonstrate that neurons
expressing PROX1 do not represent pyramidal neurons or their precursors but are instead subsets of cortical interneurons.
These correspond to interneurons originating in the lateral/caudal ganglionic eminence (LGE/CGE) and a small number of
preoptic area (POA)-derived neurons. Expression within the cortex can be detected from late embryonic stages onwards
when cortical interneurons are still migrating. There is persistent expression in postmitotic cells in the mature brain mainly
in the outer cortical layers. PROX1+ve interneurons express neurochemical markers such as calretinin, neuropeptide Y, reelin
and vasoactive intestinal peptide, all of which are enriched in LGE/CGE- and some POA-derived cells. Unlike in the cortex, in
the striatum PROX1 marks nearly all interneurons regardless of their origin. Weak expression of PROX1 can also be detected
in oligodendrocyte lineage cells throughout the forebrain. Our data show that PROX1 can be used as a genetic lineage
tracer of nearly all LGE/CGE- and subsets POA-derived cortical interneurons at all developmental and postnatal stages
in vivo.
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Introduction

GABAergic interneurons in rodents originate from subpallial

regions in the embryonic telencephalon and migrate widely to

populate the neocortex, hippocampus, striatum and amygdala [1–

3]. Genetic lineage tracing has shown that there are three sources

of cortical interneurons in the subpallium: the medial ganglionic

eminence (MGE), the lateral/caudal ganglionic eminence (LGE/

CGE) and the preoptic area (POA) [4–11]. Each of these regions

generates interneurons with distinct physiological, morphological

and molecular characteristics, all of which are further sculpted by

local connectivity and network recruitment [1].

Regardless of where they reside within the adult cortex,

interneurons that have common origins often share molecular

markers, some of which are key regulators of cell identity. For

example, the LIM homeobox protein LHX6 is a transcription

factor that is expressed in all postmitotic interneurons originating

in the MGE. These include parvalbumin (PV)+ basket and

chandelier cells and somatostatin (SST)+ Martinotti and basket

cells [12]. Expression of LHX6 is observed throughout develop-

ment and in mature neurons and loss-of-function studies in mice

have demonstrated an essential role for LHX6 in migration and

specification of the lineage [13]. SOX6 and the recently reported

SATB1 transcriptional modulators have been shown to act

downstream of LHX6 conferring maturation and network

integration of MGE interneuron subtypes [14–17]. These and

other markers have not only shed light on the genetics of cortical

interneuron development but have also served as invaluable

lineage tracers in in vitro stem cell differentiation and in vivo

transplantation studies where differentiated cell types need to be

identified [18–20].

Interneurons originating in the CGE constitute one third of

interneurons in the cortex and hippocampus and include cortical

vasoactive intestinal peptide (VIP)+ve bipolar, bitufted and

multipolar cells and reelin (RLN)+veSST2ve multipolar cells

[8,9,21,22]. Molecular determinants of LGE/CGE-derived inter-

neuron fate remain elusive and as such our knowledge of LGE/

CGE interneuron specification and development remains poor.

GSX2 is a transcription factor that is expressed throughout the

subpallial ventricular zone (VZ) but is particularly enriched in the

LGE/CGE and contributes to the specification of bipolar cortical

interneurons [23]. The Nr2f2 gene encoding for the chicken

ovalbumin upstream promoter-transcription factor II (COUPT-

FII) was the first marker to be identified as a factor enriched in -

but not restricted to - LGE/CGE-derived interneurons. It

functions mainly in directing migration towards a caudal route

[24–26]. The serotonin receptor HTR3a has been detected in

migrating and mature LGE/CGE and POA-derived cortical
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interneurons but not in MGE-derived ones [21,22] and SP8 is a

transcription factor that marks some LGE/CGE-derived inter-

neurons [27]. The functions of HTR3a and SP8 in cortical

interneuron development are unknown.

The homeobox-encoding gene Prox1 and its Drosophila homo-

logue prospero have best been described in the developing Drosophila

nervous system and the vertebrate lymphatic vasculature, where

they promote cell fate specification [28,29]. In the embryonic and

postnatal vertebrate nervous system, PROX1 has been detected in

subventricular zone (SVZ) where it regulates early stages of

neuronal differentiation [30–38]. At late embryonic stages and in

the postnatal brain there is sparse expression of PROX1 in the

cortex [34,38,39]. This has been attributed to immature cortical

pyramidal cells although their identity has not been confirmed.

The scattered distribution of PROX1+ve cells in the cortex is

reminiscent of cortical interneurons and prompted us to examine

the expression of PROX1 in a series of transgenic mice which

label distinct cortical interneuron subsets. We find that PROX1 is

not expressed in cortical pyramidal cell precursors. Instead, it

identifies LGE/CGE-derived cortical interneurons and a small

subset of POA-derived ones at all stages of their development and

in the adult cortex, thus acting as a lineage marker for these

populations.

Materials and Methods

Ethics Statement
All animal work was carried out in accordance with United

Kingdom legislation. The protocols have been approved by the

UCL Animal Welfare and Ethical Review Board. Postnatal

animals were sacrificed by terminal anesthesia using Hypnorm/

Hypnovel prior to perfusion fixation. All efforts were made to

minimize animal suffering.

Transgenic Mice
Nkx2.1-Cre [Tg(Nkx2-1-Cre)1Wdr], Lhx6-Cre [Tg(Lhx6-

Cre)1Kess], Nkx5.1-Cre, and Dlx1-Venusfl [Tg(Dlx1-Venus)1-

Kess] transgenic mice and the two reporter mice Rosa26 (R26R)-

GFP [Gt(ROSA)26Sortm2Sho] and R26R-YFP [Gt(ROSA)26Sort-

m1(EYFP)Cos] have been described previously [4,6,9,40,41]. Mouse

colonies were maintained on a mixed C57BL6/CBA background

at the Wolfson Institute for Biomedical Research, University

College of London.

Tissue Preparation
The day of the vaginal plug was considered embryonic day (E)

0.5, and the day of birth was considered postnatal day (P) 0. Whole

embryo heads (for E12.5) or dissected brains were fixed overnight

in 4% (w/v) paraformaldehyde (PFA) in PBS. Postnatal animals

were anesthetized prior to perfusion fixation with 4% (w/v) PFA

through the left ventricle of the heart. Adult brains were dissected

out, sliced into 2 mm slices using a mouse brain coronal matrix

and postfixed in 4% PFA overnight. Fixed samples were

cryoprotected overnight by immersion in 20% (w/v) sucrose in

PBS. All samples were embedded in Tissue-Tek OCT compound

(R. A. Lamb Medical Supplies, Eastbourne, UK), frozen on dry

ice, and stored at 280uC.

Immunohystochemistry
Embryonic brains were sectioned coronally to a thickness of

18 mm on a cryostat and collected directly onto Superfrost plus

slides (BDH Laboratory Supplies, Poole, UK). Adult sections were

cut coronally (30 mm thickness) and were collected in PBS for

‘‘free floating’’ staining. All sections were blocked in PBS

containing 10% heat-inactivated sheep serum or fetal calf serum

(Sigma, St. Louis, MO) and 0.1% Triton X-100 (Sigma) at room

temperature for 1 hr.

Immunohistochemistry was performed with the following

primary antibodies: rabbit anti-Prox1 (1:500; ReliaTech GmbH);

goat anti-Prox1 (1:500; R&D Systems, Inc.); rat anti-GFP IgG2a

(1:1000; Nacalai Tesque, Kyoto,Japan); rabbit anti-calretinin

(1:2000; Swant, Bellizona, Switzerland); sheep anti-neuropeptide

Y (1:500; Abcam); guinea pig anti-vasoactive intestinal peptide

(1:1000; Peninsula Laboratories, San Carlos, CA), mouse anti-

parvalbumin (1:1000; Swant), mouse anti-reelin (1:2000; kindly

provided by A.Goffinet); guinea pig anti-Sox10 (1:4000; kindly

provided by M. Wegner); mouse anti-ki67 (1:1000, BD Pharmin-

gen). Primary antibodies were diluted in blocking solution and

applied overnight at 4uC. Antigen retrieval using citrate buffer

(Sigma) was performed for detection of Ki67.

Secondary antibodies AlexaFluor 488-conjugated and Alexa-

Fluor 647-conjugated donkey anti-rabbit IgG, donkey anti-sheep

IgG, donkey anti-rat IgG, donkey anti-mouse IgG or goat anti-

guinea pig IgG (all used at 1:750; Invitrogen, Carlsbad, CA) were

applied for 1 hr at room temperature. For immunodetection of

PROX1, biotin-conjugated donkey anti-rabbit IgG (1:500; Milli-

pore) or biotin-conjugated donkey anti-goat IgG (1:200, Jackson

Immunochemicals) secondary antibodies were applied for 1 hr at

room temperature followed by Avidin/Biotinylated enzyme

Complex (ABC) and Tyramide Signal Amplification (TSA) as

described previously [42]. Tyramide-Cy3 (Perkin Elmer) was

diluted at 1:100 and the colour was developed for 10 min at room

temperature. Floating sections were transferred onto Superfrost

plus slides after staining and air dried. All sections were

coverslipped with Dako fluorescent mounting medium.

Image Processing
Images were captured using a Zeiss fluorescent microscope, a

Leica confocal microscope or a Perkin Elmer spinning disk

confocal miscroscope. Images were processed with Adobe Photo-

shop CS4 (Adobe Systems Inc., San Jose, CA) for basic level

adjustments and montage assembly. Figures were composed in

Adobe Illustrator CS4 (Adobe Systems Inc.).

Quantification
The extent of co-localization between PROX1 and Venus/

GFP/YFP or other markers was determined as previously

described [4]. In all experiments quantification was carried out

in the primary somatosensory cortex between Bregma positions

0.86 and 21.34 mm. Cells were counted in a defined area

spanning the pial–white matter extent of the cortex (1250 mm
width630 mm depth). In some cases this was subdivided into 10

equal bins along the dorso-ventral axis and the number of cells in

each bin was determined. For all quantification experiments a

minimum of three mice at P30 were used. Counts were performed

on 2–3 non-consecutive sections from each mouse. Results are

expressed as mean 6 standard error of the mean (SEM).

Graphical representations of the data and statistical analyses were

performed using GraphPad Prism 6 (GraphPad Software, Inc.,

San Diego, CA).

Results

Expression of PROX1 in the Ganglionic Eminences of the
Developing Telencephalon
Previous studies had shown expression of PROX1 in the SVZ of

the subpallial telencephalon [34,38]. We examined this more

closely to determine whether expression coincides with the three

PROX1 in LGE/CGE/POA-Derived Cortical Interneurons
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germinal regions where cortical interneurons are generated. At

E12.5, E14.5 and E16.5 PROX1 could be detected in the SVZ of

the MGE, the LGE/CGE and the POA (Fig. 1A–F). There was no

co-localization between PROX1 and the M-phase marker PH3

(data not shown), as previously reported [34,38], but there was

extensive co-expression with the general proliferation marker Ki67

in the SVZ of the ganglionic eminences (Fig. 1E). At E16.5 cells

expressing PROX1 could also be detected in the cortex (Fig. 1F,G).

These were few in number and were located mainly within the

SVZ and largely absent from the cortical plate (CP) and marginal

zone (MZ) (Fig. 1G). The SVZ is one of the main tangential

migratory routes of cortical interneurons [43,44], suggesting that

PROX1-expressing cells in the developing cortex may correspond

to immature migrating cortical interneurons.

Migrating Immature LGE/CGE-derived Cortical
Interneurons Express PROX1
To determine whether PROX1-expressing cells in the embry-

onic cortex represent migrating interneurons we made use of Dlx1-

Venusfl mice, which express the fluorescent protein Venus in all

cortical GABAergic interneurons [9]. All PROX1+ve cells in the

cortex co-expressed Venus confirming that they are indeed

interneurons (Fig. 1H,I). As interneurons in the cortex can be

generated in one of three areas (MGE, LGE/CGE and POA), we

used transgenic mouse lines which allowed us to fate-map cell

lineages generated in these areas and identify interneurons derived

from them. These were Nkx2.1-Cre;R26R-GFP which label MGE-

and POA-derived cells [4], and Nkx2.1-Cre;Dlx1-Venusfl mice,

which label LGE/CGE-derived cells (Nkx2.1-Cre subtracts the

Venus label from MGE and POA cell derivatives) [9]. There was

only occasional co-localization between GFP and PROX1 in

Nkx2.1-Cre;R26R-GFP embryos (Fig. 1J,K) whereas nearly all

PROX1+ve cells co-expressed Venus in Nkx2.1-Cre;Dlx1-Venusfl

mice (Fig. 1L,M). Our data suggest that PROX1 is expressed in

LGE/CGE-derived interneurons but largely absent from MGE/

POA-derived ones, raising the possibility that PROX1 may be a

lineage marker for this population.

PROX1 Labels LGE/CGE- and POA-derived Interneurons in
the Adult Cortex
The data so far indicated that PROX1 is expressed in immature

migrating interneurons originating in the LGE/CGE at embry-

onic stages. To determine whether this expression is maintained at

later stages we examined cortices from adult transgenic mice. Cells

co-expressing Venus and high levels of PROX1 were found in

Dlx1-Venusfl mice suggesting that expression is maintained in

mature interneuron subsets (Fig. 2A–C). These cells were located

mainly in the outer layers of the cortex (Fig. 2C). In addition to

interneurons, an abundant population of cells expressing lower

levels of PROX1 was observed in the middle and lower layers of

the cortex and in the white matter (Fig. 2A). PROX1+veVenus2ve

cells in the cortex and white matter co-expressed the oligoden-

drocyte lineage marker SOX10 [45], indicating that they

represent subsets of oligodendrocyte precursors and/or mature

myelinating oligodendrocytes (Fig. 2A,B,D,E). This expression in

oligodendrocytes was observed with both anti-PROX1 antibodies

used in this study and was confirmed by in situ hybridization for

Prox1 in the adult brain (data not shown). Quantification of co-

localization of PROX1, SOX10 and Venus indicated that

interneurons and oligodendrocytes account for the entire popu-

lation of PROX1+ve cells in all layers of the cortex (Fig. 2D).

The distribution of interneurons expressing PROX1 in the

outer layers of the cortex is reminiscent of LGE/CGE and some

POA-derived populations [6,8,9]. To determine whether PROX1

is indeed a lineage marker for these cells we examined and

quantified the extent of co-localization between Venus/YFP and

PROX1 in our transgenic mice. In Dlx1-Venusfl mice 99% of

PROX1+veSOX102ve cells in the somatosensory cortex co-

expressed Venus and represented ,30% of the total interneuron

population (Fig. 3A–C). As Nkx2.1-Cre fails to recombine in the

Figure 1. PROX1 expression in the embryonic forebrain. (A–D)
Immunolabeling for PROX1 in coronal sections of the forebrain at E12.5
and E14.5. Expression can be seen in the SVZ of the MGE, dorsal LGE
(dLGE), CGE and POA as well as in the dentate neuroepithelium (DNE),
thalamus (Thal) and hypothalamus (Hyp). (E) Co-localization between
PROX1 and Ki67 in the SVZ of the MGE at E14.5. (F–G) At E16.5, sparse
PROX1+ve cells are visible in the cortex (shown at higher magnification
in G). (H–M) Immunolabeling for PROX1 and Venus/GFP in transgenic
mouse lines that label either all cortical interneurons (H,I), MGE/POA-
derived ones (J,K) or LGE/CGE–derived ones (L,M). PROX1+ve cells in
the cortex at E16.5 correspond to migrating immature interneurons
expressing Venus (H, I). MGE/POA-derived migrating interneurons are
largely immunonegative for PROX1 (J, K). Most PROX1+ve cells in the
cortex represent LGE/CGE-derived migrating interneurons (L, M).
Arrows indicate PROX1+ve Venus/GFP+ve interneurons, arrowheads
indicate PROX1+ve Venus/GFP-negative cells. Open arrowheads point
to autofluorescence from red blood cells. Scale bars: A–D, F, 500 mm; E,
25 mm; G, 100 mm; H, J, L, 100 mm; I, K, M, 20 mm.
doi:10.1371/journal.pone.0077339.g001
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dorsal MGE, for quantification purposes in the adult brain we

switched to Lhx6-Cre which labels all MGE-derived interneurons in

the cortex [4]. Unlike Nkx2.1-Cre, Lhx6-Cre does not recombine in

the POA. There was almost no co-localization between PROX1

and YFP in Lhx6-Cre;R26R-YFP transgenic mice whereas 97% of

PROX1+veSOX102ve cells co-expressed Venus in Lhx6-Cre;Dlx1-

Venusfl mice (Fig. 3A–C). These data indicate that PROX1+ve

interneurons are derived mainly from the LGE/CGE and possibly

the POA. To directly visualize POA-derived cells we made use of

Nkx5.1-Cre;R26R-YFP transgenic mice, which express YFP in a

subset of POA-derived interneurons [6]. 69% of YFP+ve-

SOX102ve interneurons co-expressed PROX1 in these mice and

represented ,10% of the total PROX1+ve interneuron population

(Fig. 3A–C). Nkx5.1-derived POA interneurons expressing

PROX1 were located almost exclusively within the outer cortical

layers (Fig. 3D). Altogether our findings show that PROX1

expression is confined to LGE/CGE and POA-derived cortical

interneurons but is excluded from MGE-derived populations.

PROX1 Identifies CR- NPY- RLN- and VIP-expressing
Interneurons in the Adult Cortex
Data so far showed that PROX1 is expressed in 84% of all

LGE/CGE/POA-derived cortical interneurons (Fig. 3C). To

determine whether these PROX1+ve cells correspond to particular

subtypes we characterized their neurochemical profile using

markers that define LGE/CGE and POA interneuron subsets.

PROX1 was found to be expressed in large numbers of calretinin

(CR)-, neuropeptide Y (NPY)- and RLN-positive cells as well as in

100% of the VIP-expressing population (Fig. 4A,B). As subsets of

CR-, NPY- and RLN-positive cells are also generated in the MGE,

we quantified the co-localization of PROX1 with the different

markers specifically in LGE/CGE/POA-lineage tracing mice.

.80% of Venus+ve cells expressing CR, NPY, or RLN showed co-

expression of PROX1 in Lhx6-Cre;Dlx1-Venusfl mice (Fig. 4B). Each

population represented 25–30% of PROX1+ve interneurons in the

somatosensory cortex (Fig. 4C). These PROX1+veVenus+ve cells

were located mainly in the outer layers of the cortex where most

LGE/CGE- and POA-derived interneurons reside (Fig. 4D). Our

data indicate that PROX1 is expressed in all the different

interneuron subtypes known to originate in the LGE/CGE.

Figure 2. PROX1 is expressed in cortical interneurons and oligodendrocyte lineage cells at P30. (A) PROX1, Venus and SOX10 expression
in the primary somatosensory cortex of the Dlx1-Venusfl mouse. The cortex is divided into 10 equal bins for quantification. (B) Higher magnification of
the boxed area in A. Nuclear PROX1 expression is evident in interneurons (arrows) and oligodendrocyte lineage cells (arrowheads) throughout all the
layers of the cortex. Interneurons generally showed more intense labelling for PROX1. (C) Distribution of PROX1+ve Venus+ve interneurons quantified
across cortical bins. (D) Quantification of the percentage of PROX1+ve cells expressing Venus (interneurons or INs) or SOX10 (oligos) in each bin. (E)
Contribution of PROX1+ve cells to the total oligodendrocyte lineage population. WM, white matter. Scale bars: A, 100 mm; B, 50 mm.
doi:10.1371/journal.pone.0077339.g002
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PROX1 Expression in Hippocampal Interneurons
Interneurons in the hippocampus and cortex have common

origins in the ganglionic eminences and POA and to date there

have been no lineage tracing markers that distinguish between the

two populations. To determine whether PROX1 is marking the

same lineages in the hippocampus as it does in the cortex we

examined its expression in our four transgenic mouse lines. As

expected, there was expression of PROX1 in some Venus+ve cells

in Dlx1-Venusfl mice in all layers and regions of the hippocampus

(Fig. 5A,B). The majority of YFP-expressing interneurons in the

hippocampus of Lhx6-Cre;R26R-YFP mice did not express PROX1

although greater co-localization was observed in these mice

compared to the cortex (Fig. 5C,D). On the other hand, the vast

majority of Venus+ve cells co-expressed PROX1 in Lhx6-Cre;Dlx1-

Venusfl mice (Fig. 5E,F). Very little or no expression of PROX1

could be detected in Nkx5.1-Cre;R26R-YFP mice. Most YFP-

expressing cells present in these animals represent oligodendrocyte

lineage cells expressing SOX10 and low levels of PROX1

(Fig. 5G,H). These data are consistent with PROX1 being

expressed in most LGE/CGE-derived interneurons of the

hippocampus. The Lhx6-Cre;R26R-YFP-labeled interneurons ex-

pressing PROX1 in the hippocampus may represent a small

Figure 3. PROX1 labels cortical interneurons derived from the LGE/CGE and POA. (A) Co-expression of PROX1 and Venus/YFP in
transgenic mouse lines that label interneurons derived from different progenitor regions. Arrows indicate co-expression, arrowheads indicate Venus/
YFP-negative PROX1+ve cells. Open arrowheads indicate YFP-labeled oligodendrocytes. (B) Contribution of the different progenitor regions to the
PROX1+ve interneuron population. (C) Co-localization of PROX1 and Venus/YFP expressed as a percentage of the total interneurons derived from each
progenitor region. (D) The contribution of LGE/CGE/POA (light grey) or POA only (dark grey) to the PROX1+ve population in each bin. The POA
contributes mainly upper layer PROX1+ve interneurons. Scale bar: A, 50 mm.
doi:10.1371/journal.pone.0077339.g003
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proportion of MGE-derived interneurons or a subset of the POA-

derived interneurons that express LHX6 [5,6].

Expression of PROX1 in Striatal Interneurons is
Independent of Origin
PROX1 expression is also maintained into adulthood in

scattered cells of the striatum. We examined this expression in

our transgenic mice to determine whether this transcription factor

shows lineage specificity in telencephalic regions other than the

cortex and hippocampus. We analyzed expression in Dlx1-Venusfl

mice which label nearly all striatal interneurons (our unpublished

observations) and Lhx6-Cre;R26R-YFP mice which label only

MGE-derived populations [46]. PROX1-expressing cells in the

striatum represented both interneurons and oligodendrocyte

lineage cells as shown by co-expression with either Venus or

SOX10 in Dlx1-Venusfl mice (Fig. 6A). Surprisingly, nearly all

PV+ve and NPY+ve interneurons of the striatum co-expressed

PROX1 even though these originate in the MGE (Fig. 6B,C) [46].

Indeed, there was extensive co-localization between PROX1 and

YFP in Lhx6-Cre;R26R-YFP transgenic mice indicating that most

MGE-derived striatal interneurons express PROX1 (Fig. 6D).

Altogether the data suggest that PROX1 can be used to identify

LGE/CGE/POA-derived interneurons in the cortex but in the

Figure 4. Co-expression of PROX1 with cortical interneuron markers. (A) PROX1 is expressed in CR, NPY, RLN and VIP cortical interneurons.
Arrows indicate PROX1+ve marker+ve cells, arrowheads indicate PROX12ve cells. (B) Quantification of the contribution of PROX1+ve cells to each of the
marker+ve populations (white), and specifically to the LGE/CGE/POA-derived populations labelled with Venus (grey) in the Lhx6-Cre;Dlx1-Venusfl

mouse. (C) The percentage of PROX1+ve interneurons co-expressing each of the interneuron markers. (D) Laminar distribution of the interneurons co-
expressing PROX1 and CR, NPY or RLN (light grey) as well as the total LGE/CGE/POA-derived marker+ve populations (dark grey). Scale bar: A, 50 mm.
doi:10.1371/journal.pone.0077339.g004
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striatum it has a broader expression pattern and labels the

majority of interneurons regardless of their origin.

Discussion

Our data show that PROX1 is a lineage marker for LGE/CGE-

and a subset of POA-derived cortical interneurons. It can be used

to identify these cells from the initial stages of migration into the

cortex as well as in the mature brain. During early development

PROX1 expression is observed in the SVZ of all three ganglionic

eminences as well as the POA, which suggests that the gene may

be actively down-regulated in MGE interneurons migrating to the

cortex. In the striatum however, expression of PROX1 in

interneurons is independent of origin and can be detected in

nearly all subtypes.

What could be the function of PROX1 in the telencephalic

SVZ? One of the functions of prospero and the vertebrate PROX1

is to regulate the balance between cycling and differentiation of

precursors [47,48]. For example, in the chick spinal cord, there is

PROX1 expression in the interface between the VZ and the

mantle where it is thought to act as a repressor of Notch1 expression

allowing cell cycle exit and initiation of neuronal differentiation

[32]. Its expression in Ki67+ve cells in the SVZ of the telencephalic

ganglionic eminences suggests that it may have a similar role in the

regulation of cell cycle exit and differentiation not only of cortical

and striatal interneurons but also of other neuronal populations

which are generated from the ganglionic eminences, including

striatal and pallidal projection neurons.

In the dentate gyrus of the embryonic and adult hippocampus,

PROX1 is activated downstream of Wnt signals and is required for

maintenance of intermediate precursors [33,35]. In these cells

PROX1 also acts as a postmitotic cell fate determinant specifying

granule cell identity over CA3 pyramidal cell fate [31] and later on

it is required for maturation and survival of immature granule cells

[35]. In the lymphatic system PROX1 expression is maintained in

Figure 5. Expression of PROX1 in the hippocampus at P30. (A, C, E, G) PROX1 co-expression with Venus/YFP in the hippocampus of the
different transgenic mouse lines. (B, D, F, G) Higher magnification images of the boxed areas. Arrows indicate PROX1+ve Venus/YFP+ve interneurons,
arrowheads indicate PROX1+veSOX10+ve oligodendrocytes, open arrowheads indicate YFP+ve oligodendrocytes in Nkx5.1-Cre;R26R-YFP transgenic
mice. Scale bars: A, C, E, G, 500 mm; B, D, F, H, 50 mm.
doi:10.1371/journal.pone.0077339.g005
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lymphatic endothelial cells (LEC) and is required throughout life

for maintenance of cell identity [49]. Whether it has similar roles

in the developing telencephalon remains to be determined. The

constitutive expression of PROX1 in LGE/CGE/POA-derived

cortical interneurons and all interneurons of the striatum suggests

that it may act as a fate-selector gene for these lineages over

alternative fates at early stages and later it may promote

maturation, survival and/or maintenance of interneuron identity.

The expression of PROX1 in dividing precursors, immature

migrating interneurons as well as mature fully integrated cells

suggests multiple roles at different developmental stages. The

mechanism by which one single transcription factor may exert

multiple functions is unknown but may involve differential binding

partners and/or distinct downstream targets. In the developing

lymphatic vasculature PROX1 is essential for the initial steps of

LEC specification from developing veins [28]. Recent evidence

has shown that COUPTFII acts as an upstream activator and a

binding partner of PROX1 during LEC specification [28,50]. This

genetic and physical interaction between COUPTFII and PROX1

may be conserved also in the telencephalon where the two genes

are co-expressed in the ganglionic eminences and in migrating

LGE/CGE/POA-derived cortical interneurons [24–26]. A possi-

ble association with COUPTFII may implicate PROX1 in caudal

migration. The function of PROX1 and its relationship to

COUPTFII and SP8 in migrating and mature LGE/CGE/

POA-derived interneurons awaits further investigation.

The use of markers for identifying cell lineages is an incredibly

powerful tool, not only for investigating the normal development

of these cells in vivo but also in stem cell differentiation and

transplantation studies. For example, NKX2.1 and LHX6, two

transcription factors that define MGE lineages, have been used to

identify, isolate and tag prospective MGE cortical interneuron

precursors from mouse and human embryonic stem cells during

in vitro differentiation and following in vivo transplantation [18–20].

Such studies are lacking for LGE/CGE-derived cortical interneu-

rons partly because of the paucity of definitive lineage markers.

With several studies in mice showing that transplanted embryonic

precursors can ameliorate symptoms of seizure-associated disor-

ders such as epilepsy, the identification of lineage-specific genes

and mature interneuron subtype markers is now of clinical

importance as well [51–53]. Our data show that PROX1 can be

added to the genetic repertoire of LGE/CGE/POA-derived

cortical interneurons and can be used to identify these cells at all

stages of their embryonic and adult life.
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